drm/i915/debugfs: Show context objects in i915_gem_objects
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
0e93cdd4
CW
231/* Typical size of the average request (2 pipecontrols and a MI_BB) */
232#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
e2efd130 234static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 235 struct intel_engine_cs *engine);
e2efd130 236static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 237 struct intel_engine_cs *engine);
7ba717cf 238
73e4d07f
OM
239/**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev: DRM device.
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
27401d12 245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
c033666a 249int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 250{
a0bd6c31
ZL
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
c033666a 254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
255 return 1;
256
c033666a 257 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
258 return 1;
259
127f1003
OM
260 if (enable_execlists == 0)
261 return 0;
262
b8d2afae 263 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv))
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
c033666a 272 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 273
c033666a 274 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
c033666a
CW
277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
ca82580c 283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
c033666a 284 if (IS_GEN8(dev_priv))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c 302 * @ctx: Context to work on
9021ad03 303 * @engine: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 313 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
314 * bits 53-54: mbz, reserved for use by hardware
315 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 316 */
ca82580c 317static void
e2efd130 318intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 319 struct intel_engine_cs *engine)
84b790f8 320{
9021ad03 321 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 322 u64 desc;
84b790f8 323
7069b144 324 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 325
7069b144 326 desc = engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
327 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
328 /* bits 12-31 */
7069b144 329 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 330
9021ad03 331 ce->lrc_desc = desc;
5af05fef
MT
332}
333
e2efd130 334uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 335 struct intel_engine_cs *engine)
84b790f8 336{
0bc40be8 337 return ctx->engine[engine->id].lrc_desc;
ca82580c 338}
203a571b 339
cc3c4253
MK
340static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
341 struct drm_i915_gem_request *rq1)
84b790f8 342{
cc3c4253 343
4a570db5 344 struct intel_engine_cs *engine = rq0->engine;
c033666a 345 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 346 uint64_t desc[2];
84b790f8 347
1cff8cc3 348 if (rq1) {
4a570db5 349 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
350 rq1->elsp_submitted++;
351 } else {
352 desc[1] = 0;
353 }
84b790f8 354
4a570db5 355 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 356 rq0->elsp_submitted++;
84b790f8 357
1cff8cc3 358 /* You must always write both descriptors in the order below. */
e2f80391
TU
359 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
360 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 361
e2f80391 362 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 363 /* The context is automatically loaded after the following */
e2f80391 364 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 365
1cff8cc3 366 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 367 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
368}
369
c6a2ac71
TU
370static void
371execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
372{
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377}
378
379static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 380{
4a570db5 381 struct intel_engine_cs *engine = rq->engine;
05d9824b 382 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 383 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 384
05d9824b 385 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 386
c6a2ac71
TU
387 /* True 32b PPGTT with dynamic page allocation: update PDP
388 * registers and point the unallocated PDPs to scratch page.
389 * PML4 is allocated during ppgtt init, so this is not needed
390 * in 48-bit mode.
391 */
392 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
393 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
394}
395
d8cb8875
MK
396static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
397 struct drm_i915_gem_request *rq1)
84b790f8 398{
26720ab9 399 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 400 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 401
05d9824b 402 execlists_update_context(rq0);
d8cb8875 403
cc3c4253 404 if (rq1)
05d9824b 405 execlists_update_context(rq1);
84b790f8 406
27af5eea 407 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 408 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 409
cc3c4253 410 execlists_elsp_write(rq0, rq1);
26720ab9 411
3756685a 412 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 413 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
414}
415
26720ab9 416static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 417{
6d3d8274 418 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 419 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 420
0bc40be8 421 assert_spin_locked(&engine->execlist_lock);
acdd884a 422
779949f4
PA
423 /*
424 * If irqs are not active generate a warning as batches that finish
425 * without the irqs may get lost and a GPU Hang may occur.
426 */
c033666a 427 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 428
acdd884a 429 /* Try to read in pairs */
0bc40be8 430 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
431 execlist_link) {
432 if (!req0) {
433 req0 = cursor;
6d3d8274 434 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
435 /* Same ctx: ignore first request, as second request
436 * will update tail past first request's workload */
e1fee72c 437 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
438 list_del(&req0->execlist_link);
439 i915_gem_request_unreference(req0);
acdd884a
MT
440 req0 = cursor;
441 } else {
442 req1 = cursor;
c6a2ac71 443 WARN_ON(req1->elsp_submitted);
acdd884a
MT
444 break;
445 }
446 }
447
c6a2ac71
TU
448 if (unlikely(!req0))
449 return;
450
0bc40be8 451 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 452 /*
c6a2ac71
TU
453 * WaIdleLiteRestore: make sure we never cause a lite restore
454 * with HEAD==TAIL.
455 *
456 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
457 * resubmit the request. See gen8_emit_request() for where we
458 * prepare the padding after the end of the request.
53292cdb 459 */
c6a2ac71 460 struct intel_ringbuffer *ringbuf;
53292cdb 461
0bc40be8 462 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
463 req0->tail += 8;
464 req0->tail &= ringbuf->size - 1;
53292cdb
MT
465 }
466
d8cb8875 467 execlists_submit_requests(req0, req1);
acdd884a
MT
468}
469
c6a2ac71 470static unsigned int
e39d42fa 471execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 472{
6d3d8274 473 struct drm_i915_gem_request *head_req;
e981e7b1 474
0bc40be8 475 assert_spin_locked(&engine->execlist_lock);
e981e7b1 476
0bc40be8 477 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 478 struct drm_i915_gem_request,
e981e7b1
TD
479 execlist_link);
480
e39d42fa
TU
481 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
482 return 0;
c6a2ac71
TU
483
484 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
485
486 if (--head_req->elsp_submitted > 0)
487 return 0;
488
e39d42fa
TU
489 list_del(&head_req->execlist_link);
490 i915_gem_request_unreference(head_req);
e981e7b1 491
c6a2ac71 492 return 1;
e981e7b1
TD
493}
494
c6a2ac71 495static u32
0bc40be8 496get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 497 u32 *context_id)
91a41032 498{
c033666a 499 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 500 u32 status;
91a41032 501
c6a2ac71
TU
502 read_pointer %= GEN8_CSB_ENTRIES;
503
0bc40be8 504 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
505
506 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
507 return 0;
91a41032 508
0bc40be8 509 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
510 read_pointer));
511
512 return status;
91a41032
BW
513}
514
73e4d07f 515/**
3f7531c3 516 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 517 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
518 *
519 * Check the unread Context Status Buffers and manage the submission of new
520 * contexts to the ELSP accordingly.
