drm/i915: Consolidate i915_vma_unpin_and_release()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
ca82580c 291 * @ctx: Context to work on
9021ad03 292 * @engine: Engine the descriptor will be used with
73e4d07f 293 *
ca82580c
TU
294 * The context descriptor encodes various attributes of a context,
295 * including its GTT address and some flags. Because it's fairly
296 * expensive to calculate, we'll just do it once and cache the result,
297 * which remains valid until the context is unpinned.
298 *
6e5248b5
DV
299 * This is what a descriptor looks like, from LSB to MSB::
300 *
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
bf3783e5 318 desc |= ce->state->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
8f942018 376 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
f4ea6bdd
CW
387static void execlists_elsp_submit_contexts(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
3c7ba635
ZW
407static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410{
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419}
420
f4ea6bdd 421static void execlists_unqueue(struct intel_engine_cs *engine)
acdd884a 422{
6d3d8274 423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 424 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 425
0bc40be8 426 assert_spin_locked(&engine->execlist_lock);
acdd884a 427
779949f4
PA
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
c033666a 432 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 433
acdd884a 434 /* Try to read in pairs */
0bc40be8 435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
6d3d8274 439 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
e1fee72c 442 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa 443 list_del(&req0->execlist_link);
e8a261ea 444 i915_gem_request_put(req0);
acdd884a
MT
445 req0 = cursor;
446 } else {
80a9a8db
ZW
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
acdd884a 461 req1 = cursor;
c6a2ac71 462 WARN_ON(req1->elsp_submitted);
acdd884a
MT
463 break;
464 }
465 }
466
c6a2ac71
TU
467 if (unlikely(!req0))
468 return;
469
3c7ba635
ZW
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
0bc40be8 476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 477 /*
c6a2ac71
TU
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
53292cdb 484 */
c6a2ac71 485 req0->tail += 8;
dca33ecc 486 req0->tail &= req0->ring->size - 1;
53292cdb
MT
487 }
488
f4ea6bdd 489 execlists_elsp_submit_contexts(req0, req1);
acdd884a
MT
490}
491
c6a2ac71 492static unsigned int
e39d42fa 493execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 494{
6d3d8274 495 struct drm_i915_gem_request *head_req;
e981e7b1 496
0bc40be8 497 assert_spin_locked(&engine->execlist_lock);
e981e7b1 498
0bc40be8 499 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 500 struct drm_i915_gem_request,
e981e7b1
TD
501 execlist_link);
502
e39d42fa
TU
503 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
504 return 0;
c6a2ac71
TU
505
506 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
507
508 if (--head_req->elsp_submitted > 0)
509 return 0;
510
3c7ba635
ZW
511 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
512
e39d42fa 513 list_del(&head_req->execlist_link);
e8a261ea 514 i915_gem_request_put(head_req);
e981e7b1 515
c6a2ac71 516 return 1;
e981e7b1
TD
517}
518
c6a2ac71 519static u32
0bc40be8 520get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 521 u32 *context_id)
91a41032 522{
c033666a 523 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 524 u32 status;
91a41032 525
c6a2ac71
TU
526 read_pointer %= GEN8_CSB_ENTRIES;
527
0bc40be8 528 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 return 0;
91a41032 532
0bc40be8 533 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
534 read_pointer));
535
536 return status;
91a41032
BW
537}
538
6e5248b5 539/*
73e4d07f
OM
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
27af5eea 543static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 544{
27af5eea 545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 546 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 547 u32 status_pointer;
c6a2ac71 548 unsigned int read_pointer, write_pointer;
26720ab9
TU
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
c6a2ac71
TU
551 unsigned int submit_contexts = 0;
552
3756685a 553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 554
0bc40be8 555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 556
0bc40be8 557 read_pointer = engine->next_context_status_buffer;
5590a5f0 558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 559 if (read_pointer > write_pointer)
dfc53c5e 560 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 561
e981e7b1 562 while (read_pointer < write_pointer) {
26720ab9
TU
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
91a41032 569
26720ab9
TU
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
3756685a 578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
26720ab9 591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
26720ab9 594 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
595 }
596
c6a2ac71 597 if (submit_contexts) {
0bc40be8 598 if (!engine->disable_lite_restore_wa ||
26720ab9 599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
f4ea6bdd 600 execlists_unqueue(engine);
5af05fef 601 }
e981e7b1 602
0bc40be8 603 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
607}
608
f4ea6bdd 609static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 610{
4a570db5 611 struct intel_engine_cs *engine = request->engine;
6d3d8274 612 struct drm_i915_gem_request *cursor;
f1ad5a1f 613 int num_elements = 0;
acdd884a 614
27af5eea 615 spin_lock_bh(&engine->execlist_lock);
acdd884a 616
e2f80391 617 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
618 if (++num_elements > 2)
619 break;
620
621 if (num_elements > 2) {
6d3d8274 622 struct drm_i915_gem_request *tail_req;
f1ad5a1f 623
e2f80391 624 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 625 struct drm_i915_gem_request,
f1ad5a1f
OM
626 execlist_link);
627
ae70797d 628 if (request->ctx == tail_req->ctx) {
f1ad5a1f 629 WARN(tail_req->elsp_submitted != 0,
7ba717cf 630 "More than 2 already-submitted reqs queued\n");
e39d42fa 631 list_del(&tail_req->execlist_link);
e8a261ea 632 i915_gem_request_put(tail_req);
f1ad5a1f
OM
633 }
634 }
635
e8a261ea 636 i915_gem_request_get(request);
e2f80391 637 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 638 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 639 if (num_elements == 0)
f4ea6bdd 640 execlists_unqueue(engine);
acdd884a 641
27af5eea 642 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
643}
644
40e895ce 645int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 646{
24f1d3cc 647 struct intel_engine_cs *engine = request->engine;
9021ad03 648 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 649 int ret;
bc0dce3f 650
6310346e
CW
651 /* Flush enough space to reduce the likelihood of waiting after
652 * we start building the request - in which case we will just
653 * have to repeat work.
654 */
0e93cdd4 655 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 656
9021ad03 657 if (!ce->state) {
978f1e09
CW
658 ret = execlists_context_deferred_alloc(request->ctx, engine);
659 if (ret)
660 return ret;
661 }
662
dca33ecc 663 request->ring = ce->ring;
f3cc01f0 664
a7e02199
AD
665 if (i915.enable_guc_submission) {
666 /*
667 * Check that the GuC has space for the request before
668 * going any further, as the i915_add_request() call
669 * later on mustn't fail ...
