drm/i915/gen8: begin bitmap tracking
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
191
192#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = ppgtt->pdp.page_directory[n] ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198}
199
84b790f8
BW
200enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205};
206#define GEN8_CTX_MODE_SHIFT 3
207enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212};
213#define GEN8_CTX_ID_SHIFT 32
214
7ba717cf
TD
215static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
73e4d07f
OM
218/**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
27401d12 224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
127f1003
OM
228int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229{
bd84b1e9
DV
230 WARN_ON(i915.enable_ppgtt == -1);
231
70ee45e1
DL
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
127f1003
OM
235 if (enable_execlists == 0)
236 return 0;
237
14bf993e
OM
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
127f1003
OM
240 return 1;
241
242 return 0;
243}
ede7d42b 244
73e4d07f
OM
245/**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
84b790f8
BW
257u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258{
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264}
265
203a571b
NH
266static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
84b790f8 268{
203a571b 269 struct drm_device *dev = ring->dev;
84b790f8
BW
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
51847fb9
AS
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
203a571b
NH
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
84b790f8
BW
294 return desc;
295}
296
297static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300{
6e7cc470
TU
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
203a571b 308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
84b790f8
BW
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
203a571b 314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
84b790f8
BW
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
59bad947 318 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
84b790f8
BW
319 I915_WRITE(RING_ELSP(ring), desc[1]);
320 I915_WRITE(RING_ELSP(ring), desc[0]);
321 I915_WRITE(RING_ELSP(ring), desc[3]);
6daccb0b 322
84b790f8
BW
323 /* The context is automatically loaded after the following */
324 I915_WRITE(RING_ELSP(ring), desc[2]);
325
326 /* ELSP is a wo register, so use another nearby reg for posting instead */
327 POSTING_READ(RING_EXECLIST_STATUS(ring));
59bad947 328 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
84b790f8
BW
329}
330
7ba717cf
TD
331static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
332 struct drm_i915_gem_object *ring_obj,
333 u32 tail)
ae1250b9
OM
334{
335 struct page *page;
336 uint32_t *reg_state;
337
338 page = i915_gem_object_get_page(ctx_obj, 1);
339 reg_state = kmap_atomic(page);
340
341 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 342 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9
OM
343
344 kunmap_atomic(reg_state);
345
346 return 0;
347}
348
cd0707cb
DG
349static void execlists_submit_contexts(struct intel_engine_cs *ring,
350 struct intel_context *to0, u32 tail0,
351 struct intel_context *to1, u32 tail1)
84b790f8 352{
7ba717cf
TD
353 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
354 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 355 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 356 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 357
84b790f8 358 BUG_ON(!ctx_obj0);
acdd884a 359 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 360 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 361
7ba717cf 362 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
ae1250b9 363
84b790f8 364 if (to1) {
7ba717cf 365 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
366 ctx_obj1 = to1->engine[ring->id].state;
367 BUG_ON(!ctx_obj1);
acdd884a 368 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 369 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 370
7ba717cf 371 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
84b790f8
BW
372 }
373
374 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
375}
376
acdd884a
MT
377static void execlists_context_unqueue(struct intel_engine_cs *ring)
378{
6d3d8274
NH
379 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
380 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
381
382 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
383
384 if (list_empty(&ring->execlist_queue))
385 return;
386
387 /* Try to read in pairs */
388 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
389 execlist_link) {
390 if (!req0) {
391 req0 = cursor;
6d3d8274 392 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
393 /* Same ctx: ignore first request, as second request
394 * will update tail past first request's workload */
e1fee72c 395 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 396 list_del(&req0->execlist_link);
c86ee3a9
TD
397 list_add_tail(&req0->execlist_link,
398 &ring->execlist_retired_req_list);
acdd884a
MT
399 req0 = cursor;
400 } else {
401 req1 = cursor;
402 break;
403 }
404 }
405
e1fee72c
OM
406 WARN_ON(req1 && req1->elsp_submitted);
407
6d3d8274
NH
408 execlists_submit_contexts(ring, req0->ctx, req0->tail,
409 req1 ? req1->ctx : NULL,
410 req1 ? req1->tail : 0);
e1fee72c
OM
411
412 req0->elsp_submitted++;
413 if (req1)
414 req1->elsp_submitted++;
acdd884a
MT
415}
416
e981e7b1
TD
417static bool execlists_check_remove_request(struct intel_engine_cs *ring,
418 u32 request_id)
419{
6d3d8274 420 struct drm_i915_gem_request *head_req;
e981e7b1
TD
421
422 assert_spin_locked(&ring->execlist_lock);
423
424 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 425 struct drm_i915_gem_request,
e981e7b1
TD
426 execlist_link);
427
428 if (head_req != NULL) {
429 struct drm_i915_gem_object *ctx_obj =
6d3d8274 430 head_req->ctx->engine[ring->id].state;
e981e7b1 431 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
432 WARN(head_req->elsp_submitted == 0,
433 "Never submitted head request\n");
434
435 if (--head_req->elsp_submitted <= 0) {
436 list_del(&head_req->execlist_link);
c86ee3a9
TD
437 list_add_tail(&head_req->execlist_link,
438 &ring->execlist_retired_req_list);
e1fee72c
OM
439 return true;
440 }
e981e7b1
TD
441 }
442 }
443
444 return false;
445}
446
73e4d07f 447/**
3f7531c3 448 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
449 * @ring: Engine Command Streamer to handle.
450 *
451 * Check the unread Context Status Buffers and manage the submission of new
452 * contexts to the ELSP accordingly.