521 */
27af5eea 522static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 523{
27af5eea 524 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 525 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 526 u32 status_pointer;
c6a2ac71 527 unsigned int read_pointer, write_pointer;
26720ab9
TU
528 u32 csb[GEN8_CSB_ENTRIES][2];
529 unsigned int csb_read = 0, i;
c6a2ac71
TU
530 unsigned int submit_contexts = 0;
531
3756685a 532 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 533
0bc40be8 534 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 535
0bc40be8 536 read_pointer = engine->next_context_status_buffer;
5590a5f0 537 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 538 if (read_pointer > write_pointer)
dfc53c5e 539 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 540
e981e7b1 541 while (read_pointer < write_pointer) {
26720ab9
TU
542 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
543 break;
544 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
545 &csb[csb_read][1]);
546 csb_read++;
547 }
91a41032 548
26720ab9
TU
549 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
550
551 /* Update the read pointer to the old write pointer. Manual ringbuffer
552 * management ftw </sarcasm> */
553 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
554 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
555 engine->next_context_status_buffer << 8));
556
3756685a 557 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
558
559 spin_lock(&engine->execlist_lock);
560
561 for (i = 0; i < csb_read; i++) {
562 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
563 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
564 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
565 WARN(1, "Lite Restored request removed from queue\n");
566 } else
567 WARN(1, "Preemption without Lite Restore\n");
568 }
569
26720ab9 570 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
571 GEN8_CTX_STATUS_ELEMENT_SWITCH))
572 submit_contexts +=
26720ab9 573 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
574 }
575
c6a2ac71 576 if (submit_contexts) {
0bc40be8 577 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
578 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
579 execlists_context_unqueue(engine);
5af05fef 580 }
e981e7b1 581
0bc40be8 582 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
583
584 if (unlikely(submit_contexts > 2))
585 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
586}
587
c6a2ac71 588static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 589{
4a570db5 590 struct intel_engine_cs *engine = request->engine;
6d3d8274 591 struct drm_i915_gem_request *cursor;
f1ad5a1f 592 int num_elements = 0;
acdd884a 593
27af5eea 594 spin_lock_bh(&engine->execlist_lock);
acdd884a 595
e2f80391 596 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
597 if (++num_elements > 2)
598 break;
599
600 if (num_elements > 2) {
6d3d8274 601 struct drm_i915_gem_request *tail_req;
f1ad5a1f 602
e2f80391 603 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 604 struct drm_i915_gem_request,
f1ad5a1f
OM
605 execlist_link);
606
ae70797d 607 if (request->ctx == tail_req->ctx) {
f1ad5a1f 608 WARN(tail_req->elsp_submitted != 0,
7ba717cf 609 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
610 list_del(&tail_req->execlist_link);
611 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
612 }
613 }
614
e39d42fa 615 i915_gem_request_reference(request);
e2f80391 616 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 617 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 618 if (num_elements == 0)
e2f80391 619 execlists_context_unqueue(engine);
acdd884a 620
27af5eea 621 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
622}
623
2f20055d 624static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 625{
4a570db5 626 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
627 uint32_t flush_domains;
628 int ret;
629
630 flush_domains = 0;
e2f80391 631 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
632 flush_domains = I915_GEM_GPU_DOMAINS;
633
e2f80391 634 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
635 if (ret)
636 return ret;
637
e2f80391 638 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
639 return 0;
640}
641
535fbe82 642static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
643 struct list_head *vmas)
644{
666796da 645 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
646 struct i915_vma *vma;
647 uint32_t flush_domains = 0;
648 bool flush_chipset = false;
649 int ret;
650
651 list_for_each_entry(vma, vmas, exec_list) {
652 struct drm_i915_gem_object *obj = vma->obj;
653
03ade511 654 if (obj->active & other_rings) {
4a570db5 655 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
656 if (ret)
657 return ret;
658 }
ba8b7ccb
OM
659
660 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
661 flush_chipset |= i915_gem_clflush_object(obj, false);
662
663 flush_domains |= obj->base.write_domain;
664 }
665
666 if (flush_domains & I915_GEM_DOMAIN_GTT)
667 wmb();
668
669 /* Unconditionally invalidate gpu caches and ensure that we do flush
670 * any residual writes from the previous batch.
671 */
2f20055d 672 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
673}
674
40e895ce 675int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 676{
24f1d3cc 677 struct intel_engine_cs *engine = request->engine;
9021ad03 678 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 679 int ret;
bc0dce3f 680
6310346e
CW
681 /* Flush enough space to reduce the likelihood of waiting after
682 * we start building the request - in which case we will just
683 * have to repeat work.
684 */
0e93cdd4 685 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 686
9021ad03 687 if (!ce->state) {
978f1e09
CW
688 ret = execlists_context_deferred_alloc(request->ctx, engine);
689 if (ret)
690 return ret;
691 }
692
9021ad03 693 request->ringbuf = ce->ringbuf;
f3cc01f0 694
a7e02199
AD
695 if (i915.enable_guc_submission) {
696 /*
697 * Check that the GuC has space for the request before
698 * going any further, as the i915_add_request() call
699 * later on mustn't fail ...
700 */
7c2c270d 701 ret = i915_guc_wq_check_space(request);
a7e02199
AD
702 if (ret)
703 return ret;
704 }
705
24f1d3cc
CW
706 ret = intel_lr_context_pin(request->ctx, engine);
707 if (ret)
708 return ret;
e28e404c 709
bfa01200
CW
710 ret = intel_ring_begin(request, 0);
711 if (ret)
712 goto err_unpin;
713
9021ad03 714 if (!ce->initialised) {
24f1d3cc
CW
715 ret = engine->init_context(request);
716 if (ret)
717 goto err_unpin;
718
9021ad03 719 ce->initialised = true;
24f1d3cc
CW
720 }
721
722 /* Note that after this point, we have committed to using
723 * this request as it is being used to both track the
724 * state of engine initialisation and liveness of the
725 * golden renderstate above. Think twice before you try
726 * to cancel/unwind this request now.
727 */
728
0e93cdd4 729 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
730 return 0;
731
732err_unpin:
24f1d3cc 733 intel_lr_context_unpin(request->ctx, engine);
e28e404c 734 return ret;
bc0dce3f
JH
735}
736
bc0dce3f
JH
737/*
738 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 739 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
740 *
741 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
742 * really happens during submission is that the context and current tail will be placed
743 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
744 * point, the tail *inside* the context is updated and the ELSP written to.
745 */
7c17d377 746static int
ae70797d 747intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 748{
7c17d377 749 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 750 struct intel_engine_cs *engine = request->engine;
bc0dce3f 751
7c17d377
CW
752 intel_logical_ring_advance(ringbuf);
753 request->tail = ringbuf->tail;
bc0dce3f 754
7c17d377
CW
755 /*
756 * Here we add two extra NOOPs as padding to avoid
757 * lite restore of a context with HEAD==TAIL.
758 *
759 * Caller must reserve WA_TAIL_DWORDS for us!
760 */
761 intel_logical_ring_emit(ringbuf, MI_NOOP);
762 intel_logical_ring_emit(ringbuf, MI_NOOP);
763 intel_logical_ring_advance(ringbuf);
d1675198 764
117897f4 765 if (intel_engine_stopped(engine))
7c17d377 766 return 0;
bc0dce3f 767
a16a4052
CW
768 /* We keep the previous context alive until we retire the following
769 * request. This ensures that any the context object is still pinned
770 * for any residual writes the HW makes into it on the context switch
771 * into the next object following the breadcrumb. Otherwise, we may
772 * retire the context too early.
773 */
774 request->previous_context = engine->last_context;
775 engine->last_context = request->ctx;
f4e2dece 776
7c2c270d
DG
777 if (i915.enable_guc_submission)
778 i915_guc_submit(request);
d1675198
AD
779 else
780 execlists_context_queue(request);
7c17d377
CW
781
782 return 0;
bc0dce3f
JH
783}
784
73e4d07f
OM
785/**
786 * execlists_submission() - submit a batchbuffer for execution, Execlists style
787 * @dev: DRM device.
788 * @file: DRM file.
789 * @ring: Engine Command Streamer to submit to.
790 * @ctx: Context to employ for this submission.
791 * @args: execbuffer call arguments.
792 * @vmas: list of vmas.
793 * @batch_obj: the batchbuffer to submit.
794 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 795 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
796 *
797 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
798 * away the submission details of the execbuffer ioctl call.
799 *
800 * Return: non-zero if the submission fails.
