drm/i915: Implement color management on chv
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
71562919
MT
226#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 228
e5292823
TU
229static int intel_lr_context_pin(struct intel_context *ctx,
230 struct intel_engine_cs *engine);
0bc40be8
TU
231static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
232 struct drm_i915_gem_object *default_ctx_obj);
e84fe803 233
7ba717cf 234
73e4d07f
OM
235/**
236 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237 * @dev: DRM device.
238 * @enable_execlists: value of i915.enable_execlists module parameter.
239 *
240 * Only certain platforms support Execlists (the prerequisites being
27401d12 241 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
242 *
243 * Return: 1 if Execlists is supported and has to be enabled.
244 */
127f1003
OM
245int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246{
bd84b1e9
DV
247 WARN_ON(i915.enable_ppgtt == -1);
248
a0bd6c31
ZL
249 /* On platforms with execlist available, vGPU will only
250 * support execlist mode, no ring buffer mode.
251 */
252 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253 return 1;
254
70ee45e1
DL
255 if (INTEL_INFO(dev)->gen >= 9)
256 return 1;
257
127f1003
OM
258 if (enable_execlists == 0)
259 return 0;
260
14bf993e
OM
261 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262 i915.use_mmio_flip >= 0)
127f1003
OM
263 return 1;
264
265 return 0;
266}
ede7d42b 267
ca82580c 268static void
0bc40be8 269logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 270{
0bc40be8 271 struct drm_device *dev = engine->dev;
ca82580c 272
c6a2ac71 273 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 274 engine->idle_lite_restore_wa = ~0;
c6a2ac71 275
0bc40be8 276 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 277 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 278 (engine->id == VCS || engine->id == VCS2);
ca82580c 279
0bc40be8
TU
280 engine->ctx_desc_template = GEN8_CTX_VALID;
281 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
282 GEN8_CTX_ADDRESSING_MODE_SHIFT;
283 if (IS_GEN8(dev))
0bc40be8
TU
284 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
286
287 /* TODO: WaDisableLiteRestore when we start using semaphore
288 * signalling between Command Streamers */
289 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
293 if (engine->disable_lite_restore_wa)
294 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
295}
296
73e4d07f 297/**
ca82580c
TU
298 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299 * descriptor for a pinned context
73e4d07f 300 *
ca82580c
TU
301 * @ctx: Context to work on
302 * @ring: Engine the descriptor will be used with
73e4d07f 303 *
ca82580c
TU
304 * The context descriptor encodes various attributes of a context,
305 * including its GTT address and some flags. Because it's fairly
306 * expensive to calculate, we'll just do it once and cache the result,
307 * which remains valid until the context is unpinned.
308 *
309 * This is what a descriptor looks like, from LSB to MSB:
310 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
311 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
312 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
313 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 314 */
ca82580c
TU
315static void
316intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
ca82580c 319 uint64_t lrca, desc;
84b790f8 320
0bc40be8 321 lrca = ctx->engine[engine->id].lrc_vma->node.start +
ca82580c 322 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 323
0bc40be8 324 desc = engine->ctx_desc_template; /* bits 0-11 */
ca82580c
TU
325 desc |= lrca; /* bits 12-31 */
326 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 327
0bc40be8 328 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
329}
330
919f1f55 331uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 332 struct intel_engine_cs *engine)
84b790f8 333{
0bc40be8 334 return ctx->engine[engine->id].lrc_desc;
ca82580c 335}
203a571b 336
ca82580c
TU
337/**
338 * intel_execlists_ctx_id() - get the Execlists Context ID
339 * @ctx: Context to get the ID for
340 * @ring: Engine to get the ID for
341 *
342 * Do not confuse with ctx->id! Unfortunately we have a name overload
343 * here: the old context ID we pass to userspace as a handler so that
344 * they can refer to a context, and the new context ID we pass to the
345 * ELSP so that the GPU can inform us of the context status via
346 * interrupts.
347 *
348 * The context ID is a portion of the context descriptor, so we can
349 * just extract the required part from the cached descriptor.
350 *
351 * Return: 20-bits globally unique context ID.
352 */
353u32 intel_execlists_ctx_id(struct intel_context *ctx,
0bc40be8 354 struct intel_engine_cs *engine)
ca82580c 355{
0bc40be8 356 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
357}
358
cc3c4253
MK
359static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
360 struct drm_i915_gem_request *rq1)
84b790f8 361{
cc3c4253 362
4a570db5 363 struct intel_engine_cs *engine = rq0->engine;
e2f80391 364 struct drm_device *dev = engine->dev;
6e7cc470 365 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 366 uint64_t desc[2];
84b790f8 367
1cff8cc3 368 if (rq1) {
4a570db5 369 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
370 rq1->elsp_submitted++;
371 } else {
372 desc[1] = 0;
373 }
84b790f8 374
4a570db5 375 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 376 rq0->elsp_submitted++;
84b790f8 377
1cff8cc3 378 /* You must always write both descriptors in the order below. */
e2f80391
TU
379 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
380 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 381
e2f80391 382 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 383 /* The context is automatically loaded after the following */
e2f80391 384 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 385
1cff8cc3 386 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 387 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
388}
389
c6a2ac71
TU
390static void
391execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
392{
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
396 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
397}
398
399static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 400{
4a570db5 401 struct intel_engine_cs *engine = rq->engine;
05d9824b 402 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 403 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 404
05d9824b 405 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 406
c6a2ac71
TU
407 /* True 32b PPGTT with dynamic page allocation: update PDP
408 * registers and point the unallocated PDPs to scratch page.
409 * PML4 is allocated during ppgtt init, so this is not needed
410 * in 48-bit mode.
411 */
412 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
413 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
414}
415
d8cb8875
MK
416static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
417 struct drm_i915_gem_request *rq1)
84b790f8 418{
26720ab9
TU
419 struct drm_i915_private *dev_priv = rq0->i915;
420
421 /* BUG_ON(!irqs_disabled()); */
422
05d9824b 423 execlists_update_context(rq0);
d8cb8875 424
cc3c4253 425 if (rq1)
05d9824b 426 execlists_update_context(rq1);
84b790f8 427
26720ab9
TU
428 spin_lock(&dev_priv->uncore.lock);
429 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
430
cc3c4253 431 execlists_elsp_write(rq0, rq1);
26720ab9
TU
432
433 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
434 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
435}
436
26720ab9 437static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 438{
6d3d8274 439 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 440 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 441
0bc40be8 442 assert_spin_locked(&engine->execlist_lock);
acdd884a 443
779949f4
PA
444 /*
445 * If irqs are not active generate a warning as batches that finish
446 * without the irqs may get lost and a GPU Hang may occur.
447 */
0bc40be8 448 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 449
acdd884a 450 /* Try to read in pairs */
0bc40be8 451 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
452 execlist_link) {
453 if (!req0) {
454 req0 = cursor;
6d3d8274 455 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
456 /* Same ctx: ignore first request, as second request
457 * will update tail past first request's workload */
e1fee72c 458 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 459 list_move_tail(&req0->execlist_link,
0bc40be8 460 &engine->execlist_retired_req_list);
acdd884a
MT
461 req0 = cursor;
462 } else {
463 req1 = cursor;
c6a2ac71 464 WARN_ON(req1->elsp_submitted);
acdd884a
MT
465 break;
466 }
467 }
468
c6a2ac71
TU
469 if (unlikely(!req0))
470 return;
471
0bc40be8 472 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 473 /*
c6a2ac71
TU
474 * WaIdleLiteRestore: make sure we never cause a lite restore
475 * with HEAD==TAIL.
476 *
477 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
478 * resubmit the request. See gen8_emit_request() for where we
479 * prepare the padding after the end of the request.
53292cdb 480 */
c6a2ac71 481 struct intel_ringbuffer *ringbuf;
53292cdb 482
0bc40be8 483 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
484 req0->tail += 8;
485 req0->tail &= ringbuf->size - 1;
53292cdb
MT
486 }
487
d8cb8875 488 execlists_submit_requests(req0, req1);
acdd884a
MT
489}
490
c6a2ac71 491static unsigned int
0bc40be8 492execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 493{
6d3d8274 494 struct drm_i915_gem_request *head_req;
e981e7b1 495
0bc40be8 496 assert_spin_locked(&engine->execlist_lock);
e981e7b1 497
0bc40be8 498 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 499 struct drm_i915_gem_request,
e981e7b1
TD
500 execlist_link);
501
c6a2ac71
TU
502 if (!head_req)
503 return 0;
e1fee72c 504
0bc40be8 505 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
c6a2ac71
TU
506 return 0;
507
508 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
509
510 if (--head_req->elsp_submitted > 0)
511 return 0;
512
513 list_move_tail(&head_req->execlist_link,
0bc40be8 514 &engine->execlist_retired_req_list);
e981e7b1 515
c6a2ac71 516 return 1;
e981e7b1
TD
517}
518
c6a2ac71 519static u32
0bc40be8 520get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 521 u32 *context_id)
91a41032 522{
0bc40be8 523 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 524 u32 status;
91a41032 525
c6a2ac71
TU
526 read_pointer %= GEN8_CSB_ENTRIES;
527
0bc40be8 528 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 return 0;
91a41032 532
0bc40be8 533 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
534 read_pointer));
535
536 return status;
91a41032
BW
537}
538
73e4d07f 539/**
3f7531c3 540 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
541 * @ring: Engine Command Streamer to handle.