453 */
3f7531c3 454void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
455{
456 struct drm_i915_private *dev_priv = ring->dev->dev_private;
457 u32 status_pointer;
458 u8 read_pointer;
459 u8 write_pointer;
460 u32 status;
461 u32 status_id;
462 u32 submit_contexts = 0;
463
464 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
465
466 read_pointer = ring->next_context_status_buffer;
467 write_pointer = status_pointer & 0x07;
468 if (read_pointer > write_pointer)
469 write_pointer += 6;
470
471 spin_lock(&ring->execlist_lock);
472
473 while (read_pointer < write_pointer) {
474 read_pointer++;
475 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
476 (read_pointer % 6) * 8);
477 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
478 (read_pointer % 6) * 8 + 4);
479
e1fee72c
OM
480 if (status & GEN8_CTX_STATUS_PREEMPTED) {
481 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
482 if (execlists_check_remove_request(ring, status_id))
483 WARN(1, "Lite Restored request removed from queue\n");
484 } else
485 WARN(1, "Preemption without Lite Restore\n");
486 }
487
488 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
489 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
490 if (execlists_check_remove_request(ring, status_id))
491 submit_contexts++;
492 }
493 }
494
495 if (submit_contexts != 0)
496 execlists_context_unqueue(ring);
497
498 spin_unlock(&ring->execlist_lock);
499
500 WARN(submit_contexts > 2, "More than two context complete events?\n");
501 ring->next_context_status_buffer = write_pointer % 6;
502
503 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
504 ((u32)ring->next_context_status_buffer & 0x07) << 8);
505}
506
acdd884a
MT
507static int execlists_context_queue(struct intel_engine_cs *ring,
508 struct intel_context *to,
2d12955a
NH
509 u32 tail,
510 struct drm_i915_gem_request *request)
acdd884a 511{
6d3d8274 512 struct drm_i915_gem_request *cursor;
e981e7b1 513 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acdd884a 514 unsigned long flags;
f1ad5a1f 515 int num_elements = 0;
acdd884a 516
7ba717cf
TD
517 if (to != ring->default_context)
518 intel_lr_context_pin(ring, to);
519
2d12955a
NH
520 if (!request) {
521 /*
522 * If there isn't a request associated with this submission,
523 * create one as a temporary holder.
524 */
2d12955a
NH
525 request = kzalloc(sizeof(*request), GFP_KERNEL);
526 if (request == NULL)
527 return -ENOMEM;
2d12955a 528 request->ring = ring;
6d3d8274 529 request->ctx = to;
b3a38998
NH
530 kref_init(&request->ref);
531 request->uniq = dev_priv->request_uniq++;
532 i915_gem_context_reference(request->ctx);
21076372 533 } else {
b3a38998 534 i915_gem_request_reference(request);
21076372 535 WARN_ON(to != request->ctx);
2d12955a 536 }
72f95afa 537 request->tail = tail;
2d12955a 538
e981e7b1 539 intel_runtime_pm_get(dev_priv);
acdd884a
MT
540
541 spin_lock_irqsave(&ring->execlist_lock, flags);
542
f1ad5a1f
OM
543 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
544 if (++num_elements > 2)
545 break;
546
547 if (num_elements > 2) {
6d3d8274 548 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
549
550 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 551 struct drm_i915_gem_request,
f1ad5a1f
OM
552 execlist_link);
553
6d3d8274 554 if (to == tail_req->ctx) {
f1ad5a1f 555 WARN(tail_req->elsp_submitted != 0,
7ba717cf 556 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 557 list_del(&tail_req->execlist_link);
c86ee3a9
TD
558 list_add_tail(&tail_req->execlist_link,
559 &ring->execlist_retired_req_list);
f1ad5a1f
OM
560 }
561 }
562
6d3d8274 563 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 564 if (num_elements == 0)
acdd884a
MT
565 execlists_context_unqueue(ring);
566
567 spin_unlock_irqrestore(&ring->execlist_lock, flags);
568
569 return 0;
570}
571
21076372
NH
572static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
573 struct intel_context *ctx)
ba8b7ccb
OM
574{
575 struct intel_engine_cs *ring = ringbuf->ring;
576 uint32_t flush_domains;
577 int ret;
578
579 flush_domains = 0;
580 if (ring->gpu_caches_dirty)
581 flush_domains = I915_GEM_GPU_DOMAINS;
582
21076372
NH
583 ret = ring->emit_flush(ringbuf, ctx,
584 I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
585 if (ret)
586 return ret;
587
588 ring->gpu_caches_dirty = false;
589 return 0;
590}
591
592static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
21076372 593 struct intel_context *ctx,
ba8b7ccb
OM
594 struct list_head *vmas)
595{
596 struct intel_engine_cs *ring = ringbuf->ring;
597 struct i915_vma *vma;
598 uint32_t flush_domains = 0;
599 bool flush_chipset = false;
600 int ret;
601
602 list_for_each_entry(vma, vmas, exec_list) {
603 struct drm_i915_gem_object *obj = vma->obj;
604
605 ret = i915_gem_object_sync(obj, ring);
606 if (ret)
607 return ret;
608
609 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
610 flush_chipset |= i915_gem_clflush_object(obj, false);
611
612 flush_domains |= obj->base.write_domain;
613 }
614
615 if (flush_domains & I915_GEM_DOMAIN_GTT)
616 wmb();
617
618 /* Unconditionally invalidate gpu caches and ensure that we do flush
619 * any residual writes from the previous batch.
620 */
21076372 621 return logical_ring_invalidate_all_caches(ringbuf, ctx);
ba8b7ccb
OM
622}
623
6689cb2b
JH
624int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
625 struct intel_context *ctx)
bc0dce3f 626{
bc0dce3f
JH
627 int ret;
628
6689cb2b
JH
629 if (ctx != request->ring->default_context) {
630 ret = intel_lr_context_pin(request->ring, ctx);
631 if (ret)
bc0dce3f 632 return ret;
bc0dce3f
JH
633 }
634
6689cb2b
JH
635 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
636 request->ctx = ctx;
bc0dce3f 637 i915_gem_context_reference(request->ctx);
bc0dce3f 638
bc0dce3f
JH
639 return 0;
640}
641
642static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
643 int bytes)
644{
645 struct intel_engine_cs *ring = ringbuf->ring;
646 struct drm_i915_gem_request *request;
dbe4646d 647 int ret, new_space;
bc0dce3f
JH
648
649 if (intel_ring_space(ringbuf) >= bytes)
650 return 0;
651
652 list_for_each_entry(request, &ring->request_list, list) {
653 /*
654 * The request queue is per-engine, so can contain requests
655 * from multiple ringbuffers. Here, we must ignore any that
656 * aren't from the ringbuffer we're considering.
657 */
658 struct intel_context *ctx = request->ctx;
659 if (ctx->engine[ring->id].ringbuf != ringbuf)
660 continue;
661
662 /* Would completion of this request free enough space? */
dbe4646d
JH
663 new_space = __intel_ring_space(request->postfix, ringbuf->tail,
664 ringbuf->size);
665 if (new_space >= bytes)
bc0dce3f 666 break;
bc0dce3f
JH
667 }
668
669 if (&request->list == &ring->request_list)
670 return -ENOSPC;
671
672 ret = i915_wait_request(request);
673 if (ret)
674 return ret;
675
676 i915_gem_retire_requests_ring(ring);
677
dbe4646d
JH
678 WARN_ON(intel_ring_space(ringbuf) < new_space);
679
bc0dce3f
JH
680 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
681}
682
683/*
684 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
685 * @ringbuf: Logical Ringbuffer to advance.