801 */
5f19e2bf 802int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 803 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 804 struct list_head *vmas)
454afebd 805{
5f19e2bf 806 struct drm_device *dev = params->dev;
4a570db5 807 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 808 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 809 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 810 u64 exec_start;
ba8b7ccb
OM
811 int instp_mode;
812 u32 instp_mask;
813 int ret;
814
815 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
816 instp_mask = I915_EXEC_CONSTANTS_MASK;
817 switch (instp_mode) {
818 case I915_EXEC_CONSTANTS_REL_GENERAL:
819 case I915_EXEC_CONSTANTS_ABSOLUTE:
820 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 821 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
822 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
823 return -EINVAL;
824 }
825
826 if (instp_mode != dev_priv->relative_constants_mode) {
827 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
828 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
829 return -EINVAL;
830 }
831
832 /* The HW changed the meaning on this bit on gen6 */
833 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
834 }
835 break;
836 default:
837 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
838 return -EINVAL;
839 }
840
ba8b7ccb
OM
841 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
842 DRM_DEBUG("sol reset is gen7 only\n");
843 return -EINVAL;
844 }
845
535fbe82 846 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
847 if (ret)
848 return ret;
849
4a570db5 850 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 851 instp_mode != dev_priv->relative_constants_mode) {
987046ad 852 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
853 if (ret)
854 return ret;
855
856 intel_logical_ring_emit(ringbuf, MI_NOOP);
857 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 858 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
859 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
860 intel_logical_ring_advance(ringbuf);
861
862 dev_priv->relative_constants_mode = instp_mode;
863 }
864
5f19e2bf
JH
865 exec_start = params->batch_obj_vm_offset +
866 args->batch_start_offset;
867
e2f80391 868 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
869 if (ret)
870 return ret;
871
95c24161 872 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 873
8a8edb59 874 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 875
454afebd
OM
876 return 0;
877}
878
e39d42fa 879void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 880{
6d3d8274 881 struct drm_i915_gem_request *req, *tmp;
e39d42fa 882 LIST_HEAD(cancel_list);
c86ee3a9 883
c033666a 884 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
c86ee3a9 885
27af5eea 886 spin_lock_bh(&engine->execlist_lock);
e39d42fa 887 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 888 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 889
e39d42fa 890 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 891 list_del(&req->execlist_link);
f8210795 892 i915_gem_request_unreference(req);
c86ee3a9
TD
893 }
894}
895
0bc40be8 896void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 897{
c033666a 898 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
899 int ret;
900
117897f4 901 if (!intel_engine_initialized(engine))
9832b9da
OM
902 return;
903
666796da 904 ret = intel_engine_idle(engine);
f4457ae7 905 if (ret)
9832b9da 906 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 907 engine->name, ret);
9832b9da
OM
908
909 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
910 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
911 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
912 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
913 return;
914 }
0bc40be8 915 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
916}
917
4866d729 918int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 919{
4a570db5 920 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
921 int ret;
922
e2f80391 923 if (!engine->gpu_caches_dirty)
48e29f55
OM
924 return 0;
925
e2f80391 926 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
927 if (ret)
928 return ret;
929
e2f80391 930 engine->gpu_caches_dirty = false;
48e29f55
OM
931 return 0;
932}
933
e2efd130 934static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 935 struct intel_engine_cs *engine)
dcb4c12a 936{
24f1d3cc 937 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 938 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
939 void *vaddr;
940 u32 *lrc_reg_state;
ca82580c 941 int ret;
dcb4c12a 942
24f1d3cc 943 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 944
9021ad03 945 if (ce->pin_count++)
24f1d3cc
CW
946 return 0;
947
9021ad03
CW
948 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
949 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 950 if (ret)
24f1d3cc 951 goto err;
7ba717cf 952
9021ad03 953 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
954 if (IS_ERR(vaddr)) {
955 ret = PTR_ERR(vaddr);
82352e90
TU
956 goto unpin_ctx_obj;
957 }
958
7d774cac
TU
959 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
960
9021ad03 961 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
e84fe803 962 if (ret)
7d774cac 963 goto unpin_map;
d1675198 964
24f1d3cc 965 i915_gem_context_reference(ctx);
9021ad03 966 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 967 intel_lr_context_descriptor_update(ctx, engine);
9021ad03
CW
968
969 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
970 ce->lrc_reg_state = lrc_reg_state;
971 ce->state->dirty = true;
e93c28f3 972
e84fe803
NH
973 /* Invalidate GuC TLB. */
974 if (i915.enable_guc_submission)
975 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 976
24f1d3cc 977 return 0;
7ba717cf 978
7d774cac 979unpin_map:
9021ad03 980 i915_gem_object_unpin_map(ce->state);
7ba717cf 981unpin_ctx_obj:
9021ad03 982 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 983err:
9021ad03 984 ce->pin_count = 0;
e84fe803
NH
985 return ret;
986}
987
e2efd130 988void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 989 struct intel_engine_cs *engine)
e84fe803 990{
9021ad03 991 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 992
24f1d3cc 993 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
9021ad03 994 GEM_BUG_ON(ce->pin_count == 0);
321fe304 995
9021ad03 996 if (--ce->pin_count)
24f1d3cc 997 return;
e84fe803 998
9021ad03 999 intel_unpin_ringbuffer_obj(ce->ringbuf);
dcb4c12a 1000
9021ad03
CW
1001 i915_gem_object_unpin_map(ce->state);
1002 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 1003
9021ad03
CW
1004 ce->lrc_vma = NULL;
1005 ce->lrc_desc = 0;
1006 ce->lrc_reg_state = NULL;
321fe304 1007
24f1d3cc 1008 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1009}
1010
e2be4faf 1011static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1012{
1013 int ret, i;
4a570db5 1014 struct intel_engine_cs *engine = req->engine;
e2be4faf 1015 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1016 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1017
cd7feaaa 1018 if (w->count == 0)
771b9a53
MT
1019 return 0;
1020
e2f80391 1021 engine->gpu_caches_dirty = true;
4866d729 1022 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1023 if (ret)
1024 return ret;
1025
987046ad 1026 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1027 if (ret)
1028 return ret;
1029
1030 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1031 for (i = 0; i < w->count; i++) {
f92a9162 1032 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1033 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1034 }
1035 intel_logical_ring_emit(ringbuf, MI_NOOP);
1036
1037 intel_logical_ring_advance(ringbuf);
1038
e2f80391 1039 engine->gpu_caches_dirty = true;
4866d729 1040 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1041 if (ret)
1042 return ret;
1043
1044 return 0;
1045}
1046
83b8a982 1047#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1048 do { \
83b8a982
AS
1049 int __index = (index)++; \
1050 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1051 return -ENOSPC; \
1052 } \
83b8a982 1053 batch[__index] = (cmd); \
17ee950d
AS
1054 } while (0)
1055
8f40db77 1056#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1057 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1058
1059/*
1060 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1061 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1062 * but there is a slight complication as this is applied in WA batch where the
1063 * values are only initialized once so we cannot take register value at the
1064 * beginning and reuse it further; hence we save its value to memory, upload a
1065 * constant value with bit21 set and then we restore it back with the saved value.
1066 * To simplify the WA, a constant value is formed by using the default value
1067 * of this register. This shouldn't be a problem because we are only modifying
1068 * it for a short period and this batch in non-premptible. We can ofcourse
1069 * use additional instructions that read the actual value of the register
1070 * at that time and set our bit of interest but it makes the WA complicated.
1071 *
1072 * This WA is also required for Gen9 so extracting as a function avoids
1073 * code duplication.
1074 */
0bc40be8 1075static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1076 uint32_t *const batch,
1077 uint32_t index)
1078{
1079 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1080
a4106a78
AS
1081 /*
1082 * WaDisableLSQCROPERFforOCL:skl
1083 * This WA is implemented in skl_init_clock_gating() but since
1084 * this batch updates GEN8_L3SQCREG4 with default value we need to
1085 * set this bit here to retain the WA during flush.
1086 */
c033666a 1087 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
a4106a78
AS
1088 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1089
f1afe24f 1090 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1091 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1092 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1093 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1094 wa_ctx_emit(batch, index, 0);
1095
1096 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1097 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1098 wa_ctx_emit(batch, index, l3sqc4_flush);
1099
1100 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1101 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1102 PIPE_CONTROL_DC_FLUSH_ENABLE));
1103 wa_ctx_emit(batch, index, 0);
1104 wa_ctx_emit(batch, index, 0);
1105 wa_ctx_emit(batch, index, 0);
1106 wa_ctx_emit(batch, index, 0);
1107
f1afe24f 1108 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1109 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1110 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1111 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1112 wa_ctx_emit(batch, index, 0);
9e000847
AS
1113
1114 return index;
1115}
1116
17ee950d
AS
1117static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1118 uint32_t offset,
1119 uint32_t start_alignment)
1120{
1121 return wa_ctx->offset = ALIGN(offset, start_alignment);
1122}
1123
1124static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1125 uint32_t offset,
1126 uint32_t size_alignment)
1127{
1128 wa_ctx->size = offset - wa_ctx->offset;
1129
1130 WARN(wa_ctx->size % size_alignment,
1131 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1132 wa_ctx->size, size_alignment);
1133 return 0;
1134}
1135
1136/**
1137 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1138 *
1139 * @ring: only applicable for RCS
1140 * @wa_ctx: structure representing wa_ctx
1141 * offset: specifies start of the batch, should be cache-aligned. This is updated
1142 * with the offset value received as input.