542 *
543 * Check the unread Context Status Buffers and manage the submission of new
544 * contexts to the ELSP accordingly.
545 */
0bc40be8 546void intel_lrc_irq_handler(struct intel_engine_cs *engine)
e981e7b1 547{
0bc40be8 548 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 549 u32 status_pointer;
c6a2ac71 550 unsigned int read_pointer, write_pointer;
26720ab9
TU
551 u32 csb[GEN8_CSB_ENTRIES][2];
552 unsigned int csb_read = 0, i;
c6a2ac71
TU
553 unsigned int submit_contexts = 0;
554
c6a2ac71
TU
555 spin_lock(&dev_priv->uncore.lock);
556 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
557
0bc40be8 558 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 559
0bc40be8 560 read_pointer = engine->next_context_status_buffer;
5590a5f0 561 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 562 if (read_pointer > write_pointer)
dfc53c5e 563 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 564
e981e7b1 565 while (read_pointer < write_pointer) {
26720ab9
TU
566 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
567 break;
568 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
569 &csb[csb_read][1]);
570 csb_read++;
571 }
91a41032 572
26720ab9
TU
573 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
574
575 /* Update the read pointer to the old write pointer. Manual ringbuffer
576 * management ftw </sarcasm> */
577 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
578 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579 engine->next_context_status_buffer << 8));
580
581 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
582 spin_unlock(&dev_priv->uncore.lock);
583
584 spin_lock(&engine->execlist_lock);
585
586 for (i = 0; i < csb_read; i++) {
587 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
588 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
589 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
590 WARN(1, "Lite Restored request removed from queue\n");
591 } else
592 WARN(1, "Preemption without Lite Restore\n");
593 }
594
26720ab9 595 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
596 GEN8_CTX_STATUS_ELEMENT_SWITCH))
597 submit_contexts +=
26720ab9 598 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
599 }
600
c6a2ac71 601 if (submit_contexts) {
0bc40be8 602 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
603 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
604 execlists_context_unqueue(engine);
5af05fef 605 }
e981e7b1 606
0bc40be8 607 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
608
609 if (unlikely(submit_contexts > 2))
610 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
611}
612
c6a2ac71 613static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 614{
4a570db5 615 struct intel_engine_cs *engine = request->engine;
6d3d8274 616 struct drm_i915_gem_request *cursor;
f1ad5a1f 617 int num_elements = 0;
acdd884a 618
ed54c1a1 619 if (request->ctx != request->i915->kernel_context)
e2f80391 620 intel_lr_context_pin(request->ctx, engine);
af3302b9 621
9bb1af44
JH
622 i915_gem_request_reference(request);
623
e2f80391 624 spin_lock_irq(&engine->execlist_lock);
acdd884a 625
e2f80391 626 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
627 if (++num_elements > 2)
628 break;
629
630 if (num_elements > 2) {
6d3d8274 631 struct drm_i915_gem_request *tail_req;
f1ad5a1f 632
e2f80391 633 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 634 struct drm_i915_gem_request,
f1ad5a1f
OM
635 execlist_link);
636
ae70797d 637 if (request->ctx == tail_req->ctx) {
f1ad5a1f 638 WARN(tail_req->elsp_submitted != 0,
7ba717cf 639 "More than 2 already-submitted reqs queued\n");
7eb08a25 640 list_move_tail(&tail_req->execlist_link,
e2f80391 641 &engine->execlist_retired_req_list);
f1ad5a1f
OM
642 }
643 }
644
e2f80391 645 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 646 if (num_elements == 0)
e2f80391 647 execlists_context_unqueue(engine);
acdd884a 648
e2f80391 649 spin_unlock_irq(&engine->execlist_lock);
acdd884a
MT
650}
651
2f20055d 652static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 653{
4a570db5 654 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
655 uint32_t flush_domains;
656 int ret;
657
658 flush_domains = 0;
e2f80391 659 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
660 flush_domains = I915_GEM_GPU_DOMAINS;
661
e2f80391 662 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
663 if (ret)
664 return ret;
665
e2f80391 666 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
667 return 0;
668}
669
535fbe82 670static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
671 struct list_head *vmas)
672{
666796da 673 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
674 struct i915_vma *vma;
675 uint32_t flush_domains = 0;
676 bool flush_chipset = false;
677 int ret;
678
679 list_for_each_entry(vma, vmas, exec_list) {
680 struct drm_i915_gem_object *obj = vma->obj;
681
03ade511 682 if (obj->active & other_rings) {
4a570db5 683 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
684 if (ret)
685 return ret;
686 }
ba8b7ccb
OM
687
688 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
689 flush_chipset |= i915_gem_clflush_object(obj, false);
690
691 flush_domains |= obj->base.write_domain;
692 }
693
694 if (flush_domains & I915_GEM_DOMAIN_GTT)
695 wmb();
696
697 /* Unconditionally invalidate gpu caches and ensure that we do flush
698 * any residual writes from the previous batch.
699 */
2f20055d 700 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
701}
702
40e895ce 703int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 704{
e28e404c 705 int ret = 0;
bc0dce3f 706
4a570db5 707 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 708
a7e02199
AD
709 if (i915.enable_guc_submission) {
710 /*
711 * Check that the GuC has space for the request before
712 * going any further, as the i915_add_request() call
713 * later on mustn't fail ...
714 */
715 struct intel_guc *guc = &request->i915->guc;
716
717 ret = i915_guc_wq_check_space(guc->execbuf_client);
718 if (ret)
719 return ret;
720 }
721
e28e404c 722 if (request->ctx != request->i915->kernel_context)
4a570db5 723 ret = intel_lr_context_pin(request->ctx, request->engine);
e28e404c
DG
724
725 return ret;
bc0dce3f
JH
726}
727
ae70797d 728static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 729 int bytes)
bc0dce3f 730{
ae70797d 731 struct intel_ringbuffer *ringbuf = req->ringbuf;
4a570db5 732 struct intel_engine_cs *engine = req->engine;
ae70797d 733 struct drm_i915_gem_request *target;
b4716185
CW
734 unsigned space;
735 int ret;
bc0dce3f
JH
736
737 if (intel_ring_space(ringbuf) >= bytes)
738 return 0;
739
79bbcc29
JH
740 /* The whole point of reserving space is to not wait! */
741 WARN_ON(ringbuf->reserved_in_use);
742
e2f80391 743 list_for_each_entry(target, &engine->request_list, list) {
bc0dce3f
JH
744 /*
745 * The request queue is per-engine, so can contain requests
746 * from multiple ringbuffers. Here, we must ignore any that
747 * aren't from the ringbuffer we're considering.
748 */
ae70797d 749 if (target->ringbuf != ringbuf)
bc0dce3f
JH
750 continue;
751
752 /* Would completion of this request free enough space? */
ae70797d 753 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
754 ringbuf->size);
755 if (space >= bytes)
bc0dce3f 756 break;
bc0dce3f
JH
757 }
758
e2f80391 759 if (WARN_ON(&target->list == &engine->request_list))
bc0dce3f
JH
760 return -ENOSPC;
761
ae70797d 762 ret = i915_wait_request(target);
bc0dce3f
JH
763 if (ret)
764 return ret;
765
b4716185
CW
766 ringbuf->space = space;
767 return 0;
bc0dce3f
JH
768}
769
770/*
771 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 772 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
773 *
774 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
775 * really happens during submission is that the context and current tail will be placed
776 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
777 * point, the tail *inside* the context is updated and the ELSP written to.
778 */
7c17d377 779static int
ae70797d 780intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 781{
7c17d377 782 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 783 struct drm_i915_private *dev_priv = request->i915;
4a570db5 784 struct intel_engine_cs *engine = request->engine;
bc0dce3f 785
7c17d377
CW
786 intel_logical_ring_advance(ringbuf);
787 request->tail = ringbuf->tail;
bc0dce3f 788
7c17d377
CW
789 /*
790 * Here we add two extra NOOPs as padding to avoid
791 * lite restore of a context with HEAD==TAIL.
792 *
793 * Caller must reserve WA_TAIL_DWORDS for us!
