drm/i915/skl: Add WAC6entrylatency
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
0e93cdd4
CW
231/* Typical size of the average request (2 pipecontrols and a MI_BB) */
232#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
e2efd130 234static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 235 struct intel_engine_cs *engine);
e2efd130 236static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 237 struct intel_engine_cs *engine);
7ba717cf 238
73e4d07f
OM
239/**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 241 * @dev_priv: i915 device private
73e4d07f
OM
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
27401d12 245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
c033666a 249int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 250{
a0bd6c31
ZL
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
c033666a 254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
255 return 1;
256
c033666a 257 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
258 return 1;
259
127f1003
OM
260 if (enable_execlists == 0)
261 return 0;
262
5a21b665
DV
263 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
264 USES_PPGTT(dev_priv) &&
265 i915.use_mmio_flip >= 0)
127f1003
OM
266 return 1;
267
268 return 0;
269}
ede7d42b 270
ca82580c 271static void
0bc40be8 272logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 273{
c033666a 274 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 275
c033666a 276 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 277 engine->idle_lite_restore_wa = ~0;
c6a2ac71 278
c033666a
CW
279 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
280 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 281 (engine->id == VCS || engine->id == VCS2);
ca82580c 282
0bc40be8 283 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 284 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
ca82580c 285 GEN8_CTX_ADDRESSING_MODE_SHIFT;
c033666a 286 if (IS_GEN8(dev_priv))
0bc40be8
TU
287 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
288 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
289
290 /* TODO: WaDisableLiteRestore when we start using semaphore
291 * signalling between Command Streamers */
292 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
293
294 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
295 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
296 if (engine->disable_lite_restore_wa)
297 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
298}
299
73e4d07f 300/**
ca82580c
TU
301 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
302 * descriptor for a pinned context
73e4d07f 303 *
ca82580c 304 * @ctx: Context to work on
9021ad03 305 * @engine: Engine the descriptor will be used with
73e4d07f 306 *
ca82580c
TU
307 * The context descriptor encodes various attributes of a context,
308 * including its GTT address and some flags. Because it's fairly
309 * expensive to calculate, we'll just do it once and cache the result,
310 * which remains valid until the context is unpinned.
311 *
312 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 313 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 314 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 315 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
316 * bits 53-54: mbz, reserved for use by hardware
317 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 318 */
ca82580c 319static void
e2efd130 320intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 321 struct intel_engine_cs *engine)
84b790f8 322{
9021ad03 323 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 324 u64 desc;
84b790f8 325
7069b144 326 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 327
7069b144 328 desc = engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
329 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
330 /* bits 12-31 */
7069b144 331 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 332
9021ad03 333 ce->lrc_desc = desc;
5af05fef
MT
334}
335
e2efd130 336uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 337 struct intel_engine_cs *engine)
84b790f8 338{
0bc40be8 339 return ctx->engine[engine->id].lrc_desc;
ca82580c 340}
203a571b 341
cc3c4253
MK
342static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
343 struct drm_i915_gem_request *rq1)
84b790f8 344{
cc3c4253 345
4a570db5 346 struct intel_engine_cs *engine = rq0->engine;
c033666a 347 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 348 uint64_t desc[2];
84b790f8 349
1cff8cc3 350 if (rq1) {
4a570db5 351 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
352 rq1->elsp_submitted++;
353 } else {
354 desc[1] = 0;
355 }
84b790f8 356
4a570db5 357 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 358 rq0->elsp_submitted++;
84b790f8 359
1cff8cc3 360 /* You must always write both descriptors in the order below. */
e2f80391
TU
361 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
362 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 363
e2f80391 364 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 365 /* The context is automatically loaded after the following */
e2f80391 366 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 367
1cff8cc3 368 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 369 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
370}
371
c6a2ac71
TU
372static void
373execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
374{
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
377 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
378 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
379}
380
381static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 382{
4a570db5 383 struct intel_engine_cs *engine = rq->engine;
05d9824b 384 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 385 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 386
05d9824b 387 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 388
c6a2ac71
TU
389 /* True 32b PPGTT with dynamic page allocation: update PDP
390 * registers and point the unallocated PDPs to scratch page.
391 * PML4 is allocated during ppgtt init, so this is not needed
392 * in 48-bit mode.
393 */
394 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
395 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
396}
397
d8cb8875
MK
398static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
84b790f8 400{
26720ab9 401 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 402 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 403
05d9824b 404 execlists_update_context(rq0);
d8cb8875 405
cc3c4253 406 if (rq1)
05d9824b 407 execlists_update_context(rq1);
84b790f8 408
27af5eea 409 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 410 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 411
cc3c4253 412 execlists_elsp_write(rq0, rq1);
26720ab9 413
3756685a 414 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 415 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
416}
417
26720ab9 418static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 419{
6d3d8274 420 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 421 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 422
0bc40be8 423 assert_spin_locked(&engine->execlist_lock);
acdd884a 424
779949f4
PA
425 /*
426 * If irqs are not active generate a warning as batches that finish
427 * without the irqs may get lost and a GPU Hang may occur.
428 */
c033666a 429 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 430
acdd884a 431 /* Try to read in pairs */
0bc40be8 432 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
433 execlist_link) {
434 if (!req0) {
435 req0 = cursor;
6d3d8274 436 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
437 /* Same ctx: ignore first request, as second request
438 * will update tail past first request's workload */
e1fee72c 439 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
440 list_del(&req0->execlist_link);
441 i915_gem_request_unreference(req0);
acdd884a
MT
442 req0 = cursor;
443 } else {
444 req1 = cursor;
c6a2ac71 445 WARN_ON(req1->elsp_submitted);
acdd884a
MT
446 break;
447 }
448 }
449
c6a2ac71
TU
450 if (unlikely(!req0))
451 return;
452
0bc40be8 453 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 454 /*
c6a2ac71
TU
455 * WaIdleLiteRestore: make sure we never cause a lite restore
456 * with HEAD==TAIL.
457 *
458 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
459 * resubmit the request. See gen8_emit_request() for where we
460 * prepare the padding after the end of the request.
53292cdb 461 */
c6a2ac71 462 struct intel_ringbuffer *ringbuf;
53292cdb 463
0bc40be8 464 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
465 req0->tail += 8;
466 req0->tail &= ringbuf->size - 1;
53292cdb
MT
467 }
468
d8cb8875 469 execlists_submit_requests(req0, req1);
acdd884a
MT
470}
471
c6a2ac71 472static unsigned int
e39d42fa 473execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 474{
6d3d8274 475 struct drm_i915_gem_request *head_req;
e981e7b1 476
0bc40be8 477 assert_spin_locked(&engine->execlist_lock);
e981e7b1 478
0bc40be8 479 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 480 struct drm_i915_gem_request,
e981e7b1
TD
481 execlist_link);
482
e39d42fa
TU
483 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
484 return 0;
c6a2ac71
TU
485
486 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
487
488 if (--head_req->elsp_submitted > 0)
489 return 0;
490
e39d42fa
TU
491 list_del(&head_req->execlist_link);
492 i915_gem_request_unreference(head_req);
e981e7b1 493
c6a2ac71 494 return 1;
e981e7b1
TD
495}
496
c6a2ac71 497static u32
0bc40be8 498get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 499 u32 *context_id)
91a41032 500{
c033666a 501 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 502 u32 status;
91a41032 503
c6a2ac71
TU
504 read_pointer %= GEN8_CSB_ENTRIES;
505
0bc40be8 506 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
507
508 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
509 return 0;
91a41032 510
0bc40be8 511 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
512 read_pointer));
513
514 return status;
91a41032
BW
515}
516
73e4d07f 517/**
3f7531c3 518 * intel_lrc_irq_handler() - handle Context Switch interrupts
14bb2c11 519 * @data: tasklet handler passed in unsigned long
73e4d07f
OM
520 *
521 * Check the unread Context Status Buffers and manage the submission of new
522 * contexts to the ELSP accordingly.