686 *
687 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
688 * really happens during submission is that the context and current tail will be placed
689 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
690 * point, the tail *inside* the context is updated and the ELSP written to.
691 */
692static void
693intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
694 struct intel_context *ctx,
695 struct drm_i915_gem_request *request)
696{
697 struct intel_engine_cs *ring = ringbuf->ring;
698
699 intel_logical_ring_advance(ringbuf);
700
701 if (intel_ring_stopped(ring))
702 return;
703
704 execlists_context_queue(ring, ctx, ringbuf->tail, request);
705}
706
707static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
708 struct intel_context *ctx,
709 int bytes)
710{
711 struct intel_engine_cs *ring = ringbuf->ring;
712 struct drm_device *dev = ring->dev;
713 struct drm_i915_private *dev_priv = dev->dev_private;
714 unsigned long end;
715 int ret;
716
717 ret = logical_ring_wait_request(ringbuf, bytes);
718 if (ret != -ENOSPC)
719 return ret;
720
721 /* Force the context submission in case we have been skipping it */
722 intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
723
724 /* With GEM the hangcheck timer should kick us out of the loop,
725 * leaving it early runs the risk of corrupting GEM state (due
726 * to running on almost untested codepaths). But on resume
727 * timers don't work yet, so prevent a complete hang in that
728 * case by choosing an insanely large timeout. */
729 end = jiffies + 60 * HZ;
730
731 ret = 0;
732 do {
733 if (intel_ring_space(ringbuf) >= bytes)
734 break;
735
736 msleep(1);
737
738 if (dev_priv->mm.interruptible && signal_pending(current)) {
739 ret = -ERESTARTSYS;
740 break;
741 }
742
743 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
744 dev_priv->mm.interruptible);
745 if (ret)
746 break;
747
748 if (time_after(jiffies, end)) {
749 ret = -EBUSY;
750 break;
751 }
752 } while (1);
753
754 return ret;
755}
756
757static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
758 struct intel_context *ctx)
759{
760 uint32_t __iomem *virt;
761 int rem = ringbuf->size - ringbuf->tail;
762
763 if (ringbuf->space < rem) {
764 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
765
766 if (ret)
767 return ret;
768 }
769
770 virt = ringbuf->virtual_start + ringbuf->tail;
771 rem /= 4;
772 while (rem--)
773 iowrite32(MI_NOOP, virt++);
774
775 ringbuf->tail = 0;
776 intel_ring_update_space(ringbuf);
777
778 return 0;
779}
780
781static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
782 struct intel_context *ctx, int bytes)
783{
784 int ret;
785
786 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
787 ret = logical_ring_wrap_buffer(ringbuf, ctx);
788 if (unlikely(ret))
789 return ret;
790 }
791
792 if (unlikely(ringbuf->space < bytes)) {
793 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
794 if (unlikely(ret))
795 return ret;
796 }
797
798 return 0;
799}
800
801/**
802 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
803 *
804 * @ringbuf: Logical ringbuffer.
805 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
806 *
807 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
808 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
809 * and also preallocates a request (every workload submission is still mediated through
810 * requests, same as it did with legacy ringbuffer submission).
811 *
812 * Return: non-zero if the ringbuffer is not ready to be written to.
813 */
814static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
815 struct intel_context *ctx, int num_dwords)
816{
817 struct intel_engine_cs *ring = ringbuf->ring;
818 struct drm_device *dev = ring->dev;
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 int ret;
821
822 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
823 dev_priv->mm.interruptible);
824 if (ret)
825 return ret;
826
827 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
828 if (ret)
829 return ret;
830
831 /* Preallocate the olr before touching the ring */
6689cb2b 832 ret = i915_gem_request_alloc(ring, ctx);
bc0dce3f
JH
833 if (ret)
834 return ret;
835
836 ringbuf->space -= num_dwords * sizeof(uint32_t);
837 return 0;
838}
839
73e4d07f
OM
840/**
841 * execlists_submission() - submit a batchbuffer for execution, Execlists style
842 * @dev: DRM device.
843 * @file: DRM file.
844 * @ring: Engine Command Streamer to submit to.
845 * @ctx: Context to employ for this submission.
846 * @args: execbuffer call arguments.
847 * @vmas: list of vmas.
848 * @batch_obj: the batchbuffer to submit.
849 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 850 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
851 *
852 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
853 * away the submission details of the execbuffer ioctl call.
854 *
855 * Return: non-zero if the submission fails.