794 */
795 intel_logical_ring_emit(ringbuf, MI_NOOP);
796 intel_logical_ring_emit(ringbuf, MI_NOOP);
797 intel_logical_ring_advance(ringbuf);
d1675198 798
117897f4 799 if (intel_engine_stopped(engine))
7c17d377 800 return 0;
bc0dce3f 801
f4e2dece
TU
802 if (engine->last_context != request->ctx) {
803 if (engine->last_context)
804 intel_lr_context_unpin(engine->last_context, engine);
805 if (request->ctx != request->i915->kernel_context) {
806 intel_lr_context_pin(request->ctx, engine);
807 engine->last_context = request->ctx;
808 } else {
809 engine->last_context = NULL;
810 }
811 }
812
d1675198
AD
813 if (dev_priv->guc.execbuf_client)
814 i915_guc_submit(dev_priv->guc.execbuf_client, request);
815 else
816 execlists_context_queue(request);
7c17d377
CW
817
818 return 0;
bc0dce3f
JH
819}
820
79bbcc29 821static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
822{
823 uint32_t __iomem *virt;
824 int rem = ringbuf->size - ringbuf->tail;
825
bc0dce3f
JH
826 virt = ringbuf->virtual_start + ringbuf->tail;
827 rem /= 4;
828 while (rem--)
829 iowrite32(MI_NOOP, virt++);
830
831 ringbuf->tail = 0;
832 intel_ring_update_space(ringbuf);
bc0dce3f
JH
833}
834
ae70797d 835static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 836{
ae70797d 837 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
838 int remain_usable = ringbuf->effective_size - ringbuf->tail;
839 int remain_actual = ringbuf->size - ringbuf->tail;
840 int ret, total_bytes, wait_bytes = 0;
841 bool need_wrap = false;
29b1b415 842
79bbcc29
JH
843 if (ringbuf->reserved_in_use)
844 total_bytes = bytes;
845 else
846 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 847
79bbcc29
JH
848 if (unlikely(bytes > remain_usable)) {
849 /*
850 * Not enough space for the basic request. So need to flush
851 * out the remainder and then wait for base + reserved.
852 */
853 wait_bytes = remain_actual + total_bytes;
854 need_wrap = true;
855 } else {
856 if (unlikely(total_bytes > remain_usable)) {
857 /*
858 * The base request will fit but the reserved space
859 * falls off the end. So only need to to wait for the
860 * reserved size after flushing out the remainder.
861 */
862 wait_bytes = remain_actual + ringbuf->reserved_size;
863 need_wrap = true;
864 } else if (total_bytes > ringbuf->space) {
865 /* No wrapping required, just waiting. */
866 wait_bytes = total_bytes;
29b1b415 867 }
bc0dce3f
JH
868 }
869
79bbcc29
JH
870 if (wait_bytes) {
871 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
872 if (unlikely(ret))
873 return ret;
79bbcc29
JH
874
875 if (need_wrap)
876 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
877 }
878
879 return 0;
880}
881
882/**
883 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
884 *
374887ba 885 * @req: The request to start some new work for
bc0dce3f
JH
886 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
887 *
888 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
889 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
890 * and also preallocates a request (every workload submission is still mediated through
891 * requests, same as it did with legacy ringbuffer submission).
892 *
893 * Return: non-zero if the ringbuffer is not ready to be written to.
894 */
3bbaba0c 895int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 896{
4d616a29 897 struct drm_i915_private *dev_priv;
bc0dce3f
JH
898 int ret;
899
4d616a29 900 WARN_ON(req == NULL);
39dabecd 901 dev_priv = req->i915;
4d616a29 902
bc0dce3f
JH
903 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
904 dev_priv->mm.interruptible);
905 if (ret)
906 return ret;
907
ae70797d 908 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
909 if (ret)
910 return ret;
911
4d616a29 912 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
913 return 0;
914}
915
ccd98fe4
JH
916int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
917{
918 /*
919 * The first call merely notes the reserve request and is common for
920 * all back ends. The subsequent localised _begin() call actually
921 * ensures that the reservation is available. Without the begin, if
922 * the request creator immediately submitted the request without
923 * adding any commands to it then there might not actually be
924 * sufficient room for the submission commands.
925 */
926 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
927
928 return intel_logical_ring_begin(request, 0);
929}
930
73e4d07f
OM
931/**
932 * execlists_submission() - submit a batchbuffer for execution, Execlists style
933 * @dev: DRM device.
934 * @file: DRM file.
935 * @ring: Engine Command Streamer to submit to.
936 * @ctx: Context to employ for this submission.
937 * @args: execbuffer call arguments.
938 * @vmas: list of vmas.
939 * @batch_obj: the batchbuffer to submit.
940 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 941 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
942 *
943 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
944 * away the submission details of the execbuffer ioctl call.
945 *
946 * Return: non-zero if the submission fails.
947 */
5f19e2bf 948int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 949 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 950 struct list_head *vmas)
454afebd 951{
5f19e2bf 952 struct drm_device *dev = params->dev;
4a570db5 953 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 954 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 955 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 956 u64 exec_start;
ba8b7ccb
OM
957 int instp_mode;
958 u32 instp_mask;
959 int ret;
960
961 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
962 instp_mask = I915_EXEC_CONSTANTS_MASK;
963 switch (instp_mode) {
964 case I915_EXEC_CONSTANTS_REL_GENERAL:
965 case I915_EXEC_CONSTANTS_ABSOLUTE:
966 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 967 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
968 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
969 return -EINVAL;
970 }
971
972 if (instp_mode != dev_priv->relative_constants_mode) {
973 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
974 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
975 return -EINVAL;
976 }
977
978 /* The HW changed the meaning on this bit on gen6 */
979 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
980 }
981 break;
982 default:
983 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
984 return -EINVAL;
985 }
986
ba8b7ccb
OM
987 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
988 DRM_DEBUG("sol reset is gen7 only\n");
989 return -EINVAL;
990 }
991
535fbe82 992 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
993 if (ret)
994 return ret;
995
4a570db5 996 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 997 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 998 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
999 if (ret)
1000 return ret;
1001
1002 intel_logical_ring_emit(ringbuf, MI_NOOP);
1003 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 1004 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
1005 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1006 intel_logical_ring_advance(ringbuf);
1007
1008 dev_priv->relative_constants_mode = instp_mode;
1009 }
1010
5f19e2bf
JH
1011 exec_start = params->batch_obj_vm_offset +
1012 args->batch_start_offset;
1013
e2f80391 1014 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
1015 if (ret)
1016 return ret;
1017
95c24161 1018 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 1019
8a8edb59 1020 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 1021 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 1022
454afebd
OM
1023 return 0;
1024}
1025
0bc40be8 1026void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 1027{
6d3d8274 1028 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
1029 struct list_head retired_list;
1030
0bc40be8
TU
1031 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1032 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
1033 return;
1034
1035 INIT_LIST_HEAD(&retired_list);
0bc40be8
TU
1036 spin_lock_irq(&engine->execlist_lock);
1037 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1038 spin_unlock_irq(&engine->execlist_lock);
c86ee3a9
TD
1039
1040 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1041 struct intel_context *ctx = req->ctx;
1042 struct drm_i915_gem_object *ctx_obj =
0bc40be8 1043 ctx->engine[engine->id].state;
af3302b9 1044
ed54c1a1 1045 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 1046 intel_lr_context_unpin(ctx, engine);
e5292823 1047
c86ee3a9 1048 list_del(&req->execlist_link);
f8210795 1049 i915_gem_request_unreference(req);
c86ee3a9
TD
1050 }
1051}
1052
0bc40be8 1053void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 1054{
0bc40be8 1055 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
1056 int ret;
1057
117897f4 1058 if (!intel_engine_initialized(engine))
9832b9da
OM
1059 return;
1060
666796da 1061 ret = intel_engine_idle(engine);
0bc40be8 1062 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
9832b9da 1063 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 1064 engine->name, ret);
9832b9da
OM
1065
1066 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
1067 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1068 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1069 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
1070 return;
1071 }
0bc40be8 1072 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1073}
1074
4866d729 1075int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1076{
4a570db5 1077 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
1078 int ret;
1079
e2f80391 1080 if (!engine->gpu_caches_dirty)
48e29f55
OM
1081 return 0;
1082
e2f80391 1083 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1084 if (ret)
1085 return ret;
1086
e2f80391 1087 engine->gpu_caches_dirty = false;
48e29f55
OM
1088 return 0;
1089}
1090
e5292823 1091static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 1092 struct intel_engine_cs *engine)
dcb4c12a 1093{
0bc40be8 1094 struct drm_device *dev = engine->dev;
e84fe803 1095 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
1096 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1097 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
82352e90 1098 struct page *lrc_state_page;
77b04a04 1099 uint32_t *lrc_reg_state;
ca82580c 1100 int ret;
dcb4c12a 1101
0bc40be8 1102 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 1103
e84fe803
NH
1104 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1105 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1106 if (ret)
1107 return ret;
7ba717cf 1108
82352e90
TU
1109 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1110 if (WARN_ON(!lrc_state_page)) {
1111 ret = -ENODEV;
1112 goto unpin_ctx_obj;
1113 }
1114
0bc40be8 1115 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803
NH
1116 if (ret)
1117 goto unpin_ctx_obj;
d1675198 1118
0bc40be8
TU
1119 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1120 intel_lr_context_descriptor_update(ctx, engine);
77b04a04
TU
1121 lrc_reg_state = kmap(lrc_state_page);
1122 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 1123 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 1124 ctx_obj->dirty = true;
e93c28f3 1125
e84fe803
NH
1126 /* Invalidate GuC TLB. */
1127 if (i915.enable_guc_submission)
1128 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1129
7ba717cf
TD
1130 return ret;
1131
1132unpin_ctx_obj:
1133 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1134
1135 return ret;
1136}
1137
e5292823
TU
1138static int intel_lr_context_pin(struct intel_context *ctx,
1139 struct intel_engine_cs *engine)
e84fe803
NH
1140{
1141 int ret = 0;
e84fe803 1142
e5292823
TU
1143 if (ctx->engine[engine->id].pin_count++ == 0) {
1144 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
1145 if (ret)
1146 goto reset_pin_count;
321fe304
TU
1147
1148 i915_gem_context_reference(ctx);
e84fe803
NH
1149 }
1150 return ret;
1151
a7cbedec 1152reset_pin_count:
e5292823 1153 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1154 return ret;
1155}
1156
e5292823
TU
1157void intel_lr_context_unpin(struct intel_context *ctx,
1158 struct intel_engine_cs *engine)
dcb4c12a 1159{
e5292823 1160 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1161
f4e2dece 1162 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823
TU
1163 if (--ctx->engine[engine->id].pin_count == 0) {
1164 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1165 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1166 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1167 ctx->engine[engine->id].lrc_vma = NULL;
1168 ctx->engine[engine->id].lrc_desc = 0;
1169 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1170
1171 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1172 }
1173}
1174
e2be4faf 1175static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1176{
1177 int ret, i;
4a570db5 1178 struct intel_engine_cs *engine = req->engine;
e2be4faf 1179 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1180 struct drm_device *dev = engine->dev;
771b9a53
MT
1181 struct drm_i915_private *dev_priv = dev->dev_private;
1182 struct i915_workarounds *w = &dev_priv->workarounds;
1183
cd7feaaa 1184 if (w->count == 0)
771b9a53
MT
1185 return 0;
1186
e2f80391 1187 engine->gpu_caches_dirty = true;
4866d729 1188 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1189 if (ret)
1190 return ret;
1191
4d616a29 1192 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1193 if (ret)
1194 return ret;
1195
1196 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1197 for (i = 0; i < w->count; i++) {
f92a9162 1198 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1199 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1200 }
1201 intel_logical_ring_emit(ringbuf, MI_NOOP);
1202
1203 intel_logical_ring_advance(ringbuf);
1204
e2f80391 1205 engine->gpu_caches_dirty = true;
4866d729 1206 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1207 if (ret)
1208 return ret;
1209
1210 return 0;
1211}
1212
83b8a982 1213#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1214 do { \
83b8a982
AS
1215 int __index = (index)++; \
1216 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1217 return -ENOSPC; \
1218 } \
83b8a982 1219 batch[__index] = (cmd); \
17ee950d
AS
1220 } while (0)
1221
8f40db77 1222#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1223 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1224
1225/*
1226 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1227 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1228 * but there is a slight complication as this is applied in WA batch where the
1229 * values are only initialized once so we cannot take register value at the
1230 * beginning and reuse it further; hence we save its value to memory, upload a
1231 * constant value with bit21 set and then we restore it back with the saved value.