523 */
27af5eea 524static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 525{
27af5eea 526 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 527 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 528 u32 status_pointer;
c6a2ac71 529 unsigned int read_pointer, write_pointer;
26720ab9
TU
530 u32 csb[GEN8_CSB_ENTRIES][2];
531 unsigned int csb_read = 0, i;
c6a2ac71
TU
532 unsigned int submit_contexts = 0;
533
3756685a 534 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 535
0bc40be8 536 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 537
0bc40be8 538 read_pointer = engine->next_context_status_buffer;
5590a5f0 539 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 540 if (read_pointer > write_pointer)
dfc53c5e 541 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 542
e981e7b1 543 while (read_pointer < write_pointer) {
26720ab9
TU
544 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
545 break;
546 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
547 &csb[csb_read][1]);
548 csb_read++;
549 }
91a41032 550
26720ab9
TU
551 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
552
553 /* Update the read pointer to the old write pointer. Manual ringbuffer
554 * management ftw </sarcasm> */
555 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
556 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
557 engine->next_context_status_buffer << 8));
558
3756685a 559 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
560
561 spin_lock(&engine->execlist_lock);
562
563 for (i = 0; i < csb_read; i++) {
564 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
565 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
566 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
567 WARN(1, "Lite Restored request removed from queue\n");
568 } else
569 WARN(1, "Preemption without Lite Restore\n");
570 }
571
26720ab9 572 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
573 GEN8_CTX_STATUS_ELEMENT_SWITCH))
574 submit_contexts +=
26720ab9 575 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
576 }
577
c6a2ac71 578 if (submit_contexts) {
0bc40be8 579 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
580 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
581 execlists_context_unqueue(engine);
5af05fef 582 }
e981e7b1 583
0bc40be8 584 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
585
586 if (unlikely(submit_contexts > 2))
587 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
588}
589
c6a2ac71 590static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 591{
4a570db5 592 struct intel_engine_cs *engine = request->engine;
6d3d8274 593 struct drm_i915_gem_request *cursor;
f1ad5a1f 594 int num_elements = 0;
acdd884a 595
27af5eea 596 spin_lock_bh(&engine->execlist_lock);
acdd884a 597
e2f80391 598 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
599 if (++num_elements > 2)
600 break;
601
602 if (num_elements > 2) {
6d3d8274 603 struct drm_i915_gem_request *tail_req;
f1ad5a1f 604
e2f80391 605 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 606 struct drm_i915_gem_request,
f1ad5a1f
OM
607 execlist_link);
608
ae70797d 609 if (request->ctx == tail_req->ctx) {
f1ad5a1f 610 WARN(tail_req->elsp_submitted != 0,
7ba717cf 611 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
612 list_del(&tail_req->execlist_link);
613 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
614 }
615 }
616
e39d42fa 617 i915_gem_request_reference(request);
e2f80391 618 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 619 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 620 if (num_elements == 0)
e2f80391 621 execlists_context_unqueue(engine);
acdd884a 622
27af5eea 623 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
624}
625
2f20055d 626static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 627{
4a570db5 628 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
629 uint32_t flush_domains;
630 int ret;
631
632 flush_domains = 0;
e2f80391 633 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
634 flush_domains = I915_GEM_GPU_DOMAINS;
635
e2f80391 636 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
637 if (ret)
638 return ret;
639
e2f80391 640 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
641 return 0;
642}
643
535fbe82 644static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
645 struct list_head *vmas)
646{
666796da 647 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
648 struct i915_vma *vma;
649 uint32_t flush_domains = 0;
650 bool flush_chipset = false;
651 int ret;
652
653 list_for_each_entry(vma, vmas, exec_list) {
654 struct drm_i915_gem_object *obj = vma->obj;
655
03ade511 656 if (obj->active & other_rings) {
4a570db5 657 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
658 if (ret)
659 return ret;
660 }
ba8b7ccb
OM
661
662 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
663 flush_chipset |= i915_gem_clflush_object(obj, false);
664
665 flush_domains |= obj->base.write_domain;
666 }
667
668 if (flush_domains & I915_GEM_DOMAIN_GTT)
669 wmb();
670
671 /* Unconditionally invalidate gpu caches and ensure that we do flush
672 * any residual writes from the previous batch.
673 */
2f20055d 674 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
675}
676
40e895ce 677int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 678{
24f1d3cc 679 struct intel_engine_cs *engine = request->engine;
9021ad03 680 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 681 int ret;
bc0dce3f 682
6310346e
CW
683 /* Flush enough space to reduce the likelihood of waiting after
684 * we start building the request - in which case we will just
685 * have to repeat work.
686 */
0e93cdd4 687 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 688
9021ad03 689 if (!ce->state) {
978f1e09
CW
690 ret = execlists_context_deferred_alloc(request->ctx, engine);
691 if (ret)
692 return ret;
693 }
694
9021ad03 695 request->ringbuf = ce->ringbuf;
f3cc01f0 696
a7e02199
AD
697 if (i915.enable_guc_submission) {
698 /*
699 * Check that the GuC has space for the request before
700 * going any further, as the i915_add_request() call
701 * later on mustn't fail ...
702 */
7c2c270d 703 ret = i915_guc_wq_check_space(request);
a7e02199
AD
704 if (ret)
705 return ret;
706 }
707
24f1d3cc
CW
708 ret = intel_lr_context_pin(request->ctx, engine);
709 if (ret)
710 return ret;
e28e404c 711
bfa01200
CW
712 ret = intel_ring_begin(request, 0);
713 if (ret)
714 goto err_unpin;
715
9021ad03 716 if (!ce->initialised) {
24f1d3cc
CW
717 ret = engine->init_context(request);
718 if (ret)
719 goto err_unpin;
720
9021ad03 721 ce->initialised = true;
24f1d3cc
CW
722 }
723
724 /* Note that after this point, we have committed to using
725 * this request as it is being used to both track the
726 * state of engine initialisation and liveness of the
727 * golden renderstate above. Think twice before you try
728 * to cancel/unwind this request now.
729 */
730
0e93cdd4 731 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
732 return 0;
733
734err_unpin:
24f1d3cc 735 intel_lr_context_unpin(request->ctx, engine);
e28e404c 736 return ret;
bc0dce3f
JH
737}
738
bc0dce3f
JH
739/*
740 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 741 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
742 *
743 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
744 * really happens during submission is that the context and current tail will be placed
745 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
746 * point, the tail *inside* the context is updated and the ELSP written to.
747 */
7c17d377 748static int
ae70797d 749intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 750{
7c17d377 751 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 752 struct intel_engine_cs *engine = request->engine;
bc0dce3f 753
7c17d377
CW
754 intel_logical_ring_advance(ringbuf);
755 request->tail = ringbuf->tail;
bc0dce3f 756
7c17d377
CW
757 /*
758 * Here we add two extra NOOPs as padding to avoid
759 * lite restore of a context with HEAD==TAIL.
760 *
761 * Caller must reserve WA_TAIL_DWORDS for us!
762 */
763 intel_logical_ring_emit(ringbuf, MI_NOOP);
764 intel_logical_ring_emit(ringbuf, MI_NOOP);
765 intel_logical_ring_advance(ringbuf);
d1675198 766
117897f4 767 if (intel_engine_stopped(engine))
7c17d377 768 return 0;
bc0dce3f 769
a16a4052
CW
770 /* We keep the previous context alive until we retire the following
771 * request. This ensures that any the context object is still pinned
772 * for any residual writes the HW makes into it on the context switch
773 * into the next object following the breadcrumb. Otherwise, we may
774 * retire the context too early.
775 */
776 request->previous_context = engine->last_context;
777 engine->last_context = request->ctx;
f4e2dece 778
7c2c270d
DG
779 if (i915.enable_guc_submission)
780 i915_guc_submit(request);
d1675198
AD
781 else
782 execlists_context_queue(request);
7c17d377
CW
783
784 return 0;
bc0dce3f
JH
785}
786
73e4d07f
OM
787/**
788 * execlists_submission() - submit a batchbuffer for execution, Execlists style
14bb2c11 789 * @params: execbuffer call parameters.
73e4d07f
OM
790 * @args: execbuffer call arguments.
791 * @vmas: list of vmas.
73e4d07f
OM
792 *
793 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
794 * away the submission details of the execbuffer ioctl call.
795 *
796 * Return: non-zero if the submission fails.