1143 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1144 * @batch: page in which WA are loaded
1145 * @offset: This field specifies the start of the batch, it should be
1146 * cache-aligned otherwise it is adjusted accordingly.
1147 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1148 * initialized at the beginning and shared across all contexts but this field
1149 * helps us to have multiple batches at different offsets and select them based
1150 * on a criteria. At the moment this batch always start at the beginning of the page
1151 * and at this point we don't have multiple wa_ctx batch buffers.
1152 *
1153 * The number of WA applied are not known at the beginning; we use this field
1154 * to return the no of DWORDS written.
4d78c8dc 1155 *
17ee950d
AS
1156 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1157 * so it adds NOOPs as padding to make it cacheline aligned.
1158 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1159 * makes a complete batch buffer.
1160 *
1161 * Return: non-zero if we exceed the PAGE_SIZE limit.
1162 */
1163
0bc40be8 1164static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1165 struct i915_wa_ctx_bb *wa_ctx,
1166 uint32_t *const batch,
1167 uint32_t *offset)
1168{
0160f055 1169 uint32_t scratch_addr;
17ee950d
AS
1170 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1171
7ad00d1a 1172 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1173 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1174
c82435bb 1175 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1176 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1177 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1178 if (rc < 0)
1179 return rc;
1180 index = rc;
c82435bb
AS
1181 }
1182
0160f055
AS
1183 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1184 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1185 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1186
83b8a982
AS
1187 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1188 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1189 PIPE_CONTROL_GLOBAL_GTT_IVB |
1190 PIPE_CONTROL_CS_STALL |
1191 PIPE_CONTROL_QW_WRITE));
1192 wa_ctx_emit(batch, index, scratch_addr);
1193 wa_ctx_emit(batch, index, 0);
1194 wa_ctx_emit(batch, index, 0);
1195 wa_ctx_emit(batch, index, 0);
0160f055 1196
17ee950d
AS
1197 /* Pad to end of cacheline */
1198 while (index % CACHELINE_DWORDS)
83b8a982 1199 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1200
1201 /*
1202 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1203 * execution depends on the length specified in terms of cache lines
1204 * in the register CTX_RCS_INDIRECT_CTX
1205 */
1206
1207 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1208}
1209
1210/**
1211 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1212 *
1213 * @ring: only applicable for RCS
1214 * @wa_ctx: structure representing wa_ctx
1215 * offset: specifies start of the batch, should be cache-aligned.
1216 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1217 * @batch: page in which WA are loaded
17ee950d
AS
1218 * @offset: This field specifies the start of this batch.
1219 * This batch is started immediately after indirect_ctx batch. Since we ensure
1220 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1221 *
1222 * The number of DWORDS written are returned using this field.
1223 *
1224 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1225 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1226 */
0bc40be8 1227static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1228 struct i915_wa_ctx_bb *wa_ctx,
1229 uint32_t *const batch,
1230 uint32_t *offset)
1231{
1232 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1233
7ad00d1a 1234 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1235 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1236
83b8a982 1237 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1238
1239 return wa_ctx_end(wa_ctx, *offset = index, 1);
1240}
1241
0bc40be8 1242static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1243 struct i915_wa_ctx_bb *wa_ctx,
1244 uint32_t *const batch,
1245 uint32_t *offset)
1246{
a4106a78 1247 int ret;
0504cffc
AS
1248 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1249
0907c8f7 1250 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1251 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1252 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1253 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1254
a4106a78 1255 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1256 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1257 if (ret < 0)
1258 return ret;
1259 index = ret;
1260
0504cffc
AS
1261 /* Pad to end of cacheline */
1262 while (index % CACHELINE_DWORDS)
1263 wa_ctx_emit(batch, index, MI_NOOP);
1264
1265 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1266}
1267
0bc40be8 1268static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1269 struct i915_wa_ctx_bb *wa_ctx,
1270 uint32_t *const batch,
1271 uint32_t *offset)
1272{
1273 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1274
9b01435d 1275 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1276 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1277 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1278 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1279 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1280 wa_ctx_emit(batch, index,
1281 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1282 wa_ctx_emit(batch, index, MI_NOOP);
1283 }
1284
b1e429fe 1285 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1286 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1287 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1288
1289 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1290 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1291
1292 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1293 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1294
1295 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1296 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1297
1298 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1299 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1300 wa_ctx_emit(batch, index, 0x0);
1301 wa_ctx_emit(batch, index, MI_NOOP);
1302 }
1303
0907c8f7 1304 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1305 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1306 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1307 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1308
0504cffc
AS
1309 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1310
1311 return wa_ctx_end(wa_ctx, *offset = index, 1);
1312}
1313
0bc40be8 1314static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1315{
1316 int ret;
1317
c033666a 1318 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
0bc40be8 1319 PAGE_ALIGN(size));
fe3db79b 1320 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1321 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1322 ret = PTR_ERR(engine->wa_ctx.obj);
1323 engine->wa_ctx.obj = NULL;
1324 return ret;
17ee950d
AS
1325 }
1326
0bc40be8 1327 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1328 if (ret) {
1329 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1330 ret);
0bc40be8 1331 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1332 return ret;
1333 }
1334
1335 return 0;
1336}
1337
0bc40be8 1338static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1339{
0bc40be8
TU
1340 if (engine->wa_ctx.obj) {
1341 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1342 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1343 engine->wa_ctx.obj = NULL;
17ee950d
AS
1344 }
1345}
1346
0bc40be8 1347static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1348{
1349 int ret;
1350 uint32_t *batch;
1351 uint32_t offset;
1352 struct page *page;
0bc40be8 1353 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1354
0bc40be8 1355 WARN_ON(engine->id != RCS);
17ee950d 1356
5e60d790 1357 /* update this when WA for higher Gen are added */
c033666a 1358 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1359 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1360 INTEL_GEN(engine->i915));
5e60d790 1361 return 0;
0504cffc 1362 }
5e60d790 1363
c4db7599 1364 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1365 if (engine->scratch.obj == NULL) {
1366 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1367 return -EINVAL;
1368 }
1369
0bc40be8 1370 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1371 if (ret) {
1372 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1373 return ret;
1374 }
1375
033908ae 1376 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1377 batch = kmap_atomic(page);
1378 offset = 0;
1379
c033666a 1380 if (IS_GEN8(engine->i915)) {
0bc40be8 1381 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1382 &wa_ctx->indirect_ctx,
1383 batch,
1384 &offset);
1385 if (ret)
1386 goto out;
1387
0bc40be8 1388 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1389 &wa_ctx->per_ctx,
1390 batch,
1391 &offset);
1392 if (ret)
1393 goto out;
c033666a 1394 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1395 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1396 &wa_ctx->indirect_ctx,
1397 batch,
1398 &offset);
1399 if (ret)
1400 goto out;
1401
0bc40be8 1402 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1403 &wa_ctx->per_ctx,
1404 batch,
1405 &offset);
1406 if (ret)
1407 goto out;
17ee950d
AS
1408 }
1409
1410out:
1411 kunmap_atomic(batch);
1412 if (ret)
0bc40be8 1413 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1414
1415 return ret;
1416}
1417
04794adb
TU
1418static void lrc_init_hws(struct intel_engine_cs *engine)
1419{
c033666a 1420 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1421
1422 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1423 (u32)engine->status_page.gfx_addr);
1424 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1425}
1426
0bc40be8 1427static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1428{
c033666a 1429 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1430 unsigned int next_context_status_buffer_hw;
9b1136d5 1431
04794adb 1432 lrc_init_hws(engine);
e84fe803 1433
0bc40be8
TU
1434 I915_WRITE_IMR(engine,
1435 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1436 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1437
0bc40be8 1438 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1439 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1440 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1441 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1442
1443 /*
1444 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1445 * zero, we need to read the write pointer from hardware and use its
1446 * value because "this register is power context save restored".