1232 * To simplify the WA, a constant value is formed by using the default value
1233 * of this register. This shouldn't be a problem because we are only modifying
1234 * it for a short period and this batch in non-premptible. We can ofcourse
1235 * use additional instructions that read the actual value of the register
1236 * at that time and set our bit of interest but it makes the WA complicated.
1237 *
1238 * This WA is also required for Gen9 so extracting as a function avoids
1239 * code duplication.
1240 */
0bc40be8 1241static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1242 uint32_t *const batch,
1243 uint32_t index)
1244{
1245 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1246
a4106a78
AS
1247 /*
1248 * WaDisableLSQCROPERFforOCL:skl
1249 * This WA is implemented in skl_init_clock_gating() but since
1250 * this batch updates GEN8_L3SQCREG4 with default value we need to
1251 * set this bit here to retain the WA during flush.
1252 */
0bc40be8 1253 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1254 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1255
f1afe24f 1256 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1257 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1258 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1259 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1260 wa_ctx_emit(batch, index, 0);
1261
1262 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1263 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1264 wa_ctx_emit(batch, index, l3sqc4_flush);
1265
1266 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1267 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1268 PIPE_CONTROL_DC_FLUSH_ENABLE));
1269 wa_ctx_emit(batch, index, 0);
1270 wa_ctx_emit(batch, index, 0);
1271 wa_ctx_emit(batch, index, 0);
1272 wa_ctx_emit(batch, index, 0);
1273
f1afe24f 1274 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1275 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1276 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1277 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1278 wa_ctx_emit(batch, index, 0);
9e000847
AS
1279
1280 return index;
1281}
1282
17ee950d
AS
1283static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1284 uint32_t offset,
1285 uint32_t start_alignment)
1286{
1287 return wa_ctx->offset = ALIGN(offset, start_alignment);
1288}
1289
1290static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1291 uint32_t offset,
1292 uint32_t size_alignment)
1293{
1294 wa_ctx->size = offset - wa_ctx->offset;
1295
1296 WARN(wa_ctx->size % size_alignment,
1297 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1298 wa_ctx->size, size_alignment);
1299 return 0;
1300}
1301
1302/**
1303 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1304 *
1305 * @ring: only applicable for RCS
1306 * @wa_ctx: structure representing wa_ctx
1307 * offset: specifies start of the batch, should be cache-aligned. This is updated
1308 * with the offset value received as input.
1309 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1310 * @batch: page in which WA are loaded
1311 * @offset: This field specifies the start of the batch, it should be
1312 * cache-aligned otherwise it is adjusted accordingly.
1313 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1314 * initialized at the beginning and shared across all contexts but this field
1315 * helps us to have multiple batches at different offsets and select them based
1316 * on a criteria. At the moment this batch always start at the beginning of the page
1317 * and at this point we don't have multiple wa_ctx batch buffers.
1318 *
1319 * The number of WA applied are not known at the beginning; we use this field
1320 * to return the no of DWORDS written.
4d78c8dc 1321 *
17ee950d
AS
1322 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1323 * so it adds NOOPs as padding to make it cacheline aligned.
1324 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1325 * makes a complete batch buffer.
1326 *
1327 * Return: non-zero if we exceed the PAGE_SIZE limit.
1328 */
1329
0bc40be8 1330static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1331 struct i915_wa_ctx_bb *wa_ctx,
1332 uint32_t *const batch,
1333 uint32_t *offset)
1334{
0160f055 1335 uint32_t scratch_addr;
17ee950d
AS
1336 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1337
7ad00d1a 1338 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1339 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1340
c82435bb 1341 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1342 if (IS_BROADWELL(engine->dev)) {
1343 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1344 if (rc < 0)
1345 return rc;
1346 index = rc;
c82435bb
AS
1347 }
1348
0160f055
AS
1349 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1350 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1351 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1352
83b8a982
AS
1353 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1354 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1355 PIPE_CONTROL_GLOBAL_GTT_IVB |
1356 PIPE_CONTROL_CS_STALL |
1357 PIPE_CONTROL_QW_WRITE));
1358 wa_ctx_emit(batch, index, scratch_addr);
1359 wa_ctx_emit(batch, index, 0);
1360 wa_ctx_emit(batch, index, 0);
1361 wa_ctx_emit(batch, index, 0);
0160f055 1362
17ee950d
AS
1363 /* Pad to end of cacheline */
1364 while (index % CACHELINE_DWORDS)
83b8a982 1365 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1366
1367 /*
1368 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1369 * execution depends on the length specified in terms of cache lines
1370 * in the register CTX_RCS_INDIRECT_CTX
1371 */
1372
1373 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1374}
1375
1376/**
1377 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1378 *
1379 * @ring: only applicable for RCS
1380 * @wa_ctx: structure representing wa_ctx
1381 * offset: specifies start of the batch, should be cache-aligned.
1382 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1383 * @batch: page in which WA are loaded
17ee950d
AS
1384 * @offset: This field specifies the start of this batch.
1385 * This batch is started immediately after indirect_ctx batch. Since we ensure
1386 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1387 *
1388 * The number of DWORDS written are returned using this field.
