drm/i915: Rename intel_engine_cs struct members
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
71562919
MT
226#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 228
e5292823
TU
229static int intel_lr_context_pin(struct intel_context *ctx,
230 struct intel_engine_cs *engine);
0bc40be8
TU
231static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
232 struct drm_i915_gem_object *default_ctx_obj);
e84fe803 233
7ba717cf 234
73e4d07f
OM
235/**
236 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237 * @dev: DRM device.
238 * @enable_execlists: value of i915.enable_execlists module parameter.
239 *
240 * Only certain platforms support Execlists (the prerequisites being
27401d12 241 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
242 *
243 * Return: 1 if Execlists is supported and has to be enabled.
244 */
127f1003
OM
245int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246{
bd84b1e9
DV
247 WARN_ON(i915.enable_ppgtt == -1);
248
a0bd6c31
ZL
249 /* On platforms with execlist available, vGPU will only
250 * support execlist mode, no ring buffer mode.
251 */
252 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253 return 1;
254
70ee45e1
DL
255 if (INTEL_INFO(dev)->gen >= 9)
256 return 1;
257
127f1003
OM
258 if (enable_execlists == 0)
259 return 0;
260
14bf993e
OM
261 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262 i915.use_mmio_flip >= 0)
127f1003
OM
263 return 1;
264
265 return 0;
266}
ede7d42b 267
ca82580c 268static void
0bc40be8 269logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 270{
0bc40be8 271 struct drm_device *dev = engine->dev;
ca82580c 272
c6a2ac71 273 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 274 engine->idle_lite_restore_wa = ~0;
c6a2ac71 275
0bc40be8 276 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 277 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 278 (engine->id == VCS || engine->id == VCS2);
ca82580c 279
0bc40be8
TU
280 engine->ctx_desc_template = GEN8_CTX_VALID;
281 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
282 GEN8_CTX_ADDRESSING_MODE_SHIFT;
283 if (IS_GEN8(dev))
0bc40be8
TU
284 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
286
287 /* TODO: WaDisableLiteRestore when we start using semaphore
288 * signalling between Command Streamers */
289 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
293 if (engine->disable_lite_restore_wa)
294 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
295}
296
73e4d07f 297/**
ca82580c
TU
298 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299 * descriptor for a pinned context
73e4d07f 300 *
ca82580c
TU
301 * @ctx: Context to work on
302 * @ring: Engine the descriptor will be used with
73e4d07f 303 *
ca82580c
TU
304 * The context descriptor encodes various attributes of a context,
305 * including its GTT address and some flags. Because it's fairly
306 * expensive to calculate, we'll just do it once and cache the result,
307 * which remains valid until the context is unpinned.
308 *
309 * This is what a descriptor looks like, from LSB to MSB:
310 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
311 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
312 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
313 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 314 */
ca82580c
TU
315static void
316intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
ca82580c 319 uint64_t lrca, desc;
84b790f8 320
0bc40be8 321 lrca = ctx->engine[engine->id].lrc_vma->node.start +
ca82580c 322 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 323
0bc40be8 324 desc = engine->ctx_desc_template; /* bits 0-11 */
ca82580c
TU
325 desc |= lrca; /* bits 12-31 */
326 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 327
0bc40be8 328 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
329}
330
919f1f55 331uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 332 struct intel_engine_cs *engine)
84b790f8 333{
0bc40be8 334 return ctx->engine[engine->id].lrc_desc;
ca82580c 335}
203a571b 336
ca82580c
TU
337/**
338 * intel_execlists_ctx_id() - get the Execlists Context ID
339 * @ctx: Context to get the ID for
340 * @ring: Engine to get the ID for
341 *
342 * Do not confuse with ctx->id! Unfortunately we have a name overload
343 * here: the old context ID we pass to userspace as a handler so that
344 * they can refer to a context, and the new context ID we pass to the
345 * ELSP so that the GPU can inform us of the context status via
346 * interrupts.
347 *
348 * The context ID is a portion of the context descriptor, so we can
349 * just extract the required part from the cached descriptor.
350 *
351 * Return: 20-bits globally unique context ID.