670 */
7c2c270d 671 ret = i915_guc_wq_check_space(request);
a7e02199
AD
672 if (ret)
673 return ret;
674 }
675
24f1d3cc
CW
676 ret = intel_lr_context_pin(request->ctx, engine);
677 if (ret)
678 return ret;
e28e404c 679
bfa01200
CW
680 ret = intel_ring_begin(request, 0);
681 if (ret)
682 goto err_unpin;
683
9021ad03 684 if (!ce->initialised) {
24f1d3cc
CW
685 ret = engine->init_context(request);
686 if (ret)
687 goto err_unpin;
688
9021ad03 689 ce->initialised = true;
24f1d3cc
CW
690 }
691
692 /* Note that after this point, we have committed to using
693 * this request as it is being used to both track the
694 * state of engine initialisation and liveness of the
695 * golden renderstate above. Think twice before you try
696 * to cancel/unwind this request now.
697 */
698
0e93cdd4 699 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
700 return 0;
701
702err_unpin:
24f1d3cc 703 intel_lr_context_unpin(request->ctx, engine);
e28e404c 704 return ret;
bc0dce3f
JH
705}
706
bc0dce3f 707/*
ddd66c51 708 * intel_logical_ring_advance() - advance the tail and prepare for submission
ae70797d 709 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
710 *
711 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
712 * really happens during submission is that the context and current tail will be placed
713 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
714 * point, the tail *inside* the context is updated and the ELSP written to.
715 */
7c17d377 716static int
ddd66c51 717intel_logical_ring_advance(struct drm_i915_gem_request *request)
bc0dce3f 718{
7e37f889 719 struct intel_ring *ring = request->ring;
4a570db5 720 struct intel_engine_cs *engine = request->engine;
bc0dce3f 721
1dae2dfb
CW
722 intel_ring_advance(ring);
723 request->tail = ring->tail;
bc0dce3f 724
7c17d377
CW
725 /*
726 * Here we add two extra NOOPs as padding to avoid
727 * lite restore of a context with HEAD==TAIL.
728 *
729 * Caller must reserve WA_TAIL_DWORDS for us!
730 */
1dae2dfb
CW
731 intel_ring_emit(ring, MI_NOOP);
732 intel_ring_emit(ring, MI_NOOP);
733 intel_ring_advance(ring);
d1675198 734
a16a4052
CW
735 /* We keep the previous context alive until we retire the following
736 * request. This ensures that any the context object is still pinned
737 * for any residual writes the HW makes into it on the context switch
738 * into the next object following the breadcrumb. Otherwise, we may
739 * retire the context too early.
740 */
741 request->previous_context = engine->last_context;
742 engine->last_context = request->ctx;
7c17d377 743 return 0;
bc0dce3f
JH
744}
745
e39d42fa 746void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 747{
6d3d8274 748 struct drm_i915_gem_request *req, *tmp;
e39d42fa 749 LIST_HEAD(cancel_list);
c86ee3a9 750
91c8a326 751 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
c86ee3a9 752
27af5eea 753 spin_lock_bh(&engine->execlist_lock);
e39d42fa 754 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 755 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 756
e39d42fa 757 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 758 list_del(&req->execlist_link);
e8a261ea 759 i915_gem_request_put(req);
c86ee3a9
TD
760 }
761}
762
e2efd130 763static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 764 struct intel_engine_cs *engine)
dcb4c12a 765{
9021ad03 766 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
767 void *vaddr;
768 u32 *lrc_reg_state;
ca82580c 769 int ret;
dcb4c12a 770
91c8a326 771 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 772
9021ad03 773 if (ce->pin_count++)
24f1d3cc
CW
774 return 0;
775
bf3783e5
CW
776 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
777 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 778 if (ret)
24f1d3cc 779 goto err;
7ba717cf 780
bf3783e5 781 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
782 if (IS_ERR(vaddr)) {
783 ret = PTR_ERR(vaddr);
bf3783e5 784 goto unpin_vma;
82352e90
TU
785 }
786
7d774cac
TU
787 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
788
aad29fbb 789 ret = intel_ring_pin(ce->ring);
e84fe803 790 if (ret)
7d774cac 791 goto unpin_map;
d1675198 792
0bc40be8 793 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 794
dca33ecc 795 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ring->vma->node.start;
9021ad03 796 ce->lrc_reg_state = lrc_reg_state;
bf3783e5 797 ce->state->obj->dirty = true;
e93c28f3 798
e84fe803 799 /* Invalidate GuC TLB. */
bf3783e5
CW
800 if (i915.enable_guc_submission) {
801 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 802 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 803 }
dcb4c12a 804
9a6feaf0 805 i915_gem_context_get(ctx);
24f1d3cc 806 return 0;
7ba717cf 807
7d774cac 808unpin_map:
bf3783e5
CW
809 i915_gem_object_unpin_map(ce->state->obj);
810unpin_vma:
811 __i915_vma_unpin(ce->state);
24f1d3cc 812err:
9021ad03 813 ce->pin_count = 0;
e84fe803
NH
814 return ret;
815}
816
e2efd130 817void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 818 struct intel_engine_cs *engine)
e84fe803 819{
9021ad03 820 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 821
91c8a326 822 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 823 GEM_BUG_ON(ce->pin_count == 0);
321fe304 824
9021ad03 825 if (--ce->pin_count)
24f1d3cc 826 return;
e84fe803 827
aad29fbb 828 intel_ring_unpin(ce->ring);
dcb4c12a 829
bf3783e5
CW
830 i915_gem_object_unpin_map(ce->state->obj);
831 i915_vma_unpin(ce->state);
321fe304 832
9a6feaf0 833 i915_gem_context_put(ctx);
dcb4c12a
OM
834}
835
e2be4faf 836static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
837{
838 int ret, i;
7e37f889 839 struct intel_ring *ring = req->ring;
c033666a 840 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 841
cd7feaaa 842 if (w->count == 0)
771b9a53
MT
843 return 0;
844
7c9cf4e3 845 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
846 if (ret)
847 return ret;
848
987046ad 849 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
850 if (ret)
851 return ret;
852
1dae2dfb 853 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 854 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
855 intel_ring_emit_reg(ring, w->reg[i].addr);
856 intel_ring_emit(ring, w->reg[i].value);
771b9a53 857 }
1dae2dfb 858 intel_ring_emit(ring, MI_NOOP);
771b9a53 859
1dae2dfb 860 intel_ring_advance(ring);
771b9a53 861
7c9cf4e3 862 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
863 if (ret)
864 return ret;
865
866 return 0;
867}
868
83b8a982 869#define wa_ctx_emit(batch, index, cmd) \
17ee950d 870 do { \
83b8a982
AS
871 int __index = (index)++; \
872 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
873 return -ENOSPC; \
874 } \
83b8a982 875 batch[__index] = (cmd); \
17ee950d
AS
876 } while (0)
877
8f40db77 878#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 879 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
880
881/*
882 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
883 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
884 * but there is a slight complication as this is applied in WA batch where the
885 * values are only initialized once so we cannot take register value at the
886 * beginning and reuse it further; hence we save its value to memory, upload a
887 * constant value with bit21 set and then we restore it back with the saved value.