1389 *
1390 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1391 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1392 */
0bc40be8 1393static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1394 struct i915_wa_ctx_bb *wa_ctx,
1395 uint32_t *const batch,
1396 uint32_t *offset)
1397{
1398 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1399
7ad00d1a 1400 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1401 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1402
83b8a982 1403 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1404
1405 return wa_ctx_end(wa_ctx, *offset = index, 1);
1406}
1407
0bc40be8 1408static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1409 struct i915_wa_ctx_bb *wa_ctx,
1410 uint32_t *const batch,
1411 uint32_t *offset)
1412{
a4106a78 1413 int ret;
0bc40be8 1414 struct drm_device *dev = engine->dev;
0504cffc
AS
1415 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1416
0907c8f7 1417 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1418 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1419 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1420 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1421
a4106a78 1422 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1423 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1424 if (ret < 0)
1425 return ret;
1426 index = ret;
1427
0504cffc
AS
1428 /* Pad to end of cacheline */
1429 while (index % CACHELINE_DWORDS)
1430 wa_ctx_emit(batch, index, MI_NOOP);
1431
1432 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1433}
1434
0bc40be8 1435static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1436 struct i915_wa_ctx_bb *wa_ctx,
1437 uint32_t *const batch,
1438 uint32_t *offset)
1439{
0bc40be8 1440 struct drm_device *dev = engine->dev;
0504cffc
AS
1441 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1442
9b01435d 1443 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1444 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1445 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1446 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1447 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1448 wa_ctx_emit(batch, index,
1449 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1450 wa_ctx_emit(batch, index, MI_NOOP);
1451 }
1452
0907c8f7 1453 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1454 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1455 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1456 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1457
0504cffc
AS
1458 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1459
1460 return wa_ctx_end(wa_ctx, *offset = index, 1);
1461}
1462
0bc40be8 1463static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1464{
1465 int ret;
1466
0bc40be8
TU
1467 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1468 PAGE_ALIGN(size));
1469 if (!engine->wa_ctx.obj) {
17ee950d
AS
1470 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1471 return -ENOMEM;
1472 }
1473
0bc40be8 1474 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1475 if (ret) {
1476 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1477 ret);
0bc40be8 1478 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1479 return ret;
1480 }
1481
1482 return 0;
1483}
1484
0bc40be8 1485static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1486{
0bc40be8
TU
1487 if (engine->wa_ctx.obj) {
1488 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1489 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1490 engine->wa_ctx.obj = NULL;
17ee950d
AS
1491 }
1492}
1493
0bc40be8 1494static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1495{
1496 int ret;
1497 uint32_t *batch;
1498 uint32_t offset;
1499 struct page *page;
0bc40be8 1500 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1501
0bc40be8 1502 WARN_ON(engine->id != RCS);
17ee950d 1503
5e60d790 1504 /* update this when WA for higher Gen are added */
0bc40be8 1505 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1506 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1507 INTEL_INFO(engine->dev)->gen);
5e60d790 1508 return 0;
0504cffc 1509 }
5e60d790 1510
c4db7599 1511 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1512 if (engine->scratch.obj == NULL) {
1513 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1514 return -EINVAL;
1515 }
1516
0bc40be8 1517 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1518 if (ret) {
1519 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1520 return ret;
1521 }
1522
033908ae 1523 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1524 batch = kmap_atomic(page);
1525 offset = 0;
1526
0bc40be8
TU
1527 if (INTEL_INFO(engine->dev)->gen == 8) {
1528 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1529 &wa_ctx->indirect_ctx,
1530 batch,
1531 &offset);
1532 if (ret)
1533 goto out;
1534
0bc40be8 1535 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1536 &wa_ctx->per_ctx,
1537 batch,
1538 &offset);
1539 if (ret)
1540 goto out;
0bc40be8
TU
1541 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1542 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1543 &wa_ctx->indirect_ctx,
1544 batch,
1545 &offset);
1546 if (ret)
1547 goto out;
1548
0bc40be8 1549 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1550 &wa_ctx->per_ctx,
1551 batch,
1552 &offset);
1553 if (ret)
1554 goto out;
17ee950d
AS
1555 }
1556
1557out:
1558 kunmap_atomic(batch);
1559 if (ret)
0bc40be8 1560 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1561
1562 return ret;
1563}
1564
0bc40be8 1565static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1566{
0bc40be8 1567 struct drm_device *dev = engine->dev;
9b1136d5 1568 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1569 unsigned int next_context_status_buffer_hw;
9b1136d5 1570
0bc40be8
TU
1571 lrc_setup_hardware_status_page(engine,
1572 dev_priv->kernel_context->engine[engine->id].state);
e84fe803 1573
0bc40be8
TU
1574 I915_WRITE_IMR(engine,
1575 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1576 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1577
0bc40be8 1578 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1579 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1580 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1581 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1582
1583 /*
1584 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1585 * zero, we need to read the write pointer from hardware and use its
1586 * value because "this register is power context save restored".
1587 * Effectively, these states have been observed:
1588 *
1589 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1590 * BDW | CSB regs not reset | CSB regs reset |
1591 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1592 * SKL | ? | ? |
1593 * BXT | ? | ? |
dfc53c5e 1594 */
5590a5f0 1595 next_context_status_buffer_hw =
0bc40be8 1596 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1597
1598 /*
1599 * When the CSB registers are reset (also after power-up / gpu reset),
1600 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1601 * this special case, so the first element read is CSB[0].
1602 */
1603 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1604 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1605
0bc40be8
TU
1606 engine->next_context_status_buffer = next_context_status_buffer_hw;
1607 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1608
0bc40be8 1609 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
9b1136d5
OM
1610
1611 return 0;
1612}
1613
0bc40be8 1614static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1615{
0bc40be8 1616 struct drm_device *dev = engine->dev;
9b1136d5
OM
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 int ret;
1619
0bc40be8 1620 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1621 if (ret)
1622 return ret;
1623
1624 /* We need to disable the AsyncFlip performance optimisations in order
1625 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1626 * programmed to '1' on all products.
1627 *
1628 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1629 */
1630 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1631
9b1136d5
OM
1632 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1633
0bc40be8 1634 return init_workarounds_ring(engine);
9b1136d5
OM
1635}
1636
0bc40be8 1637static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1638{
1639 int ret;
1640
0bc40be8 1641 ret = gen8_init_common_ring(engine);
82ef822e
DL
1642 if (ret)
1643 return ret;
1644
0bc40be8 1645 return init_workarounds_ring(engine);
82ef822e
DL
1646}
1647
7a01a0a2
MT
1648static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1649{
1650 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1651 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1652 struct intel_ringbuffer *ringbuf = req->ringbuf;
1653 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1654 int i, ret;
1655
1656 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1657 if (ret)
1658 return ret;
1659
1660 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1661 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1662 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1663
e2f80391
TU
1664 intel_logical_ring_emit_reg(ringbuf,
1665 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1666 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1667 intel_logical_ring_emit_reg(ringbuf,
1668 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1669 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1670 }
1671
1672 intel_logical_ring_emit(ringbuf, MI_NOOP);
1673 intel_logical_ring_advance(ringbuf);
1674
1675 return 0;
1676}
1677
be795fc1 1678static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1679 u64 offset, unsigned dispatch_flags)
15648585 1680{
be795fc1 1681 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1682 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1683 int ret;
1684
7a01a0a2
MT
1685 /* Don't rely in hw updating PDPs, specially in lite-restore.
1686 * Ideally, we should set Force PD Restore in ctx descriptor,
1687 * but we can't. Force Restore would be a second option, but
1688 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1689 * not idle). PML4 is allocated during ppgtt init so this is
1690 * not needed in 48-bit.*/
7a01a0a2 1691 if (req->ctx->ppgtt &&
666796da 1692 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1693 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1694 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1695 ret = intel_logical_ring_emit_pdps(req);
1696 if (ret)
1697 return ret;
1698 }
7a01a0a2 1699
666796da 1700 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1701 }
1702
4d616a29 1703 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1704 if (ret)
1705 return ret;
1706
1707 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1708 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1709 (ppgtt<<8) |
1710 (dispatch_flags & I915_DISPATCH_RS ?
1711 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1712 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1713 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1714 intel_logical_ring_emit(ringbuf, MI_NOOP);
1715 intel_logical_ring_advance(ringbuf);
1716
1717 return 0;
1718}
1719
0bc40be8 1720static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1721{
0bc40be8 1722 struct drm_device *dev = engine->dev;
73d477f6
OM
1723 struct drm_i915_private *dev_priv = dev->dev_private;
1724 unsigned long flags;
1725
7cd512f1 1726 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1727 return false;
1728
1729 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1730 if (engine->irq_refcount++ == 0) {
1731 I915_WRITE_IMR(engine,
1732 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1733 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1734 }
1735 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1736
1737 return true;
1738}
1739
0bc40be8 1740static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1741{
0bc40be8 1742 struct drm_device *dev = engine->dev;
73d477f6
OM
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 unsigned long flags;
1745
1746 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1747 if (--engine->irq_refcount == 0) {
1748 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1749 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1750 }
1751 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752}
1753
7deb4d39 1754static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1755 u32 invalidate_domains,
1756 u32 unused)
1757{
7deb4d39 1758 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1759 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1760 struct drm_device *dev = engine->dev;
4712274c
OM
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 uint32_t cmd;
1763 int ret;
1764
4d616a29 1765 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1766 if (ret)
1767 return ret;
1768
1769 cmd = MI_FLUSH_DW + 1;
1770
f0a1fb10
CW
1771 /* We always require a command barrier so that subsequent
1772 * commands, such as breadcrumb interrupts, are strictly ordered
1773 * wrt the contents of the write cache being flushed to memory
1774 * (and thus being coherent from the CPU).
1775 */
1776 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1777
1778 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1779 cmd |= MI_INVALIDATE_TLB;
4a570db5 1780 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1781 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1782 }
1783
1784 intel_logical_ring_emit(ringbuf, cmd);
1785 intel_logical_ring_emit(ringbuf,
1786 I915_GEM_HWS_SCRATCH_ADDR |
1787 MI_FLUSH_DW_USE_GTT);
1788 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1789 intel_logical_ring_emit(ringbuf, 0); /* value */
1790 intel_logical_ring_advance(ringbuf);
1791
1792 return 0;
1793}
1794
7deb4d39 1795static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1796 u32 invalidate_domains,
1797 u32 flush_domains)
1798{
7deb4d39 1799 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1800 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1801 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1802 bool vf_flush_wa = false;
4712274c
OM
1803 u32 flags = 0;
1804 int ret;
1805
1806 flags |= PIPE_CONTROL_CS_STALL;
1807
1808 if (flush_domains) {
1809 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1810 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1811 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1812 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1813 }
1814
1815 if (invalidate_domains) {
1816 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1817 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1818 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1819 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1820 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1821 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1822 flags |= PIPE_CONTROL_QW_WRITE;
1823 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1824
1a5a9ce7
BW
1825 /*
1826 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1827 * pipe control.