797 */
5f19e2bf 798int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 799 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 800 struct list_head *vmas)
454afebd 801{
5f19e2bf 802 struct drm_device *dev = params->dev;
4a570db5 803 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 804 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 805 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 806 u64 exec_start;
ba8b7ccb
OM
807 int instp_mode;
808 u32 instp_mask;
809 int ret;
810
811 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
812 instp_mask = I915_EXEC_CONSTANTS_MASK;
813 switch (instp_mode) {
814 case I915_EXEC_CONSTANTS_REL_GENERAL:
815 case I915_EXEC_CONSTANTS_ABSOLUTE:
816 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 817 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
818 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
819 return -EINVAL;
820 }
821
822 if (instp_mode != dev_priv->relative_constants_mode) {
823 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
824 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
825 return -EINVAL;
826 }
827
828 /* The HW changed the meaning on this bit on gen6 */
829 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
830 }
831 break;
832 default:
833 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
834 return -EINVAL;
835 }
836
ba8b7ccb
OM
837 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
838 DRM_DEBUG("sol reset is gen7 only\n");
839 return -EINVAL;
840 }
841
535fbe82 842 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
843 if (ret)
844 return ret;
845
4a570db5 846 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 847 instp_mode != dev_priv->relative_constants_mode) {
987046ad 848 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
849 if (ret)
850 return ret;
851
852 intel_logical_ring_emit(ringbuf, MI_NOOP);
853 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 854 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
855 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
856 intel_logical_ring_advance(ringbuf);
857
858 dev_priv->relative_constants_mode = instp_mode;
859 }
860
5f19e2bf
JH
861 exec_start = params->batch_obj_vm_offset +
862 args->batch_start_offset;
863
e2f80391 864 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
865 if (ret)
866 return ret;
867
95c24161 868 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 869
8a8edb59 870 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 871
454afebd
OM
872 return 0;
873}
874
e39d42fa 875void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 876{
6d3d8274 877 struct drm_i915_gem_request *req, *tmp;
e39d42fa 878 LIST_HEAD(cancel_list);
c86ee3a9 879
c033666a 880 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
c86ee3a9 881
27af5eea 882 spin_lock_bh(&engine->execlist_lock);
e39d42fa 883 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 884 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 885
e39d42fa 886 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 887 list_del(&req->execlist_link);
f8210795 888 i915_gem_request_unreference(req);
c86ee3a9
TD
889 }
890}
891
0bc40be8 892void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 893{
c033666a 894 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
895 int ret;
896
117897f4 897 if (!intel_engine_initialized(engine))
9832b9da
OM
898 return;
899
666796da 900 ret = intel_engine_idle(engine);
f4457ae7 901 if (ret)
9832b9da 902 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 903 engine->name, ret);
9832b9da
OM
904
905 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
906 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
907 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
908 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
909 return;
910 }
0bc40be8 911 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
912}
913
4866d729 914int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 915{
4a570db5 916 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
917 int ret;
918
e2f80391 919 if (!engine->gpu_caches_dirty)
48e29f55
OM
920 return 0;
921
e2f80391 922 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
923 if (ret)
924 return ret;
925
e2f80391 926 engine->gpu_caches_dirty = false;
48e29f55
OM
927 return 0;
928}
929
e2efd130 930static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 931 struct intel_engine_cs *engine)
dcb4c12a 932{
24f1d3cc 933 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 934 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
935 void *vaddr;
936 u32 *lrc_reg_state;
ca82580c 937 int ret;
dcb4c12a 938
24f1d3cc 939 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 940
9021ad03 941 if (ce->pin_count++)
24f1d3cc
CW
942 return 0;
943
9021ad03
CW
944 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
945 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 946 if (ret)
24f1d3cc 947 goto err;
7ba717cf 948
9021ad03 949 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
950 if (IS_ERR(vaddr)) {
951 ret = PTR_ERR(vaddr);
82352e90
TU
952 goto unpin_ctx_obj;
953 }
954
7d774cac
TU
955 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
956
9021ad03 957 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
e84fe803 958 if (ret)
7d774cac 959 goto unpin_map;
d1675198 960
24f1d3cc 961 i915_gem_context_reference(ctx);
9021ad03 962 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 963 intel_lr_context_descriptor_update(ctx, engine);
9021ad03
CW
964
965 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
966 ce->lrc_reg_state = lrc_reg_state;
967 ce->state->dirty = true;
e93c28f3 968
e84fe803
NH
969 /* Invalidate GuC TLB. */
970 if (i915.enable_guc_submission)
971 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 972
24f1d3cc 973 return 0;
7ba717cf 974
7d774cac 975unpin_map:
9021ad03 976 i915_gem_object_unpin_map(ce->state);
7ba717cf 977unpin_ctx_obj:
9021ad03 978 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 979err:
9021ad03 980 ce->pin_count = 0;
e84fe803
NH
981 return ret;
982}
983
e2efd130 984void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 985 struct intel_engine_cs *engine)
e84fe803 986{
9021ad03 987 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 988
24f1d3cc 989 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
9021ad03 990 GEM_BUG_ON(ce->pin_count == 0);
321fe304 991
9021ad03 992 if (--ce->pin_count)
24f1d3cc 993 return;
e84fe803 994
9021ad03 995 intel_unpin_ringbuffer_obj(ce->ringbuf);
dcb4c12a 996
9021ad03
CW
997 i915_gem_object_unpin_map(ce->state);
998 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 999
9021ad03
CW
1000 ce->lrc_vma = NULL;
1001 ce->lrc_desc = 0;
1002 ce->lrc_reg_state = NULL;
321fe304 1003
24f1d3cc 1004 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1005}
1006
e2be4faf 1007static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1008{
1009 int ret, i;
4a570db5 1010 struct intel_engine_cs *engine = req->engine;
e2be4faf 1011 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1012 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1013
cd7feaaa 1014 if (w->count == 0)
771b9a53
MT
1015 return 0;
1016
e2f80391 1017 engine->gpu_caches_dirty = true;
4866d729 1018 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1019 if (ret)
1020 return ret;
1021
987046ad 1022 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1023 if (ret)
1024 return ret;
1025
1026 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1027 for (i = 0; i < w->count; i++) {
f92a9162 1028 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1029 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1030 }
1031 intel_logical_ring_emit(ringbuf, MI_NOOP);
1032
1033 intel_logical_ring_advance(ringbuf);
1034
e2f80391 1035 engine->gpu_caches_dirty = true;
4866d729 1036 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1037 if (ret)
1038 return ret;
1039
1040 return 0;
1041}
1042
83b8a982 1043#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1044 do { \
83b8a982
AS
1045 int __index = (index)++; \
1046 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1047 return -ENOSPC; \
1048 } \
83b8a982 1049 batch[__index] = (cmd); \
17ee950d
AS
1050 } while (0)
1051
8f40db77 1052#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1053 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1054
1055/*
1056 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1057 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1058 * but there is a slight complication as this is applied in WA batch where the
1059 * values are only initialized once so we cannot take register value at the
1060 * beginning and reuse it further; hence we save its value to memory, upload a
1061 * constant value with bit21 set and then we restore it back with the saved value.
1062 * To simplify the WA, a constant value is formed by using the default value
1063 * of this register. This shouldn't be a problem because we are only modifying
1064 * it for a short period and this batch in non-premptible. We can ofcourse
1065 * use additional instructions that read the actual value of the register
1066 * at that time and set our bit of interest but it makes the WA complicated.
1067 *
1068 * This WA is also required for Gen9 so extracting as a function avoids
1069 * code duplication.
1070 */
0bc40be8 1071static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1072 uint32_t *const batch,
1073 uint32_t index)
1074{
1075 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1076
a4106a78 1077 /*
fe905819 1078 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
1079 * This WA is implemented in skl_init_clock_gating() but since
1080 * this batch updates GEN8_L3SQCREG4 with default value we need to
1081 * set this bit here to retain the WA during flush.