888 * To simplify the WA, a constant value is formed by using the default value
889 * of this register. This shouldn't be a problem because we are only modifying
890 * it for a short period and this batch in non-premptible. We can ofcourse
891 * use additional instructions that read the actual value of the register
892 * at that time and set our bit of interest but it makes the WA complicated.
893 *
894 * This WA is also required for Gen9 so extracting as a function avoids
895 * code duplication.
896 */
0bc40be8 897static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 898 uint32_t *batch,
9e000847
AS
899 uint32_t index)
900{
5e580523 901 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
902 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
903
a4106a78 904 /*
fe905819 905 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
906 * This WA is implemented in skl_init_clock_gating() but since
907 * this batch updates GEN8_L3SQCREG4 with default value we need to
908 * set this bit here to retain the WA during flush.
909 */
738fa1b3
MK
910 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
911 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
912 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
913
f1afe24f 914 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 915 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 916 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
56c0f1a7 917 wa_ctx_emit(batch, index, engine->scratch->node.start + 256);
83b8a982
AS
918 wa_ctx_emit(batch, index, 0);
919
920 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 921 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
922 wa_ctx_emit(batch, index, l3sqc4_flush);
923
924 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
925 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
926 PIPE_CONTROL_DC_FLUSH_ENABLE));
927 wa_ctx_emit(batch, index, 0);
928 wa_ctx_emit(batch, index, 0);
929 wa_ctx_emit(batch, index, 0);
930 wa_ctx_emit(batch, index, 0);
931
f1afe24f 932 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 933 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 934 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
56c0f1a7 935 wa_ctx_emit(batch, index, engine->scratch->node.start + 256);
83b8a982 936 wa_ctx_emit(batch, index, 0);
9e000847
AS
937
938 return index;
939}
940
17ee950d
AS
941static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
942 uint32_t offset,
943 uint32_t start_alignment)
944{
945 return wa_ctx->offset = ALIGN(offset, start_alignment);
946}
947
948static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
949 uint32_t offset,
950 uint32_t size_alignment)
951{
952 wa_ctx->size = offset - wa_ctx->offset;
953
954 WARN(wa_ctx->size % size_alignment,
955 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
956 wa_ctx->size, size_alignment);
957 return 0;
958}
959
6e5248b5
DV
960/*
961 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
962 * initialized at the beginning and shared across all contexts but this field
963 * helps us to have multiple batches at different offsets and select them based
964 * on a criteria. At the moment this batch always start at the beginning of the page
965 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 966 *
6e5248b5
DV
967 * The number of WA applied are not known at the beginning; we use this field
968 * to return the no of DWORDS written.
17ee950d 969 *
6e5248b5
DV
970 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
971 * so it adds NOOPs as padding to make it cacheline aligned.
972 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
973 * makes a complete batch buffer.
17ee950d 974 */
0bc40be8 975static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 976 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 977 uint32_t *batch,
17ee950d
AS
978 uint32_t *offset)
979{
0160f055 980 uint32_t scratch_addr;
17ee950d
AS
981 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
982
7ad00d1a 983 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 984 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 985
c82435bb 986 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 987 if (IS_BROADWELL(engine->i915)) {
0bc40be8 988 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
989 if (rc < 0)
990 return rc;
991 index = rc;
c82435bb
AS
992 }
993
0160f055
AS
994 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
995 /* Actual scratch location is at 128 bytes offset */
56c0f1a7 996 scratch_addr = engine->scratch->node.start + 2 * CACHELINE_BYTES;
0160f055 997
83b8a982
AS
998 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
999 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1000 PIPE_CONTROL_GLOBAL_GTT_IVB |
1001 PIPE_CONTROL_CS_STALL |
1002 PIPE_CONTROL_QW_WRITE));
1003 wa_ctx_emit(batch, index, scratch_addr);
1004 wa_ctx_emit(batch, index, 0);
1005 wa_ctx_emit(batch, index, 0);
1006 wa_ctx_emit(batch, index, 0);
0160f055 1007
17ee950d
AS
1008 /* Pad to end of cacheline */
1009 while (index % CACHELINE_DWORDS)
83b8a982 1010 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1011
1012 /*
1013 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1014 * execution depends on the length specified in terms of cache lines
1015 * in the register CTX_RCS_INDIRECT_CTX
1016 */
1017
1018 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1019}
1020
6e5248b5
DV
1021/*
1022 * This batch is started immediately after indirect_ctx batch. Since we ensure
1023 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1024 *
6e5248b5 1025 * The number of DWORDS written are returned using this field.
17ee950d
AS
1026 *
1027 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1028 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1029 */
0bc40be8 1030static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1031 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1032 uint32_t *batch,
17ee950d
AS
1033 uint32_t *offset)
1034{
1035 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1036
7ad00d1a 1037 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1038 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1039
83b8a982 1040 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1041
1042 return wa_ctx_end(wa_ctx, *offset = index, 1);
1043}
1044
0bc40be8 1045static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1046 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1047 uint32_t *batch,
0504cffc
AS
1048 uint32_t *offset)
1049{
a4106a78 1050 int ret;
5e580523 1051 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1052 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1053
0907c8f7 1054 /* WaDisableCtxRestoreArbitration:skl,bxt */
5e580523
DA
1055 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1056 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1057 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1058
a4106a78 1059 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1060 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1061 if (ret < 0)
1062 return ret;
1063 index = ret;
1064
873e8171
MK
1065 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1066 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1067 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1068 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1069 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1070 wa_ctx_emit(batch, index, MI_NOOP);
1071
066d4628
MK
1072 /* WaClearSlmSpaceAtContextSwitch:kbl */
1073 /* Actual scratch location is at 128 bytes offset */
703d1282 1074 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7
CW
1075 u32 scratch_addr =
1076 engine->scratch->node.start + 2 * CACHELINE_BYTES;
066d4628
MK
1077
1078 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1079 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1080 PIPE_CONTROL_GLOBAL_GTT_IVB |
1081 PIPE_CONTROL_CS_STALL |
1082 PIPE_CONTROL_QW_WRITE));
1083 wa_ctx_emit(batch, index, scratch_addr);
1084 wa_ctx_emit(batch, index, 0);
1085 wa_ctx_emit(batch, index, 0);
1086 wa_ctx_emit(batch, index, 0);
1087 }
3485d99e
TG
1088
1089 /* WaMediaPoolStateCmdInWABB:bxt */
1090 if (HAS_POOLED_EU(engine->i915)) {
1091 /*
1092 * EU pool configuration is setup along with golden context
1093 * during context initialization. This value depends on
1094 * device type (2x6 or 3x6) and needs to be updated based
1095 * on which subslice is disabled especially for 2x6
1096 * devices, however it is safe to load default
1097 * configuration of 3x6 device instead of masking off
1098 * corresponding bits because HW ignores bits of a disabled
1099 * subslice and drops down to appropriate config. Please
1100 * see render_state_setup() in i915_gem_render_state.c for
1101 * possible configurations, to avoid duplication they are
1102 * not shown here again.