856 */
454afebd
OM
857int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
858 struct intel_engine_cs *ring,
859 struct intel_context *ctx,
860 struct drm_i915_gem_execbuffer2 *args,
861 struct list_head *vmas,
862 struct drm_i915_gem_object *batch_obj,
8e004efc 863 u64 exec_start, u32 dispatch_flags)
454afebd 864{
ba8b7ccb
OM
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
867 int instp_mode;
868 u32 instp_mask;
869 int ret;
870
871 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
872 instp_mask = I915_EXEC_CONSTANTS_MASK;
873 switch (instp_mode) {
874 case I915_EXEC_CONSTANTS_REL_GENERAL:
875 case I915_EXEC_CONSTANTS_ABSOLUTE:
876 case I915_EXEC_CONSTANTS_REL_SURFACE:
877 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
878 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
879 return -EINVAL;
880 }
881
882 if (instp_mode != dev_priv->relative_constants_mode) {
883 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
884 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
885 return -EINVAL;
886 }
887
888 /* The HW changed the meaning on this bit on gen6 */
889 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
890 }
891 break;
892 default:
893 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
894 return -EINVAL;
895 }
896
897 if (args->num_cliprects != 0) {
898 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
899 return -EINVAL;
900 } else {
901 if (args->DR4 == 0xffffffff) {
902 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
903 args->DR4 = 0;
904 }
905
906 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
907 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
908 return -EINVAL;
909 }
910 }
911
912 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
913 DRM_DEBUG("sol reset is gen7 only\n");
914 return -EINVAL;
915 }
916
21076372 917 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
ba8b7ccb
OM
918 if (ret)
919 return ret;
920
921 if (ring == &dev_priv->ring[RCS] &&
922 instp_mode != dev_priv->relative_constants_mode) {
21076372 923 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
ba8b7ccb
OM
924 if (ret)
925 return ret;
926
927 intel_logical_ring_emit(ringbuf, MI_NOOP);
928 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
929 intel_logical_ring_emit(ringbuf, INSTPM);
930 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
931 intel_logical_ring_advance(ringbuf);
932
933 dev_priv->relative_constants_mode = instp_mode;
934 }
935
8e004efc 936 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
ba8b7ccb
OM
937 if (ret)
938 return ret;
939
5e4be7bd
JH
940 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
941
ba8b7ccb
OM
942 i915_gem_execbuffer_move_to_active(vmas, ring);
943 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
944
454afebd
OM
945 return 0;
946}
947
c86ee3a9
TD
948void intel_execlists_retire_requests(struct intel_engine_cs *ring)
949{
6d3d8274 950 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
951 struct drm_i915_private *dev_priv = ring->dev->dev_private;
952 unsigned long flags;
953 struct list_head retired_list;
954
955 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956 if (list_empty(&ring->execlist_retired_req_list))
957 return;
958
959 INIT_LIST_HEAD(&retired_list);
960 spin_lock_irqsave(&ring->execlist_lock, flags);
961 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
962 spin_unlock_irqrestore(&ring->execlist_lock, flags);
963
964 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 965 struct intel_context *ctx = req->ctx;
7ba717cf
TD
966 struct drm_i915_gem_object *ctx_obj =
967 ctx->engine[ring->id].state;
968
969 if (ctx_obj && (ctx != ring->default_context))
970 intel_lr_context_unpin(ring, ctx);
c86ee3a9 971 intel_runtime_pm_put(dev_priv);
c86ee3a9 972 list_del(&req->execlist_link);
f8210795 973 i915_gem_request_unreference(req);
c86ee3a9
TD
974 }
975}
976
454afebd
OM
977void intel_logical_ring_stop(struct intel_engine_cs *ring)
978{
9832b9da
OM
979 struct drm_i915_private *dev_priv = ring->dev->dev_private;
980 int ret;
981
982 if (!intel_ring_initialized(ring))
983 return;
984
985 ret = intel_ring_idle(ring);
986 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
987 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
988 ring->name, ret);
989
990 /* TODO: Is this correct with Execlists enabled? */
991 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
992 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
993 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
994 return;
995 }
996 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
997}
998
21076372
NH
999int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
1000 struct intel_context *ctx)
48e29f55
OM
1001{
1002 struct intel_engine_cs *ring = ringbuf->ring;
1003 int ret;
1004
1005 if (!ring->gpu_caches_dirty)
1006 return 0;
1007
21076372 1008 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1009 if (ret)
1010 return ret;
1011
1012 ring->gpu_caches_dirty = false;
1013 return 0;
1014}
1015
dcb4c12a
OM
1016static int intel_lr_context_pin(struct intel_engine_cs *ring,
1017 struct intel_context *ctx)
1018{
1019 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1020 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1021 int ret = 0;
1022
1023 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1024 if (ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1025 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1026 GEN8_LR_CONTEXT_ALIGN, 0);
1027 if (ret)
a7cbedec 1028 goto reset_pin_count;
7ba717cf
TD
1029
1030 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1031 if (ret)
1032 goto unpin_ctx_obj;
dcb4c12a
OM
1033 }
1034
7ba717cf
TD
1035 return ret;
1036
1037unpin_ctx_obj:
1038 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec
MK
1039reset_pin_count:
1040 ctx->engine[ring->id].pin_count = 0;
7ba717cf 1041
dcb4c12a
OM
1042 return ret;
1043}
1044
1045void intel_lr_context_unpin(struct intel_engine_cs *ring,
1046 struct intel_context *ctx)
1047{
1048 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1049 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1050
1051 if (ctx_obj) {
1052 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1053 if (--ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1054 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1055 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1056 }
dcb4c12a
OM
1057 }
1058}
1059
771b9a53
MT
1060static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1061 struct intel_context *ctx)
1062{
1063 int ret, i;
1064 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1065 struct drm_device *dev = ring->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct i915_workarounds *w = &dev_priv->workarounds;
1068
e6c1abb7 1069 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1070 return 0;
1071
1072 ring->gpu_caches_dirty = true;
21076372 1073 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1074 if (ret)
1075 return ret;
1076
21076372 1077 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
771b9a53
MT
1078 if (ret)
1079 return ret;
1080
1081 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1082 for (i = 0; i < w->count; i++) {
1083 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1084 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1085 }
1086 intel_logical_ring_emit(ringbuf, MI_NOOP);
1087
1088 intel_logical_ring_advance(ringbuf);
1089
1090 ring->gpu_caches_dirty = true;
21076372 1091 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1092 if (ret)
1093 return ret;
1094
1095 return 0;
1096}
1097
9b1136d5
OM
1098static int gen8_init_common_ring(struct intel_engine_cs *ring)
1099{
1100 struct drm_device *dev = ring->dev;
1101 struct drm_i915_private *dev_priv = dev->dev_private;
1102
73d477f6
OM
1103 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1104 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1105
9b1136d5
OM
1106 I915_WRITE(RING_MODE_GEN7(ring),
1107 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1108 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1109 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1110 ring->next_context_status_buffer = 0;
9b1136d5
OM
1111 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1112
1113 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1114
1115 return 0;
1116}
1117
1118static int gen8_init_render_ring(struct intel_engine_cs *ring)
1119{
1120 struct drm_device *dev = ring->dev;
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 int ret;
1123
1124 ret = gen8_init_common_ring(ring);
1125 if (ret)
1126 return ret;
1127
1128 /* We need to disable the AsyncFlip performance optimisations in order
1129 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1130 * programmed to '1' on all products.