1082 */
fe905819
MK
1083 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1084 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
a4106a78
AS
1085 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1086
f1afe24f 1087 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1088 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1089 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1090 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1091 wa_ctx_emit(batch, index, 0);
1092
1093 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1094 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1095 wa_ctx_emit(batch, index, l3sqc4_flush);
1096
1097 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1098 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1099 PIPE_CONTROL_DC_FLUSH_ENABLE));
1100 wa_ctx_emit(batch, index, 0);
1101 wa_ctx_emit(batch, index, 0);
1102 wa_ctx_emit(batch, index, 0);
1103 wa_ctx_emit(batch, index, 0);
1104
f1afe24f 1105 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1106 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1107 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1108 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1109 wa_ctx_emit(batch, index, 0);
9e000847
AS
1110
1111 return index;
1112}
1113
17ee950d
AS
1114static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1115 uint32_t offset,
1116 uint32_t start_alignment)
1117{
1118 return wa_ctx->offset = ALIGN(offset, start_alignment);
1119}
1120
1121static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1122 uint32_t offset,
1123 uint32_t size_alignment)
1124{
1125 wa_ctx->size = offset - wa_ctx->offset;
1126
1127 WARN(wa_ctx->size % size_alignment,
1128 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1129 wa_ctx->size, size_alignment);
1130 return 0;
1131}
1132
1133/**
1134 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1135 *
14bb2c11 1136 * @engine: only applicable for RCS
17ee950d
AS
1137 * @wa_ctx: structure representing wa_ctx
1138 * offset: specifies start of the batch, should be cache-aligned. This is updated
1139 * with the offset value received as input.
1140 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1141 * @batch: page in which WA are loaded
1142 * @offset: This field specifies the start of the batch, it should be
1143 * cache-aligned otherwise it is adjusted accordingly.
1144 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1145 * initialized at the beginning and shared across all contexts but this field
1146 * helps us to have multiple batches at different offsets and select them based
1147 * on a criteria. At the moment this batch always start at the beginning of the page
1148 * and at this point we don't have multiple wa_ctx batch buffers.
1149 *
1150 * The number of WA applied are not known at the beginning; we use this field
1151 * to return the no of DWORDS written.
4d78c8dc 1152 *
17ee950d
AS
1153 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1154 * so it adds NOOPs as padding to make it cacheline aligned.
1155 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1156 * makes a complete batch buffer.
1157 *
1158 * Return: non-zero if we exceed the PAGE_SIZE limit.
1159 */
1160
0bc40be8 1161static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1162 struct i915_wa_ctx_bb *wa_ctx,
1163 uint32_t *const batch,
1164 uint32_t *offset)
1165{
0160f055 1166 uint32_t scratch_addr;
17ee950d
AS
1167 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1168
7ad00d1a 1169 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1170 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1171
c82435bb 1172 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1173 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1174 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1175 if (rc < 0)
1176 return rc;
1177 index = rc;
c82435bb
AS
1178 }
1179
0160f055
AS
1180 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1181 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1182 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1183
83b8a982
AS
1184 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1185 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1186 PIPE_CONTROL_GLOBAL_GTT_IVB |
1187 PIPE_CONTROL_CS_STALL |
1188 PIPE_CONTROL_QW_WRITE));
1189 wa_ctx_emit(batch, index, scratch_addr);
1190 wa_ctx_emit(batch, index, 0);
1191 wa_ctx_emit(batch, index, 0);
1192 wa_ctx_emit(batch, index, 0);
0160f055 1193
17ee950d
AS
1194 /* Pad to end of cacheline */
1195 while (index % CACHELINE_DWORDS)
83b8a982 1196 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1197
1198 /*
1199 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1200 * execution depends on the length specified in terms of cache lines
1201 * in the register CTX_RCS_INDIRECT_CTX
1202 */
1203
1204 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1205}
1206
1207/**
1208 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1209 *
14bb2c11 1210 * @engine: only applicable for RCS
17ee950d
AS
1211 * @wa_ctx: structure representing wa_ctx
1212 * offset: specifies start of the batch, should be cache-aligned.
1213 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1214 * @batch: page in which WA are loaded
17ee950d
AS
1215 * @offset: This field specifies the start of this batch.
1216 * This batch is started immediately after indirect_ctx batch. Since we ensure
1217 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1218 *
1219 * The number of DWORDS written are returned using this field.
1220 *
1221 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1222 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1223 */
0bc40be8 1224static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1225 struct i915_wa_ctx_bb *wa_ctx,
1226 uint32_t *const batch,
1227 uint32_t *offset)
1228{
1229 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1230
7ad00d1a 1231 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1232 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1233
83b8a982 1234 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1235
1236 return wa_ctx_end(wa_ctx, *offset = index, 1);
1237}
1238
0bc40be8 1239static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1240 struct i915_wa_ctx_bb *wa_ctx,
1241 uint32_t *const batch,
1242 uint32_t *offset)
1243{
a4106a78 1244 int ret;
0504cffc
AS
1245 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1246
0907c8f7 1247 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1248 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1249 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1250 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1251
a4106a78 1252 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1253 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1254 if (ret < 0)
1255 return ret;
1256 index = ret;
1257
0504cffc
AS
1258 /* Pad to end of cacheline */
1259 while (index % CACHELINE_DWORDS)
1260 wa_ctx_emit(batch, index, MI_NOOP);
1261
1262 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1263}
1264
0bc40be8 1265static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1266 struct i915_wa_ctx_bb *wa_ctx,
1267 uint32_t *const batch,
1268 uint32_t *offset)
1269{
1270 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1271
9b01435d 1272 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1273 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1274 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1275 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1276 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1277 wa_ctx_emit(batch, index,
1278 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1279 wa_ctx_emit(batch, index, MI_NOOP);
1280 }
1281
b1e429fe 1282 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1283 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1284 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1285
1286 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1287 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1288
1289 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1290 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1291
1292 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1293 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1294
1295 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1296 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1297 wa_ctx_emit(batch, index, 0x0);
1298 wa_ctx_emit(batch, index, MI_NOOP);
1299 }
1300
0907c8f7 1301 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1302 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1303 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1304 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1305
0504cffc
AS
1306 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1307
1308 return wa_ctx_end(wa_ctx, *offset = index, 1);
1309}
1310
0bc40be8 1311static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1312{
1313 int ret;
1314
c033666a 1315 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
0bc40be8 1316 PAGE_ALIGN(size));
fe3db79b 1317 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1318 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1319 ret = PTR_ERR(engine->wa_ctx.obj);
1320 engine->wa_ctx.obj = NULL;
1321 return ret;
17ee950d
AS
1322 }
1323
0bc40be8 1324 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1325 if (ret) {
1326 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1327 ret);
0bc40be8 1328 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1329 return ret;
1330 }
1331
1332 return 0;
1333}
1334
0bc40be8 1335static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1336{
0bc40be8
TU
1337 if (engine->wa_ctx.obj) {
1338 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1339 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1340 engine->wa_ctx.obj = NULL;
17ee950d
AS
1341 }
1342}
1343
0bc40be8 1344static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1345{
1346 int ret;
1347 uint32_t *batch;
1348 uint32_t offset;
1349 struct page *page;
0bc40be8 1350 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1351
0bc40be8 1352 WARN_ON(engine->id != RCS);
17ee950d 1353
5e60d790 1354 /* update this when WA for higher Gen are added */
c033666a 1355 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1356 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1357 INTEL_GEN(engine->i915));
5e60d790 1358 return 0;
0504cffc 1359 }
5e60d790 1360
c4db7599 1361 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1362 if (engine->scratch.obj == NULL) {
1363 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1364 return -EINVAL;
1365 }
1366
0bc40be8 1367 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1368 if (ret) {
1369 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1370 return ret;
1371 }
1372
033908ae 1373 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1374 batch = kmap_atomic(page);
1375 offset = 0;
1376
c033666a 1377 if (IS_GEN8(engine->i915)) {
0bc40be8 1378 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1379 &wa_ctx->indirect_ctx,
1380 batch,
1381 &offset);
1382 if (ret)
1383 goto out;
1384
0bc40be8 1385 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1386 &wa_ctx->per_ctx,
1387 batch,
1388 &offset);
1389 if (ret)
1390 goto out;
c033666a 1391 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1392 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1393 &wa_ctx->indirect_ctx,
1394 batch,
1395 &offset);
1396 if (ret)
1397 goto out;
1398
0bc40be8 1399 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1400 &wa_ctx->per_ctx,
1401 batch,
1402 &offset);
1403 if (ret)
1404 goto out;
17ee950d
AS
1405 }
1406
1407out:
1408 kunmap_atomic(batch);
1409 if (ret)
0bc40be8 1410 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1411
1412 return ret;
1413}
1414
04794adb
TU
1415static void lrc_init_hws(struct intel_engine_cs *engine)
1416{
c033666a 1417 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1418
1419 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1420 (u32)engine->status_page.gfx_addr);
1421 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1422}
1423
0bc40be8 1424static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1425{
c033666a 1426 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1427 unsigned int next_context_status_buffer_hw;
9b1136d5 1428
04794adb 1429 lrc_init_hws(engine);
e84fe803 1430
0bc40be8
TU
1431 I915_WRITE_IMR(engine,
1432 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1433 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1434
0bc40be8 1435 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1436 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1437 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1438 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1439
1440 /*
1441 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1442 * zero, we need to read the write pointer from hardware and use its
1443 * value because "this register is power context save restored".