1447 * Effectively, these states have been observed:
1448 *
1449 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1450 * BDW | CSB regs not reset | CSB regs reset |
1451 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1452 * SKL | ? | ? |
1453 * BXT | ? | ? |
dfc53c5e 1454 */
5590a5f0 1455 next_context_status_buffer_hw =
0bc40be8 1456 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1457
1458 /*
1459 * When the CSB registers are reset (also after power-up / gpu reset),
1460 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1461 * this special case, so the first element read is CSB[0].
1462 */
1463 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1464 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1465
0bc40be8
TU
1466 engine->next_context_status_buffer = next_context_status_buffer_hw;
1467 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1468
fc0768ce 1469 intel_engine_init_hangcheck(engine);
9b1136d5 1470
0ccdacf6 1471 return intel_mocs_init_engine(engine);
9b1136d5
OM
1472}
1473
0bc40be8 1474static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1475{
c033666a 1476 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1477 int ret;
1478
0bc40be8 1479 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1480 if (ret)
1481 return ret;
1482
1483 /* We need to disable the AsyncFlip performance optimisations in order
1484 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1485 * programmed to '1' on all products.
1486 *
1487 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1488 */
1489 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1490
9b1136d5
OM
1491 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1492
0bc40be8 1493 return init_workarounds_ring(engine);
9b1136d5
OM
1494}
1495
0bc40be8 1496static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1497{
1498 int ret;
1499
0bc40be8 1500 ret = gen8_init_common_ring(engine);
82ef822e
DL
1501 if (ret)
1502 return ret;
1503
0bc40be8 1504 return init_workarounds_ring(engine);
82ef822e
DL
1505}
1506
7a01a0a2
MT
1507static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1508{
1509 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1510 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1511 struct intel_ringbuffer *ringbuf = req->ringbuf;
1512 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1513 int i, ret;
1514
987046ad 1515 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1516 if (ret)
1517 return ret;
1518
1519 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1520 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1521 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1522
e2f80391
TU
1523 intel_logical_ring_emit_reg(ringbuf,
1524 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1525 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1526 intel_logical_ring_emit_reg(ringbuf,
1527 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1528 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1529 }
1530
1531 intel_logical_ring_emit(ringbuf, MI_NOOP);
1532 intel_logical_ring_advance(ringbuf);
1533
1534 return 0;
1535}
1536
be795fc1 1537static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1538 u64 offset, unsigned dispatch_flags)
15648585 1539{
be795fc1 1540 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1541 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1542 int ret;
1543
7a01a0a2
MT
1544 /* Don't rely in hw updating PDPs, specially in lite-restore.
1545 * Ideally, we should set Force PD Restore in ctx descriptor,
1546 * but we can't. Force Restore would be a second option, but
1547 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1548 * not idle). PML4 is allocated during ppgtt init so this is
1549 * not needed in 48-bit.*/
7a01a0a2 1550 if (req->ctx->ppgtt &&
666796da 1551 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1552 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1553 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1554 ret = intel_logical_ring_emit_pdps(req);
1555 if (ret)
1556 return ret;
1557 }
7a01a0a2 1558
666796da 1559 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1560 }
1561
987046ad 1562 ret = intel_ring_begin(req, 4);
15648585
OM
1563 if (ret)
1564 return ret;
1565
1566 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1567 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1568 (ppgtt<<8) |
1569 (dispatch_flags & I915_DISPATCH_RS ?
1570 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1571 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1572 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1573 intel_logical_ring_emit(ringbuf, MI_NOOP);
1574 intel_logical_ring_advance(ringbuf);
1575
1576 return 0;
1577}
1578
0bc40be8 1579static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1580{
c033666a 1581 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1582 unsigned long flags;
1583
7cd512f1 1584 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1585 return false;
1586
1587 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1588 if (engine->irq_refcount++ == 0) {
1589 I915_WRITE_IMR(engine,
1590 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1591 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1592 }
1593 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594
1595 return true;
1596}
1597
0bc40be8 1598static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1599{
c033666a 1600 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1604 if (--engine->irq_refcount == 0) {
1605 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1606 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1607 }
1608 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609}
1610
7deb4d39 1611static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1612 u32 invalidate_domains,
1613 u32 unused)
1614{
7deb4d39 1615 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1616 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1617 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1618 uint32_t cmd;
1619 int ret;
1620
987046ad 1621 ret = intel_ring_begin(request, 4);
4712274c
OM
1622 if (ret)
1623 return ret;
1624
1625 cmd = MI_FLUSH_DW + 1;
1626
f0a1fb10
CW
1627 /* We always require a command barrier so that subsequent
1628 * commands, such as breadcrumb interrupts, are strictly ordered
1629 * wrt the contents of the write cache being flushed to memory
1630 * (and thus being coherent from the CPU).
1631 */
1632 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1633
1634 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1635 cmd |= MI_INVALIDATE_TLB;
4a570db5 1636 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1637 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1638 }
1639
1640 intel_logical_ring_emit(ringbuf, cmd);
1641 intel_logical_ring_emit(ringbuf,
1642 I915_GEM_HWS_SCRATCH_ADDR |
1643 MI_FLUSH_DW_USE_GTT);
1644 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1645 intel_logical_ring_emit(ringbuf, 0); /* value */
1646 intel_logical_ring_advance(ringbuf);
1647
1648 return 0;
1649}
1650
7deb4d39 1651static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1652 u32 invalidate_domains,
1653 u32 flush_domains)
1654{
7deb4d39 1655 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1656 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1657 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1658 bool vf_flush_wa = false;
4712274c
OM
1659 u32 flags = 0;
1660 int ret;
1661
1662 flags |= PIPE_CONTROL_CS_STALL;
1663
1664 if (flush_domains) {
1665 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1666 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1667 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1668 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1669 }
1670
1671 if (invalidate_domains) {
1672 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1673 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1674 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1675 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1676 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1677 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1678 flags |= PIPE_CONTROL_QW_WRITE;
1679 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1680
1a5a9ce7
BW
1681 /*
1682 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1683 * pipe control.
1684 */
c033666a 1685 if (IS_GEN9(request->i915))
1a5a9ce7
BW
1686 vf_flush_wa = true;
1687 }
9647ff36 1688
987046ad 1689 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1690 if (ret)
1691 return ret;
1692
9647ff36
ID
1693 if (vf_flush_wa) {
1694 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1695 intel_logical_ring_emit(ringbuf, 0);
1696 intel_logical_ring_emit(ringbuf, 0);
1697 intel_logical_ring_emit(ringbuf, 0);
1698 intel_logical_ring_emit(ringbuf, 0);
1699 intel_logical_ring_emit(ringbuf, 0);
1700 }
1701
4712274c
OM
1702 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1703 intel_logical_ring_emit(ringbuf, flags);
1704 intel_logical_ring_emit(ringbuf, scratch_addr);
1705 intel_logical_ring_emit(ringbuf, 0);
1706 intel_logical_ring_emit(ringbuf, 0);
1707 intel_logical_ring_emit(ringbuf, 0);
1708 intel_logical_ring_advance(ringbuf);
1709
1710 return 0;
1711}
1712
c04e0f3b 1713static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1714{
0bc40be8 1715 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1716}
1717
0bc40be8 1718static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1719{
0bc40be8 1720 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1721}
1722
c04e0f3b 1723static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1724{
319404df
ID
1725 /*
1726 * On BXT A steppings there is a HW coherency issue whereby the
1727 * MI_STORE_DATA_IMM storing the completed request's seqno
1728 * occasionally doesn't invalidate the CPU cache. Work around this by
1729 * clflushing the corresponding cacheline whenever the caller wants
1730 * the coherency to be guaranteed. Note that this cacheline is known
1731 * to be clean at this point, since we only write it in
1732 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1733 * this clflush in practice becomes an invalidate operation.
1734 */
c04e0f3b 1735 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1736}
1737
0bc40be8 1738static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1739{
0bc40be8 1740 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1741
1742 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1743 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1744}
1745
7c17d377
CW
1746/*
1747 * Reserve space for 2 NOOPs at the end of each request to be
1748 * used as a workaround for not being allowed to do lite
1749 * restore with HEAD==TAIL (WaIdleLiteRestore).