1131 *
1132 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1133 */
1134 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1135
9b1136d5
OM
1136 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1137
771b9a53 1138 return init_workarounds_ring(ring);
9b1136d5
OM
1139}
1140
82ef822e
DL
1141static int gen9_init_render_ring(struct intel_engine_cs *ring)
1142{
1143 int ret;
1144
1145 ret = gen8_init_common_ring(ring);
1146 if (ret)
1147 return ret;
1148
1149 return init_workarounds_ring(ring);
1150}
1151
15648585 1152static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
21076372 1153 struct intel_context *ctx,
8e004efc 1154 u64 offset, unsigned dispatch_flags)
15648585 1155{
8e004efc 1156 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1157 int ret;
1158
21076372 1159 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
15648585
OM
1160 if (ret)
1161 return ret;
1162
1163 /* FIXME(BDW): Address space and security selectors. */
1164 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1165 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1166 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1167 intel_logical_ring_emit(ringbuf, MI_NOOP);
1168 intel_logical_ring_advance(ringbuf);
1169
1170 return 0;
1171}
1172
73d477f6
OM
1173static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1174{
1175 struct drm_device *dev = ring->dev;
1176 struct drm_i915_private *dev_priv = dev->dev_private;
1177 unsigned long flags;
1178
7cd512f1 1179 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1180 return false;
1181
1182 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1183 if (ring->irq_refcount++ == 0) {
1184 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1185 POSTING_READ(RING_IMR(ring->mmio_base));
1186 }
1187 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1188
1189 return true;
1190}
1191
1192static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1193{
1194 struct drm_device *dev = ring->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1199 if (--ring->irq_refcount == 0) {
1200 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1201 POSTING_READ(RING_IMR(ring->mmio_base));
1202 }
1203 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1204}
1205
4712274c 1206static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
21076372 1207 struct intel_context *ctx,
4712274c
OM
1208 u32 invalidate_domains,
1209 u32 unused)
1210{
1211 struct intel_engine_cs *ring = ringbuf->ring;
1212 struct drm_device *dev = ring->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 uint32_t cmd;
1215 int ret;
1216
21076372 1217 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
4712274c
OM
1218 if (ret)
1219 return ret;
1220
1221 cmd = MI_FLUSH_DW + 1;
1222
f0a1fb10
CW
1223 /* We always require a command barrier so that subsequent
1224 * commands, such as breadcrumb interrupts, are strictly ordered
1225 * wrt the contents of the write cache being flushed to memory
1226 * (and thus being coherent from the CPU).
1227 */
1228 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1229
1230 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1231 cmd |= MI_INVALIDATE_TLB;
1232 if (ring == &dev_priv->ring[VCS])
1233 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1234 }
1235
1236 intel_logical_ring_emit(ringbuf, cmd);
1237 intel_logical_ring_emit(ringbuf,
1238 I915_GEM_HWS_SCRATCH_ADDR |
1239 MI_FLUSH_DW_USE_GTT);
1240 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1241 intel_logical_ring_emit(ringbuf, 0); /* value */
1242 intel_logical_ring_advance(ringbuf);
1243
1244 return 0;
1245}
1246
1247static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
21076372 1248 struct intel_context *ctx,
4712274c
OM
1249 u32 invalidate_domains,
1250 u32 flush_domains)
1251{
1252 struct intel_engine_cs *ring = ringbuf->ring;
1253 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1254 u32 flags = 0;
1255 int ret;
1256
1257 flags |= PIPE_CONTROL_CS_STALL;
1258
1259 if (flush_domains) {
1260 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1261 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1262 }
1263
1264 if (invalidate_domains) {
1265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1271 flags |= PIPE_CONTROL_QW_WRITE;
1272 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1273 }
1274
21076372 1275 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
4712274c
OM
1276 if (ret)
1277 return ret;
1278
1279 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1280 intel_logical_ring_emit(ringbuf, flags);
1281 intel_logical_ring_emit(ringbuf, scratch_addr);
1282 intel_logical_ring_emit(ringbuf, 0);
1283 intel_logical_ring_emit(ringbuf, 0);
1284 intel_logical_ring_emit(ringbuf, 0);
1285 intel_logical_ring_advance(ringbuf);
1286
1287 return 0;
1288}
1289
e94e37ad
OM
1290static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1291{
1292 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1293}
1294
1295static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1296{
1297 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1298}
1299
2d12955a
NH
1300static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1301 struct drm_i915_gem_request *request)
4da46e1e
OM
1302{
1303 struct intel_engine_cs *ring = ringbuf->ring;
1304 u32 cmd;
1305 int ret;
1306
21076372 1307 ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
4da46e1e
OM
1308 if (ret)
1309 return ret;
1310
8edfbb8b 1311 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1312 cmd |= MI_GLOBAL_GTT;
1313
1314 intel_logical_ring_emit(ringbuf, cmd);
1315 intel_logical_ring_emit(ringbuf,
1316 (ring->status_page.gfx_addr +
1317 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1318 intel_logical_ring_emit(ringbuf, 0);
6259cead
JH
1319 intel_logical_ring_emit(ringbuf,
1320 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
4da46e1e
OM
1321 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1322 intel_logical_ring_emit(ringbuf, MI_NOOP);
21076372 1323 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
4da46e1e
OM
1324
1325 return 0;
1326}
1327
cef437ad
DL
1328static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1329 struct intel_context *ctx)
1330{
1331 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1332 struct render_state so;
1333 struct drm_i915_file_private *file_priv = ctx->file_priv;
1334 struct drm_file *file = file_priv ? file_priv->file : NULL;
1335 int ret;
1336
1337 ret = i915_gem_render_state_prepare(ring, &so);
1338 if (ret)
1339 return ret;
1340
1341 if (so.rodata == NULL)
1342 return 0;
1343
1344 ret = ring->emit_bb_start(ringbuf,
1345 ctx,
1346 so.ggtt_offset,
1347 I915_DISPATCH_SECURE);
1348 if (ret)
1349 goto out;
1350
1351 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1352
1353 ret = __i915_add_request(ring, file, so.obj);
1354 /* intel_logical_ring_add_request moves object to inactive if it
1355 * fails */
1356out:
1357 i915_gem_render_state_fini(&so);
1358 return ret;
1359}
1360
e7778be1
TD
1361static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1362 struct intel_context *ctx)
1363{
1364 int ret;
1365
1366 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1367 if (ret)
1368 return ret;
1369
1370 return intel_lr_context_render_state_init(ring, ctx);
1371}
1372
73e4d07f
OM
1373/**
1374 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1375 *
1376 * @ring: Engine Command Streamer.