1444 * Effectively, these states have been observed:
1445 *
1446 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1447 * BDW | CSB regs not reset | CSB regs reset |
1448 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1449 * SKL | ? | ? |
1450 * BXT | ? | ? |
dfc53c5e 1451 */
5590a5f0 1452 next_context_status_buffer_hw =
0bc40be8 1453 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1454
1455 /*
1456 * When the CSB registers are reset (also after power-up / gpu reset),
1457 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1458 * this special case, so the first element read is CSB[0].
1459 */
1460 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1461 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1462
0bc40be8
TU
1463 engine->next_context_status_buffer = next_context_status_buffer_hw;
1464 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1465
fc0768ce 1466 intel_engine_init_hangcheck(engine);
9b1136d5 1467
0ccdacf6 1468 return intel_mocs_init_engine(engine);
9b1136d5
OM
1469}
1470
0bc40be8 1471static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1472{
c033666a 1473 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1474 int ret;
1475
0bc40be8 1476 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1477 if (ret)
1478 return ret;
1479
1480 /* We need to disable the AsyncFlip performance optimisations in order
1481 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1482 * programmed to '1' on all products.
1483 *
1484 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1485 */
1486 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1487
9b1136d5
OM
1488 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1489
0bc40be8 1490 return init_workarounds_ring(engine);
9b1136d5
OM
1491}
1492
0bc40be8 1493static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1494{
1495 int ret;
1496
0bc40be8 1497 ret = gen8_init_common_ring(engine);
82ef822e
DL
1498 if (ret)
1499 return ret;
1500
0bc40be8 1501 return init_workarounds_ring(engine);
82ef822e
DL
1502}
1503
7a01a0a2
MT
1504static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1505{
1506 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1507 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1508 struct intel_ringbuffer *ringbuf = req->ringbuf;
1509 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1510 int i, ret;
1511
987046ad 1512 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1513 if (ret)
1514 return ret;
1515
1516 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1517 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1518 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1519
e2f80391
TU
1520 intel_logical_ring_emit_reg(ringbuf,
1521 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1522 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1523 intel_logical_ring_emit_reg(ringbuf,
1524 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1525 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1526 }
1527
1528 intel_logical_ring_emit(ringbuf, MI_NOOP);
1529 intel_logical_ring_advance(ringbuf);
1530
1531 return 0;
1532}
1533
be795fc1 1534static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1535 u64 offset, unsigned dispatch_flags)
15648585 1536{
be795fc1 1537 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1538 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1539 int ret;
1540
7a01a0a2
MT
1541 /* Don't rely in hw updating PDPs, specially in lite-restore.
1542 * Ideally, we should set Force PD Restore in ctx descriptor,
1543 * but we can't. Force Restore would be a second option, but
1544 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1545 * not idle). PML4 is allocated during ppgtt init so this is
1546 * not needed in 48-bit.*/
7a01a0a2 1547 if (req->ctx->ppgtt &&
666796da 1548 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1549 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1550 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1551 ret = intel_logical_ring_emit_pdps(req);
1552 if (ret)
1553 return ret;
1554 }
7a01a0a2 1555
666796da 1556 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1557 }
1558
987046ad 1559 ret = intel_ring_begin(req, 4);
15648585
OM
1560 if (ret)
1561 return ret;
1562
1563 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1564 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1565 (ppgtt<<8) |
1566 (dispatch_flags & I915_DISPATCH_RS ?
1567 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1568 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1569 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1570 intel_logical_ring_emit(ringbuf, MI_NOOP);
1571 intel_logical_ring_advance(ringbuf);
1572
1573 return 0;
1574}
1575
0bc40be8 1576static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1577{
c033666a 1578 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1579 unsigned long flags;
1580
7cd512f1 1581 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1582 return false;
1583
1584 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1585 if (engine->irq_refcount++ == 0) {
1586 I915_WRITE_IMR(engine,
1587 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1588 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1589 }
1590 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1591
1592 return true;
1593}
1594
0bc40be8 1595static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1596{
c033666a 1597 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1598 unsigned long flags;
1599
1600 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1601 if (--engine->irq_refcount == 0) {
1602 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1603 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1604 }
1605 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1606}
1607
7deb4d39 1608static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1609 u32 invalidate_domains,
1610 u32 unused)
1611{
7deb4d39 1612 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1613 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1614 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1615 uint32_t cmd;
1616 int ret;
1617
987046ad 1618 ret = intel_ring_begin(request, 4);
4712274c
OM
1619 if (ret)
1620 return ret;
1621
1622 cmd = MI_FLUSH_DW + 1;
1623
f0a1fb10
CW
1624 /* We always require a command barrier so that subsequent
1625 * commands, such as breadcrumb interrupts, are strictly ordered
1626 * wrt the contents of the write cache being flushed to memory
1627 * (and thus being coherent from the CPU).
1628 */
1629 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1630
1631 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1632 cmd |= MI_INVALIDATE_TLB;
4a570db5 1633 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1634 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1635 }
1636
1637 intel_logical_ring_emit(ringbuf, cmd);
1638 intel_logical_ring_emit(ringbuf,
1639 I915_GEM_HWS_SCRATCH_ADDR |
1640 MI_FLUSH_DW_USE_GTT);
1641 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1642 intel_logical_ring_emit(ringbuf, 0); /* value */
1643 intel_logical_ring_advance(ringbuf);
1644
1645 return 0;
1646}
1647
7deb4d39 1648static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1649 u32 invalidate_domains,
1650 u32 flush_domains)
1651{
7deb4d39 1652 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1653 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1654 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1655 bool vf_flush_wa = false;
4712274c
OM
1656 u32 flags = 0;
1657 int ret;
1658
1659 flags |= PIPE_CONTROL_CS_STALL;
1660
1661 if (flush_domains) {
1662 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1663 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1664 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1665 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1666 }
1667
1668 if (invalidate_domains) {
1669 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1670 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1671 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1672 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1673 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1674 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1675 flags |= PIPE_CONTROL_QW_WRITE;
1676 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1677
1a5a9ce7
BW
1678 /*
1679 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1680 * pipe control.
1681 */
c033666a 1682 if (IS_GEN9(request->i915))
1a5a9ce7
BW
1683 vf_flush_wa = true;
1684 }
9647ff36 1685
987046ad 1686 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1687 if (ret)
1688 return ret;
1689
9647ff36
ID
1690 if (vf_flush_wa) {
1691 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1692 intel_logical_ring_emit(ringbuf, 0);
1693 intel_logical_ring_emit(ringbuf, 0);
1694 intel_logical_ring_emit(ringbuf, 0);
1695 intel_logical_ring_emit(ringbuf, 0);
1696 intel_logical_ring_emit(ringbuf, 0);
1697 }
1698
4712274c
OM
1699 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1700 intel_logical_ring_emit(ringbuf, flags);
1701 intel_logical_ring_emit(ringbuf, scratch_addr);
1702 intel_logical_ring_emit(ringbuf, 0);
1703 intel_logical_ring_emit(ringbuf, 0);
1704 intel_logical_ring_emit(ringbuf, 0);
1705 intel_logical_ring_advance(ringbuf);
1706
1707 return 0;
1708}
1709
c04e0f3b 1710static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1711{
0bc40be8 1712 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1713}
1714
0bc40be8 1715static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1716{
0bc40be8 1717 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1718}
1719
c04e0f3b 1720static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1721{
319404df
ID
1722 /*
1723 * On BXT A steppings there is a HW coherency issue whereby the
1724 * MI_STORE_DATA_IMM storing the completed request's seqno
1725 * occasionally doesn't invalidate the CPU cache. Work around this by
1726 * clflushing the corresponding cacheline whenever the caller wants
1727 * the coherency to be guaranteed. Note that this cacheline is known
1728 * to be clean at this point, since we only write it in
1729 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1730 * this clflush in practice becomes an invalidate operation.