1828 */
e2f80391 1829 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1830 vf_flush_wa = true;
1831 }
9647ff36 1832
4d616a29 1833 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1834 if (ret)
1835 return ret;
1836
9647ff36
ID
1837 if (vf_flush_wa) {
1838 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1839 intel_logical_ring_emit(ringbuf, 0);
1840 intel_logical_ring_emit(ringbuf, 0);
1841 intel_logical_ring_emit(ringbuf, 0);
1842 intel_logical_ring_emit(ringbuf, 0);
1843 intel_logical_ring_emit(ringbuf, 0);
1844 }
1845
4712274c
OM
1846 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1847 intel_logical_ring_emit(ringbuf, flags);
1848 intel_logical_ring_emit(ringbuf, scratch_addr);
1849 intel_logical_ring_emit(ringbuf, 0);
1850 intel_logical_ring_emit(ringbuf, 0);
1851 intel_logical_ring_emit(ringbuf, 0);
1852 intel_logical_ring_advance(ringbuf);
1853
1854 return 0;
1855}
1856
0bc40be8 1857static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
e94e37ad 1858{
0bc40be8 1859 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1860}
1861
0bc40be8 1862static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1863{
0bc40be8 1864 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1865}
1866
0bc40be8
TU
1867static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
1868 bool lazy_coherency)
319404df
ID
1869{
1870
1871 /*
1872 * On BXT A steppings there is a HW coherency issue whereby the
1873 * MI_STORE_DATA_IMM storing the completed request's seqno
1874 * occasionally doesn't invalidate the CPU cache. Work around this by
1875 * clflushing the corresponding cacheline whenever the caller wants
1876 * the coherency to be guaranteed. Note that this cacheline is known
1877 * to be clean at this point, since we only write it in
1878 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1879 * this clflush in practice becomes an invalidate operation.
1880 */
1881
1882 if (!lazy_coherency)
0bc40be8 1883 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df 1884
0bc40be8 1885 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1886}
1887
0bc40be8 1888static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1889{
0bc40be8 1890 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1891
1892 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1893 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1894}
1895
7c17d377
CW
1896/*
1897 * Reserve space for 2 NOOPs at the end of each request to be
1898 * used as a workaround for not being allowed to do lite
1899 * restore with HEAD==TAIL (WaIdleLiteRestore).
1900 */
1901#define WA_TAIL_DWORDS 2
1902
1903static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1904{
1905 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1906}
1907
c4e76638 1908static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1909{
c4e76638 1910 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1911 int ret;
1912
7c17d377 1913 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1914 if (ret)
1915 return ret;
1916
7c17d377
CW
1917 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1918 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1919
4da46e1e 1920 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1921 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1922 intel_logical_ring_emit(ringbuf,
4a570db5 1923 hws_seqno_address(request->engine) |
7c17d377 1924 MI_FLUSH_DW_USE_GTT);
4da46e1e 1925 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1926 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1927 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1928 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1929 return intel_logical_ring_advance_and_submit(request);
1930}
4da46e1e 1931
7c17d377
CW
1932static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1933{
1934 struct intel_ringbuffer *ringbuf = request->ringbuf;
1935 int ret;
53292cdb 1936
7c17d377
CW
1937 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1938 if (ret)
1939 return ret;
1940
1941 /* w/a for post sync ops following a GPGPU operation we
1942 * need a prior CS_STALL, which is emitted by the flush
1943 * following the batch.
1944 */
1945 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1946 intel_logical_ring_emit(ringbuf,
1947 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1948 PIPE_CONTROL_CS_STALL |
1949 PIPE_CONTROL_QW_WRITE));
4a570db5 1950 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1951 intel_logical_ring_emit(ringbuf, 0);
1952 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1953 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1954 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1955}
1956
be01363f 1957static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1958{
cef437ad 1959 struct render_state so;
cef437ad
DL
1960 int ret;
1961
4a570db5 1962 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1963 if (ret)
1964 return ret;
1965
1966 if (so.rodata == NULL)
1967 return 0;
1968
4a570db5 1969 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1970 I915_DISPATCH_SECURE);
cef437ad
DL
1971 if (ret)
1972 goto out;
1973
4a570db5 1974 ret = req->engine->emit_bb_start(req,
84e81020
AS
1975 (so.ggtt_offset + so.aux_batch_offset),
1976 I915_DISPATCH_SECURE);
1977 if (ret)
1978 goto out;
1979
b2af0376 1980 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1981
cef437ad
DL
1982out:
1983 i915_gem_render_state_fini(&so);
1984 return ret;
1985}
1986
8753181e 1987static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1988{
1989 int ret;
1990
e2be4faf 1991 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1992 if (ret)
1993 return ret;
1994
3bbaba0c
PA
1995 ret = intel_rcs_context_init_mocs(req);
1996 /*
1997 * Failing to program the MOCS is non-fatal.The system will not
1998 * run at peak performance. So generate an error and carry on.
1999 */
2000 if (ret)
2001 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2002
be01363f 2003 return intel_lr_context_render_state_init(req);
e7778be1
TD
2004}
2005
73e4d07f
OM
2006/**
2007 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2008 *
2009 * @ring: Engine Command Streamer.
2010 *
2011 */
0bc40be8 2012void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 2013{
6402c330 2014 struct drm_i915_private *dev_priv;
9832b9da 2015
117897f4 2016 if (!intel_engine_initialized(engine))
48d82387
OM
2017 return;
2018
0bc40be8 2019 dev_priv = engine->dev->dev_private;
6402c330 2020
0bc40be8
TU
2021 if (engine->buffer) {
2022 intel_logical_ring_stop(engine);
2023 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 2024 }
48d82387 2025
0bc40be8
TU
2026 if (engine->cleanup)
2027 engine->cleanup(engine);
48d82387 2028
0bc40be8
TU
2029 i915_cmd_parser_fini_ring(engine);
2030 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 2031
0bc40be8
TU
2032 if (engine->status_page.obj) {
2033 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2034 engine->status_page.obj = NULL;
48d82387 2035 }
17ee950d 2036
0bc40be8
TU
2037 engine->idle_lite_restore_wa = 0;
2038 engine->disable_lite_restore_wa = false;
2039 engine->ctx_desc_template = 0;
ca82580c 2040
0bc40be8
TU
2041 lrc_destroy_wa_ctx_obj(engine);
2042 engine->dev = NULL;
454afebd
OM
2043}
2044
c9cacf93
TU
2045static void
2046logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 2047 struct intel_engine_cs *engine)
c9cacf93
TU
2048{
2049 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
2050 engine->init_hw = gen8_init_common_ring;
2051 engine->emit_request = gen8_emit_request;
2052 engine->emit_flush = gen8_emit_flush;
2053 engine->irq_get = gen8_logical_ring_get_irq;
2054 engine->irq_put = gen8_logical_ring_put_irq;
2055 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93 2056 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
0bc40be8
TU
2057 engine->get_seqno = bxt_a_get_seqno;
2058 engine->set_seqno = bxt_a_set_seqno;
c9cacf93 2059 } else {
0bc40be8
TU
2060 engine->get_seqno = gen8_get_seqno;
2061 engine->set_seqno = gen8_set_seqno;
c9cacf93
TU
2062 }
2063}
2064
d9f3af96 2065static inline void
0bc40be8 2066logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 2067{
0bc40be8
TU
2068 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2069 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
2070}
2071
c9cacf93 2072static int
0bc40be8 2073logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 2074{
ed54c1a1 2075 struct intel_context *dctx = to_i915(dev)->kernel_context;
48d82387 2076 int ret;
48d82387
OM
2077
2078 /* Intentionally left blank. */
0bc40be8 2079 engine->buffer = NULL;
48d82387 2080
0bc40be8
TU
2081 engine->dev = dev;
2082 INIT_LIST_HEAD(&engine->active_list);
2083 INIT_LIST_HEAD(&engine->request_list);
2084 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2085 init_waitqueue_head(&engine->irq_queue);
48d82387 2086
0bc40be8
TU
2087 INIT_LIST_HEAD(&engine->buffers);
2088 INIT_LIST_HEAD(&engine->execlist_queue);
2089 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2090 spin_lock_init(&engine->execlist_lock);
acdd884a 2091
0bc40be8 2092 logical_ring_init_platform_invariants(engine);
ca82580c 2093
0bc40be8 2094 ret = i915_cmd_parser_init_ring(engine);
48d82387 2095 if (ret)
b0366a54 2096 goto error;
48d82387 2097
0bc40be8 2098 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2099 if (ret)
b0366a54 2100 goto error;
e84fe803
NH
2101
2102 /* As this is the default context, always pin it */
0bc40be8 2103 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2104 if (ret) {
2105 DRM_ERROR(
2106 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2107 engine->name, ret);
b0366a54 2108 goto error;
e84fe803 2109 }
564ddb2f 2110
b0366a54
DG
2111 return 0;
2112
2113error:
0bc40be8 2114 intel_logical_ring_cleanup(engine);