352 */
353u32 intel_execlists_ctx_id(struct intel_context *ctx,
0bc40be8 354 struct intel_engine_cs *engine)
ca82580c 355{
0bc40be8 356 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
357}
358
cc3c4253
MK
359static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
360 struct drm_i915_gem_request *rq1)
84b790f8 361{
cc3c4253 362
4a570db5 363 struct intel_engine_cs *engine = rq0->engine;
e2f80391 364 struct drm_device *dev = engine->dev;
6e7cc470 365 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 366 uint64_t desc[2];
84b790f8 367
1cff8cc3 368 if (rq1) {
4a570db5 369 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
370 rq1->elsp_submitted++;
371 } else {
372 desc[1] = 0;
373 }
84b790f8 374
4a570db5 375 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 376 rq0->elsp_submitted++;
84b790f8 377
1cff8cc3 378 /* You must always write both descriptors in the order below. */
e2f80391
TU
379 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
380 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 381
e2f80391 382 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 383 /* The context is automatically loaded after the following */
e2f80391 384 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 385
1cff8cc3 386 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 387 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
388}
389
c6a2ac71
TU
390static void
391execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
392{
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
396 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
397}
398
399static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 400{
4a570db5 401 struct intel_engine_cs *engine = rq->engine;
05d9824b 402 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 403 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 404
05d9824b 405 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 406
c6a2ac71
TU
407 /* True 32b PPGTT with dynamic page allocation: update PDP
408 * registers and point the unallocated PDPs to scratch page.
409 * PML4 is allocated during ppgtt init, so this is not needed
410 * in 48-bit mode.
411 */
412 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
413 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
414}
415
d8cb8875
MK
416static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
417 struct drm_i915_gem_request *rq1)
84b790f8 418{
05d9824b 419 execlists_update_context(rq0);
d8cb8875 420
cc3c4253 421 if (rq1)
05d9824b 422 execlists_update_context(rq1);
84b790f8 423
cc3c4253 424 execlists_elsp_write(rq0, rq1);
84b790f8
BW
425}
426
0bc40be8 427static void execlists_context_unqueue__locked(struct intel_engine_cs *engine)
acdd884a 428{
6d3d8274 429 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 430 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 431
0bc40be8 432 assert_spin_locked(&engine->execlist_lock);
acdd884a 433
779949f4
PA
434 /*
435 * If irqs are not active generate a warning as batches that finish
436 * without the irqs may get lost and a GPU Hang may occur.
437 */
0bc40be8 438 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 439
acdd884a 440 /* Try to read in pairs */
0bc40be8 441 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
442 execlist_link) {
443 if (!req0) {
444 req0 = cursor;
6d3d8274 445 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
446 /* Same ctx: ignore first request, as second request
447 * will update tail past first request's workload */
e1fee72c 448 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 449 list_move_tail(&req0->execlist_link,
0bc40be8 450 &engine->execlist_retired_req_list);
acdd884a
MT
451 req0 = cursor;
452 } else {
453 req1 = cursor;
c6a2ac71 454 WARN_ON(req1->elsp_submitted);
acdd884a
MT
455 break;
456 }
457 }
458
c6a2ac71
TU
459 if (unlikely(!req0))
460 return;
461
0bc40be8 462 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 463 /*
c6a2ac71
TU
464 * WaIdleLiteRestore: make sure we never cause a lite restore
465 * with HEAD==TAIL.
466 *
467 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
468 * resubmit the request. See gen8_emit_request() for where we
469 * prepare the padding after the end of the request.
53292cdb 470 */
c6a2ac71 471 struct intel_ringbuffer *ringbuf;
53292cdb 472
0bc40be8 473 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
474 req0->tail += 8;
475 req0->tail &= ringbuf->size - 1;
53292cdb
MT
476 }
477
d8cb8875 478 execlists_submit_requests(req0, req1);
acdd884a
MT
479}
480
0bc40be8 481static void execlists_context_unqueue(struct intel_engine_cs *engine)
c6a2ac71 482{
0bc40be8 483 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71
TU
484
485 spin_lock(&dev_priv->uncore.lock);
486 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
487
0bc40be8 488 execlists_context_unqueue__locked(engine);
c6a2ac71
TU
489
490 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
491 spin_unlock(&dev_priv->uncore.lock);
492}
493
494static unsigned int
0bc40be8 495execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 496{
6d3d8274 497 struct drm_i915_gem_request *head_req;
e981e7b1 498
0bc40be8 499 assert_spin_locked(&engine->execlist_lock);
e981e7b1 500
0bc40be8 501 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 502 struct drm_i915_gem_request,
e981e7b1
TD
503 execlist_link);
504
c6a2ac71
TU
505 if (!head_req)
506 return 0;
e1fee72c 507
0bc40be8 508 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
c6a2ac71
TU
509 return 0;
510
511 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
512
513 if (--head_req->elsp_submitted > 0)
514 return 0;
515
516 list_move_tail(&head_req->execlist_link,
0bc40be8 517 &engine->execlist_retired_req_list);
e981e7b1 518
c6a2ac71 519 return 1;
e981e7b1
TD
520}
521
c6a2ac71 522static u32
0bc40be8 523get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 524 u32 *context_id)
91a41032 525{
0bc40be8 526 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 527 u32 status;
91a41032 528
c6a2ac71
TU
529 read_pointer %= GEN8_CSB_ENTRIES;
530
0bc40be8 531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
91a41032 535
0bc40be8 536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
537 read_pointer));
538
539 return status;
91a41032
BW
540}
541
73e4d07f 542/**
3f7531c3 543 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
544 * @ring: Engine Command Streamer to handle.