1377 *
1378 */
454afebd
OM
1379void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1380{
6402c330 1381 struct drm_i915_private *dev_priv;
9832b9da 1382
48d82387
OM
1383 if (!intel_ring_initialized(ring))
1384 return;
1385
6402c330
JH
1386 dev_priv = ring->dev->dev_private;
1387
9832b9da
OM
1388 intel_logical_ring_stop(ring);
1389 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
6259cead 1390 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
48d82387
OM
1391
1392 if (ring->cleanup)
1393 ring->cleanup(ring);
1394
1395 i915_cmd_parser_fini_ring(ring);
06fbca71 1396 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1397
1398 if (ring->status_page.obj) {
1399 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1400 ring->status_page.obj = NULL;
1401 }
454afebd
OM
1402}
1403
1404static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1405{
48d82387 1406 int ret;
48d82387
OM
1407
1408 /* Intentionally left blank. */
1409 ring->buffer = NULL;
1410
1411 ring->dev = dev;
1412 INIT_LIST_HEAD(&ring->active_list);
1413 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1414 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1415 init_waitqueue_head(&ring->irq_queue);
1416
acdd884a 1417 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1418 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1419 spin_lock_init(&ring->execlist_lock);
1420
48d82387
OM
1421 ret = i915_cmd_parser_init_ring(ring);
1422 if (ret)
1423 return ret;
1424
564ddb2f
OM
1425 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1426
1427 return ret;
454afebd
OM
1428}
1429
1430static int logical_render_ring_init(struct drm_device *dev)
1431{
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1434 int ret;
454afebd
OM
1435
1436 ring->name = "render ring";
1437 ring->id = RCS;
1438 ring->mmio_base = RENDER_RING_BASE;
1439 ring->irq_enable_mask =
1440 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1441 ring->irq_keep_mask =
1442 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1443 if (HAS_L3_DPF(dev))
1444 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1445
82ef822e
DL
1446 if (INTEL_INFO(dev)->gen >= 9)
1447 ring->init_hw = gen9_init_render_ring;
1448 else
1449 ring->init_hw = gen8_init_render_ring;
e7778be1 1450 ring->init_context = gen8_init_rcs_context;
9b1136d5 1451 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1452 ring->get_seqno = gen8_get_seqno;
1453 ring->set_seqno = gen8_set_seqno;
4da46e1e 1454 ring->emit_request = gen8_emit_request;
4712274c 1455 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1456 ring->irq_get = gen8_logical_ring_get_irq;
1457 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1458 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1459
99be1dfe
DV
1460 ring->dev = dev;
1461 ret = logical_ring_init(dev, ring);
1462 if (ret)
1463 return ret;
1464
1465 return intel_init_pipe_control(ring);
454afebd
OM
1466}
1467
1468static int logical_bsd_ring_init(struct drm_device *dev)
1469{
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1472
1473 ring->name = "bsd ring";
1474 ring->id = VCS;
1475 ring->mmio_base = GEN6_BSD_RING_BASE;
1476 ring->irq_enable_mask =
1477 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1478 ring->irq_keep_mask =
1479 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1480
ecfe00d8 1481 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1482 ring->get_seqno = gen8_get_seqno;
1483 ring->set_seqno = gen8_set_seqno;
4da46e1e 1484 ring->emit_request = gen8_emit_request;
4712274c 1485 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1486 ring->irq_get = gen8_logical_ring_get_irq;
1487 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1488 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1489
454afebd
OM
1490 return logical_ring_init(dev, ring);
1491}
1492
1493static int logical_bsd2_ring_init(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1497
1498 ring->name = "bds2 ring";
1499 ring->id = VCS2;
1500 ring->mmio_base = GEN8_BSD2_RING_BASE;
1501 ring->irq_enable_mask =
1502 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1503 ring->irq_keep_mask =
1504 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1505
ecfe00d8 1506 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1507 ring->get_seqno = gen8_get_seqno;
1508 ring->set_seqno = gen8_set_seqno;
4da46e1e 1509 ring->emit_request = gen8_emit_request;
4712274c 1510 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1511 ring->irq_get = gen8_logical_ring_get_irq;
1512 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1513 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1514
454afebd
OM
1515 return logical_ring_init(dev, ring);
1516}
1517
1518static int logical_blt_ring_init(struct drm_device *dev)
1519{
1520 struct drm_i915_private *dev_priv = dev->dev_private;
1521 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1522
1523 ring->name = "blitter ring";
1524 ring->id = BCS;
1525 ring->mmio_base = BLT_RING_BASE;
1526 ring->irq_enable_mask =
1527 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1528 ring->irq_keep_mask =
1529 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1530
ecfe00d8 1531 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1532 ring->get_seqno = gen8_get_seqno;
1533 ring->set_seqno = gen8_set_seqno;
4da46e1e 1534 ring->emit_request = gen8_emit_request;
4712274c 1535 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1536 ring->irq_get = gen8_logical_ring_get_irq;
1537 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1538 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1539
454afebd
OM
1540 return logical_ring_init(dev, ring);
1541}
1542
1543static int logical_vebox_ring_init(struct drm_device *dev)
1544{
1545 struct drm_i915_private *dev_priv = dev->dev_private;
1546 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1547
1548 ring->name = "video enhancement ring";
1549 ring->id = VECS;
1550 ring->mmio_base = VEBOX_RING_BASE;
1551 ring->irq_enable_mask =
1552 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1553 ring->irq_keep_mask =
1554 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1555
ecfe00d8 1556 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1557 ring->get_seqno = gen8_get_seqno;
1558 ring->set_seqno = gen8_set_seqno;
4da46e1e 1559 ring->emit_request = gen8_emit_request;
4712274c 1560 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1561 ring->irq_get = gen8_logical_ring_get_irq;
1562 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1563 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1564
454afebd
OM
1565 return logical_ring_init(dev, ring);
1566}
1567
73e4d07f
OM
1568/**
1569 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1570 * @dev: DRM device.
1571 *
1572 * This function inits the engines for an Execlists submission style (the equivalent in the
1573 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1574 * those engines that are present in the hardware.
1575 *
1576 * Return: non-zero if the initialization failed.
