drm/i915/bxt: Reversed polarity of PORT_PLL_REF_SEL bit
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
71562919
MT
227#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 229
e5292823
TU
230static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
0bc40be8
TU
232static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
233 struct drm_i915_gem_object *default_ctx_obj);
e84fe803 234
7ba717cf 235
73e4d07f
OM
236/**
237 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238 * @dev: DRM device.
239 * @enable_execlists: value of i915.enable_execlists module parameter.
240 *
241 * Only certain platforms support Execlists (the prerequisites being
27401d12 242 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
243 *
244 * Return: 1 if Execlists is supported and has to be enabled.
245 */
127f1003
OM
246int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247{
bd84b1e9
DV
248 WARN_ON(i915.enable_ppgtt == -1);
249
a0bd6c31
ZL
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
252 */
253 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254 return 1;
255
70ee45e1
DL
256 if (INTEL_INFO(dev)->gen >= 9)
257 return 1;
258
127f1003
OM
259 if (enable_execlists == 0)
260 return 0;
261
14bf993e
OM
262 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263 i915.use_mmio_flip >= 0)
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
0bc40be8 272 struct drm_device *dev = engine->dev;
ca82580c 273
c6a2ac71 274 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
0bc40be8 277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 278 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8
TU
281 engine->ctx_desc_template = GEN8_CTX_VALID;
282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
284 if (IS_GEN8(dev))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c
TU
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
313 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
314 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 315 */
ca82580c
TU
316static void
317intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 318 struct intel_engine_cs *engine)
84b790f8 319{
ca82580c 320 uint64_t lrca, desc;
84b790f8 321
0bc40be8 322 lrca = ctx->engine[engine->id].lrc_vma->node.start +
ca82580c 323 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 324
0bc40be8 325 desc = engine->ctx_desc_template; /* bits 0-11 */
ca82580c
TU
326 desc |= lrca; /* bits 12-31 */
327 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 328
0bc40be8 329 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
330}
331
919f1f55 332uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 333 struct intel_engine_cs *engine)
84b790f8 334{
0bc40be8 335 return ctx->engine[engine->id].lrc_desc;
ca82580c 336}
203a571b 337
ca82580c
TU
338/**
339 * intel_execlists_ctx_id() - get the Execlists Context ID
340 * @ctx: Context to get the ID for
341 * @ring: Engine to get the ID for
342 *
343 * Do not confuse with ctx->id! Unfortunately we have a name overload
344 * here: the old context ID we pass to userspace as a handler so that
345 * they can refer to a context, and the new context ID we pass to the
346 * ELSP so that the GPU can inform us of the context status via
347 * interrupts.
348 *
349 * The context ID is a portion of the context descriptor, so we can
350 * just extract the required part from the cached descriptor.
351 *
352 * Return: 20-bits globally unique context ID.
353 */
354u32 intel_execlists_ctx_id(struct intel_context *ctx,
0bc40be8 355 struct intel_engine_cs *engine)
ca82580c 356{
0bc40be8 357 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
358}
359
cc3c4253
MK
360static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
361 struct drm_i915_gem_request *rq1)
84b790f8 362{
cc3c4253 363
4a570db5 364 struct intel_engine_cs *engine = rq0->engine;
e2f80391 365 struct drm_device *dev = engine->dev;
6e7cc470 366 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 367 uint64_t desc[2];
84b790f8 368
1cff8cc3 369 if (rq1) {
4a570db5 370 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
371 rq1->elsp_submitted++;
372 } else {
373 desc[1] = 0;
374 }
84b790f8 375
4a570db5 376 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 377 rq0->elsp_submitted++;
84b790f8 378
1cff8cc3 379 /* You must always write both descriptors in the order below. */
e2f80391
TU
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
381 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 382
e2f80391 383 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 384 /* The context is automatically loaded after the following */
e2f80391 385 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 386
1cff8cc3 387 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 388 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
389}
390
c6a2ac71
TU
391static void
392execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393{
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398}
399
400static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 401{
4a570db5 402 struct intel_engine_cs *engine = rq->engine;
05d9824b 403 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 404 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 405
05d9824b 406 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 407
c6a2ac71
TU
408 /* True 32b PPGTT with dynamic page allocation: update PDP
409 * registers and point the unallocated PDPs to scratch page.
410 * PML4 is allocated during ppgtt init, so this is not needed
411 * in 48-bit mode.
412 */
413 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
414 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
415}
416
d8cb8875
MK
417static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
418 struct drm_i915_gem_request *rq1)
84b790f8 419{
26720ab9
TU
420 struct drm_i915_private *dev_priv = rq0->i915;
421
05d9824b 422 execlists_update_context(rq0);
d8cb8875 423
cc3c4253 424 if (rq1)
05d9824b 425 execlists_update_context(rq1);
84b790f8 426
27af5eea 427 spin_lock_irq(&dev_priv->uncore.lock);
26720ab9
TU
428 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
429
cc3c4253 430 execlists_elsp_write(rq0, rq1);
26720ab9
TU
431
432 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
27af5eea 433 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
434}
435
26720ab9 436static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 437{
6d3d8274 438 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 439 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 440
0bc40be8 441 assert_spin_locked(&engine->execlist_lock);
acdd884a 442
779949f4
PA
443 /*
444 * If irqs are not active generate a warning as batches that finish
445 * without the irqs may get lost and a GPU Hang may occur.
446 */
0bc40be8 447 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 448
acdd884a 449 /* Try to read in pairs */
0bc40be8 450 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
451 execlist_link) {
452 if (!req0) {
453 req0 = cursor;
6d3d8274 454 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
455 /* Same ctx: ignore first request, as second request
456 * will update tail past first request's workload */
e1fee72c 457 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 458 list_move_tail(&req0->execlist_link,
0bc40be8 459 &engine->execlist_retired_req_list);
acdd884a
MT
460 req0 = cursor;
461 } else {
462 req1 = cursor;
c6a2ac71 463 WARN_ON(req1->elsp_submitted);
acdd884a
MT
464 break;
465 }
466 }
467
c6a2ac71
TU
468 if (unlikely(!req0))
469 return;
470
0bc40be8 471 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 472 /*
c6a2ac71
TU
473 * WaIdleLiteRestore: make sure we never cause a lite restore
474 * with HEAD==TAIL.
475 *
476 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
477 * resubmit the request. See gen8_emit_request() for where we
478 * prepare the padding after the end of the request.
53292cdb 479 */
c6a2ac71 480 struct intel_ringbuffer *ringbuf;
53292cdb 481
0bc40be8 482 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
483 req0->tail += 8;
484 req0->tail &= ringbuf->size - 1;
53292cdb
MT
485 }
486
d8cb8875 487 execlists_submit_requests(req0, req1);
acdd884a
MT
488}
489
c6a2ac71 490static unsigned int
0bc40be8 491execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 492{
6d3d8274 493 struct drm_i915_gem_request *head_req;
e981e7b1 494
0bc40be8 495 assert_spin_locked(&engine->execlist_lock);
e981e7b1 496
0bc40be8 497 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 498 struct drm_i915_gem_request,
e981e7b1
TD
499 execlist_link);
500
c6a2ac71
TU
501 if (!head_req)
502 return 0;
e1fee72c 503
0bc40be8 504 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
c6a2ac71
TU
505 return 0;
506
507 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
508
509 if (--head_req->elsp_submitted > 0)
510 return 0;
511
512 list_move_tail(&head_req->execlist_link,
0bc40be8 513 &engine->execlist_retired_req_list);
e981e7b1 514
c6a2ac71 515 return 1;
e981e7b1
TD
516}
517
c6a2ac71 518static u32
0bc40be8 519get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 520 u32 *context_id)
91a41032 521{
0bc40be8 522 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 523 u32 status;
91a41032 524
c6a2ac71
TU
525 read_pointer %= GEN8_CSB_ENTRIES;
526
0bc40be8 527 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
528
529 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
530 return 0;
91a41032 531
0bc40be8 532 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
533 read_pointer));
534
535 return status;
91a41032
BW
536}
537
73e4d07f 538/**
3f7531c3 539 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 540 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
541 *
542 * Check the unread Context Status Buffers and manage the submission of new
543 * contexts to the ELSP accordingly.