1750 */
1751#define WA_TAIL_DWORDS 2
1752
c4e76638 1753static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1754{
c4e76638 1755 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1756 int ret;
1757
987046ad 1758 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1759 if (ret)
1760 return ret;
1761
7c17d377
CW
1762 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1763 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1764
4da46e1e 1765 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1766 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1767 intel_logical_ring_emit(ringbuf,
a58c01aa 1768 intel_hws_seqno_address(request->engine) |
7c17d377 1769 MI_FLUSH_DW_USE_GTT);
4da46e1e 1770 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1771 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1772 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1773 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1774 return intel_logical_ring_advance_and_submit(request);
1775}
4da46e1e 1776
7c17d377
CW
1777static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1778{
1779 struct intel_ringbuffer *ringbuf = request->ringbuf;
1780 int ret;
53292cdb 1781
987046ad 1782 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1783 if (ret)
1784 return ret;
1785
ce81a65c
MW
1786 /* We're using qword write, seqno should be aligned to 8 bytes. */
1787 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1788
7c17d377
CW
1789 /* w/a for post sync ops following a GPGPU operation we
1790 * need a prior CS_STALL, which is emitted by the flush
1791 * following the batch.
1792 */
ce81a65c 1793 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1794 intel_logical_ring_emit(ringbuf,
1795 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1796 PIPE_CONTROL_CS_STALL |
1797 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1798 intel_logical_ring_emit(ringbuf,
1799 intel_hws_seqno_address(request->engine));
7c17d377
CW
1800 intel_logical_ring_emit(ringbuf, 0);
1801 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1802 /* We're thrashing one dword of HWS. */
1803 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1804 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1805 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1806 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1807}
1808
be01363f 1809static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1810{
cef437ad 1811 struct render_state so;
cef437ad
DL
1812 int ret;
1813
4a570db5 1814 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1815 if (ret)
1816 return ret;
1817
1818 if (so.rodata == NULL)
1819 return 0;
1820
4a570db5 1821 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1822 I915_DISPATCH_SECURE);
cef437ad
DL
1823 if (ret)
1824 goto out;
1825
4a570db5 1826 ret = req->engine->emit_bb_start(req,
84e81020
AS
1827 (so.ggtt_offset + so.aux_batch_offset),
1828 I915_DISPATCH_SECURE);
1829 if (ret)
1830 goto out;
1831
b2af0376 1832 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1833
cef437ad
DL
1834out:
1835 i915_gem_render_state_fini(&so);
1836 return ret;
1837}
1838
8753181e 1839static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1840{
1841 int ret;
1842
e2be4faf 1843 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1844 if (ret)
1845 return ret;
1846
3bbaba0c
PA
1847 ret = intel_rcs_context_init_mocs(req);
1848 /*
1849 * Failing to program the MOCS is non-fatal.The system will not
1850 * run at peak performance. So generate an error and carry on.
1851 */
1852 if (ret)
1853 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1854
be01363f 1855 return intel_lr_context_render_state_init(req);
e7778be1
TD
1856}
1857
73e4d07f
OM
1858/**
1859 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1860 *
1861 * @ring: Engine Command Streamer.
1862 *
1863 */
0bc40be8 1864void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1865{
6402c330 1866 struct drm_i915_private *dev_priv;
9832b9da 1867
117897f4 1868 if (!intel_engine_initialized(engine))
48d82387
OM
1869 return;
1870
27af5eea
TU
1871 /*
1872 * Tasklet cannot be active at this point due intel_mark_active/idle
1873 * so this is just for documentation.
1874 */
1875 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1876 tasklet_kill(&engine->irq_tasklet);
1877
c033666a 1878 dev_priv = engine->i915;
6402c330 1879
0bc40be8
TU
1880 if (engine->buffer) {
1881 intel_logical_ring_stop(engine);
1882 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1883 }
48d82387 1884
0bc40be8
TU
1885 if (engine->cleanup)
1886 engine->cleanup(engine);
48d82387 1887
0bc40be8
TU
1888 i915_cmd_parser_fini_ring(engine);
1889 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1890
0bc40be8 1891 if (engine->status_page.obj) {
7d774cac 1892 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1893 engine->status_page.obj = NULL;
48d82387 1894 }
24f1d3cc 1895 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1896
0bc40be8
TU
1897 engine->idle_lite_restore_wa = 0;
1898 engine->disable_lite_restore_wa = false;
1899 engine->ctx_desc_template = 0;
ca82580c 1900
0bc40be8 1901 lrc_destroy_wa_ctx_obj(engine);
c033666a 1902 engine->i915 = NULL;
454afebd
OM
1903}
1904
c9cacf93 1905static void
e1382efb 1906logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1907{
1908 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1909 engine->init_hw = gen8_init_common_ring;
1910 engine->emit_request = gen8_emit_request;
1911 engine->emit_flush = gen8_emit_flush;
1912 engine->irq_get = gen8_logical_ring_get_irq;
1913 engine->irq_put = gen8_logical_ring_put_irq;
1914 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1915 engine->get_seqno = gen8_get_seqno;
1916 engine->set_seqno = gen8_set_seqno;
c033666a 1917 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
c04e0f3b 1918 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1919 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1920 }
1921}
1922
d9f3af96 1923static inline void
0bc40be8 1924logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1925{
0bc40be8
TU
1926 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1927 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
e1382efb 1928 init_waitqueue_head(&engine->irq_queue);
d9f3af96
TU
1929}
1930
7d774cac 1931static int
04794adb
TU
1932lrc_setup_hws(struct intel_engine_cs *engine,
1933 struct drm_i915_gem_object *dctx_obj)
1934{
7d774cac 1935 void *hws;
04794adb
TU
1936
1937 /* The HWSP is part of the default context object in LRC mode. */
1938 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1939 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1940 hws = i915_gem_object_pin_map(dctx_obj);
1941 if (IS_ERR(hws))
1942 return PTR_ERR(hws);
1943 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1944 engine->status_page.obj = dctx_obj;
7d774cac
TU
1945
1946 return 0;
04794adb
TU
1947}
1948
e1382efb
CW
1949static const struct logical_ring_info {
1950 const char *name;
1951 unsigned exec_id;
1952 unsigned guc_id;
1953 u32 mmio_base;
1954 unsigned irq_shift;
1955} logical_rings[] = {
1956 [RCS] = {
1957 .name = "render ring",
1958 .exec_id = I915_EXEC_RENDER,
1959 .guc_id = GUC_RENDER_ENGINE,
1960 .mmio_base = RENDER_RING_BASE,
1961 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1962 },
1963 [BCS] = {
1964 .name = "blitter ring",
1965 .exec_id = I915_EXEC_BLT,
1966 .guc_id = GUC_BLITTER_ENGINE,
1967 .mmio_base = BLT_RING_BASE,
1968 .irq_shift = GEN8_BCS_IRQ_SHIFT,
1969 },
1970 [VCS] = {
1971 .name = "bsd ring",
1972 .exec_id = I915_EXEC_BSD,
1973 .guc_id = GUC_VIDEO_ENGINE,
1974 .mmio_base = GEN6_BSD_RING_BASE,
1975 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