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
0bc40be8 549void intel_lrc_irq_handler(struct intel_engine_cs *engine)
e981e7b1 550{
0bc40be8 551 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 552 u32 status_pointer;
c6a2ac71 553 unsigned int read_pointer, write_pointer;
5af05fef 554 u32 status = 0;
e981e7b1 555 u32 status_id;
c6a2ac71
TU
556 unsigned int submit_contexts = 0;
557
0bc40be8 558 spin_lock(&engine->execlist_lock);
e981e7b1 559
c6a2ac71
TU
560 spin_lock(&dev_priv->uncore.lock);
561 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
562
0bc40be8 563 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 564
0bc40be8 565 read_pointer = engine->next_context_status_buffer;
5590a5f0 566 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 567 if (read_pointer > write_pointer)
dfc53c5e 568 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 569
e981e7b1 570 while (read_pointer < write_pointer) {
0bc40be8
TU
571 status = get_context_status(engine, ++read_pointer,
572 &status_id);
91a41032 573
c6a2ac71 574 if (unlikely(status & GEN8_CTX_STATUS_PREEMPTED)) {
e1fee72c 575 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
0bc40be8 576 if (execlists_check_remove_request(engine, status_id))
e1fee72c
OM
577 WARN(1, "Lite Restored request removed from queue\n");
578 } else
579 WARN(1, "Preemption without Lite Restore\n");
580 }
581
c6a2ac71
TU
582 if (status & (GEN8_CTX_STATUS_ACTIVE_IDLE |
583 GEN8_CTX_STATUS_ELEMENT_SWITCH))
584 submit_contexts +=
0bc40be8
TU
585 execlists_check_remove_request(engine,
586 status_id);
e981e7b1
TD
587 }
588
c6a2ac71 589 if (submit_contexts) {
0bc40be8 590 if (!engine->disable_lite_restore_wa ||
c6a2ac71 591 (status & GEN8_CTX_STATUS_ACTIVE_IDLE))
0bc40be8 592 execlists_context_unqueue__locked(engine);
5af05fef 593 }
e981e7b1 594
0bc40be8 595 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 596
5590a5f0
BW
597 /* Update the read pointer to the old write pointer. Manual ringbuffer
598 * management ftw </sarcasm> */
0bc40be8 599 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
c6a2ac71 600 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
0bc40be8 601 engine->next_context_status_buffer << 8));
c6a2ac71
TU
602
603 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
604 spin_unlock(&dev_priv->uncore.lock);
605
0bc40be8 606 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
607
608 if (unlikely(submit_contexts > 2))
609 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
610}
611
c6a2ac71 612static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 613{
4a570db5 614 struct intel_engine_cs *engine = request->engine;
6d3d8274 615 struct drm_i915_gem_request *cursor;
f1ad5a1f 616 int num_elements = 0;
acdd884a 617
ed54c1a1 618 if (request->ctx != request->i915->kernel_context)
e2f80391 619 intel_lr_context_pin(request->ctx, engine);
af3302b9 620
9bb1af44
JH
621 i915_gem_request_reference(request);
622
e2f80391 623 spin_lock_irq(&engine->execlist_lock);
acdd884a 624
e2f80391 625 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
626 if (++num_elements > 2)
627 break;
628
629 if (num_elements > 2) {
6d3d8274 630 struct drm_i915_gem_request *tail_req;
f1ad5a1f 631
e2f80391 632 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 633 struct drm_i915_gem_request,
f1ad5a1f
OM
634 execlist_link);
635
ae70797d 636 if (request->ctx == tail_req->ctx) {
f1ad5a1f 637 WARN(tail_req->elsp_submitted != 0,
7ba717cf 638 "More than 2 already-submitted reqs queued\n");
7eb08a25 639 list_move_tail(&tail_req->execlist_link,
e2f80391 640 &engine->execlist_retired_req_list);
f1ad5a1f
OM
641 }
642 }
643
e2f80391 644 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 645 if (num_elements == 0)
e2f80391 646 execlists_context_unqueue(engine);
acdd884a 647
e2f80391 648 spin_unlock_irq(&engine->execlist_lock);
acdd884a
MT
649}
650
2f20055d 651static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 652{