1577 */
454afebd
OM
1578int intel_logical_rings_init(struct drm_device *dev)
1579{
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int ret;
1582
1583 ret = logical_render_ring_init(dev);
1584 if (ret)
1585 return ret;
1586
1587 if (HAS_BSD(dev)) {
1588 ret = logical_bsd_ring_init(dev);
1589 if (ret)
1590 goto cleanup_render_ring;
1591 }
1592
1593 if (HAS_BLT(dev)) {
1594 ret = logical_blt_ring_init(dev);
1595 if (ret)
1596 goto cleanup_bsd_ring;
1597 }
1598
1599 if (HAS_VEBOX(dev)) {
1600 ret = logical_vebox_ring_init(dev);
1601 if (ret)
1602 goto cleanup_blt_ring;
1603 }
1604
1605 if (HAS_BSD2(dev)) {
1606 ret = logical_bsd2_ring_init(dev);
1607 if (ret)
1608 goto cleanup_vebox_ring;
1609 }
1610
1611 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1612 if (ret)
1613 goto cleanup_bsd2_ring;
1614
1615 return 0;
1616
1617cleanup_bsd2_ring:
1618 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1619cleanup_vebox_ring:
1620 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1621cleanup_blt_ring:
1622 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1623cleanup_bsd_ring:
1624 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1625cleanup_render_ring:
1626 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1627
1628 return ret;
1629}
1630
0cea6502
JM
1631static u32
1632make_rpcs(struct drm_device *dev)
1633{
1634 u32 rpcs = 0;
1635
1636 /*
1637 * No explicit RPCS request is needed to ensure full
1638 * slice/subslice/EU enablement prior to Gen9.
1639 */
1640 if (INTEL_INFO(dev)->gen < 9)
1641 return 0;
1642
1643 /*
1644 * Starting in Gen9, render power gating can leave
1645 * slice/subslice/EU in a partially enabled state. We
1646 * must make an explicit request through RPCS for full
1647 * enablement.
1648 */
1649 if (INTEL_INFO(dev)->has_slice_pg) {
1650 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1651 rpcs |= INTEL_INFO(dev)->slice_total <<
1652 GEN8_RPCS_S_CNT_SHIFT;
1653 rpcs |= GEN8_RPCS_ENABLE;
1654 }
1655
1656 if (INTEL_INFO(dev)->has_subslice_pg) {
1657 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1658 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1659 GEN8_RPCS_SS_CNT_SHIFT;
1660 rpcs |= GEN8_RPCS_ENABLE;
1661 }
1662
1663 if (INTEL_INFO(dev)->has_eu_pg) {
1664 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1665 GEN8_RPCS_EU_MIN_SHIFT;
1666 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1667 GEN8_RPCS_EU_MAX_SHIFT;
1668 rpcs |= GEN8_RPCS_ENABLE;
1669 }
1670
1671 return rpcs;
1672}
1673
8670d6f9
OM
1674static int
1675populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1676 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1677{
2d965536
TD
1678 struct drm_device *dev = ring->dev;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1680 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1681 struct page *page;
1682 uint32_t *reg_state;
1683 int ret;
1684
2d965536
TD
1685 if (!ppgtt)
1686 ppgtt = dev_priv->mm.aliasing_ppgtt;
1687
8670d6f9
OM
1688 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1689 if (ret) {
1690 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1691 return ret;
1692 }
1693
1694 ret = i915_gem_object_get_pages(ctx_obj);
1695 if (ret) {
1696 DRM_DEBUG_DRIVER("Could not get object pages\n");
1697 return ret;
1698 }
1699
1700 i915_gem_object_pin_pages(ctx_obj);
1701
1702 /* The second page of the context object contains some fields which must
1703 * be set up prior to the first execution. */
1704 page = i915_gem_object_get_page(ctx_obj, 1);
1705 reg_state = kmap_atomic(page);
1706
1707 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1708 * commands followed by (reg, value) pairs. The values we are setting here are
1709 * only for the first context restore: on a subsequent save, the GPU will
1710 * recreate this batchbuffer with new values (including all the missing
1711 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1712 if (ring->id == RCS)
1713 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1714 else
1715 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1716 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1717 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1718 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5
ZW
1719 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1720 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9
OM
1721 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1722 reg_state[CTX_RING_HEAD+1] = 0;
1723 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1724 reg_state[CTX_RING_TAIL+1] = 0;
1725 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1726 /* Ring buffer start address is not known until the buffer is pinned.
1727 * It is written to the context image in execlists_update_context()
1728 */
8670d6f9
OM
1729 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1730 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1731 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1732 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1733 reg_state[CTX_BB_HEAD_U+1] = 0;
1734 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1735 reg_state[CTX_BB_HEAD_L+1] = 0;
1736 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1737 reg_state[CTX_BB_STATE+1] = (1<<5);
1738 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1739 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1740 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1741 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1742 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1743 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1744 if (ring->id == RCS) {
1745 /* TODO: according to BSpec, the register state context
1746 * for CHV does not have these. OTOH, these registers do
1747 * exist in CHV. I'm waiting for a clarification */
1748 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1749 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1750 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1751 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1752 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1753 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1754 }
1755 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1756 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1757 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1758 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1759 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1760 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1761 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1762 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1763 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1764 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1765 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1766 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
e5815a2e
MT
1767 /* XXX: Systems with less than 4GB of memory do not have
1768 * all PDPs. Proper PDP tracking will be added in a
1769 * subsequent patch.
1770 */
1771 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1772 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1773 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1774 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
8670d6f9
OM
1775 if (ring->id == RCS) {
1776 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
1777 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1778 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
1779 }
1780
1781 kunmap_atomic(reg_state);
1782
1783 ctx_obj->dirty = 1;
1784 set_page_dirty(page);
1785 i915_gem_object_unpin_pages(ctx_obj);
1786
1787 return 0;
1788}
1789
73e4d07f
OM
1790/**
1791 * intel_lr_context_free() - free the LRC specific bits of a context
1792 * @ctx: the LR context to free.
1793 *
1794 * The real context freeing is done in i915_gem_context_free: this only
1795 * takes care of the bits that are LRC related: the per-engine backing
1796 * objects and the logical ringbuffer.