1731 */
c04e0f3b 1732 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1733}
1734
0bc40be8 1735static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1736{
0bc40be8 1737 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1738
1739 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1740 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1741}
1742
7c17d377
CW
1743/*
1744 * Reserve space for 2 NOOPs at the end of each request to be
1745 * used as a workaround for not being allowed to do lite
1746 * restore with HEAD==TAIL (WaIdleLiteRestore).
1747 */
1748#define WA_TAIL_DWORDS 2
1749
c4e76638 1750static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1751{
c4e76638 1752 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1753 int ret;
1754
987046ad 1755 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1756 if (ret)
1757 return ret;
1758
7c17d377
CW
1759 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1760 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1761
4da46e1e 1762 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1763 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1764 intel_logical_ring_emit(ringbuf,
a58c01aa 1765 intel_hws_seqno_address(request->engine) |
7c17d377 1766 MI_FLUSH_DW_USE_GTT);
4da46e1e 1767 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1768 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1769 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1770 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1771 return intel_logical_ring_advance_and_submit(request);
1772}
4da46e1e 1773
7c17d377
CW
1774static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1775{
1776 struct intel_ringbuffer *ringbuf = request->ringbuf;
1777 int ret;
53292cdb 1778
987046ad 1779 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1780 if (ret)
1781 return ret;
1782
ce81a65c
MW
1783 /* We're using qword write, seqno should be aligned to 8 bytes. */
1784 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1785
7c17d377
CW
1786 /* w/a for post sync ops following a GPGPU operation we
1787 * need a prior CS_STALL, which is emitted by the flush
1788 * following the batch.
1789 */
ce81a65c 1790 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1791 intel_logical_ring_emit(ringbuf,
1792 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1793 PIPE_CONTROL_CS_STALL |
1794 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1795 intel_logical_ring_emit(ringbuf,
1796 intel_hws_seqno_address(request->engine));
7c17d377
CW
1797 intel_logical_ring_emit(ringbuf, 0);
1798 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1799 /* We're thrashing one dword of HWS. */
1800 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1801 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1802 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1803 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1804}
1805
be01363f 1806static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1807{
cef437ad 1808 struct render_state so;
cef437ad
DL
1809 int ret;
1810
4a570db5 1811 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1812 if (ret)
1813 return ret;
1814
1815 if (so.rodata == NULL)
1816 return 0;
1817
4a570db5 1818 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1819 I915_DISPATCH_SECURE);
cef437ad
DL
1820 if (ret)
1821 goto out;
1822
4a570db5 1823 ret = req->engine->emit_bb_start(req,
84e81020
AS
1824 (so.ggtt_offset + so.aux_batch_offset),
1825 I915_DISPATCH_SECURE);
1826 if (ret)
1827 goto out;
1828
b2af0376 1829 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1830
cef437ad
DL
1831out:
1832 i915_gem_render_state_fini(&so);
1833 return ret;
1834}
1835
8753181e 1836static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1837{
1838 int ret;
1839
e2be4faf 1840 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1841 if (ret)
1842 return ret;
1843
3bbaba0c
PA
1844 ret = intel_rcs_context_init_mocs(req);
1845 /*
1846 * Failing to program the MOCS is non-fatal.The system will not
1847 * run at peak performance. So generate an error and carry on.
1848 */
1849 if (ret)
1850 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1851
be01363f 1852 return intel_lr_context_render_state_init(req);
e7778be1
TD
1853}
1854
73e4d07f
OM
1855/**
1856 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1857 *
14bb2c11 1858 * @engine: Engine Command Streamer.
73e4d07f
OM
1859 *
1860 */
0bc40be8 1861void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1862{
6402c330 1863 struct drm_i915_private *dev_priv;
9832b9da 1864
117897f4 1865 if (!intel_engine_initialized(engine))
48d82387
OM
1866 return;
1867
27af5eea
TU
1868 /*
1869 * Tasklet cannot be active at this point due intel_mark_active/idle
1870 * so this is just for documentation.
1871 */
1872 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1873 tasklet_kill(&engine->irq_tasklet);
1874
c033666a 1875 dev_priv = engine->i915;
6402c330 1876
0bc40be8
TU
1877 if (engine->buffer) {
1878 intel_logical_ring_stop(engine);
1879 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1880 }
48d82387 1881
0bc40be8
TU
1882 if (engine->cleanup)
1883 engine->cleanup(engine);
48d82387 1884
0bc40be8
TU
1885 i915_cmd_parser_fini_ring(engine);
1886 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1887
0bc40be8 1888 if (engine->status_page.obj) {
7d774cac 1889 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1890 engine->status_page.obj = NULL;
48d82387 1891 }
24f1d3cc 1892 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1893
0bc40be8
TU
1894 engine->idle_lite_restore_wa = 0;
1895 engine->disable_lite_restore_wa = false;
1896 engine->ctx_desc_template = 0;
ca82580c 1897
0bc40be8 1898 lrc_destroy_wa_ctx_obj(engine);
c033666a 1899 engine->i915 = NULL;
454afebd
OM
1900}
1901
c9cacf93 1902static void
e1382efb 1903logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1904{
1905 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1906 engine->init_hw = gen8_init_common_ring;
1907 engine->emit_request = gen8_emit_request;
1908 engine->emit_flush = gen8_emit_flush;
1909 engine->irq_get = gen8_logical_ring_get_irq;
1910 engine->irq_put = gen8_logical_ring_put_irq;
1911 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1912 engine->get_seqno = gen8_get_seqno;
1913 engine->set_seqno = gen8_set_seqno;
c033666a 1914 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
c04e0f3b 1915 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1916 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1917 }
1918}
1919
d9f3af96 1920static inline void
0bc40be8 1921logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1922{
0bc40be8
TU
1923 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1924 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
e1382efb 1925 init_waitqueue_head(&engine->irq_queue);
d9f3af96
TU
1926}
1927
7d774cac 1928static int
04794adb
TU
1929lrc_setup_hws(struct intel_engine_cs *engine,
1930 struct drm_i915_gem_object *dctx_obj)
1931{
7d774cac 1932 void *hws;
04794adb
TU
1933
1934 /* The HWSP is part of the default context object in LRC mode. */
1935 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1936 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1937 hws = i915_gem_object_pin_map(dctx_obj);
1938 if (IS_ERR(hws))
1939 return PTR_ERR(hws);
1940 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1941 engine->status_page.obj = dctx_obj;
7d774cac
TU
1942
1943 return 0;
04794adb
TU
1944}
1945
e1382efb
CW
1946static const struct logical_ring_info {
1947 const char *name;
1948 unsigned exec_id;
1949 unsigned guc_id;
1950 u32 mmio_base;
1951 unsigned irq_shift;
1952} logical_rings[] = {
1953 [RCS] = {
1954 .name = "render ring",
1955 .exec_id = I915_EXEC_RENDER,
1956 .guc_id = GUC_RENDER_ENGINE,
1957 .mmio_base = RENDER_RING_BASE,
1958 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1959 },
1960 [BCS] = {
1961 .name = "blitter ring",
1962 .exec_id = I915_EXEC_BLT,