544 */
27af5eea 545static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 546{
27af5eea 547 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 548 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 549 u32 status_pointer;
c6a2ac71 550 unsigned int read_pointer, write_pointer;
26720ab9
TU
551 u32 csb[GEN8_CSB_ENTRIES][2];
552 unsigned int csb_read = 0, i;
c6a2ac71
TU
553 unsigned int submit_contexts = 0;
554
27af5eea 555 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
c6a2ac71 556
0bc40be8 557 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 558
0bc40be8 559 read_pointer = engine->next_context_status_buffer;
5590a5f0 560 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 561 if (read_pointer > write_pointer)
dfc53c5e 562 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 563
e981e7b1 564 while (read_pointer < write_pointer) {
26720ab9
TU
565 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
566 break;
567 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
568 &csb[csb_read][1]);
569 csb_read++;
570 }
91a41032 571
26720ab9
TU
572 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
573
574 /* Update the read pointer to the old write pointer. Manual ringbuffer
575 * management ftw </sarcasm> */
576 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
577 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
578 engine->next_context_status_buffer << 8));
579
27af5eea 580 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
26720ab9
TU
581
582 spin_lock(&engine->execlist_lock);
583
584 for (i = 0; i < csb_read; i++) {
585 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
586 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
587 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
588 WARN(1, "Lite Restored request removed from queue\n");
589 } else
590 WARN(1, "Preemption without Lite Restore\n");
591 }
592
26720ab9 593 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
594 GEN8_CTX_STATUS_ELEMENT_SWITCH))
595 submit_contexts +=
26720ab9 596 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
597 }
598
c6a2ac71 599 if (submit_contexts) {
0bc40be8 600 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
601 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
602 execlists_context_unqueue(engine);
5af05fef 603 }
e981e7b1 604
0bc40be8 605 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
606
607 if (unlikely(submit_contexts > 2))
608 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
609}
610
c6a2ac71 611static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 612{
4a570db5 613 struct intel_engine_cs *engine = request->engine;
6d3d8274 614 struct drm_i915_gem_request *cursor;
f1ad5a1f 615 int num_elements = 0;
acdd884a 616
ed54c1a1 617 if (request->ctx != request->i915->kernel_context)
e2f80391 618 intel_lr_context_pin(request->ctx, engine);
af3302b9 619
9bb1af44
JH
620 i915_gem_request_reference(request);
621
27af5eea 622 spin_lock_bh(&engine->execlist_lock);
acdd884a 623
e2f80391 624 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
625 if (++num_elements > 2)
626 break;
627
628 if (num_elements > 2) {
6d3d8274 629 struct drm_i915_gem_request *tail_req;
f1ad5a1f 630
e2f80391 631 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 632 struct drm_i915_gem_request,
f1ad5a1f
OM
633 execlist_link);
634
ae70797d 635 if (request->ctx == tail_req->ctx) {
f1ad5a1f 636 WARN(tail_req->elsp_submitted != 0,
7ba717cf 637 "More than 2 already-submitted reqs queued\n");
7eb08a25 638 list_move_tail(&tail_req->execlist_link,
e2f80391 639 &engine->execlist_retired_req_list);
f1ad5a1f
OM
640 }
641 }
642
e2f80391 643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 644 if (num_elements == 0)
e2f80391 645 execlists_context_unqueue(engine);
acdd884a 646
27af5eea 647 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
648}
649
2f20055d 650static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 651{
4a570db5 652 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
653 uint32_t flush_domains;
654 int ret;
655
656 flush_domains = 0;
e2f80391 657 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
658 flush_domains = I915_GEM_GPU_DOMAINS;
659
e2f80391 660 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
661 if (ret)
662 return ret;
663
e2f80391 664 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
665 return 0;
666}
667
535fbe82 668static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
669 struct list_head *vmas)
670{
666796da 671 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
672 struct i915_vma *vma;
673 uint32_t flush_domains = 0;
674 bool flush_chipset = false;
675 int ret;
676
677 list_for_each_entry(vma, vmas, exec_list) {
678 struct drm_i915_gem_object *obj = vma->obj;
679
03ade511 680 if (obj->active & other_rings) {
4a570db5 681 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
682 if (ret)
683 return ret;
684 }
ba8b7ccb
OM
685
686 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
687 flush_chipset |= i915_gem_clflush_object(obj, false);
688
689 flush_domains |= obj->base.write_domain;
690 }
691
692 if (flush_domains & I915_GEM_DOMAIN_GTT)
693 wmb();
694
695 /* Unconditionally invalidate gpu caches and ensure that we do flush
696 * any residual writes from the previous batch.
697 */
2f20055d 698 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
699}
700
40e895ce 701int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 702{
e28e404c 703 int ret = 0;
bc0dce3f 704
4a570db5 705 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 706
a7e02199
AD
707 if (i915.enable_guc_submission) {
708 /*
709 * Check that the GuC has space for the request before
710 * going any further, as the i915_add_request() call
711 * later on mustn't fail ...
712 */
713 struct intel_guc *guc = &request->i915->guc;
714
715 ret = i915_guc_wq_check_space(guc->execbuf_client);
716 if (ret)
717 return ret;
718 }
719
e28e404c 720 if (request->ctx != request->i915->kernel_context)
4a570db5 721 ret = intel_lr_context_pin(request->ctx, request->engine);
e28e404c
DG
722
723 return ret;
bc0dce3f
JH
724}
725
ae70797d 726static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 727 int bytes)
bc0dce3f 728{
ae70797d 729 struct intel_ringbuffer *ringbuf = req->ringbuf;
4a570db5 730 struct intel_engine_cs *engine = req->engine;
ae70797d 731 struct drm_i915_gem_request *target;
b4716185
CW
732 unsigned space;
733 int ret;
bc0dce3f
JH
734
735 if (intel_ring_space(ringbuf) >= bytes)
736 return 0;
737
79bbcc29
JH
738 /* The whole point of reserving space is to not wait! */
739 WARN_ON(ringbuf->reserved_in_use);
740
e2f80391 741 list_for_each_entry(target, &engine->request_list, list) {
bc0dce3f
JH
742 /*
743 * The request queue is per-engine, so can contain requests
744 * from multiple ringbuffers. Here, we must ignore any that
745 * aren't from the ringbuffer we're considering.
746 */
ae70797d 747 if (target->ringbuf != ringbuf)
bc0dce3f
JH
748 continue;
749
750 /* Would completion of this request free enough space? */
ae70797d 751 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
752 ringbuf->size);
753 if (space >= bytes)
bc0dce3f 754 break;
bc0dce3f
JH
755 }
756
e2f80391 757 if (WARN_ON(&target->list == &engine->request_list))
bc0dce3f
JH
758 return -ENOSPC;
759
ae70797d 760 ret = i915_wait_request(target);
bc0dce3f
JH
761 if (ret)
762 return ret;
763
b4716185
CW
764 ringbuf->space = space;
765 return 0;
bc0dce3f
JH
766}
767
768/*
769 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 770 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
771 *
772 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
773 * really happens during submission is that the context and current tail will be placed
774 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
775 * point, the tail *inside* the context is updated and the ELSP written to.
776 */
7c17d377 777static int
ae70797d 778intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 779{
7c17d377 780 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 781 struct drm_i915_private *dev_priv = request->i915;
4a570db5 782 struct intel_engine_cs *engine = request->engine;
bc0dce3f 783
7c17d377
CW
784 intel_logical_ring_advance(ringbuf);
785 request->tail = ringbuf->tail;
bc0dce3f 786
7c17d377
CW
787 /*
788 * Here we add two extra NOOPs as padding to avoid
789 * lite restore of a context with HEAD==TAIL.
790 *
791 * Caller must reserve WA_TAIL_DWORDS for us!
792 */
793 intel_logical_ring_emit(ringbuf, MI_NOOP);
794 intel_logical_ring_emit(ringbuf, MI_NOOP);
795 intel_logical_ring_advance(ringbuf);
d1675198 796
117897f4 797 if (intel_engine_stopped(engine))
7c17d377 798 return 0;
bc0dce3f 799
f4e2dece
TU
800 if (engine->last_context != request->ctx) {
801 if (engine->last_context)
802 intel_lr_context_unpin(engine->last_context, engine);
803 if (request->ctx != request->i915->kernel_context) {
804 intel_lr_context_pin(request->ctx, engine);
805 engine->last_context = request->ctx;
806 } else {
807 engine->last_context = NULL;
808 }
809 }
810
d1675198
AD
811 if (dev_priv->guc.execbuf_client)
812 i915_guc_submit(dev_priv->guc.execbuf_client, request);
813 else
814 execlists_context_queue(request);
7c17d377
CW
815
816 return 0;
bc0dce3f
JH
817}
818
79bbcc29 819static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
820{
821 uint32_t __iomem *virt;
822 int rem = ringbuf->size - ringbuf->tail;
823
bc0dce3f
JH
824 virt = ringbuf->virtual_start + ringbuf->tail;
825 rem /= 4;
826 while (rem--)
827 iowrite32(MI_NOOP, virt++);
828
829 ringbuf->tail = 0;
830 intel_ring_update_space(ringbuf);
bc0dce3f
JH
831}
832
ae70797d 833static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 834{
ae70797d 835 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
836 int remain_usable = ringbuf->effective_size - ringbuf->tail;
837 int remain_actual = ringbuf->size - ringbuf->tail;
838 int ret, total_bytes, wait_bytes = 0;
839 bool need_wrap = false;
29b1b415 840
79bbcc29
JH
841 if (ringbuf->reserved_in_use)
842 total_bytes = bytes;
843 else
844 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 845
79bbcc29
JH
846 if (unlikely(bytes > remain_usable)) {
847 /*
848 * Not enough space for the basic request. So need to flush
849 * out the remainder and then wait for base + reserved.