564ddb2f 2115 return ret;
454afebd
OM
2116}
2117
2118static int logical_render_ring_init(struct drm_device *dev)
2119{
2120 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2121 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2122 int ret;
454afebd 2123
e2f80391
TU
2124 engine->name = "render ring";
2125 engine->id = RCS;
2126 engine->exec_id = I915_EXEC_RENDER;
2127 engine->guc_id = GUC_RENDER_ENGINE;
2128 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2129
e2f80391 2130 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2131 if (HAS_L3_DPF(dev))
e2f80391 2132 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2133
e2f80391 2134 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2135
2136 /* Override some for render ring. */
82ef822e 2137 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2138 engine->init_hw = gen9_init_render_ring;
82ef822e 2139 else
e2f80391
TU
2140 engine->init_hw = gen8_init_render_ring;
2141 engine->init_context = gen8_init_rcs_context;
2142 engine->cleanup = intel_fini_pipe_control;
2143 engine->emit_flush = gen8_emit_flush_render;
2144 engine->emit_request = gen8_emit_request_render;
9b1136d5 2145
e2f80391 2146 engine->dev = dev;
c4db7599 2147
e2f80391 2148 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2149 if (ret)
2150 return ret;
2151
e2f80391 2152 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2153 if (ret) {
2154 /*
2155 * We continue even if we fail to initialize WA batch
2156 * because we only expect rare glitches but nothing
2157 * critical to prevent us from using GPU
2158 */
2159 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2160 ret);
2161 }
2162
e2f80391 2163 ret = logical_ring_init(dev, engine);
c4db7599 2164 if (ret) {
e2f80391 2165 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2166 }
17ee950d
AS
2167
2168 return ret;
454afebd
OM
2169}
2170
2171static int logical_bsd_ring_init(struct drm_device *dev)
2172{
2173 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2174 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2175
e2f80391
TU
2176 engine->name = "bsd ring";
2177 engine->id = VCS;
2178 engine->exec_id = I915_EXEC_BSD;
2179 engine->guc_id = GUC_VIDEO_ENGINE;
2180 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2181
e2f80391
TU
2182 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2183 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2184
e2f80391 2185 return logical_ring_init(dev, engine);
454afebd
OM
2186}
2187
2188static int logical_bsd2_ring_init(struct drm_device *dev)
2189{
2190 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2191 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2192
e2f80391
TU
2193 engine->name = "bsd2 ring";
2194 engine->id = VCS2;
2195 engine->exec_id = I915_EXEC_BSD;
2196 engine->guc_id = GUC_VIDEO_ENGINE2;
2197 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2198
e2f80391
TU
2199 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2200 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2201
e2f80391 2202 return logical_ring_init(dev, engine);
454afebd
OM
2203}
2204
2205static int logical_blt_ring_init(struct drm_device *dev)
2206{
2207 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2208 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2209
e2f80391
TU
2210 engine->name = "blitter ring";
2211 engine->id = BCS;
2212 engine->exec_id = I915_EXEC_BLT;
2213 engine->guc_id = GUC_BLITTER_ENGINE;
2214 engine->mmio_base = BLT_RING_BASE;
454afebd 2215
e2f80391
TU
2216 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2217 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2218
e2f80391 2219 return logical_ring_init(dev, engine);
454afebd
OM
2220}
2221
2222static int logical_vebox_ring_init(struct drm_device *dev)
2223{
2224 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2225 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2226
e2f80391
TU
2227 engine->name = "video enhancement ring";
2228 engine->id = VECS;
2229 engine->exec_id = I915_EXEC_VEBOX;
2230 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2231 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2232
e2f80391
TU
2233 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2234 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2235
e2f80391 2236 return logical_ring_init(dev, engine);
454afebd
OM
2237}
2238
73e4d07f
OM
2239/**
2240 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2241 * @dev: DRM device.
2242 *
2243 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2244 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2245 * those engines that are present in the hardware.
2246 *
2247 * Return: non-zero if the initialization failed.
2248 */
454afebd
OM
2249int intel_logical_rings_init(struct drm_device *dev)
2250{
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 int ret;
2253
2254 ret = logical_render_ring_init(dev);
2255 if (ret)
2256 return ret;
2257
2258 if (HAS_BSD(dev)) {
2259 ret = logical_bsd_ring_init(dev);
2260 if (ret)
2261 goto cleanup_render_ring;
2262 }
2263
2264 if (HAS_BLT(dev)) {
2265 ret = logical_blt_ring_init(dev);
2266 if (ret)
2267 goto cleanup_bsd_ring;
2268 }
2269
2270 if (HAS_VEBOX(dev)) {
2271 ret = logical_vebox_ring_init(dev);
2272 if (ret)
2273 goto cleanup_blt_ring;
2274 }
2275
2276 if (HAS_BSD2(dev)) {
2277 ret = logical_bsd2_ring_init(dev);
2278 if (ret)
2279 goto cleanup_vebox_ring;
2280 }
2281
454afebd
OM
2282 return 0;
2283
454afebd 2284cleanup_vebox_ring:
4a570db5 2285 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2286cleanup_blt_ring:
4a570db5 2287 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2288cleanup_bsd_ring:
4a570db5 2289 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2290cleanup_render_ring:
4a570db5 2291 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2292
2293 return ret;
2294}
2295
0cea6502
JM
2296static u32
2297make_rpcs(struct drm_device *dev)
2298{
2299 u32 rpcs = 0;
2300
2301 /*
2302 * No explicit RPCS request is needed to ensure full
2303 * slice/subslice/EU enablement prior to Gen9.
2304 */
2305 if (INTEL_INFO(dev)->gen < 9)
2306 return 0;
2307
2308 /*
2309 * Starting in Gen9, render power gating can leave
2310 * slice/subslice/EU in a partially enabled state. We
2311 * must make an explicit request through RPCS for full
2312 * enablement.
2313 */
2314 if (INTEL_INFO(dev)->has_slice_pg) {
2315 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2316 rpcs |= INTEL_INFO(dev)->slice_total <<
2317 GEN8_RPCS_S_CNT_SHIFT;
2318 rpcs |= GEN8_RPCS_ENABLE;
2319 }
2320
2321 if (INTEL_INFO(dev)->has_subslice_pg) {
2322 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2323 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2324 GEN8_RPCS_SS_CNT_SHIFT;
2325 rpcs |= GEN8_RPCS_ENABLE;
2326 }
2327
2328 if (INTEL_INFO(dev)->has_eu_pg) {
2329 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2330 GEN8_RPCS_EU_MIN_SHIFT;
2331 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2332 GEN8_RPCS_EU_MAX_SHIFT;
2333 rpcs |= GEN8_RPCS_ENABLE;
2334 }
2335
2336 return rpcs;
2337}
2338
0bc40be8 2339static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2340{
2341 u32 indirect_ctx_offset;
2342
0bc40be8 2343 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2344 default:
0bc40be8 2345 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2346 /* fall through */
2347 case 9:
2348 indirect_ctx_offset =
2349 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2350 break;
2351 case 8:
2352 indirect_ctx_offset =
2353 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2354 break;
2355 }
2356
2357 return indirect_ctx_offset;
2358}
2359
8670d6f9
OM
2360static int
2361populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2362 struct intel_engine_cs *engine,
2363 struct intel_ringbuffer *ringbuf)
8670d6f9 2364{
0bc40be8 2365 struct drm_device *dev = engine->dev;
2d965536 2366 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2367 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2368 struct page *page;
2369 uint32_t *reg_state;
2370 int ret;
2371
2d965536
TD
2372 if (!ppgtt)
2373 ppgtt = dev_priv->mm.aliasing_ppgtt;
2374
8670d6f9
OM
2375 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2376 if (ret) {
2377 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2378 return ret;
2379 }
2380
2381 ret = i915_gem_object_get_pages(ctx_obj);
2382 if (ret) {
2383 DRM_DEBUG_DRIVER("Could not get object pages\n");
2384 return ret;
2385 }
2386
2387 i915_gem_object_pin_pages(ctx_obj);
2388
2389 /* The second page of the context object contains some fields which must
2390 * be set up prior to the first execution. */
033908ae 2391 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2392 reg_state = kmap_atomic(page);
2393
2394 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2395 * commands followed by (reg, value) pairs. The values we are setting here are
2396 * only for the first context restore: on a subsequent save, the GPU will
2397 * recreate this batchbuffer with new values (including all the missing
2398 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2399 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2400 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2401 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2402 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2403 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2404 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2405 (HAS_RESOURCE_STREAMER(dev) ?
2406 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2407 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2408 0);
2409 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2410 0);
7ba717cf
TD
2411 /* Ring buffer start address is not known until the buffer is pinned.