1976 },
1977 [VCS2] = {
1978 .name = "bsd2 ring",
1979 .exec_id = I915_EXEC_BSD,
1980 .guc_id = GUC_VIDEO_ENGINE2,
1981 .mmio_base = GEN8_BSD2_RING_BASE,
1982 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
1983 },
1984 [VECS] = {
1985 .name = "video enhancement ring",
1986 .exec_id = I915_EXEC_VEBOX,
1987 .guc_id = GUC_VIDEOENHANCE_ENGINE,
1988 .mmio_base = VEBOX_RING_BASE,
1989 .irq_shift = GEN8_VECS_IRQ_SHIFT,
1990 },
1991};
1992
1993static struct intel_engine_cs *
1994logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
454afebd 1995{
e1382efb 1996 const struct logical_ring_info *info = &logical_rings[id];
3756685a 1997 struct drm_i915_private *dev_priv = to_i915(dev);
e1382efb 1998 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 1999 enum forcewake_domains fw_domains;
48d82387 2000
e1382efb
CW
2001 engine->id = id;
2002 engine->name = info->name;
2003 engine->exec_id = info->exec_id;
2004 engine->guc_id = info->guc_id;
2005 engine->mmio_base = info->mmio_base;
48d82387 2006
c033666a 2007 engine->i915 = dev_priv;
acdd884a 2008
e1382efb
CW
2009 /* Intentionally left blank. */
2010 engine->buffer = NULL;
ca82580c 2011
3756685a
TU
2012 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2013 RING_ELSP(engine),
2014 FW_REG_WRITE);
2015
2016 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2017 RING_CONTEXT_STATUS_PTR(engine),
2018 FW_REG_READ | FW_REG_WRITE);
2019
2020 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2021 RING_CONTEXT_STATUS_BUF_BASE(engine),
2022 FW_REG_READ);
2023
2024 engine->fw_domains = fw_domains;
2025
e1382efb
CW
2026 INIT_LIST_HEAD(&engine->active_list);
2027 INIT_LIST_HEAD(&engine->request_list);
2028 INIT_LIST_HEAD(&engine->buffers);
2029 INIT_LIST_HEAD(&engine->execlist_queue);
2030 spin_lock_init(&engine->execlist_lock);
2031
2032 tasklet_init(&engine->irq_tasklet,
2033 intel_lrc_irq_handler, (unsigned long)engine);
2034
2035 logical_ring_init_platform_invariants(engine);
2036 logical_ring_default_vfuncs(engine);
2037 logical_ring_default_irqs(engine, info->irq_shift);
2038
2039 intel_engine_init_hangcheck(engine);
c033666a 2040 i915_gem_batch_pool_init(dev, &engine->batch_pool);
e1382efb
CW
2041
2042 return engine;
2043}
2044
2045static int
2046logical_ring_init(struct intel_engine_cs *engine)
2047{
e2efd130 2048 struct i915_gem_context *dctx = engine->i915->kernel_context;
e1382efb
CW
2049 int ret;
2050
0bc40be8 2051 ret = i915_cmd_parser_init_ring(engine);
48d82387 2052 if (ret)
b0366a54 2053 goto error;
48d82387 2054
978f1e09 2055 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2056 if (ret)
b0366a54 2057 goto error;
e84fe803
NH
2058
2059 /* As this is the default context, always pin it */
24f1d3cc 2060 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2061 if (ret) {
24f1d3cc
CW
2062 DRM_ERROR("Failed to pin context for %s: %d\n",
2063 engine->name, ret);
b0366a54 2064 goto error;
e84fe803 2065 }
564ddb2f 2066
04794adb 2067 /* And setup the hardware status page. */
7d774cac
TU
2068 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2069 if (ret) {
2070 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2071 goto error;
2072 }
04794adb 2073
b0366a54
DG
2074 return 0;
2075
2076error:
0bc40be8 2077 intel_logical_ring_cleanup(engine);
564ddb2f 2078 return ret;
454afebd
OM
2079}
2080
2081static int logical_render_ring_init(struct drm_device *dev)
2082{
e1382efb 2083 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
99be1dfe 2084 int ret;
454afebd 2085
73d477f6 2086 if (HAS_L3_DPF(dev))
e2f80391 2087 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2088
c9cacf93 2089 /* Override some for render ring. */
82ef822e 2090 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2091 engine->init_hw = gen9_init_render_ring;
82ef822e 2092 else
e2f80391
TU
2093 engine->init_hw = gen8_init_render_ring;
2094 engine->init_context = gen8_init_rcs_context;
2095 engine->cleanup = intel_fini_pipe_control;
2096 engine->emit_flush = gen8_emit_flush_render;
2097 engine->emit_request = gen8_emit_request_render;
9b1136d5 2098
e2f80391 2099 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2100 if (ret)
2101 return ret;
2102
e2f80391 2103 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2104 if (ret) {
2105 /*
2106 * We continue even if we fail to initialize WA batch
2107 * because we only expect rare glitches but nothing
2108 * critical to prevent us from using GPU
2109 */
2110 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2111 ret);
2112 }
2113
e1382efb 2114 ret = logical_ring_init(engine);
c4db7599 2115 if (ret) {
e2f80391 2116 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2117 }
17ee950d
AS
2118
2119 return ret;
454afebd
OM
2120}
2121
2122static int logical_bsd_ring_init(struct drm_device *dev)
2123{
e1382efb 2124 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
454afebd 2125
e1382efb 2126 return logical_ring_init(engine);
454afebd
OM
2127}
2128
2129static int logical_bsd2_ring_init(struct drm_device *dev)
2130{
e1382efb 2131 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
454afebd 2132
e1382efb 2133 return logical_ring_init(engine);
454afebd
OM
2134}
2135
2136static int logical_blt_ring_init(struct drm_device *dev)
2137{
e1382efb 2138 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
9b1136d5 2139
e1382efb 2140 return logical_ring_init(engine);
454afebd
OM
2141}
2142
2143static int logical_vebox_ring_init(struct drm_device *dev)
2144{
e1382efb 2145 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
9b1136d5 2146
e1382efb 2147 return logical_ring_init(engine);
454afebd
OM
2148}
2149
73e4d07f
OM
2150/**
2151 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2152 * @dev: DRM device.
2153 *
2154 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2155 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2156 * those engines that are present in the hardware.
2157 *
2158 * Return: non-zero if the initialization failed.
2159 */
454afebd
OM
2160int intel_logical_rings_init(struct drm_device *dev)
2161{
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 int ret;
2164
2165 ret = logical_render_ring_init(dev);
2166 if (ret)
2167 return ret;
2168
2169 if (HAS_BSD(dev)) {
2170 ret = logical_bsd_ring_init(dev);
2171 if (ret)
2172 goto cleanup_render_ring;
2173 }
2174
2175 if (HAS_BLT(dev)) {
2176 ret = logical_blt_ring_init(dev);
2177 if (ret)
2178 goto cleanup_bsd_ring;
2179 }
2180
2181 if (HAS_VEBOX(dev)) {
2182 ret = logical_vebox_ring_init(dev);
2183 if (ret)
2184 goto cleanup_blt_ring;
2185 }
2186
2187 if (HAS_BSD2(dev)) {
2188 ret = logical_bsd2_ring_init(dev);
2189 if (ret)
2190 goto cleanup_vebox_ring;
2191 }
2192
454afebd
OM
2193 return 0;
2194
454afebd 2195cleanup_vebox_ring:
4a570db5 2196 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2197cleanup_blt_ring:
4a570db5 2198 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2199cleanup_bsd_ring:
4a570db5 2200 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2201cleanup_render_ring:
4a570db5 2202 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2203
2204 return ret;
2205}
2206
0cea6502 2207static u32
c033666a 2208make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2209{
2210 u32 rpcs = 0;
2211
2212 /*
2213 * No explicit RPCS request is needed to ensure full
2214 * slice/subslice/EU enablement prior to Gen9.
2215 */
c033666a 2216 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2217 return 0;
2218
2219 /*
2220 * Starting in Gen9, render power gating can leave
2221 * slice/subslice/EU in a partially enabled state. We
2222 * must make an explicit request through RPCS for full
2223 * enablement.