850 */
851 wait_bytes = remain_actual + total_bytes;
852 need_wrap = true;
853 } else {
854 if (unlikely(total_bytes > remain_usable)) {
855 /*
856 * The base request will fit but the reserved space
782f6bc0
AG
857 * falls off the end. So don't need an immediate wrap
858 * and only need to effectively wait for the reserved
859 * size space from the start of ringbuffer.
79bbcc29
JH
860 */
861 wait_bytes = remain_actual + ringbuf->reserved_size;
79bbcc29
JH
862 } else if (total_bytes > ringbuf->space) {
863 /* No wrapping required, just waiting. */
864 wait_bytes = total_bytes;
29b1b415 865 }
bc0dce3f
JH
866 }
867
79bbcc29
JH
868 if (wait_bytes) {
869 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
870 if (unlikely(ret))
871 return ret;
79bbcc29
JH
872
873 if (need_wrap)
874 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
875 }
876
877 return 0;
878}
879
880/**
881 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
882 *
374887ba 883 * @req: The request to start some new work for
bc0dce3f
JH
884 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
885 *
886 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
887 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
888 * and also preallocates a request (every workload submission is still mediated through
889 * requests, same as it did with legacy ringbuffer submission).
890 *
891 * Return: non-zero if the ringbuffer is not ready to be written to.
892 */
3bbaba0c 893int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 894{
4d616a29 895 struct drm_i915_private *dev_priv;
bc0dce3f
JH
896 int ret;
897
4d616a29 898 WARN_ON(req == NULL);
39dabecd 899 dev_priv = req->i915;
4d616a29 900
bc0dce3f
JH
901 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
902 dev_priv->mm.interruptible);
903 if (ret)
904 return ret;
905
ae70797d 906 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
907 if (ret)
908 return ret;
909
4d616a29 910 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
911 return 0;
912}
913
ccd98fe4
JH
914int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
915{
916 /*
917 * The first call merely notes the reserve request and is common for
918 * all back ends. The subsequent localised _begin() call actually
919 * ensures that the reservation is available. Without the begin, if
920 * the request creator immediately submitted the request without
921 * adding any commands to it then there might not actually be
922 * sufficient room for the submission commands.
923 */
924 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
925
926 return intel_logical_ring_begin(request, 0);
927}
928
73e4d07f
OM
929/**
930 * execlists_submission() - submit a batchbuffer for execution, Execlists style
931 * @dev: DRM device.
932 * @file: DRM file.
933 * @ring: Engine Command Streamer to submit to.
934 * @ctx: Context to employ for this submission.
935 * @args: execbuffer call arguments.
936 * @vmas: list of vmas.
937 * @batch_obj: the batchbuffer to submit.
938 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 939 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
940 *
941 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
942 * away the submission details of the execbuffer ioctl call.
943 *
944 * Return: non-zero if the submission fails.
945 */
5f19e2bf 946int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 947 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 948 struct list_head *vmas)
454afebd 949{
5f19e2bf 950 struct drm_device *dev = params->dev;
4a570db5 951 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 952 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 953 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 954 u64 exec_start;
ba8b7ccb
OM
955 int instp_mode;
956 u32 instp_mask;
957 int ret;
958
959 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
960 instp_mask = I915_EXEC_CONSTANTS_MASK;
961 switch (instp_mode) {
962 case I915_EXEC_CONSTANTS_REL_GENERAL:
963 case I915_EXEC_CONSTANTS_ABSOLUTE:
964 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 965 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
966 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
967 return -EINVAL;
968 }
969
970 if (instp_mode != dev_priv->relative_constants_mode) {
971 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
972 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
973 return -EINVAL;
974 }
975
976 /* The HW changed the meaning on this bit on gen6 */
977 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
978 }
979 break;
980 default:
981 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
982 return -EINVAL;
983 }
984
ba8b7ccb
OM
985 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
986 DRM_DEBUG("sol reset is gen7 only\n");
987 return -EINVAL;
988 }
989
535fbe82 990 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
991 if (ret)
992 return ret;
993
4a570db5 994 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 995 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 996 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
997 if (ret)
998 return ret;
999
1000 intel_logical_ring_emit(ringbuf, MI_NOOP);
1001 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 1002 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
1003 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1004 intel_logical_ring_advance(ringbuf);
1005
1006 dev_priv->relative_constants_mode = instp_mode;
1007 }
1008
5f19e2bf
JH
1009 exec_start = params->batch_obj_vm_offset +
1010 args->batch_start_offset;
1011
e2f80391 1012 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
1013 if (ret)
1014 return ret;
1015
95c24161 1016 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 1017
8a8edb59 1018 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 1019 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 1020
454afebd
OM
1021 return 0;
1022}
1023
0bc40be8 1024void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 1025{
6d3d8274 1026 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
1027 struct list_head retired_list;
1028
0bc40be8
TU
1029 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1030 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
1031 return;
1032
1033 INIT_LIST_HEAD(&retired_list);
27af5eea 1034 spin_lock_bh(&engine->execlist_lock);
0bc40be8 1035 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 1036 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
1037
1038 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1039 struct intel_context *ctx = req->ctx;
1040 struct drm_i915_gem_object *ctx_obj =
0bc40be8 1041 ctx->engine[engine->id].state;
af3302b9 1042
ed54c1a1 1043 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 1044 intel_lr_context_unpin(ctx, engine);
e5292823 1045
c86ee3a9 1046 list_del(&req->execlist_link);
f8210795 1047 i915_gem_request_unreference(req);
c86ee3a9
TD
1048 }
1049}
1050
0bc40be8 1051void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 1052{
0bc40be8 1053 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
1054 int ret;
1055
117897f4 1056 if (!intel_engine_initialized(engine))
9832b9da
OM
1057 return;
1058
666796da 1059 ret = intel_engine_idle(engine);
0bc40be8 1060 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
9832b9da 1061 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 1062 engine->name, ret);
9832b9da
OM
1063
1064 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
1065 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1066 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1067 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
1068 return;
1069 }
0bc40be8 1070 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1071}
1072
4866d729 1073int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1074{
4a570db5 1075 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
1076 int ret;
1077
e2f80391 1078 if (!engine->gpu_caches_dirty)
48e29f55
OM
1079 return 0;
1080
e2f80391 1081 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1082 if (ret)
1083 return ret;
1084
e2f80391 1085 engine->gpu_caches_dirty = false;
48e29f55
OM
1086 return 0;
1087}
1088
e5292823 1089static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 1090 struct intel_engine_cs *engine)
dcb4c12a 1091{
0bc40be8 1092 struct drm_device *dev = engine->dev;
e84fe803 1093 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
1094 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1095 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
82352e90 1096 struct page *lrc_state_page;
77b04a04 1097 uint32_t *lrc_reg_state;
ca82580c 1098 int ret;
dcb4c12a 1099
0bc40be8 1100 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 1101
e84fe803
NH
1102 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1103 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1104 if (ret)
1105 return ret;
7ba717cf 1106
82352e90
TU
1107 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1108 if (WARN_ON(!lrc_state_page)) {
1109 ret = -ENODEV;
1110 goto unpin_ctx_obj;
1111 }
1112
0bc40be8 1113 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803
NH
1114 if (ret)
1115 goto unpin_ctx_obj;
d1675198 1116
0bc40be8
TU
1117 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1118 intel_lr_context_descriptor_update(ctx, engine);
77b04a04
TU
1119 lrc_reg_state = kmap(lrc_state_page);
1120 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 1121 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 1122 ctx_obj->dirty = true;
e93c28f3 1123
e84fe803
NH
1124 /* Invalidate GuC TLB. */
1125 if (i915.enable_guc_submission)
1126 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1127
7ba717cf
TD
1128 return ret;
1129
1130unpin_ctx_obj:
1131 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1132
1133 return ret;
1134}
1135
e5292823
TU
1136static int intel_lr_context_pin(struct intel_context *ctx,
1137 struct intel_engine_cs *engine)
e84fe803
NH
1138{
1139 int ret = 0;
e84fe803 1140
e5292823
TU
1141 if (ctx->engine[engine->id].pin_count++ == 0) {
1142 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
1143 if (ret)
1144 goto reset_pin_count;
321fe304
TU
1145
1146 i915_gem_context_reference(ctx);
e84fe803
NH
1147 }
1148 return ret;
1149
a7cbedec 1150reset_pin_count:
e5292823 1151 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1152 return ret;
1153}
1154
e5292823
TU
1155void intel_lr_context_unpin(struct intel_context *ctx,
1156 struct intel_engine_cs *engine)
dcb4c12a 1157{
e5292823 1158 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1159
f4e2dece 1160 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823
TU
1161 if (--ctx->engine[engine->id].pin_count == 0) {
1162 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1163 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1164 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1165 ctx->engine[engine->id].lrc_vma = NULL;
1166 ctx->engine[engine->id].lrc_desc = 0;
1167 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1168
1169 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1170 }
1171}
1172
e2be4faf 1173static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1174{
1175 int ret, i;
4a570db5 1176 struct intel_engine_cs *engine = req->engine;
e2be4faf 1177 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1178 struct drm_device *dev = engine->dev;
771b9a53
MT
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 struct i915_workarounds *w = &dev_priv->workarounds;
1181
cd7feaaa 1182 if (w->count == 0)
771b9a53
MT
1183 return 0;
1184
e2f80391 1185 engine->gpu_caches_dirty = true;
4866d729 1186 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1187 if (ret)
1188 return ret;
1189
4d616a29 1190 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1191 if (ret)
1192 return ret;
1193
1194 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1195 for (i = 0; i < w->count; i++) {
f92a9162 1196 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1197 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1198 }
1199 intel_logical_ring_emit(ringbuf, MI_NOOP);
1200
1201 intel_logical_ring_advance(ringbuf);
1202
e2f80391 1203 engine->gpu_caches_dirty = true;
4866d729 1204 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1205 if (ret)
1206 return ret;
1207
1208 return 0;
1209}
1210
83b8a982 1211#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1212 do { \
83b8a982
AS
1213 int __index = (index)++; \
1214 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1215 return -ENOSPC; \
1216 } \
83b8a982 1217 batch[__index] = (cmd); \
17ee950d
AS
1218 } while (0)
1219
8f40db77 1220#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1221 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1222
1223/*
1224 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1225 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1226 * but there is a slight complication as this is applied in WA batch where the
1227 * values are only initialized once so we cannot take register value at the
1228 * beginning and reuse it further; hence we save its value to memory, upload a
1229 * constant value with bit21 set and then we restore it back with the saved value.