1963 .guc_id = GUC_BLITTER_ENGINE,
1964 .mmio_base = BLT_RING_BASE,
1965 .irq_shift = GEN8_BCS_IRQ_SHIFT,
1966 },
1967 [VCS] = {
1968 .name = "bsd ring",
1969 .exec_id = I915_EXEC_BSD,
1970 .guc_id = GUC_VIDEO_ENGINE,
1971 .mmio_base = GEN6_BSD_RING_BASE,
1972 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
1973 },
1974 [VCS2] = {
1975 .name = "bsd2 ring",
1976 .exec_id = I915_EXEC_BSD,
1977 .guc_id = GUC_VIDEO_ENGINE2,
1978 .mmio_base = GEN8_BSD2_RING_BASE,
1979 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
1980 },
1981 [VECS] = {
1982 .name = "video enhancement ring",
1983 .exec_id = I915_EXEC_VEBOX,
1984 .guc_id = GUC_VIDEOENHANCE_ENGINE,
1985 .mmio_base = VEBOX_RING_BASE,
1986 .irq_shift = GEN8_VECS_IRQ_SHIFT,
1987 },
1988};
1989
1990static struct intel_engine_cs *
1991logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
454afebd 1992{
e1382efb 1993 const struct logical_ring_info *info = &logical_rings[id];
3756685a 1994 struct drm_i915_private *dev_priv = to_i915(dev);
e1382efb 1995 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 1996 enum forcewake_domains fw_domains;
48d82387 1997
e1382efb
CW
1998 engine->id = id;
1999 engine->name = info->name;
2000 engine->exec_id = info->exec_id;
2001 engine->guc_id = info->guc_id;
2002 engine->mmio_base = info->mmio_base;
48d82387 2003
c033666a 2004 engine->i915 = dev_priv;
acdd884a 2005
e1382efb
CW
2006 /* Intentionally left blank. */
2007 engine->buffer = NULL;
ca82580c 2008
3756685a
TU
2009 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2010 RING_ELSP(engine),
2011 FW_REG_WRITE);
2012
2013 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2014 RING_CONTEXT_STATUS_PTR(engine),
2015 FW_REG_READ | FW_REG_WRITE);
2016
2017 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2018 RING_CONTEXT_STATUS_BUF_BASE(engine),
2019 FW_REG_READ);
2020
2021 engine->fw_domains = fw_domains;
2022
e1382efb
CW
2023 INIT_LIST_HEAD(&engine->active_list);
2024 INIT_LIST_HEAD(&engine->request_list);
2025 INIT_LIST_HEAD(&engine->buffers);
2026 INIT_LIST_HEAD(&engine->execlist_queue);
2027 spin_lock_init(&engine->execlist_lock);
2028
2029 tasklet_init(&engine->irq_tasklet,
2030 intel_lrc_irq_handler, (unsigned long)engine);
2031
2032 logical_ring_init_platform_invariants(engine);
2033 logical_ring_default_vfuncs(engine);
2034 logical_ring_default_irqs(engine, info->irq_shift);
2035
2036 intel_engine_init_hangcheck(engine);
c033666a 2037 i915_gem_batch_pool_init(dev, &engine->batch_pool);
e1382efb
CW
2038
2039 return engine;
2040}
2041
2042static int
2043logical_ring_init(struct intel_engine_cs *engine)
2044{
e2efd130 2045 struct i915_gem_context *dctx = engine->i915->kernel_context;
e1382efb
CW
2046 int ret;
2047
0bc40be8 2048 ret = i915_cmd_parser_init_ring(engine);
48d82387 2049 if (ret)
b0366a54 2050 goto error;
48d82387 2051
978f1e09 2052 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2053 if (ret)
b0366a54 2054 goto error;
e84fe803
NH
2055
2056 /* As this is the default context, always pin it */
24f1d3cc 2057 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2058 if (ret) {
24f1d3cc
CW
2059 DRM_ERROR("Failed to pin context for %s: %d\n",
2060 engine->name, ret);
b0366a54 2061 goto error;
e84fe803 2062 }
564ddb2f 2063
04794adb 2064 /* And setup the hardware status page. */
7d774cac
TU
2065 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2066 if (ret) {
2067 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2068 goto error;
2069 }
04794adb 2070
b0366a54
DG
2071 return 0;
2072
2073error:
0bc40be8 2074 intel_logical_ring_cleanup(engine);
564ddb2f 2075 return ret;
454afebd
OM
2076}
2077
2078static int logical_render_ring_init(struct drm_device *dev)
2079{
e1382efb 2080 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
99be1dfe 2081 int ret;
454afebd 2082
73d477f6 2083 if (HAS_L3_DPF(dev))
e2f80391 2084 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2085
c9cacf93 2086 /* Override some for render ring. */
82ef822e 2087 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2088 engine->init_hw = gen9_init_render_ring;
82ef822e 2089 else
e2f80391
TU
2090 engine->init_hw = gen8_init_render_ring;
2091 engine->init_context = gen8_init_rcs_context;
2092 engine->cleanup = intel_fini_pipe_control;
2093 engine->emit_flush = gen8_emit_flush_render;
2094 engine->emit_request = gen8_emit_request_render;
9b1136d5 2095
e2f80391 2096 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2097 if (ret)
2098 return ret;
2099
e2f80391 2100 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2101 if (ret) {
2102 /*
2103 * We continue even if we fail to initialize WA batch
2104 * because we only expect rare glitches but nothing
2105 * critical to prevent us from using GPU
2106 */
2107 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2108 ret);
2109 }
2110
e1382efb 2111 ret = logical_ring_init(engine);
c4db7599 2112 if (ret) {
e2f80391 2113 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2114 }
17ee950d
AS
2115
2116 return ret;
454afebd
OM
2117}
2118
2119static int logical_bsd_ring_init(struct drm_device *dev)
2120{
e1382efb 2121 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
454afebd 2122
e1382efb 2123 return logical_ring_init(engine);
454afebd
OM
2124}
2125
2126static int logical_bsd2_ring_init(struct drm_device *dev)
2127{
e1382efb 2128 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
454afebd 2129
e1382efb 2130 return logical_ring_init(engine);
454afebd
OM
2131}
2132
2133static int logical_blt_ring_init(struct drm_device *dev)
2134{
e1382efb 2135 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
9b1136d5 2136
e1382efb 2137 return logical_ring_init(engine);
454afebd
OM
2138}
2139
2140static int logical_vebox_ring_init(struct drm_device *dev)
2141{
e1382efb 2142 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
9b1136d5 2143
e1382efb 2144 return logical_ring_init(engine);
454afebd
OM
2145}
2146
73e4d07f
OM
2147/**
2148 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2149 * @dev: DRM device.
2150 *
2151 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2152 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2153 * those engines that are present in the hardware.
2154 *
2155 * Return: non-zero if the initialization failed.
2156 */
454afebd
OM
2157int intel_logical_rings_init(struct drm_device *dev)
2158{
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160 int ret;
2161
2162 ret = logical_render_ring_init(dev);
2163 if (ret)
2164 return ret;
2165
2166 if (HAS_BSD(dev)) {
2167 ret = logical_bsd_ring_init(dev);
2168 if (ret)
2169 goto cleanup_render_ring;
2170 }
2171
2172 if (HAS_BLT(dev)) {
2173 ret = logical_blt_ring_init(dev);
2174 if (ret)
2175 goto cleanup_bsd_ring;
2176 }
2177
2178 if (HAS_VEBOX(dev)) {
2179 ret = logical_vebox_ring_init(dev);
2180 if (ret)
2181 goto cleanup_blt_ring;
2182 }
2183
2184 if (HAS_BSD2(dev)) {
2185 ret = logical_bsd2_ring_init(dev);
2186 if (ret)
2187 goto cleanup_vebox_ring;
2188 }
2189
454afebd
OM
2190 return 0;
2191
454afebd 2192cleanup_vebox_ring:
4a570db5 2193 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2194cleanup_blt_ring:
4a570db5 2195 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2196cleanup_bsd_ring:
4a570db5 2197 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2198cleanup_render_ring:
4a570db5 2199 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2200
2201 return ret;
2202}
2203
0cea6502 2204static u32
c033666a 2205make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2206{
2207 u32 rpcs = 0;
2208
2209 /*
2210 * No explicit RPCS request is needed to ensure full
2211 * slice/subslice/EU enablement prior to Gen9.
2212 */
c033666a 2213 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2214 return 0;
2215
2216 /*
2217 * Starting in Gen9, render power gating can leave
2218 * slice/subslice/EU in a partially enabled state. We
2219 * must make an explicit request through RPCS for full
2220 * enablement.