1103 */
1104 u32 eu_pool_config = 0x00777000;
1105 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1106 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1107 wa_ctx_emit(batch, index, eu_pool_config);
1108 wa_ctx_emit(batch, index, 0);
1109 wa_ctx_emit(batch, index, 0);
1110 wa_ctx_emit(batch, index, 0);
1111 }
1112
0504cffc
AS
1113 /* Pad to end of cacheline */
1114 while (index % CACHELINE_DWORDS)
1115 wa_ctx_emit(batch, index, MI_NOOP);
1116
1117 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1118}
1119
0bc40be8 1120static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1121 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1122 uint32_t *batch,
0504cffc
AS
1123 uint32_t *offset)
1124{
1125 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1126
9b01435d 1127 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1128 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1129 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1130 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1131 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1132 wa_ctx_emit(batch, index,
1133 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1134 wa_ctx_emit(batch, index, MI_NOOP);
1135 }
1136
b1e429fe 1137 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1138 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1139 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1140
1141 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1142 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1143
1144 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1145 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1146
1147 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1148 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1149
1150 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1151 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1152 wa_ctx_emit(batch, index, 0x0);
1153 wa_ctx_emit(batch, index, MI_NOOP);
1154 }
1155
0907c8f7 1156 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1157 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1158 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1159 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1160
0504cffc
AS
1161 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1162
1163 return wa_ctx_end(wa_ctx, *offset = index, 1);
1164}
1165
0bc40be8 1166static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1167{
48bb74e4
CW
1168 struct drm_i915_gem_object *obj;
1169 struct i915_vma *vma;
1170 int err;
17ee950d 1171
48bb74e4
CW
1172 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1173 if (IS_ERR(obj))
1174 return PTR_ERR(obj);
17ee950d 1175
48bb74e4
CW
1176 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1177 if (IS_ERR(vma)) {
1178 err = PTR_ERR(vma);
1179 goto err;
17ee950d
AS
1180 }
1181
48bb74e4
CW
1182 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1183 if (err)
1184 goto err;
1185
1186 engine->wa_ctx.vma = vma;
17ee950d 1187 return 0;
48bb74e4
CW
1188
1189err:
1190 i915_gem_object_put(obj);
1191 return err;
17ee950d
AS
1192}
1193
0bc40be8 1194static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1195{
19880c4a 1196 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1197}
1198
0bc40be8 1199static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1200{
48bb74e4 1201 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1202 uint32_t *batch;
1203 uint32_t offset;
1204 struct page *page;
48bb74e4 1205 int ret;
17ee950d 1206
0bc40be8 1207 WARN_ON(engine->id != RCS);
17ee950d 1208
5e60d790 1209 /* update this when WA for higher Gen are added */
c033666a 1210 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1211 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1212 INTEL_GEN(engine->i915));
5e60d790 1213 return 0;
0504cffc 1214 }
5e60d790 1215
c4db7599 1216 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1217 if (!engine->scratch) {
0bc40be8 1218 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1219 return -EINVAL;
1220 }
1221
0bc40be8 1222 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1223 if (ret) {
1224 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1225 return ret;
1226 }
1227
48bb74e4 1228 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1229 batch = kmap_atomic(page);
1230 offset = 0;
1231
c033666a 1232 if (IS_GEN8(engine->i915)) {
0bc40be8 1233 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1234 &wa_ctx->indirect_ctx,
1235 batch,
1236 &offset);
1237 if (ret)
1238 goto out;
1239
0bc40be8 1240 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1241 &wa_ctx->per_ctx,
1242 batch,
1243 &offset);
1244 if (ret)
1245 goto out;
c033666a 1246 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1247 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1248 &wa_ctx->indirect_ctx,
1249 batch,
1250 &offset);
1251 if (ret)
1252 goto out;
1253
0bc40be8 1254 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1255 &wa_ctx->per_ctx,
1256 batch,
1257 &offset);
1258 if (ret)
1259 goto out;
17ee950d
AS
1260 }
1261
1262out:
1263 kunmap_atomic(batch);
1264 if (ret)
0bc40be8 1265 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1266
1267 return ret;
1268}
1269
04794adb
TU
1270static void lrc_init_hws(struct intel_engine_cs *engine)
1271{
c033666a 1272 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1273
1274 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1275 engine->status_page.ggtt_offset);
04794adb
TU
1276 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1277}
1278
0bc40be8 1279static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1280{
c033666a 1281 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1282 unsigned int next_context_status_buffer_hw;
9b1136d5 1283
04794adb 1284 lrc_init_hws(engine);
e84fe803 1285
0bc40be8
TU
1286 I915_WRITE_IMR(engine,
1287 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1288 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1289
0bc40be8 1290 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1291 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1292 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1293 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1294
1295 /*
1296 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1297 * zero, we need to read the write pointer from hardware and use its
1298 * value because "this register is power context save restored".
1299 * Effectively, these states have been observed:
1300 *
1301 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1302 * BDW | CSB regs not reset | CSB regs reset |
1303 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1304 * SKL | ? | ? |
1305 * BXT | ? | ? |
dfc53c5e 1306 */
5590a5f0 1307 next_context_status_buffer_hw =
0bc40be8 1308 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1309
1310 /*
1311 * When the CSB registers are reset (also after power-up / gpu reset),
1312 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1313 * this special case, so the first element read is CSB[0].
1314 */
1315 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1316 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1317
0bc40be8
TU
1318 engine->next_context_status_buffer = next_context_status_buffer_hw;
1319 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1320
fc0768ce 1321 intel_engine_init_hangcheck(engine);
9b1136d5 1322
0ccdacf6 1323 return intel_mocs_init_engine(engine);
9b1136d5
OM
1324}
1325
0bc40be8 1326static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1327{
c033666a 1328 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1329 int ret;
1330
0bc40be8 1331 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1332 if (ret)
1333 return ret;
1334
1335 /* We need to disable the AsyncFlip performance optimisations in order
1336 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1337 * programmed to '1' on all products.