1230 * To simplify the WA, a constant value is formed by using the default value
1231 * of this register. This shouldn't be a problem because we are only modifying
1232 * it for a short period and this batch in non-premptible. We can ofcourse
1233 * use additional instructions that read the actual value of the register
1234 * at that time and set our bit of interest but it makes the WA complicated.
1235 *
1236 * This WA is also required for Gen9 so extracting as a function avoids
1237 * code duplication.
1238 */
0bc40be8 1239static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1240 uint32_t *const batch,
1241 uint32_t index)
1242{
1243 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1244
a4106a78
AS
1245 /*
1246 * WaDisableLSQCROPERFforOCL:skl
1247 * This WA is implemented in skl_init_clock_gating() but since
1248 * this batch updates GEN8_L3SQCREG4 with default value we need to
1249 * set this bit here to retain the WA during flush.
1250 */
0bc40be8 1251 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1252 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1253
f1afe24f 1254 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1255 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1256 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1257 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1258 wa_ctx_emit(batch, index, 0);
1259
1260 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1261 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1262 wa_ctx_emit(batch, index, l3sqc4_flush);
1263
1264 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1265 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1266 PIPE_CONTROL_DC_FLUSH_ENABLE));
1267 wa_ctx_emit(batch, index, 0);
1268 wa_ctx_emit(batch, index, 0);
1269 wa_ctx_emit(batch, index, 0);
1270 wa_ctx_emit(batch, index, 0);
1271
f1afe24f 1272 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1273 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1274 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1275 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1276 wa_ctx_emit(batch, index, 0);
9e000847
AS
1277
1278 return index;
1279}
1280
17ee950d
AS
1281static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1282 uint32_t offset,
1283 uint32_t start_alignment)
1284{
1285 return wa_ctx->offset = ALIGN(offset, start_alignment);
1286}
1287
1288static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1289 uint32_t offset,
1290 uint32_t size_alignment)
1291{
1292 wa_ctx->size = offset - wa_ctx->offset;
1293
1294 WARN(wa_ctx->size % size_alignment,
1295 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1296 wa_ctx->size, size_alignment);
1297 return 0;
1298}
1299
1300/**
1301 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1302 *
1303 * @ring: only applicable for RCS
1304 * @wa_ctx: structure representing wa_ctx
1305 * offset: specifies start of the batch, should be cache-aligned. This is updated
1306 * with the offset value received as input.
1307 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1308 * @batch: page in which WA are loaded
1309 * @offset: This field specifies the start of the batch, it should be
1310 * cache-aligned otherwise it is adjusted accordingly.
1311 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1312 * initialized at the beginning and shared across all contexts but this field
1313 * helps us to have multiple batches at different offsets and select them based
1314 * on a criteria. At the moment this batch always start at the beginning of the page
1315 * and at this point we don't have multiple wa_ctx batch buffers.
1316 *
1317 * The number of WA applied are not known at the beginning; we use this field
1318 * to return the no of DWORDS written.
4d78c8dc 1319 *
17ee950d
AS
1320 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1321 * so it adds NOOPs as padding to make it cacheline aligned.
1322 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1323 * makes a complete batch buffer.
1324 *
1325 * Return: non-zero if we exceed the PAGE_SIZE limit.
1326 */
1327
0bc40be8 1328static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1329 struct i915_wa_ctx_bb *wa_ctx,
1330 uint32_t *const batch,
1331 uint32_t *offset)
1332{
0160f055 1333 uint32_t scratch_addr;
17ee950d
AS
1334 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1335
7ad00d1a 1336 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1337 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1338
c82435bb 1339 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1340 if (IS_BROADWELL(engine->dev)) {
1341 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1342 if (rc < 0)
1343 return rc;
1344 index = rc;
c82435bb
AS
1345 }
1346
0160f055
AS
1347 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1348 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1349 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1350
83b8a982
AS
1351 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1352 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1353 PIPE_CONTROL_GLOBAL_GTT_IVB |
1354 PIPE_CONTROL_CS_STALL |
1355 PIPE_CONTROL_QW_WRITE));
1356 wa_ctx_emit(batch, index, scratch_addr);
1357 wa_ctx_emit(batch, index, 0);
1358 wa_ctx_emit(batch, index, 0);
1359 wa_ctx_emit(batch, index, 0);
0160f055 1360
17ee950d
AS
1361 /* Pad to end of cacheline */
1362 while (index % CACHELINE_DWORDS)
83b8a982 1363 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1364
1365 /*
1366 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1367 * execution depends on the length specified in terms of cache lines
1368 * in the register CTX_RCS_INDIRECT_CTX
1369 */
1370
1371 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1372}
1373
1374/**
1375 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1376 *
1377 * @ring: only applicable for RCS
1378 * @wa_ctx: structure representing wa_ctx
1379 * offset: specifies start of the batch, should be cache-aligned.
1380 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1381 * @batch: page in which WA are loaded
17ee950d
AS
1382 * @offset: This field specifies the start of this batch.
1383 * This batch is started immediately after indirect_ctx batch. Since we ensure
1384 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1385 *
1386 * The number of DWORDS written are returned using this field.