2224 */
c033666a 2225 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2226 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2227 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2228 GEN8_RPCS_S_CNT_SHIFT;
2229 rpcs |= GEN8_RPCS_ENABLE;
2230 }
2231
c033666a 2232 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2233 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2234 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2235 GEN8_RPCS_SS_CNT_SHIFT;
2236 rpcs |= GEN8_RPCS_ENABLE;
2237 }
2238
c033666a
CW
2239 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2240 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2241 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2242 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2243 GEN8_RPCS_EU_MAX_SHIFT;
2244 rpcs |= GEN8_RPCS_ENABLE;
2245 }
2246
2247 return rpcs;
2248}
2249
0bc40be8 2250static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2251{
2252 u32 indirect_ctx_offset;
2253
c033666a 2254 switch (INTEL_GEN(engine->i915)) {
71562919 2255 default:
c033666a 2256 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2257 /* fall through */
2258 case 9:
2259 indirect_ctx_offset =
2260 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2261 break;
2262 case 8:
2263 indirect_ctx_offset =
2264 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2265 break;
2266 }
2267
2268 return indirect_ctx_offset;
2269}
2270
8670d6f9 2271static int
e2efd130 2272populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2273 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2274 struct intel_engine_cs *engine,
2275 struct intel_ringbuffer *ringbuf)
8670d6f9 2276{
c033666a 2277 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2278 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2279 void *vaddr;
2280 u32 *reg_state;
8670d6f9
OM
2281 int ret;
2282
2d965536
TD
2283 if (!ppgtt)
2284 ppgtt = dev_priv->mm.aliasing_ppgtt;
2285
8670d6f9
OM
2286 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2287 if (ret) {
2288 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2289 return ret;
2290 }
2291
7d774cac
TU
2292 vaddr = i915_gem_object_pin_map(ctx_obj);
2293 if (IS_ERR(vaddr)) {
2294 ret = PTR_ERR(vaddr);
2295 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2296 return ret;
2297 }
7d774cac 2298 ctx_obj->dirty = true;
8670d6f9
OM
2299
2300 /* The second page of the context object contains some fields which must
2301 * be set up prior to the first execution. */
7d774cac 2302 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2303
2304 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2305 * commands followed by (reg, value) pairs. The values we are setting here are
2306 * only for the first context restore: on a subsequent save, the GPU will
2307 * recreate this batchbuffer with new values (including all the missing
2308 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2309 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2310 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2311 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2312 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2313 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2314 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2315 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2316 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2317 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2318 0);
2319 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2320 0);
7ba717cf
TD
2321 /* Ring buffer start address is not known until the buffer is pinned.
2322 * It is written to the context image in execlists_update_context()
2323 */
0bc40be8
TU
2324 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2325 RING_START(engine->mmio_base), 0);
2326 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2327 RING_CTL(engine->mmio_base),
0d925ea0 2328 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2329 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2330 RING_BBADDR_UDW(engine->mmio_base), 0);
2331 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2332 RING_BBADDR(engine->mmio_base), 0);
2333 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2334 RING_BBSTATE(engine->mmio_base),
0d925ea0 2335 RING_BB_PPGTT);
0bc40be8
TU
2336 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2337 RING_SBBADDR_UDW(engine->mmio_base), 0);
2338 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2339 RING_SBBADDR(engine->mmio_base), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2341 RING_SBBSTATE(engine->mmio_base), 0);
2342 if (engine->id == RCS) {
2343 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2344 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2345 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2346 RING_INDIRECT_CTX(engine->mmio_base), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2348 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2349 if (engine->wa_ctx.obj) {
2350 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2351 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2352
2353 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2354 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2355 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2356
2357 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2358 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2359
2360 reg_state[CTX_BB_PER_CTX_PTR+1] =
2361 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2362 0x01;
2363 }
8670d6f9 2364 }
0d925ea0 2365 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2366 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2367 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2368 /* PDP values well be assigned later if needed */
0bc40be8
TU
2369 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2370 0);
2371 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2372 0);
2373 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2374 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2376 0);
2377 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2378 0);
2379 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2380 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2382 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2384 0);
d7b2633d 2385
2dba3239
MT
2386 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2387 /* 64b PPGTT (48bit canonical)
2388 * PDP0_DESCRIPTOR contains the base address to PML4 and
2389 * other PDP Descriptors are ignored.
2390 */
2391 ASSIGN_CTX_PML4(ppgtt, reg_state);
2392 } else {
2393 /* 32b PPGTT
2394 * PDP*_DESCRIPTOR contains the base address of space supported.
2395 * With dynamic page allocation, PDPs may not be allocated at
2396 * this point. Point the unallocated PDPs to the scratch page
2397 */
c6a2ac71 2398 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2399 }
2400
0bc40be8 2401 if (engine->id == RCS) {
8670d6f9 2402 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2403 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2404 make_rpcs(dev_priv));
8670d6f9
OM
2405 }
2406
7d774cac 2407 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2408
2409 return 0;
2410}
2411
c5d46ee2
DG
2412/**
2413 * intel_lr_context_size() - return the size of the context for an engine
2414 * @ring: which engine to find the context size for
2415 *
2416 * Each engine may require a different amount of space for a context image,
2417 * so when allocating (or copying) an image, this function can be used to
2418 * find the right size for the specific engine.
2419 *
2420 * Return: size (in bytes) of an engine-specific context image
2421 *
2422 * Note: this size includes the HWSP, which is part of the context image
2423 * in LRC mode, but does not include the "shared data page" used with
2424 * GuC submission. The caller should account for this if using the GuC.
2425 */
0bc40be8 2426uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2427{
2428 int ret = 0;
2429
c033666a 2430 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2431
0bc40be8 2432 switch (engine->id) {
8c857917 2433 case RCS:
c033666a 2434 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2435 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2436 else
2437 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2438 break;
2439 case VCS:
2440 case BCS:
2441 case VECS:
2442 case VCS2:
2443 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2444 break;
2445 }
2446
2447 return ret;
ede7d42b
OM
2448}
2449
73e4d07f 2450/**
978f1e09 2451 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2452 * @ctx: LR context to create.
978f1e09 2453 * @engine: engine to be used with the context.
73e4d07f
OM
2454 *
2455 * This function can be called more than once, with different engines, if we plan
2456 * to use the context with them. The context backing objects and the ringbuffers
2457 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2458 * the creation is a deferred call: it's better to make sure first that we need to use
2459 * a given ring with the context.
2460 *
32197aab 2461 * Return: non-zero on error.
73e4d07f 2462 */
e2efd130 2463static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2464 struct intel_engine_cs *engine)
ede7d42b 2465{
8c857917 2466 struct drm_i915_gem_object *ctx_obj;
9021ad03 2467 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2468 uint32_t context_size;
84c2377f 2469 struct intel_ringbuffer *ringbuf;
8c857917
OM
2470 int ret;
2471
9021ad03 2472 WARN_ON(ce->state);
ede7d42b 2473
0bc40be8 2474 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2475
d1675198
AD
2476 /* One extra page as the sharing data between driver and GuC */
2477 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2478
c033666a 2479 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
fe3db79b 2480 if (IS_ERR(ctx_obj)) {
3126a660 2481 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2482 return PTR_ERR(ctx_obj);
8c857917
OM
2483 }
2484
0bc40be8 2485 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2486 if (IS_ERR(ringbuf)) {
2487 ret = PTR_ERR(ringbuf);
e84fe803 2488 goto error_deref_obj;
8670d6f9
OM
2489 }
2490
0bc40be8 2491 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2492 if (ret) {
2493 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2494 goto error_ringbuf;
84c2377f
OM
2495 }
2496
9021ad03
CW
2497 ce->ringbuf = ringbuf;
2498 ce->state = ctx_obj;
2499 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2500
2501 return 0;
8670d6f9 2502
01101fa7
CW
2503error_ringbuf:
2504 intel_ringbuffer_free(ringbuf);
e84fe803 2505error_deref_obj:
8670d6f9 2506 drm_gem_object_unreference(&ctx_obj->base);
9021ad03
CW
2507 ce->ringbuf = NULL;
2508 ce->state = NULL;
8670d6f9 2509 return ret;
ede7d42b 2510}
3e5b6f05 2511
7d774cac 2512void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2513 struct i915_gem_context *ctx)
3e5b6f05 2514{
e2f80391 2515 struct intel_engine_cs *engine;
3e5b6f05 2516
b4ac5afc 2517 for_each_engine(engine, dev_priv) {
9021ad03
CW
2518 struct intel_context *ce = &ctx->engine[engine->id];
2519 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2520 void *vaddr;
3e5b6f05 2521 uint32_t *reg_state;
3e5b6f05
TD
2522
2523 if (!ctx_obj)
2524 continue;
2525
7d774cac
TU
2526 vaddr = i915_gem_object_pin_map(ctx_obj);
2527 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2528 continue;
7d774cac
TU
2529
2530 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2531 ctx_obj->dirty = true;
3e5b6f05
TD
2532
2533 reg_state[CTX_RING_HEAD+1] = 0;
2534 reg_state[CTX_RING_TAIL+1] = 0;
2535
7d774cac 2536 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2537
9021ad03
CW
2538 ce->ringbuf->head = 0;
2539 ce->ringbuf->tail = 0;
3e5b6f05
TD
2540 }
2541}
This page took 0.347109 seconds and 5 git commands to generate.