1338 *
1339 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1340 */
1341 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1342
9b1136d5
OM
1343 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1344
0bc40be8 1345 return init_workarounds_ring(engine);
9b1136d5
OM
1346}
1347
0bc40be8 1348static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1349{
1350 int ret;
1351
0bc40be8 1352 ret = gen8_init_common_ring(engine);
82ef822e
DL
1353 if (ret)
1354 return ret;
1355
0bc40be8 1356 return init_workarounds_ring(engine);
82ef822e
DL
1357}
1358
7a01a0a2
MT
1359static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1360{
1361 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1362 struct intel_ring *ring = req->ring;
4a570db5 1363 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1364 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1365 int i, ret;
1366
987046ad 1367 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1368 if (ret)
1369 return ret;
1370
b5321f30 1371 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1372 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1373 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1374
b5321f30
CW
1375 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1376 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1377 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1378 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1379 }
1380
b5321f30
CW
1381 intel_ring_emit(ring, MI_NOOP);
1382 intel_ring_advance(ring);
7a01a0a2
MT
1383
1384 return 0;
1385}
1386
be795fc1 1387static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1388 u64 offset, u32 len,
1389 unsigned int dispatch_flags)
15648585 1390{
7e37f889 1391 struct intel_ring *ring = req->ring;
8e004efc 1392 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1393 int ret;
1394
7a01a0a2
MT
1395 /* Don't rely in hw updating PDPs, specially in lite-restore.
1396 * Ideally, we should set Force PD Restore in ctx descriptor,
1397 * but we can't. Force Restore would be a second option, but
1398 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1399 * not idle). PML4 is allocated during ppgtt init so this is
1400 * not needed in 48-bit.*/
7a01a0a2 1401 if (req->ctx->ppgtt &&
666796da 1402 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1403 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1404 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1405 ret = intel_logical_ring_emit_pdps(req);
1406 if (ret)
1407 return ret;
1408 }
7a01a0a2 1409
666796da 1410 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1411 }
1412
987046ad 1413 ret = intel_ring_begin(req, 4);
15648585
OM
1414 if (ret)
1415 return ret;
1416
1417 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1418 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1419 (ppgtt<<8) |
1420 (dispatch_flags & I915_DISPATCH_RS ?
1421 MI_BATCH_RESOURCE_STREAMER : 0));
1422 intel_ring_emit(ring, lower_32_bits(offset));
1423 intel_ring_emit(ring, upper_32_bits(offset));
1424 intel_ring_emit(ring, MI_NOOP);
1425 intel_ring_advance(ring);
15648585
OM
1426
1427 return 0;
1428}
1429
31bb59cc 1430static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1431{
c033666a 1432 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1433 I915_WRITE_IMR(engine,
1434 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1435 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1436}
1437
31bb59cc 1438static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1439{
c033666a 1440 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1441 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1442}
1443
7c9cf4e3 1444static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1445{
7e37f889
CW
1446 struct intel_ring *ring = request->ring;
1447 u32 cmd;
4712274c
OM
1448 int ret;
1449
987046ad 1450 ret = intel_ring_begin(request, 4);
4712274c
OM
1451 if (ret)
1452 return ret;
1453
1454 cmd = MI_FLUSH_DW + 1;
1455
f0a1fb10
CW
1456 /* We always require a command barrier so that subsequent
1457 * commands, such as breadcrumb interrupts, are strictly ordered
1458 * wrt the contents of the write cache being flushed to memory
1459 * (and thus being coherent from the CPU).
1460 */
1461 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1462
7c9cf4e3 1463 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1464 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1465 if (request->engine->id == VCS)
f0a1fb10 1466 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1467 }
1468
b5321f30
CW
1469 intel_ring_emit(ring, cmd);
1470 intel_ring_emit(ring,
1471 I915_GEM_HWS_SCRATCH_ADDR |
1472 MI_FLUSH_DW_USE_GTT);
1473 intel_ring_emit(ring, 0); /* upper addr */
1474 intel_ring_emit(ring, 0); /* value */
1475 intel_ring_advance(ring);
4712274c
OM
1476
1477 return 0;
1478}
1479
7deb4d39 1480static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1481 u32 mode)
4712274c 1482{
7e37f889 1483 struct intel_ring *ring = request->ring;
b5321f30 1484 struct intel_engine_cs *engine = request->engine;
56c0f1a7 1485 u32 scratch_addr = engine->scratch->node.start + 2 * CACHELINE_BYTES;
0b2d0934 1486 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1487 u32 flags = 0;
1488 int ret;
0b2d0934 1489 int len;
4712274c
OM
1490
1491 flags |= PIPE_CONTROL_CS_STALL;
1492
7c9cf4e3 1493 if (mode & EMIT_FLUSH) {
4712274c
OM
1494 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1495 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1496 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1497 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1498 }
1499
7c9cf4e3 1500 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1501 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1502 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1503 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1504 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1505 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1506 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1507 flags |= PIPE_CONTROL_QW_WRITE;
1508 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1509
1a5a9ce7
BW
1510 /*
1511 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1512 * pipe control.
1513 */
c033666a 1514 if (IS_GEN9(request->i915))
1a5a9ce7 1515 vf_flush_wa = true;
0b2d0934
MK
1516
1517 /* WaForGAMHang:kbl */
1518 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1519 dc_flush_wa = true;
1a5a9ce7 1520 }
9647ff36 1521
0b2d0934
MK
1522 len = 6;
1523
1524 if (vf_flush_wa)
1525 len += 6;
1526
1527 if (dc_flush_wa)
1528 len += 12;
1529
1530 ret = intel_ring_begin(request, len);
4712274c
OM
1531 if (ret)
1532 return ret;
1533
9647ff36 1534 if (vf_flush_wa) {
b5321f30
CW
1535 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1536 intel_ring_emit(ring, 0);
1537 intel_ring_emit(ring, 0);
1538 intel_ring_emit(ring, 0);
1539 intel_ring_emit(ring, 0);
1540 intel_ring_emit(ring, 0);
9647ff36
ID
1541 }
1542
0b2d0934 1543 if (dc_flush_wa) {
b5321f30
CW
1544 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1545 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1546 intel_ring_emit(ring, 0);
1547 intel_ring_emit(ring, 0);
1548 intel_ring_emit(ring, 0);
1549 intel_ring_emit(ring, 0);
0b2d0934
MK
1550 }
1551
b5321f30
CW
1552 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1553 intel_ring_emit(ring, flags);
1554 intel_ring_emit(ring, scratch_addr);
1555 intel_ring_emit(ring, 0);
1556 intel_ring_emit(ring, 0);
1557 intel_ring_emit(ring, 0);
0b2d0934
MK
1558
1559 if (dc_flush_wa) {
b5321f30
CW
1560 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1561 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1562 intel_ring_emit(ring, 0);
1563 intel_ring_emit(ring, 0);
1564 intel_ring_emit(ring, 0);
1565 intel_ring_emit(ring, 0);
0b2d0934
MK
1566 }
1567
b5321f30 1568 intel_ring_advance(ring);
4712274c
OM
1569
1570 return 0;
1571}
1572
c04e0f3b 1573static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1574{
319404df
ID
1575 /*
1576 * On BXT A steppings there is a HW coherency issue whereby the
1577 * MI_STORE_DATA_IMM storing the completed request's seqno
1578 * occasionally doesn't invalidate the CPU cache. Work around this by
1579 * clflushing the corresponding cacheline whenever the caller wants
1580 * the coherency to be guaranteed. Note that this cacheline is known
1581 * to be clean at this point, since we only write it in
1582 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1583 * this clflush in practice becomes an invalidate operation.