2412 * It is written to the context image in execlists_update_context()
2413 */
0bc40be8
TU
2414 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2415 RING_START(engine->mmio_base), 0);
2416 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2417 RING_CTL(engine->mmio_base),
0d925ea0 2418 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2419 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2420 RING_BBADDR_UDW(engine->mmio_base), 0);
2421 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2422 RING_BBADDR(engine->mmio_base), 0);
2423 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2424 RING_BBSTATE(engine->mmio_base),
0d925ea0 2425 RING_BB_PPGTT);
0bc40be8
TU
2426 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2427 RING_SBBADDR_UDW(engine->mmio_base), 0);
2428 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2429 RING_SBBADDR(engine->mmio_base), 0);
2430 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2431 RING_SBBSTATE(engine->mmio_base), 0);
2432 if (engine->id == RCS) {
2433 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2434 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2435 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2436 RING_INDIRECT_CTX(engine->mmio_base), 0);
2437 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2438 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2439 if (engine->wa_ctx.obj) {
2440 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2441 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2442
2443 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2444 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2445 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2446
2447 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2448 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2449
2450 reg_state[CTX_BB_PER_CTX_PTR+1] =
2451 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2452 0x01;
2453 }
8670d6f9 2454 }
0d925ea0 2455 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2456 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2457 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2458 /* PDP values well be assigned later if needed */
0bc40be8
TU
2459 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2460 0);
2461 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2462 0);
2463 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2464 0);
2465 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2466 0);
2467 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2468 0);
2469 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2470 0);
2471 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2472 0);
2473 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2474 0);
d7b2633d 2475
2dba3239
MT
2476 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2477 /* 64b PPGTT (48bit canonical)
2478 * PDP0_DESCRIPTOR contains the base address to PML4 and
2479 * other PDP Descriptors are ignored.
2480 */
2481 ASSIGN_CTX_PML4(ppgtt, reg_state);
2482 } else {
2483 /* 32b PPGTT
2484 * PDP*_DESCRIPTOR contains the base address of space supported.
2485 * With dynamic page allocation, PDPs may not be allocated at
2486 * this point. Point the unallocated PDPs to the scratch page
2487 */
c6a2ac71 2488 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2489 }
2490
0bc40be8 2491 if (engine->id == RCS) {
8670d6f9 2492 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2493 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2494 make_rpcs(dev));
8670d6f9
OM
2495 }
2496
2497 kunmap_atomic(reg_state);
8670d6f9
OM
2498 i915_gem_object_unpin_pages(ctx_obj);
2499
2500 return 0;
2501}
2502
73e4d07f
OM
2503/**
2504 * intel_lr_context_free() - free the LRC specific bits of a context
2505 * @ctx: the LR context to free.
2506 *
2507 * The real context freeing is done in i915_gem_context_free: this only
2508 * takes care of the bits that are LRC related: the per-engine backing
2509 * objects and the logical ringbuffer.
2510 */
ede7d42b
OM
2511void intel_lr_context_free(struct intel_context *ctx)
2512{
8c857917
OM
2513 int i;
2514
666796da 2515 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2516 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2517 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2518
e28e404c
DG
2519 if (!ctx_obj)
2520 continue;
dcb4c12a 2521
e28e404c
DG
2522 if (ctx == ctx->i915->kernel_context) {
2523 intel_unpin_ringbuffer_obj(ringbuf);
2524 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2525 }
e28e404c
DG
2526
2527 WARN_ON(ctx->engine[i].pin_count);
2528 intel_ringbuffer_free(ringbuf);
2529 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2530 }
2531}
2532
c5d46ee2
DG
2533/**
2534 * intel_lr_context_size() - return the size of the context for an engine
2535 * @ring: which engine to find the context size for
2536 *
2537 * Each engine may require a different amount of space for a context image,
2538 * so when allocating (or copying) an image, this function can be used to
2539 * find the right size for the specific engine.
2540 *
2541 * Return: size (in bytes) of an engine-specific context image
2542 *
2543 * Note: this size includes the HWSP, which is part of the context image
2544 * in LRC mode, but does not include the "shared data page" used with
2545 * GuC submission. The caller should account for this if using the GuC.
2546 */
0bc40be8 2547uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2548{
2549 int ret = 0;
2550
0bc40be8 2551 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2552
0bc40be8 2553 switch (engine->id) {
8c857917 2554 case RCS:
0bc40be8 2555 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2556 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2557 else
2558 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2559 break;
2560 case VCS:
2561 case BCS:
2562 case VECS:
2563 case VCS2:
2564 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2565 break;
2566 }
2567
2568 return ret;
ede7d42b
OM
2569}
2570
0bc40be8
TU
2571static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2572 struct drm_i915_gem_object *default_ctx_obj)
1df06b75 2573{
0bc40be8 2574 struct drm_i915_private *dev_priv = engine->dev->dev_private;
d1675198 2575 struct page *page;
1df06b75 2576
d1675198 2577 /* The HWSP is part of the default context object in LRC mode. */
0bc40be8 2578 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
d1675198
AD
2579 + LRC_PPHWSP_PN * PAGE_SIZE;
2580 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
0bc40be8
TU
2581 engine->status_page.page_addr = kmap(page);
2582 engine->status_page.obj = default_ctx_obj;
1df06b75 2583
0bc40be8
TU
2584 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2585 (u32)engine->status_page.gfx_addr);
2586 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1df06b75
TD
2587}
2588
73e4d07f 2589/**
e84fe803 2590 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2591 * @ctx: LR context to create.
2592 * @ring: engine to be used with the context.
2593 *
2594 * This function can be called more than once, with different engines, if we plan
2595 * to use the context with them. The context backing objects and the ringbuffers
2596 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2597 * the creation is a deferred call: it's better to make sure first that we need to use
2598 * a given ring with the context.
2599 *
32197aab 2600 * Return: non-zero on error.
73e4d07f 2601 */
e84fe803
NH
2602
2603int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2604 struct intel_engine_cs *engine)
ede7d42b 2605{
0bc40be8 2606 struct drm_device *dev = engine->dev;
8c857917
OM
2607 struct drm_i915_gem_object *ctx_obj;
2608 uint32_t context_size;
84c2377f 2609 struct intel_ringbuffer *ringbuf;
8c857917
OM
2610 int ret;
2611
ede7d42b 2612 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2613 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2614
0bc40be8 2615 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2616
d1675198
AD
2617 /* One extra page as the sharing data between driver and GuC */
2618 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2619
149c86e7 2620 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2621 if (!ctx_obj) {
2622 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2623 return -ENOMEM;
8c857917
OM
2624 }
2625
0bc40be8 2626 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2627 if (IS_ERR(ringbuf)) {
2628 ret = PTR_ERR(ringbuf);
e84fe803 2629 goto error_deref_obj;
8670d6f9
OM
2630 }
2631
0bc40be8 2632 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2633 if (ret) {
2634 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2635 goto error_ringbuf;
84c2377f
OM
2636 }
2637
0bc40be8
TU
2638 ctx->engine[engine->id].ringbuf = ringbuf;
2639 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2640
0bc40be8 2641 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2642 struct drm_i915_gem_request *req;
76c39168 2643
0bc40be8 2644 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2645 if (IS_ERR(req)) {
2646 ret = PTR_ERR(req);
2647 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2648 goto error_ringbuf;
771b9a53
MT
2649 }
2650
0bc40be8 2651 ret = engine->init_context(req);
e84fe803
NH
2652 if (ret) {
2653 DRM_ERROR("ring init context: %d\n",
2654 ret);
2655 i915_gem_request_cancel(req);
2656 goto error_ringbuf;
2657 }
2658 i915_add_request_no_flush(req);
564ddb2f 2659 }
ede7d42b 2660 return 0;
8670d6f9 2661
01101fa7
CW
2662error_ringbuf:
2663 intel_ringbuffer_free(ringbuf);
e84fe803 2664error_deref_obj:
8670d6f9 2665 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2666 ctx->engine[engine->id].ringbuf = NULL;
2667 ctx->engine[engine->id].state = NULL;
8670d6f9 2668 return ret;
ede7d42b 2669}
3e5b6f05
TD
2670
2671void intel_lr_context_reset(struct drm_device *dev,
2672 struct intel_context *ctx)
2673{
2674 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2675 struct intel_engine_cs *engine;
3e5b6f05
TD
2676 int i;
2677
666796da 2678 for_each_engine(engine, dev_priv, i) {
3e5b6f05 2679 struct drm_i915_gem_object *ctx_obj =
e2f80391 2680 ctx->engine[engine->id].state;
3e5b6f05 2681 struct intel_ringbuffer *ringbuf =
e2f80391 2682 ctx->engine[engine->id].ringbuf;
3e5b6f05
TD
2683 uint32_t *reg_state;
2684 struct page *page;
2685
2686 if (!ctx_obj)
2687 continue;
2688
2689 if (i915_gem_object_get_pages(ctx_obj)) {
2690 WARN(1, "Failed get_pages for context obj\n");
2691 continue;
2692 }
033908ae 2693 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2694 reg_state = kmap_atomic(page);
2695
2696 reg_state[CTX_RING_HEAD+1] = 0;
2697 reg_state[CTX_RING_TAIL+1] = 0;
2698
2699 kunmap_atomic(reg_state);
2700
2701 ringbuf->head = 0;
2702 ringbuf->tail = 0;
2703 }
2704}
This page took 0.329114 seconds and 5 git commands to generate.