1797 */
ede7d42b
OM
1798void intel_lr_context_free(struct intel_context *ctx)
1799{
8c857917
OM
1800 int i;
1801
1802 for (i = 0; i < I915_NUM_RINGS; i++) {
1803 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 1804
8c857917 1805 if (ctx_obj) {
dcb4c12a
OM
1806 struct intel_ringbuffer *ringbuf =
1807 ctx->engine[i].ringbuf;
1808 struct intel_engine_cs *ring = ringbuf->ring;
1809
7ba717cf
TD
1810 if (ctx == ring->default_context) {
1811 intel_unpin_ringbuffer_obj(ringbuf);
1812 i915_gem_object_ggtt_unpin(ctx_obj);
1813 }
a7cbedec 1814 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
1815 intel_destroy_ringbuffer_obj(ringbuf);
1816 kfree(ringbuf);
8c857917
OM
1817 drm_gem_object_unreference(&ctx_obj->base);
1818 }
1819 }
1820}
1821
1822static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1823{
1824 int ret = 0;
1825
468c6816 1826 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
1827
1828 switch (ring->id) {
1829 case RCS:
468c6816
MN
1830 if (INTEL_INFO(ring->dev)->gen >= 9)
1831 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1832 else
1833 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1834 break;
1835 case VCS:
1836 case BCS:
1837 case VECS:
1838 case VCS2:
1839 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1840 break;
1841 }
1842
1843 return ret;
ede7d42b
OM
1844}
1845
70b0ea86 1846static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
1847 struct drm_i915_gem_object *default_ctx_obj)
1848{
1849 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1850
1851 /* The status page is offset 0 from the default context object
1852 * in LRC mode. */
1853 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1854 ring->status_page.page_addr =
1855 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
1856 ring->status_page.obj = default_ctx_obj;
1857
1858 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1859 (u32)ring->status_page.gfx_addr);
1860 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
1861}
1862
73e4d07f
OM
1863/**
1864 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1865 * @ctx: LR context to create.
1866 * @ring: engine to be used with the context.
1867 *
1868 * This function can be called more than once, with different engines, if we plan
1869 * to use the context with them. The context backing objects and the ringbuffers
1870 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1871 * the creation is a deferred call: it's better to make sure first that we need to use
1872 * a given ring with the context.
1873 *
32197aab 1874 * Return: non-zero on error.
73e4d07f 1875 */
ede7d42b
OM
1876int intel_lr_context_deferred_create(struct intel_context *ctx,
1877 struct intel_engine_cs *ring)
1878{
dcb4c12a 1879 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
1880 struct drm_device *dev = ring->dev;
1881 struct drm_i915_gem_object *ctx_obj;
1882 uint32_t context_size;
84c2377f 1883 struct intel_ringbuffer *ringbuf;
8c857917
OM
1884 int ret;
1885
ede7d42b 1886 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 1887 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 1888
8c857917
OM
1889 context_size = round_up(get_lr_context_size(ring), 4096);
1890
1891 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1892 if (IS_ERR(ctx_obj)) {
1893 ret = PTR_ERR(ctx_obj);
1894 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1895 return ret;
1896 }
1897
dcb4c12a
OM
1898 if (is_global_default_ctx) {
1899 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1900 if (ret) {
1901 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1902 ret);
1903 drm_gem_object_unreference(&ctx_obj->base);
1904 return ret;
1905 }
8c857917
OM
1906 }
1907
84c2377f
OM
1908 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1909 if (!ringbuf) {
1910 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1911 ring->name);
84c2377f 1912 ret = -ENOMEM;
7ba717cf 1913 goto error_unpin_ctx;
84c2377f
OM
1914 }
1915
0c7dd53b 1916 ringbuf->ring = ring;
582d67f0 1917
84c2377f
OM
1918 ringbuf->size = 32 * PAGE_SIZE;
1919 ringbuf->effective_size = ringbuf->size;
1920 ringbuf->head = 0;
1921 ringbuf->tail = 0;
84c2377f 1922 ringbuf->last_retired_head = -1;
ebd0fd4b 1923 intel_ring_update_space(ringbuf);
84c2377f 1924
7ba717cf
TD
1925 if (ringbuf->obj == NULL) {
1926 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1927 if (ret) {
1928 DRM_DEBUG_DRIVER(
1929 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 1930 ring->name, ret);
7ba717cf
TD
1931 goto error_free_rbuf;
1932 }
1933
1934 if (is_global_default_ctx) {
1935 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1936 if (ret) {
1937 DRM_ERROR(
1938 "Failed to pin and map ringbuffer %s: %d\n",
1939 ring->name, ret);
1940 goto error_destroy_rbuf;
1941 }
1942 }
1943
8670d6f9
OM
1944 }
1945
1946 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1947 if (ret) {
1948 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 1949 goto error;
84c2377f
OM
1950 }
1951
1952 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1953 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1954
70b0ea86
DV
1955 if (ctx == ring->default_context)
1956 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 1957 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
1958 if (ring->init_context) {
1959 ret = ring->init_context(ring, ctx);
e7778be1 1960 if (ret) {
771b9a53 1961 DRM_ERROR("ring init context: %d\n", ret);
e7778be1
TD
1962 ctx->engine[ring->id].ringbuf = NULL;
1963 ctx->engine[ring->id].state = NULL;
1964 goto error;
1965 }
771b9a53
MT
1966 }
1967
564ddb2f
OM
1968 ctx->rcs_initialized = true;
1969 }
1970
ede7d42b 1971 return 0;
8670d6f9
OM
1972
1973error:
7ba717cf
TD
1974 if (is_global_default_ctx)
1975 intel_unpin_ringbuffer_obj(ringbuf);
1976error_destroy_rbuf:
1977 intel_destroy_ringbuffer_obj(ringbuf);
1978error_free_rbuf:
8670d6f9 1979 kfree(ringbuf);
7ba717cf 1980error_unpin_ctx:
dcb4c12a
OM
1981 if (is_global_default_ctx)
1982 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
1983 drm_gem_object_unreference(&ctx_obj->base);
1984 return ret;
ede7d42b 1985}
3e5b6f05
TD
1986
1987void intel_lr_context_reset(struct drm_device *dev,
1988 struct intel_context *ctx)
1989{
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991 struct intel_engine_cs *ring;
1992 int i;
1993
1994 for_each_ring(ring, dev_priv, i) {
1995 struct drm_i915_gem_object *ctx_obj =
1996 ctx->engine[ring->id].state;
1997 struct intel_ringbuffer *ringbuf =
1998 ctx->engine[ring->id].ringbuf;
1999 uint32_t *reg_state;
2000 struct page *page;
2001
2002 if (!ctx_obj)
2003 continue;
2004
2005 if (i915_gem_object_get_pages(ctx_obj)) {
2006 WARN(1, "Failed get_pages for context obj\n");
2007 continue;
2008 }
2009 page = i915_gem_object_get_page(ctx_obj, 1);
2010 reg_state = kmap_atomic(page);
2011
2012 reg_state[CTX_RING_HEAD+1] = 0;
2013 reg_state[CTX_RING_TAIL+1] = 0;
2014
2015 kunmap_atomic(reg_state);
2016
2017 ringbuf->head = 0;
2018 ringbuf->tail = 0;
2019 }
2020}
This page took 0.173042 seconds and 5 git commands to generate.