1584 */
c04e0f3b 1585 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1586}
1587
7c17d377
CW
1588/*
1589 * Reserve space for 2 NOOPs at the end of each request to be
1590 * used as a workaround for not being allowed to do lite
1591 * restore with HEAD==TAIL (WaIdleLiteRestore).
1592 */
1593#define WA_TAIL_DWORDS 2
1594
c4e76638 1595static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1596{
7e37f889 1597 struct intel_ring *ring = request->ring;
4da46e1e
OM
1598 int ret;
1599
987046ad 1600 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1601 if (ret)
1602 return ret;
1603
7c17d377
CW
1604 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1605 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1606
b5321f30
CW
1607 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1608 intel_ring_emit(ring,
1609 intel_hws_seqno_address(request->engine) |
1610 MI_FLUSH_DW_USE_GTT);
1611 intel_ring_emit(ring, 0);
1612 intel_ring_emit(ring, request->fence.seqno);
1613 intel_ring_emit(ring, MI_USER_INTERRUPT);
1614 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1615 return intel_logical_ring_advance(request);
7c17d377 1616}
4da46e1e 1617
7c17d377
CW
1618static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1619{
7e37f889 1620 struct intel_ring *ring = request->ring;
7c17d377 1621 int ret;
53292cdb 1622
987046ad 1623 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1624 if (ret)
1625 return ret;
1626
ce81a65c
MW
1627 /* We're using qword write, seqno should be aligned to 8 bytes. */
1628 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1629
7c17d377
CW
1630 /* w/a for post sync ops following a GPGPU operation we
1631 * need a prior CS_STALL, which is emitted by the flush
1632 * following the batch.
1633 */
b5321f30
CW
1634 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1635 intel_ring_emit(ring,
1636 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1637 PIPE_CONTROL_CS_STALL |
1638 PIPE_CONTROL_QW_WRITE));
1639 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1640 intel_ring_emit(ring, 0);
1641 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
ce81a65c 1642 /* We're thrashing one dword of HWS. */
b5321f30
CW
1643 intel_ring_emit(ring, 0);
1644 intel_ring_emit(ring, MI_USER_INTERRUPT);
1645 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1646 return intel_logical_ring_advance(request);
4da46e1e
OM
1647}
1648
8753181e 1649static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1650{
1651 int ret;
1652
e2be4faf 1653 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1654 if (ret)
1655 return ret;
1656
3bbaba0c
PA
1657 ret = intel_rcs_context_init_mocs(req);
1658 /*
1659 * Failing to program the MOCS is non-fatal.The system will not
1660 * run at peak performance. So generate an error and carry on.
1661 */
1662 if (ret)
1663 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1664
e40f9ee6 1665 return i915_gem_render_state_init(req);
e7778be1
TD
1666}
1667
73e4d07f
OM
1668/**
1669 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1670 * @engine: Engine Command Streamer.
73e4d07f 1671 */
0bc40be8 1672void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1673{
6402c330 1674 struct drm_i915_private *dev_priv;
9832b9da 1675
117897f4 1676 if (!intel_engine_initialized(engine))
48d82387
OM
1677 return;
1678
27af5eea
TU
1679 /*
1680 * Tasklet cannot be active at this point due intel_mark_active/idle
1681 * so this is just for documentation.
1682 */
1683 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1684 tasklet_kill(&engine->irq_tasklet);
1685
c033666a 1686 dev_priv = engine->i915;
6402c330 1687
0bc40be8 1688 if (engine->buffer) {
0bc40be8 1689 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1690 }
48d82387 1691
0bc40be8
TU
1692 if (engine->cleanup)
1693 engine->cleanup(engine);
48d82387 1694
96a945aa 1695 intel_engine_cleanup_common(engine);
688e6c72 1696
57e88531
CW
1697 if (engine->status_page.vma) {
1698 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1699 engine->status_page.vma = NULL;
48d82387 1700 }
24f1d3cc 1701 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1702
0bc40be8
TU
1703 engine->idle_lite_restore_wa = 0;
1704 engine->disable_lite_restore_wa = false;
1705 engine->ctx_desc_template = 0;
ca82580c 1706
0bc40be8 1707 lrc_destroy_wa_ctx_obj(engine);
c033666a 1708 engine->i915 = NULL;
454afebd
OM
1709}
1710
ddd66c51
CW
1711void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1712{
1713 struct intel_engine_cs *engine;
1714
1715 for_each_engine(engine, dev_priv)
f4ea6bdd 1716 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1717}
1718
c9cacf93 1719static void
e1382efb 1720logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1721{
1722 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1723 engine->init_hw = gen8_init_common_ring;
0bc40be8 1724 engine->emit_flush = gen8_emit_flush;
ddd66c51 1725 engine->emit_request = gen8_emit_request;
f4ea6bdd 1726 engine->submit_request = execlists_submit_request;
ddd66c51 1727
31bb59cc
CW
1728 engine->irq_enable = gen8_logical_ring_enable_irq;
1729 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1730 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1731 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1732 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1733}
1734
d9f3af96 1735static inline void
c2c7f240 1736logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1737{
c2c7f240 1738 unsigned shift = engine->irq_shift;
0bc40be8
TU
1739 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1740 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1741}
1742
7d774cac 1743static int
bf3783e5 1744lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1745{
57e88531 1746 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1747 void *hws;
04794adb
TU
1748
1749 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1750 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1751 if (IS_ERR(hws))
1752 return PTR_ERR(hws);
57e88531
CW
1753
1754 engine->status_page.page_addr = hws + hws_offset;
1755 engine->status_page.ggtt_offset = vma->node.start + hws_offset;
1756 engine->status_page.vma = vma;
7d774cac
TU
1757
1758 return 0;
04794adb
TU
1759}
1760
bb45438f
TU
1761static void
1762logical_ring_setup(struct intel_engine_cs *engine)
1763{
1764 struct drm_i915_private *dev_priv = engine->i915;
1765 enum forcewake_domains fw_domains;
1766
019bf277
TU
1767 intel_engine_setup_common(engine);
1768
bb45438f
TU
1769 /* Intentionally left blank. */
1770 engine->buffer = NULL;
1771
1772 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1773 RING_ELSP(engine),
1774 FW_REG_WRITE);
1775
1776 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1777 RING_CONTEXT_STATUS_PTR(engine),
1778 FW_REG_READ | FW_REG_WRITE);
1779