2221 */
c033666a 2222 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2223 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2224 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2225 GEN8_RPCS_S_CNT_SHIFT;
2226 rpcs |= GEN8_RPCS_ENABLE;
2227 }
2228
c033666a 2229 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2230 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2231 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2232 GEN8_RPCS_SS_CNT_SHIFT;
2233 rpcs |= GEN8_RPCS_ENABLE;
2234 }
2235
c033666a
CW
2236 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2237 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2238 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2239 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2240 GEN8_RPCS_EU_MAX_SHIFT;
2241 rpcs |= GEN8_RPCS_ENABLE;
2242 }
2243
2244 return rpcs;
2245}
2246
0bc40be8 2247static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2248{
2249 u32 indirect_ctx_offset;
2250
c033666a 2251 switch (INTEL_GEN(engine->i915)) {
71562919 2252 default:
c033666a 2253 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2254 /* fall through */
2255 case 9:
2256 indirect_ctx_offset =
2257 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2258 break;
2259 case 8:
2260 indirect_ctx_offset =
2261 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2262 break;
2263 }
2264
2265 return indirect_ctx_offset;
2266}
2267
8670d6f9 2268static int
e2efd130 2269populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2270 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2271 struct intel_engine_cs *engine,
2272 struct intel_ringbuffer *ringbuf)
8670d6f9 2273{
c033666a 2274 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2275 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2276 void *vaddr;
2277 u32 *reg_state;
8670d6f9
OM
2278 int ret;
2279
2d965536
TD
2280 if (!ppgtt)
2281 ppgtt = dev_priv->mm.aliasing_ppgtt;
2282
8670d6f9
OM
2283 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2284 if (ret) {
2285 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2286 return ret;
2287 }
2288
7d774cac
TU
2289 vaddr = i915_gem_object_pin_map(ctx_obj);
2290 if (IS_ERR(vaddr)) {
2291 ret = PTR_ERR(vaddr);
2292 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2293 return ret;
2294 }
7d774cac 2295 ctx_obj->dirty = true;
8670d6f9
OM
2296
2297 /* The second page of the context object contains some fields which must
2298 * be set up prior to the first execution. */
7d774cac 2299 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2300
2301 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2302 * commands followed by (reg, value) pairs. The values we are setting here are
2303 * only for the first context restore: on a subsequent save, the GPU will
2304 * recreate this batchbuffer with new values (including all the missing
2305 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2306 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2307 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2308 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2309 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2310 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2311 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2312 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2313 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2314 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2315 0);
2316 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2317 0);
7ba717cf
TD
2318 /* Ring buffer start address is not known until the buffer is pinned.
2319 * It is written to the context image in execlists_update_context()
2320 */
0bc40be8
TU
2321 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2322 RING_START(engine->mmio_base), 0);
2323 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2324 RING_CTL(engine->mmio_base),
0d925ea0 2325 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2326 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2327 RING_BBADDR_UDW(engine->mmio_base), 0);
2328 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2329 RING_BBADDR(engine->mmio_base), 0);
2330 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2331 RING_BBSTATE(engine->mmio_base),
0d925ea0 2332 RING_BB_PPGTT);
0bc40be8
TU
2333 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2334 RING_SBBADDR_UDW(engine->mmio_base), 0);
2335 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2336 RING_SBBADDR(engine->mmio_base), 0);
2337 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2338 RING_SBBSTATE(engine->mmio_base), 0);
2339 if (engine->id == RCS) {
2340 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2341 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2343 RING_INDIRECT_CTX(engine->mmio_base), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2345 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2346 if (engine->wa_ctx.obj) {
2347 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2348 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2349
2350 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2351 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2352 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2353
2354 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2355 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2356
2357 reg_state[CTX_BB_PER_CTX_PTR+1] =
2358 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2359 0x01;
2360 }
8670d6f9 2361 }
0d925ea0 2362 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2363 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2364 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2365 /* PDP values well be assigned later if needed */
0bc40be8
TU
2366 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2367 0);
2368 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2369 0);
2370 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2371 0);
2372 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2373 0);
2374 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2375 0);
2376 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2377 0);
2378 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2379 0);
2380 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2381 0);
d7b2633d 2382
2dba3239
MT
2383 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2384 /* 64b PPGTT (48bit canonical)
2385 * PDP0_DESCRIPTOR contains the base address to PML4 and
2386 * other PDP Descriptors are ignored.
2387 */
2388 ASSIGN_CTX_PML4(ppgtt, reg_state);
2389 } else {
2390 /* 32b PPGTT
2391 * PDP*_DESCRIPTOR contains the base address of space supported.
2392 * With dynamic page allocation, PDPs may not be allocated at
2393 * this point. Point the unallocated PDPs to the scratch page
2394 */
c6a2ac71 2395 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2396 }
2397
0bc40be8 2398 if (engine->id == RCS) {
8670d6f9 2399 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2400 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2401 make_rpcs(dev_priv));
8670d6f9
OM
2402 }
2403
7d774cac 2404 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2405
2406 return 0;
2407}
2408
c5d46ee2
DG
2409/**
2410 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2411 * @engine: which engine to find the context size for
c5d46ee2
DG
2412 *
2413 * Each engine may require a different amount of space for a context image,
2414 * so when allocating (or copying) an image, this function can be used to
2415 * find the right size for the specific engine.
2416 *
2417 * Return: size (in bytes) of an engine-specific context image
2418 *
2419 * Note: this size includes the HWSP, which is part of the context image
2420 * in LRC mode, but does not include the "shared data page" used with
2421 * GuC submission. The caller should account for this if using the GuC.
2422 */
0bc40be8 2423uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2424{
2425 int ret = 0;
2426
c033666a 2427 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2428
0bc40be8 2429 switch (engine->id) {
8c857917 2430 case RCS:
c033666a 2431 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2432 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2433 else
2434 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2435 break;
2436 case VCS:
2437 case BCS:
2438 case VECS:
2439 case VCS2:
2440 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2441 break;
2442 }
2443
2444 return ret;
ede7d42b
OM
2445}
2446
73e4d07f 2447/**
978f1e09 2448 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2449 * @ctx: LR context to create.
978f1e09 2450 * @engine: engine to be used with the context.
73e4d07f
OM
2451 *
2452 * This function can be called more than once, with different engines, if we plan
2453 * to use the context with them. The context backing objects and the ringbuffers
2454 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2455 * the creation is a deferred call: it's better to make sure first that we need to use
2456 * a given ring with the context.
2457 *
32197aab 2458 * Return: non-zero on error.
73e4d07f 2459 */
e2efd130 2460static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2461 struct intel_engine_cs *engine)
ede7d42b 2462{
8c857917 2463 struct drm_i915_gem_object *ctx_obj;
9021ad03 2464 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2465 uint32_t context_size;
84c2377f 2466 struct intel_ringbuffer *ringbuf;
8c857917
OM
2467 int ret;
2468
9021ad03 2469 WARN_ON(ce->state);
ede7d42b 2470
0bc40be8 2471 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2472
d1675198
AD
2473 /* One extra page as the sharing data between driver and GuC */
2474 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2475
c033666a 2476 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
fe3db79b 2477 if (IS_ERR(ctx_obj)) {
3126a660 2478 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2479 return PTR_ERR(ctx_obj);
8c857917
OM
2480 }
2481
0bc40be8 2482 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2483 if (IS_ERR(ringbuf)) {
2484 ret = PTR_ERR(ringbuf);
e84fe803 2485 goto error_deref_obj;
8670d6f9
OM
2486 }
2487
0bc40be8 2488 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2489 if (ret) {
2490 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2491 goto error_ringbuf;
84c2377f
OM
2492 }
2493
9021ad03
CW
2494 ce->ringbuf = ringbuf;
2495 ce->state = ctx_obj;
2496 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2497
2498 return 0;
8670d6f9 2499
01101fa7
CW
2500error_ringbuf:
2501 intel_ringbuffer_free(ringbuf);
e84fe803 2502error_deref_obj:
8670d6f9 2503 drm_gem_object_unreference(&ctx_obj->base);
9021ad03
CW
2504 ce->ringbuf = NULL;
2505 ce->state = NULL;
8670d6f9 2506 return ret;
ede7d42b 2507}
3e5b6f05 2508
7d774cac 2509void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2510 struct i915_gem_context *ctx)
3e5b6f05 2511{
e2f80391 2512 struct intel_engine_cs *engine;
3e5b6f05 2513
b4ac5afc 2514 for_each_engine(engine, dev_priv) {
9021ad03
CW
2515 struct intel_context *ce = &ctx->engine[engine->id];
2516 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2517 void *vaddr;
3e5b6f05 2518 uint32_t *reg_state;
3e5b6f05
TD
2519
2520 if (!ctx_obj)
2521 continue;
2522
7d774cac
TU
2523 vaddr = i915_gem_object_pin_map(ctx_obj);
2524 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2525 continue;
7d774cac
TU
2526
2527 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2528 ctx_obj->dirty = true;
3e5b6f05
TD
2529
2530 reg_state[CTX_RING_HEAD+1] = 0;
2531 reg_state[CTX_RING_TAIL+1] = 0;
2532
7d774cac 2533 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2534
9021ad03
CW
2535 ce->ringbuf->head = 0;
2536 ce->ringbuf->tail = 0;
3e5b6f05
TD
2537 }
2538}
This page took 0.388757 seconds and 5 git commands to generate.