1387 *
1388 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1389 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1390 */
0bc40be8 1391static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1392 struct i915_wa_ctx_bb *wa_ctx,
1393 uint32_t *const batch,
1394 uint32_t *offset)
1395{
1396 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1397
7ad00d1a 1398 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1399 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1400
83b8a982 1401 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1402
1403 return wa_ctx_end(wa_ctx, *offset = index, 1);
1404}
1405
0bc40be8 1406static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1407 struct i915_wa_ctx_bb *wa_ctx,
1408 uint32_t *const batch,
1409 uint32_t *offset)
1410{
a4106a78 1411 int ret;
0bc40be8 1412 struct drm_device *dev = engine->dev;
0504cffc
AS
1413 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1414
0907c8f7 1415 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1416 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1417 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1418 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1419
a4106a78 1420 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1421 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1422 if (ret < 0)
1423 return ret;
1424 index = ret;
1425
0504cffc
AS
1426 /* Pad to end of cacheline */
1427 while (index % CACHELINE_DWORDS)
1428 wa_ctx_emit(batch, index, MI_NOOP);
1429
1430 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1431}
1432
0bc40be8 1433static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1434 struct i915_wa_ctx_bb *wa_ctx,
1435 uint32_t *const batch,
1436 uint32_t *offset)
1437{
0bc40be8 1438 struct drm_device *dev = engine->dev;
0504cffc
AS
1439 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1440
9b01435d 1441 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1442 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1443 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1444 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1445 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1446 wa_ctx_emit(batch, index,
1447 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1448 wa_ctx_emit(batch, index, MI_NOOP);
1449 }
1450
0907c8f7 1451 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1452 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1453 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1454 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1455
0504cffc
AS
1456 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1457
1458 return wa_ctx_end(wa_ctx, *offset = index, 1);
1459}
1460
0bc40be8 1461static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1462{
1463 int ret;
1464
0bc40be8
TU
1465 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1466 PAGE_ALIGN(size));
1467 if (!engine->wa_ctx.obj) {
17ee950d
AS
1468 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1469 return -ENOMEM;
1470 }
1471
0bc40be8 1472 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1473 if (ret) {
1474 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1475 ret);
0bc40be8 1476 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1477 return ret;
1478 }
1479
1480 return 0;
1481}
1482
0bc40be8 1483static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1484{
0bc40be8
TU
1485 if (engine->wa_ctx.obj) {
1486 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1487 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1488 engine->wa_ctx.obj = NULL;
17ee950d
AS
1489 }
1490}
1491
0bc40be8 1492static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1493{
1494 int ret;
1495 uint32_t *batch;
1496 uint32_t offset;
1497 struct page *page;
0bc40be8 1498 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1499
0bc40be8 1500 WARN_ON(engine->id != RCS);
17ee950d 1501
5e60d790 1502 /* update this when WA for higher Gen are added */
0bc40be8 1503 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1504 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1505 INTEL_INFO(engine->dev)->gen);
5e60d790 1506 return 0;
0504cffc 1507 }
5e60d790 1508
c4db7599 1509 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1510 if (engine->scratch.obj == NULL) {
1511 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1512 return -EINVAL;
1513 }
1514
0bc40be8 1515 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1516 if (ret) {
1517 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1518 return ret;
1519 }
1520
033908ae 1521 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1522 batch = kmap_atomic(page);
1523 offset = 0;
1524
0bc40be8
TU
1525 if (INTEL_INFO(engine->dev)->gen == 8) {
1526 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1527 &wa_ctx->indirect_ctx,
1528 batch,
1529 &offset);
1530 if (ret)
1531 goto out;
1532
0bc40be8 1533 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1534 &wa_ctx->per_ctx,
1535 batch,
1536 &offset);
1537 if (ret)
1538 goto out;
0bc40be8
TU
1539 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1540 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1541 &wa_ctx->indirect_ctx,
1542 batch,
1543 &offset);
1544 if (ret)
1545 goto out;
1546
0bc40be8 1547 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1548 &wa_ctx->per_ctx,
1549 batch,
1550 &offset);
1551 if (ret)
1552 goto out;
17ee950d
AS
1553 }
1554
1555out:
1556 kunmap_atomic(batch);
1557 if (ret)
0bc40be8 1558 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1559
1560 return ret;
1561}
1562
0bc40be8 1563static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1564{
0bc40be8 1565 struct drm_device *dev = engine->dev;
9b1136d5 1566 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1567 unsigned int next_context_status_buffer_hw;
9b1136d5 1568
0bc40be8
TU
1569 lrc_setup_hardware_status_page(engine,
1570 dev_priv->kernel_context->engine[engine->id].state);
e84fe803 1571
0bc40be8
TU
1572 I915_WRITE_IMR(engine,
1573 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1574 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1575
0bc40be8 1576 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1577 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1578 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1579 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1580
1581 /*
1582 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1583 * zero, we need to read the write pointer from hardware and use its
1584 * value because "this register is power context save restored".
1585 * Effectively, these states have been observed:
1586 *
1587 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1588 * BDW | CSB regs not reset | CSB regs reset |
1589 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1590 * SKL | ? | ? |
1591 * BXT | ? | ? |
dfc53c5e 1592 */
5590a5f0 1593 next_context_status_buffer_hw =
0bc40be8 1594 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1595
1596 /*
1597 * When the CSB registers are reset (also after power-up / gpu reset),
1598 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1599 * this special case, so the first element read is CSB[0].
1600 */
1601 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1602 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1603
0bc40be8
TU
1604 engine->next_context_status_buffer = next_context_status_buffer_hw;
1605 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1606
fc0768ce 1607 intel_engine_init_hangcheck(engine);
9b1136d5
OM
1608
1609 return 0;
1610}
1611
0bc40be8 1612static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1613{
0bc40be8 1614 struct drm_device *dev = engine->dev;
9b1136d5
OM
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 int ret;
1617
0bc40be8 1618 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1619 if (ret)
1620 return ret;
1621
1622 /* We need to disable the AsyncFlip performance optimisations in order
1623 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1624 * programmed to '1' on all products.
1625 *
1626 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1627 */
1628 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1629
9b1136d5
OM
1630 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1631
0bc40be8 1632 return init_workarounds_ring(engine);
9b1136d5
OM
1633}
1634
0bc40be8 1635static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1636{
1637 int ret;
1638
0bc40be8 1639 ret = gen8_init_common_ring(engine);
82ef822e
DL
1640 if (ret)
1641 return ret;
1642
0bc40be8 1643 return init_workarounds_ring(engine);
82ef822e
DL
1644}
1645
7a01a0a2
MT
1646static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1647{
1648 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1649 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1650 struct intel_ringbuffer *ringbuf = req->ringbuf;
1651 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1652 int i, ret;
1653
1654 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1655 if (ret)
1656 return ret;
1657
1658 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1659 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1660 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1661
e2f80391
TU
1662 intel_logical_ring_emit_reg(ringbuf,
1663 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1664 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1665 intel_logical_ring_emit_reg(ringbuf,
1666 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1667 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1668 }
1669
1670 intel_logical_ring_emit(ringbuf, MI_NOOP);
1671 intel_logical_ring_advance(ringbuf);
1672
1673 return 0;
1674}
1675
be795fc1 1676static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1677 u64 offset, unsigned dispatch_flags)
15648585 1678{
be795fc1 1679 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1680 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1681 int ret;
1682
7a01a0a2
MT
1683 /* Don't rely in hw updating PDPs, specially in lite-restore.
1684 * Ideally, we should set Force PD Restore in ctx descriptor,
1685 * but we can't. Force Restore would be a second option, but
1686 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1687 * not idle). PML4 is allocated during ppgtt init so this is
1688 * not needed in 48-bit.*/
7a01a0a2 1689 if (req->ctx->ppgtt &&
666796da 1690 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1691 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1692 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1693 ret = intel_logical_ring_emit_pdps(req);
1694 if (ret)
1695 return ret;
1696 }
7a01a0a2 1697
666796da 1698 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1699 }
1700
4d616a29 1701 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1702 if (ret)
1703 return ret;
1704
1705 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1706 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1707 (ppgtt<<8) |
1708 (dispatch_flags & I915_DISPATCH_RS ?
1709 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1710 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1711 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1712 intel_logical_ring_emit(ringbuf, MI_NOOP);
1713 intel_logical_ring_advance(ringbuf);
1714
1715 return 0;
1716}
1717
0bc40be8 1718static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1719{
0bc40be8 1720 struct drm_device *dev = engine->dev;
73d477f6
OM
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 unsigned long flags;
1723
7cd512f1 1724 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1725 return false;
1726
1727 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1728 if (engine->irq_refcount++ == 0) {
1729 I915_WRITE_IMR(engine,
1730 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1731 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1732 }
1733 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1734
1735 return true;
1736}
1737
0bc40be8 1738static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1739{
0bc40be8 1740 struct drm_device *dev = engine->dev;
73d477f6
OM
1741 struct drm_i915_private *dev_priv = dev->dev_private;
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1745 if (--engine->irq_refcount == 0) {
1746 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1747 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1748 }
1749 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1750}
1751
7deb4d39 1752static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1753 u32 invalidate_domains,
1754 u32 unused)
1755{
7deb4d39 1756 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1757 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1758 struct drm_device *dev = engine->dev;
4712274c
OM
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 uint32_t cmd;
1761 int ret;
1762
4d616a29 1763 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1764 if (ret)
1765 return ret;
1766
1767 cmd = MI_FLUSH_DW + 1;
1768
f0a1fb10
CW
1769 /* We always require a command barrier so that subsequent
1770 * commands, such as breadcrumb interrupts, are strictly ordered
1771 * wrt the contents of the write cache being flushed to memory
1772 * (and thus being coherent from the CPU).
1773 */
1774 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1775
1776 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1777 cmd |= MI_INVALIDATE_TLB;
4a570db5 1778 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1779 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1780 }
1781
1782 intel_logical_ring_emit(ringbuf, cmd);
1783 intel_logical_ring_emit(ringbuf,
1784 I915_GEM_HWS_SCRATCH_ADDR |
1785 MI_FLUSH_DW_USE_GTT);
1786 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1787 intel_logical_ring_emit(ringbuf, 0); /* value */
1788 intel_logical_ring_advance(ringbuf);
1789
1790 return 0;
1791}
1792
7deb4d39 1793static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1794 u32 invalidate_domains,
1795 u32 flush_domains)
1796{
7deb4d39 1797 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1798 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1799 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1800 bool vf_flush_wa = false;
4712274c
OM
1801 u32 flags = 0;
1802 int ret;
1803
1804 flags |= PIPE_CONTROL_CS_STALL;
1805
1806 if (flush_domains) {
1807 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1808 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1809 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1810 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1811 }
1812
1813 if (invalidate_domains) {
1814 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1815 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1816 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1817 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1818 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1819 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1820 flags |= PIPE_CONTROL_QW_WRITE;
1821 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1822
1a5a9ce7
BW
1823 /*
1824 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1825 * pipe control.