1780 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1781 RING_CONTEXT_STATUS_BUF_BASE(engine),
1782 FW_REG_READ);
1783
1784 engine->fw_domains = fw_domains;
1785
bb45438f
TU
1786 tasklet_init(&engine->irq_tasklet,
1787 intel_lrc_irq_handler, (unsigned long)engine);
1788
1789 logical_ring_init_platform_invariants(engine);
1790 logical_ring_default_vfuncs(engine);
1791 logical_ring_default_irqs(engine);
bb45438f
TU
1792}
1793
a19d6ff2
TU
1794static int
1795logical_ring_init(struct intel_engine_cs *engine)
1796{
1797 struct i915_gem_context *dctx = engine->i915->kernel_context;
1798 int ret;
1799
019bf277 1800 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1801 if (ret)
1802 goto error;
1803
1804 ret = execlists_context_deferred_alloc(dctx, engine);
1805 if (ret)
1806 goto error;
1807
1808 /* As this is the default context, always pin it */
1809 ret = intel_lr_context_pin(dctx, engine);
1810 if (ret) {
1811 DRM_ERROR("Failed to pin context for %s: %d\n",
1812 engine->name, ret);
1813 goto error;
1814 }
1815
1816 /* And setup the hardware status page. */
1817 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1818 if (ret) {
1819 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1820 goto error;
1821 }
1822
1823 return 0;
1824
1825error:
1826 intel_logical_ring_cleanup(engine);
1827 return ret;
1828}
1829
88d2ba2e 1830int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1831{
1832 struct drm_i915_private *dev_priv = engine->i915;
1833 int ret;
1834
bb45438f
TU
1835 logical_ring_setup(engine);
1836
a19d6ff2
TU
1837 if (HAS_L3_DPF(dev_priv))
1838 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1839
1840 /* Override some for render ring. */
1841 if (INTEL_GEN(dev_priv) >= 9)
1842 engine->init_hw = gen9_init_render_ring;
1843 else
1844 engine->init_hw = gen8_init_render_ring;
1845 engine->init_context = gen8_init_rcs_context;
a19d6ff2
TU
1846 engine->emit_flush = gen8_emit_flush_render;
1847 engine->emit_request = gen8_emit_request_render;
1848
56c0f1a7 1849 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1850 if (ret)
1851 return ret;
1852
1853 ret = intel_init_workaround_bb(engine);
1854 if (ret) {
1855 /*
1856 * We continue even if we fail to initialize WA batch
1857 * because we only expect rare glitches but nothing
1858 * critical to prevent us from using GPU
1859 */
1860 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1861 ret);
1862 }
1863
1864 ret = logical_ring_init(engine);
1865 if (ret) {
1866 lrc_destroy_wa_ctx_obj(engine);
1867 }
1868
1869 return ret;
1870}
1871
88d2ba2e 1872int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1873{
1874 logical_ring_setup(engine);
1875
1876 return logical_ring_init(engine);
454afebd
OM
1877}
1878
0cea6502 1879static u32
c033666a 1880make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1881{
1882 u32 rpcs = 0;
1883
1884 /*
1885 * No explicit RPCS request is needed to ensure full
1886 * slice/subslice/EU enablement prior to Gen9.
1887 */
c033666a 1888 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1889 return 0;
1890
1891 /*
1892 * Starting in Gen9, render power gating can leave
1893 * slice/subslice/EU in a partially enabled state. We
1894 * must make an explicit request through RPCS for full
1895 * enablement.
1896 */
c033666a 1897 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 1898 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 1899 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
1900 GEN8_RPCS_S_CNT_SHIFT;
1901 rpcs |= GEN8_RPCS_ENABLE;
1902 }
1903
c033666a 1904 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 1905 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 1906 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
1907 GEN8_RPCS_SS_CNT_SHIFT;
1908 rpcs |= GEN8_RPCS_ENABLE;
1909 }
1910
c033666a
CW
1911 if (INTEL_INFO(dev_priv)->has_eu_pg) {
1912 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 1913 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 1914 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
1915 GEN8_RPCS_EU_MAX_SHIFT;
1916 rpcs |= GEN8_RPCS_ENABLE;
1917 }
1918
1919 return rpcs;
1920}
1921
0bc40be8 1922static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1923{
1924 u32 indirect_ctx_offset;
1925
c033666a 1926 switch (INTEL_GEN(engine->i915)) {
71562919 1927 default:
c033666a 1928 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1929 /* fall through */
1930 case 9:
1931 indirect_ctx_offset =
1932 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1933 break;
1934 case 8:
1935 indirect_ctx_offset =
1936 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1937 break;
1938 }
1939
1940 return indirect_ctx_offset;
1941}
1942
8670d6f9 1943static int
e2efd130 1944populate_lr_context(struct i915_gem_context *ctx,
7d774cac 1945 struct drm_i915_gem_object *ctx_obj,
0bc40be8 1946 struct intel_engine_cs *engine,
7e37f889 1947 struct intel_ring *ring)
8670d6f9 1948{
c033666a 1949 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 1950 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
1951 void *vaddr;
1952 u32 *reg_state;
8670d6f9
OM
1953 int ret;
1954
2d965536
TD
1955 if (!ppgtt)
1956 ppgtt = dev_priv->mm.aliasing_ppgtt;
1957
8670d6f9
OM
1958 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1959 if (ret) {
1960 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1961 return ret;
1962 }
1963
d31d7cb1 1964 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
7d774cac
TU
1965 if (IS_ERR(vaddr)) {
1966 ret = PTR_ERR(vaddr);
1967 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
1968 return ret;
1969 }
7d774cac 1970 ctx_obj->dirty = true;
8670d6f9
OM
1971
1972 /* The second page of the context object contains some fields which must
1973 * be set up prior to the first execution. */
7d774cac 1974 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
1975
1976 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1977 * commands followed by (reg, value) pairs. The values we are setting here are
1978 * only for the first context restore: on a subsequent save, the GPU will
1979 * recreate this batchbuffer with new values (including all the missing
1980 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1981 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1982 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1983 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1984 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1985 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1986 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1987 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 1988 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1989 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1990 0);
1991 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1992 0);
7ba717cf
TD
1993 /* Ring buffer start address is not known until the buffer is pinned.
1994 * It is written to the context image in execlists_update_context()
1995 */
0bc40be8
TU
1996 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1997 RING_START(engine->mmio_base), 0);
1998 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1999 RING_CTL(engine->mmio_base),
7e37f889 2000 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2001 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2002 RING_BBADDR_UDW(engine->mmio_base), 0);
2003 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2004 RING_BBADDR(engine->mmio_base), 0);
2005 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2006 RING_BBSTATE(engine->mmio_base),
0d925ea0 2007 RING_BB_PPGTT);
0bc40be8
TU
2008 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2009 RING_SBBADDR_UDW(engine->mmio_base), 0);
2010 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2011 RING_SBBADDR(engine->mmio_base), 0);
2012 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2013 RING_SBBSTATE(engine->mmio_base), 0);
2014 if (engine->id == RCS) {
2015 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2016 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2017 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2018 RING_INDIRECT_CTX(engine->mmio_base), 0);
2019 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2020 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 2021 if (engine->wa_ctx.vma) {
0bc40be8 2022 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
48bb74e4 2023 u32 ggtt_offset = wa_ctx->vma->node.start;
17ee950d
AS
2024
2025 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2026 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2027 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2028
2029 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2030 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2031
2032 reg_state[CTX_BB_PER_CTX_PTR+1] =
2033 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2034 0x01;
2035 }
8670d6f9 2036 }
0d925ea0 2037 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2038 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2039 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2040 /* PDP values well be assigned later if needed */
0bc40be8
TU
2041 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2042 0);
2043 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2044 0);
2045 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2046 0);
2047 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2048 0);
2049 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2050 0);
2051 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2052 0);
2053 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2054 0);
2055 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2056 0);
d7b2633d 2057
2dba3239
MT
2058 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2059 /* 64b PPGTT (48bit canonical)
2060 * PDP0_DESCRIPTOR contains the base address to PML4 and
2061 * other PDP Descriptors are ignored.
2062 */
2063 ASSIGN_CTX_PML4(ppgtt, reg_state);
2064 } else {
2065 /* 32b PPGTT
2066 * PDP*_DESCRIPTOR contains the base address of space supported.
2067 * With dynamic page allocation, PDPs may not be allocated at
2068 * this point. Point the unallocated PDPs to the scratch page
2069 */
c6a2ac71 2070 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2071 }
2072
0bc40be8 2073 if (engine->id == RCS) {
8670d6f9 2074 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2075 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2076 make_rpcs(dev_priv));
8670d6f9
OM
2077 }
2078
7d774cac 2079 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2080
2081 return 0;
2082}
2083
c5d46ee2
DG
2084/**
2085 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2086 * @engine: which engine to find the context size for
c5d46ee2
DG
2087 *
2088 * Each engine may require a different amount of space for a context image,
2089 * so when allocating (or copying) an image, this function can be used to
2090 * find the right size for the specific engine.
2091 *
2092 * Return: size (in bytes) of an engine-specific context image
2093 *
2094 * Note: this size includes the HWSP, which is part of the context image
2095 * in LRC mode, but does not include the "shared data page" used with
2096 * GuC submission. The caller should account for this if using the GuC.
2097 */
0bc40be8 2098uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2099{
2100 int ret = 0;
2101
c033666a 2102 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2103
0bc40be8 2104 switch (engine->id) {
8c857917 2105 case RCS:
c033666a 2106 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2107 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2108 else
2109 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2110 break;
2111 case VCS:
2112 case BCS:
2113 case VECS:
2114 case VCS2:
2115 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2116 break;
2117 }
2118
2119 return ret;
ede7d42b
OM
2120}
2121
e2efd130 2122static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2123 struct intel_engine_cs *engine)
ede7d42b 2124{
8c857917 2125 struct drm_i915_gem_object *ctx_obj;
9021ad03 2126 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2127 struct i915_vma *vma;
8c857917 2128 uint32_t context_size;
7e37f889 2129 struct intel_ring *ring;
8c857917
OM
2130 int ret;
2131
9021ad03 2132 WARN_ON(ce->state);
ede7d42b 2133
0bc40be8 2134 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2135
d1675198
AD
2136 /* One extra page as the sharing data between driver and GuC */
2137 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2138
91c8a326 2139 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2140 if (IS_ERR(ctx_obj)) {
3126a660 2141 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2142 return PTR_ERR(ctx_obj);
8c857917
OM
2143 }
2144
bf3783e5
CW
2145 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2146 if (IS_ERR(vma)) {
2147 ret = PTR_ERR(vma);
2148 goto error_deref_obj;
2149 }
2150
7e37f889 2151 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2152 if (IS_ERR(ring)) {
2153 ret = PTR_ERR(ring);
e84fe803 2154 goto error_deref_obj;
8670d6f9
OM
2155 }
2156
dca33ecc 2157 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2158 if (ret) {
2159 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2160 goto error_ring_free;
84c2377f
OM
2161 }
2162
dca33ecc 2163 ce->ring = ring;
bf3783e5 2164 ce->state = vma;
9021ad03 2165 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2166
2167 return 0;
8670d6f9 2168
dca33ecc 2169error_ring_free:
7e37f889 2170 intel_ring_free(ring);
e84fe803 2171error_deref_obj:
f8c417cd 2172 i915_gem_object_put(ctx_obj);
8670d6f9 2173 return ret;
ede7d42b 2174}
3e5b6f05 2175
7d774cac 2176void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2177 struct i915_gem_context *ctx)
3e5b6f05 2178{
e2f80391 2179 struct intel_engine_cs *engine;
3e5b6f05 2180
b4ac5afc 2181 for_each_engine(engine, dev_priv) {
9021ad03 2182 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 2183 void *vaddr;
3e5b6f05 2184 uint32_t *reg_state;
3e5b6f05 2185
bf3783e5 2186 if (!ce->state)
3e5b6f05
TD
2187 continue;
2188
bf3783e5 2189 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac 2190 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2191 continue;
7d774cac
TU
2192
2193 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
3e5b6f05
TD
2194
2195 reg_state[CTX_RING_HEAD+1] = 0;
2196 reg_state[CTX_RING_TAIL+1] = 0;
2197
bf3783e5
CW
2198 ce->state->obj->dirty = true;
2199 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2200
dca33ecc
CW
2201 ce->ring->head = 0;
2202 ce->ring->tail = 0;
3e5b6f05
TD
2203 }
2204}
This page took 0.504032 seconds and 5 git commands to generate.