1826 */
e2f80391 1827 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1828 vf_flush_wa = true;
1829 }
9647ff36 1830
4d616a29 1831 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1832 if (ret)
1833 return ret;
1834
9647ff36
ID
1835 if (vf_flush_wa) {
1836 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1837 intel_logical_ring_emit(ringbuf, 0);
1838 intel_logical_ring_emit(ringbuf, 0);
1839 intel_logical_ring_emit(ringbuf, 0);
1840 intel_logical_ring_emit(ringbuf, 0);
1841 intel_logical_ring_emit(ringbuf, 0);
1842 }
1843
4712274c
OM
1844 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1845 intel_logical_ring_emit(ringbuf, flags);
1846 intel_logical_ring_emit(ringbuf, scratch_addr);
1847 intel_logical_ring_emit(ringbuf, 0);
1848 intel_logical_ring_emit(ringbuf, 0);
1849 intel_logical_ring_emit(ringbuf, 0);
1850 intel_logical_ring_advance(ringbuf);
1851
1852 return 0;
1853}
1854
c04e0f3b 1855static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1856{
0bc40be8 1857 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1858}
1859
0bc40be8 1860static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1861{
0bc40be8 1862 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1863}
1864
c04e0f3b 1865static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1866{
319404df
ID
1867 /*
1868 * On BXT A steppings there is a HW coherency issue whereby the
1869 * MI_STORE_DATA_IMM storing the completed request's seqno
1870 * occasionally doesn't invalidate the CPU cache. Work around this by
1871 * clflushing the corresponding cacheline whenever the caller wants
1872 * the coherency to be guaranteed. Note that this cacheline is known
1873 * to be clean at this point, since we only write it in
1874 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1875 * this clflush in practice becomes an invalidate operation.
1876 */
c04e0f3b 1877 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1878}
1879
0bc40be8 1880static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1881{
0bc40be8 1882 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1883
1884 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1885 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1886}
1887
7c17d377
CW
1888/*
1889 * Reserve space for 2 NOOPs at the end of each request to be
1890 * used as a workaround for not being allowed to do lite
1891 * restore with HEAD==TAIL (WaIdleLiteRestore).
1892 */
1893#define WA_TAIL_DWORDS 2
1894
1895static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1896{
1897 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1898}
1899
c4e76638 1900static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1901{
c4e76638 1902 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1903 int ret;
1904
7c17d377 1905 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1906 if (ret)
1907 return ret;
1908
7c17d377
CW
1909 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1910 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1911
4da46e1e 1912 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1913 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1914 intel_logical_ring_emit(ringbuf,
4a570db5 1915 hws_seqno_address(request->engine) |
7c17d377 1916 MI_FLUSH_DW_USE_GTT);
4da46e1e 1917 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1918 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1919 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1920 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1921 return intel_logical_ring_advance_and_submit(request);
1922}
4da46e1e 1923
7c17d377
CW
1924static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1925{
1926 struct intel_ringbuffer *ringbuf = request->ringbuf;
1927 int ret;
53292cdb 1928
7c17d377
CW
1929 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1930 if (ret)
1931 return ret;
1932
1933 /* w/a for post sync ops following a GPGPU operation we
1934 * need a prior CS_STALL, which is emitted by the flush
1935 * following the batch.
1936 */
1937 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1938 intel_logical_ring_emit(ringbuf,
1939 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1940 PIPE_CONTROL_CS_STALL |
1941 PIPE_CONTROL_QW_WRITE));
4a570db5 1942 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1943 intel_logical_ring_emit(ringbuf, 0);
1944 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1945 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1946 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1947}
1948
be01363f 1949static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1950{
cef437ad 1951 struct render_state so;
cef437ad
DL
1952 int ret;
1953
4a570db5 1954 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1955 if (ret)
1956 return ret;
1957
1958 if (so.rodata == NULL)
1959 return 0;
1960
4a570db5 1961 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1962 I915_DISPATCH_SECURE);
cef437ad
DL
1963 if (ret)
1964 goto out;
1965
4a570db5 1966 ret = req->engine->emit_bb_start(req,
84e81020
AS
1967 (so.ggtt_offset + so.aux_batch_offset),
1968 I915_DISPATCH_SECURE);
1969 if (ret)
1970 goto out;
1971
b2af0376 1972 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1973
cef437ad
DL
1974out:
1975 i915_gem_render_state_fini(&so);
1976 return ret;
1977}
1978
8753181e 1979static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1980{
1981 int ret;
1982
e2be4faf 1983 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1984 if (ret)
1985 return ret;
1986
3bbaba0c
PA
1987 ret = intel_rcs_context_init_mocs(req);
1988 /*
1989 * Failing to program the MOCS is non-fatal.The system will not
1990 * run at peak performance. So generate an error and carry on.
1991 */
1992 if (ret)
1993 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1994
be01363f 1995 return intel_lr_context_render_state_init(req);
e7778be1
TD
1996}
1997
73e4d07f
OM
1998/**
1999 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2000 *
2001 * @ring: Engine Command Streamer.
2002 *
2003 */
0bc40be8 2004void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 2005{
6402c330 2006 struct drm_i915_private *dev_priv;
9832b9da 2007
117897f4 2008 if (!intel_engine_initialized(engine))
48d82387
OM
2009 return;
2010
27af5eea
TU
2011 /*
2012 * Tasklet cannot be active at this point due intel_mark_active/idle
2013 * so this is just for documentation.
2014 */
2015 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2016 tasklet_kill(&engine->irq_tasklet);
2017
0bc40be8 2018 dev_priv = engine->dev->dev_private;
6402c330 2019
0bc40be8
TU
2020 if (engine->buffer) {
2021 intel_logical_ring_stop(engine);
2022 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 2023 }
48d82387 2024
0bc40be8
TU
2025 if (engine->cleanup)
2026 engine->cleanup(engine);
48d82387 2027
0bc40be8
TU
2028 i915_cmd_parser_fini_ring(engine);
2029 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 2030
0bc40be8
TU
2031 if (engine->status_page.obj) {
2032 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2033 engine->status_page.obj = NULL;
48d82387 2034 }
17ee950d 2035
0bc40be8
TU
2036 engine->idle_lite_restore_wa = 0;
2037 engine->disable_lite_restore_wa = false;
2038 engine->ctx_desc_template = 0;
ca82580c 2039
0bc40be8
TU
2040 lrc_destroy_wa_ctx_obj(engine);
2041 engine->dev = NULL;
454afebd
OM
2042}
2043
c9cacf93
TU
2044static void
2045logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 2046 struct intel_engine_cs *engine)
c9cacf93
TU
2047{
2048 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
2049 engine->init_hw = gen8_init_common_ring;
2050 engine->emit_request = gen8_emit_request;
2051 engine->emit_flush = gen8_emit_flush;
2052 engine->irq_get = gen8_logical_ring_get_irq;
2053 engine->irq_put = gen8_logical_ring_put_irq;
2054 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
2055 engine->get_seqno = gen8_get_seqno;
2056 engine->set_seqno = gen8_set_seqno;
c9cacf93 2057 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 2058 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 2059 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
2060 }
2061}
2062
d9f3af96 2063static inline void
0bc40be8 2064logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 2065{
0bc40be8
TU
2066 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2067 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
2068}
2069
c9cacf93 2070static int
0bc40be8 2071logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 2072{
ed54c1a1 2073 struct intel_context *dctx = to_i915(dev)->kernel_context;
48d82387 2074 int ret;
48d82387
OM
2075
2076 /* Intentionally left blank. */
0bc40be8 2077 engine->buffer = NULL;
48d82387 2078
0bc40be8
TU
2079 engine->dev = dev;
2080 INIT_LIST_HEAD(&engine->active_list);
2081 INIT_LIST_HEAD(&engine->request_list);
2082 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2083 init_waitqueue_head(&engine->irq_queue);
48d82387 2084
0bc40be8
TU
2085 INIT_LIST_HEAD(&engine->buffers);
2086 INIT_LIST_HEAD(&engine->execlist_queue);
2087 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2088 spin_lock_init(&engine->execlist_lock);
acdd884a 2089
27af5eea
TU
2090 tasklet_init(&engine->irq_tasklet,
2091 intel_lrc_irq_handler, (unsigned long)engine);
2092
0bc40be8 2093 logical_ring_init_platform_invariants(engine);
ca82580c 2094
0bc40be8 2095 ret = i915_cmd_parser_init_ring(engine);
48d82387 2096 if (ret)
b0366a54 2097 goto error;
48d82387 2098
0bc40be8 2099 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2100 if (ret)
b0366a54 2101 goto error;
e84fe803
NH
2102
2103 /* As this is the default context, always pin it */
0bc40be8 2104 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2105 if (ret) {
2106 DRM_ERROR(
2107 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2108 engine->name, ret);
b0366a54 2109 goto error;
e84fe803 2110 }
564ddb2f 2111
b0366a54
DG
2112 return 0;
2113
2114error:
0bc40be8 2115 intel_logical_ring_cleanup(engine);
564ddb2f 2116 return ret;
454afebd
OM
2117}
2118
2119static int logical_render_ring_init(struct drm_device *dev)
2120{
2121 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2122 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2123 int ret;
454afebd 2124
e2f80391
TU
2125 engine->name = "render ring";
2126 engine->id = RCS;
2127 engine->exec_id = I915_EXEC_RENDER;
2128 engine->guc_id = GUC_RENDER_ENGINE;
2129 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2130
e2f80391 2131 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2132 if (HAS_L3_DPF(dev))
e2f80391 2133 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2134
e2f80391 2135 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2136
2137 /* Override some for render ring. */
82ef822e 2138 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2139 engine->init_hw = gen9_init_render_ring;
82ef822e 2140 else
e2f80391
TU
2141 engine->init_hw = gen8_init_render_ring;
2142 engine->init_context = gen8_init_rcs_context;
2143 engine->cleanup = intel_fini_pipe_control;
2144 engine->emit_flush = gen8_emit_flush_render;
2145 engine->emit_request = gen8_emit_request_render;
9b1136d5 2146
e2f80391 2147 engine->dev = dev;
c4db7599 2148
e2f80391 2149 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2150 if (ret)
2151 return ret;
2152
e2f80391 2153 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2154 if (ret) {
2155 /*
2156 * We continue even if we fail to initialize WA batch
2157 * because we only expect rare glitches but nothing
2158 * critical to prevent us from using GPU
2159 */
2160 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2161 ret);
2162 }
2163
e2f80391 2164 ret = logical_ring_init(dev, engine);
c4db7599 2165 if (ret) {
e2f80391 2166 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2167 }
17ee950d
AS
2168
2169 return ret;
454afebd
OM
2170}
2171
2172static int logical_bsd_ring_init(struct drm_device *dev)
2173{
2174 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2175 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2176
e2f80391
TU
2177 engine->name = "bsd ring";
2178 engine->id = VCS;
2179 engine->exec_id = I915_EXEC_BSD;
2180 engine->guc_id = GUC_VIDEO_ENGINE;
2181 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2182
e2f80391
TU
2183 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2184 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2185
e2f80391 2186 return logical_ring_init(dev, engine);
454afebd
OM
2187}
2188
2189static int logical_bsd2_ring_init(struct drm_device *dev)
2190{
2191 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2192 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2193
e2f80391
TU
2194 engine->name = "bsd2 ring";
2195 engine->id = VCS2;
2196 engine->exec_id = I915_EXEC_BSD;
2197 engine->guc_id = GUC_VIDEO_ENGINE2;
2198 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2199
e2f80391
TU
2200 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2201 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2202
e2f80391 2203 return logical_ring_init(dev, engine);
454afebd
OM
2204}
2205
2206static int logical_blt_ring_init(struct drm_device *dev)
2207{
2208 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2209 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2210
e2f80391
TU
2211 engine->name = "blitter ring";
2212 engine->id = BCS;
2213 engine->exec_id = I915_EXEC_BLT;
2214 engine->guc_id = GUC_BLITTER_ENGINE;
2215 engine->mmio_base = BLT_RING_BASE;
454afebd 2216
e2f80391
TU
2217 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2218 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2219
e2f80391 2220 return logical_ring_init(dev, engine);
454afebd
OM
2221}
2222
2223static int logical_vebox_ring_init(struct drm_device *dev)
2224{
2225 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2226 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2227
e2f80391
TU
2228 engine->name = "video enhancement ring";
2229 engine->id = VECS;
2230 engine->exec_id = I915_EXEC_VEBOX;
2231 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2232 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2233
e2f80391
TU
2234 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2235 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2236
e2f80391 2237 return logical_ring_init(dev, engine);
454afebd
OM
2238}
2239
73e4d07f
OM
2240/**
2241 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2242 * @dev: DRM device.
2243 *
2244 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2245 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2246 * those engines that are present in the hardware.
2247 *
2248 * Return: non-zero if the initialization failed.
2249 */
454afebd
OM
2250int intel_logical_rings_init(struct drm_device *dev)
2251{
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 int ret;
2254
2255 ret = logical_render_ring_init(dev);
2256 if (ret)
2257 return ret;
2258
2259 if (HAS_BSD(dev)) {
2260 ret = logical_bsd_ring_init(dev);
2261 if (ret)
2262 goto cleanup_render_ring;
2263 }
2264
2265 if (HAS_BLT(dev)) {
2266 ret = logical_blt_ring_init(dev);
2267 if (ret)
2268 goto cleanup_bsd_ring;
2269 }
2270
2271 if (HAS_VEBOX(dev)) {
2272 ret = logical_vebox_ring_init(dev);
2273 if (ret)
2274 goto cleanup_blt_ring;
2275 }
2276
2277 if (HAS_BSD2(dev)) {
2278 ret = logical_bsd2_ring_init(dev);
2279 if (ret)
2280 goto cleanup_vebox_ring;
2281 }
2282
454afebd
OM
2283 return 0;
2284
454afebd 2285cleanup_vebox_ring:
4a570db5 2286 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2287cleanup_blt_ring:
4a570db5 2288 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2289cleanup_bsd_ring:
4a570db5 2290 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2291cleanup_render_ring:
4a570db5 2292 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2293
2294 return ret;
2295}
2296
0cea6502
JM
2297static u32
2298make_rpcs(struct drm_device *dev)
2299{
2300 u32 rpcs = 0;
2301
2302 /*
2303 * No explicit RPCS request is needed to ensure full
2304 * slice/subslice/EU enablement prior to Gen9.
2305 */
2306 if (INTEL_INFO(dev)->gen < 9)
2307 return 0;
2308
2309 /*
2310 * Starting in Gen9, render power gating can leave
2311 * slice/subslice/EU in a partially enabled state. We
2312 * must make an explicit request through RPCS for full
2313 * enablement.
2314 */
2315 if (INTEL_INFO(dev)->has_slice_pg) {
2316 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2317 rpcs |= INTEL_INFO(dev)->slice_total <<
2318 GEN8_RPCS_S_CNT_SHIFT;
2319 rpcs |= GEN8_RPCS_ENABLE;
2320 }
2321
2322 if (INTEL_INFO(dev)->has_subslice_pg) {
2323 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2324 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2325 GEN8_RPCS_SS_CNT_SHIFT;
2326 rpcs |= GEN8_RPCS_ENABLE;
2327 }
2328
2329 if (INTEL_INFO(dev)->has_eu_pg) {
2330 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2331 GEN8_RPCS_EU_MIN_SHIFT;
2332 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2333 GEN8_RPCS_EU_MAX_SHIFT;
2334 rpcs |= GEN8_RPCS_ENABLE;
2335 }
2336
2337 return rpcs;
2338}
2339
0bc40be8 2340static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2341{
2342 u32 indirect_ctx_offset;
2343
0bc40be8 2344 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2345 default:
0bc40be8 2346 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2347 /* fall through */
2348 case 9:
2349 indirect_ctx_offset =
2350 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2351 break;
2352 case 8:
2353 indirect_ctx_offset =
2354 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2355 break;
2356 }
2357
2358 return indirect_ctx_offset;
2359}
2360
8670d6f9
OM
2361static int
2362populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2363 struct intel_engine_cs *engine,
2364 struct intel_ringbuffer *ringbuf)
8670d6f9 2365{
0bc40be8 2366 struct drm_device *dev = engine->dev;
2d965536 2367 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2368 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2369 struct page *page;
2370 uint32_t *reg_state;
2371 int ret;
2372
2d965536
TD
2373 if (!ppgtt)
2374 ppgtt = dev_priv->mm.aliasing_ppgtt;
2375
8670d6f9
OM
2376 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2377 if (ret) {
2378 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2379 return ret;
2380 }
2381
2382 ret = i915_gem_object_get_pages(ctx_obj);
2383 if (ret) {
2384 DRM_DEBUG_DRIVER("Could not get object pages\n");
2385 return ret;
2386 }
2387
2388 i915_gem_object_pin_pages(ctx_obj);
2389
2390 /* The second page of the context object contains some fields which must
2391 * be set up prior to the first execution. */
033908ae 2392 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2393 reg_state = kmap_atomic(page);
2394
2395 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2396 * commands followed by (reg, value) pairs. The values we are setting here are
2397 * only for the first context restore: on a subsequent save, the GPU will
2398 * recreate this batchbuffer with new values (including all the missing
2399 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2400 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2401 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2402 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2403 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2404 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2405 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2406 (HAS_RESOURCE_STREAMER(dev) ?
2407 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2408 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2409 0);
2410 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2411 0);
7ba717cf
TD
2412 /* Ring buffer start address is not known until the buffer is pinned.
2413 * It is written to the context image in execlists_update_context()
2414 */
0bc40be8
TU
2415 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2416 RING_START(engine->mmio_base), 0);
2417 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2418 RING_CTL(engine->mmio_base),
0d925ea0 2419 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2420 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2421 RING_BBADDR_UDW(engine->mmio_base), 0);
2422 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2423 RING_BBADDR(engine->mmio_base), 0);
2424 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2425 RING_BBSTATE(engine->mmio_base),
0d925ea0 2426 RING_BB_PPGTT);
0bc40be8
TU
2427 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2428 RING_SBBADDR_UDW(engine->mmio_base), 0);
2429 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2430 RING_SBBADDR(engine->mmio_base), 0);
2431 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2432 RING_SBBSTATE(engine->mmio_base), 0);
2433 if (engine->id == RCS) {
2434 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2435 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2436 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2437 RING_INDIRECT_CTX(engine->mmio_base), 0);
2438 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2439 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2440 if (engine->wa_ctx.obj) {
2441 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2442 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2443
2444 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2445 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2446 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2447
2448 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2449 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2450
2451 reg_state[CTX_BB_PER_CTX_PTR+1] =
2452 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2453 0x01;
2454 }
8670d6f9 2455 }
0d925ea0 2456 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2457 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2458 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2459 /* PDP values well be assigned later if needed */
0bc40be8
TU
2460 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2461 0);
2462 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2463 0);
2464 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2465 0);
2466 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2467 0);
2468 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2469 0);
2470 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2471 0);
2472 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2473 0);
2474 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2475 0);
d7b2633d 2476
2dba3239
MT
2477 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2478 /* 64b PPGTT (48bit canonical)
2479 * PDP0_DESCRIPTOR contains the base address to PML4 and
2480 * other PDP Descriptors are ignored.
2481 */
2482 ASSIGN_CTX_PML4(ppgtt, reg_state);
2483 } else {
2484 /* 32b PPGTT
2485 * PDP*_DESCRIPTOR contains the base address of space supported.
2486 * With dynamic page allocation, PDPs may not be allocated at
2487 * this point. Point the unallocated PDPs to the scratch page
2488 */
c6a2ac71 2489 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2490 }
2491
0bc40be8 2492 if (engine->id == RCS) {
8670d6f9 2493 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2494 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2495 make_rpcs(dev));
8670d6f9
OM
2496 }
2497
2498 kunmap_atomic(reg_state);
8670d6f9
OM
2499 i915_gem_object_unpin_pages(ctx_obj);
2500
2501 return 0;
2502}
2503
73e4d07f
OM
2504/**
2505 * intel_lr_context_free() - free the LRC specific bits of a context
2506 * @ctx: the LR context to free.
2507 *
2508 * The real context freeing is done in i915_gem_context_free: this only
2509 * takes care of the bits that are LRC related: the per-engine backing
2510 * objects and the logical ringbuffer.
2511 */
ede7d42b
OM
2512void intel_lr_context_free(struct intel_context *ctx)
2513{
8c857917
OM
2514 int i;
2515
666796da 2516 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2517 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2518 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2519
e28e404c
DG
2520 if (!ctx_obj)
2521 continue;
dcb4c12a 2522
e28e404c
DG
2523 if (ctx == ctx->i915->kernel_context) {
2524 intel_unpin_ringbuffer_obj(ringbuf);
2525 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2526 }
e28e404c
DG
2527
2528 WARN_ON(ctx->engine[i].pin_count);
2529 intel_ringbuffer_free(ringbuf);
2530 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2531 }
2532}
2533
c5d46ee2
DG
2534/**
2535 * intel_lr_context_size() - return the size of the context for an engine
2536 * @ring: which engine to find the context size for
2537 *
2538 * Each engine may require a different amount of space for a context image,
2539 * so when allocating (or copying) an image, this function can be used to
2540 * find the right size for the specific engine.
2541 *
2542 * Return: size (in bytes) of an engine-specific context image
2543 *
2544 * Note: this size includes the HWSP, which is part of the context image
2545 * in LRC mode, but does not include the "shared data page" used with
2546 * GuC submission. The caller should account for this if using the GuC.
2547 */
0bc40be8 2548uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2549{
2550 int ret = 0;
2551
0bc40be8 2552 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2553
0bc40be8 2554 switch (engine->id) {
8c857917 2555 case RCS:
0bc40be8 2556 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2557 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2558 else
2559 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2560 break;
2561 case VCS:
2562 case BCS:
2563 case VECS:
2564 case VCS2:
2565 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2566 break;
2567 }
2568
2569 return ret;
ede7d42b
OM
2570}
2571
0bc40be8
TU
2572static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2573 struct drm_i915_gem_object *default_ctx_obj)
1df06b75 2574{
0bc40be8 2575 struct drm_i915_private *dev_priv = engine->dev->dev_private;
d1675198 2576 struct page *page;
1df06b75 2577
d1675198 2578 /* The HWSP is part of the default context object in LRC mode. */
0bc40be8 2579 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
d1675198
AD
2580 + LRC_PPHWSP_PN * PAGE_SIZE;
2581 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
0bc40be8
TU
2582 engine->status_page.page_addr = kmap(page);
2583 engine->status_page.obj = default_ctx_obj;
1df06b75 2584
0bc40be8
TU
2585 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2586 (u32)engine->status_page.gfx_addr);
2587 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1df06b75
TD
2588}
2589
73e4d07f 2590/**
e84fe803 2591 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2592 * @ctx: LR context to create.
2593 * @ring: engine to be used with the context.
2594 *
2595 * This function can be called more than once, with different engines, if we plan
2596 * to use the context with them. The context backing objects and the ringbuffers
2597 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2598 * the creation is a deferred call: it's better to make sure first that we need to use
2599 * a given ring with the context.
2600 *
32197aab 2601 * Return: non-zero on error.
73e4d07f 2602 */
e84fe803
NH
2603
2604int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2605 struct intel_engine_cs *engine)
ede7d42b 2606{
0bc40be8 2607 struct drm_device *dev = engine->dev;
8c857917
OM
2608 struct drm_i915_gem_object *ctx_obj;
2609 uint32_t context_size;
84c2377f 2610 struct intel_ringbuffer *ringbuf;
8c857917
OM
2611 int ret;
2612
ede7d42b 2613 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2614 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2615
0bc40be8 2616 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2617
d1675198
AD
2618 /* One extra page as the sharing data between driver and GuC */
2619 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2620
149c86e7 2621 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2622 if (!ctx_obj) {
2623 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2624 return -ENOMEM;
8c857917
OM
2625 }
2626
0bc40be8 2627 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2628 if (IS_ERR(ringbuf)) {
2629 ret = PTR_ERR(ringbuf);
e84fe803 2630 goto error_deref_obj;
8670d6f9
OM
2631 }
2632
0bc40be8 2633 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2634 if (ret) {
2635 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2636 goto error_ringbuf;
84c2377f
OM
2637 }
2638
0bc40be8
TU
2639 ctx->engine[engine->id].ringbuf = ringbuf;
2640 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2641
0bc40be8 2642 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2643 struct drm_i915_gem_request *req;
76c39168 2644
0bc40be8 2645 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2646 if (IS_ERR(req)) {
2647 ret = PTR_ERR(req);
2648 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2649 goto error_ringbuf;
771b9a53
MT
2650 }
2651
0bc40be8 2652 ret = engine->init_context(req);
e84fe803
NH
2653 if (ret) {
2654 DRM_ERROR("ring init context: %d\n",
2655 ret);
2656 i915_gem_request_cancel(req);
2657 goto error_ringbuf;
2658 }
2659 i915_add_request_no_flush(req);
564ddb2f 2660 }
ede7d42b 2661 return 0;
8670d6f9 2662
01101fa7
CW
2663error_ringbuf:
2664 intel_ringbuffer_free(ringbuf);
e84fe803 2665error_deref_obj:
8670d6f9 2666 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2667 ctx->engine[engine->id].ringbuf = NULL;
2668 ctx->engine[engine->id].state = NULL;
8670d6f9 2669 return ret;
ede7d42b 2670}
3e5b6f05
TD
2671
2672void intel_lr_context_reset(struct drm_device *dev,
2673 struct intel_context *ctx)
2674{
2675 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2676 struct intel_engine_cs *engine;
3e5b6f05 2677
b4ac5afc 2678 for_each_engine(engine, dev_priv) {
3e5b6f05 2679 struct drm_i915_gem_object *ctx_obj =
e2f80391 2680 ctx->engine[engine->id].state;
3e5b6f05 2681 struct intel_ringbuffer *ringbuf =
e2f80391 2682 ctx->engine[engine->id].ringbuf;
3e5b6f05
TD
2683 uint32_t *reg_state;
2684 struct page *page;
2685
2686 if (!ctx_obj)
2687 continue;
2688
2689 if (i915_gem_object_get_pages(ctx_obj)) {
2690 WARN(1, "Failed get_pages for context obj\n");
2691 continue;
2692 }
033908ae 2693 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2694 reg_state = kmap_atomic(page);
2695
2696 reg_state[CTX_RING_HEAD+1] = 0;
2697 reg_state[CTX_RING_TAIL+1] = 0;
2698
2699 kunmap_atomic(reg_state);
2700
2701 ringbuf->head = 0;
2702 ringbuf->tail = 0;
2703 }
2704}
This page took 0.544843 seconds and 5 git commands to generate.