4a570db5 653 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
e2f80391 658 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
e2f80391 661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
662 if (ret)
663 return ret;
664
e2f80391 665 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
666 return 0;
667}
668
535fbe82 669static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
670 struct list_head *vmas)
671{
4a570db5 672 const unsigned other_rings = ~intel_ring_flag(req->engine);
ba8b7ccb
OM
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
03ade511 681 if (obj->active & other_rings) {
4a570db5 682 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
683 if (ret)
684 return ret;
685 }
ba8b7ccb
OM
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
2f20055d 699 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
700}
701
40e895ce 702int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 703{
e28e404c 704 int ret = 0;
bc0dce3f 705
4a570db5 706 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 707
a7e02199
AD
708 if (i915.enable_guc_submission) {
709 /*
710 * Check that the GuC has space for the request before
711 * going any further, as the i915_add_request() call
712 * later on mustn't fail ...
713 */
714 struct intel_guc *guc = &request->i915->guc;
715
716 ret = i915_guc_wq_check_space(guc->execbuf_client);
717 if (ret)
718 return ret;
719 }
720
e28e404c 721 if (request->ctx != request->i915->kernel_context)
4a570db5 722 ret = intel_lr_context_pin(request->ctx, request->engine);
e28e404c
DG
723
724 return ret;
bc0dce3f
JH
725}
726
ae70797d 727static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 728 int bytes)
bc0dce3f 729{
ae70797d 730 struct intel_ringbuffer *ringbuf = req->ringbuf;
4a570db5 731 struct intel_engine_cs *engine = req->engine;
ae70797d 732 struct drm_i915_gem_request *target;
b4716185
CW
733 unsigned space;
734 int ret;
bc0dce3f
JH
735
736 if (intel_ring_space(ringbuf) >= bytes)
737 return 0;
738
79bbcc29
JH
739 /* The whole point of reserving space is to not wait! */
740 WARN_ON(ringbuf->reserved_in_use);
741
e2f80391 742 list_for_each_entry(target, &engine->request_list, list) {
bc0dce3f
JH
743 /*
744 * The request queue is per-engine, so can contain requests
745 * from multiple ringbuffers. Here, we must ignore any that
746 * aren't from the ringbuffer we're considering.
747 */
ae70797d 748 if (target->ringbuf != ringbuf)
bc0dce3f
JH
749 continue;
750
751 /* Would completion of this request free enough space? */
ae70797d 752 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
753 ringbuf->size);
754 if (space >= bytes)
bc0dce3f 755 break;
bc0dce3f
JH
756 }
757
e2f80391 758 if (WARN_ON(&target->list == &engine->request_list))
bc0dce3f
JH
759 return -ENOSPC;
760
ae70797d 761 ret = i915_wait_request(target);
bc0dce3f
JH
762 if (ret)
763 return ret;
764
b4716185
CW
765 ringbuf->space = space;
766 return 0;
bc0dce3f
JH
767}
768
769/*
770 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 771 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
772 *
773 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
774 * really happens during submission is that the context and current tail will be placed
775 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
776 * point, the tail *inside* the context is updated and the ELSP written to.
777 */
7c17d377 778static int
ae70797d 779intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 780{
7c17d377 781 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 782 struct drm_i915_private *dev_priv = request->i915;
4a570db5 783 struct intel_engine_cs *engine = request->engine;
bc0dce3f 784
7c17d377
CW
785 intel_logical_ring_advance(ringbuf);
786 request->tail = ringbuf->tail;
bc0dce3f 787
7c17d377
CW
788 /*
789 * Here we add two extra NOOPs as padding to avoid
790 * lite restore of a context with HEAD==TAIL.
791 *
792 * Caller must reserve WA_TAIL_DWORDS for us!
793 */
794 intel_logical_ring_emit(ringbuf, MI_NOOP);
795 intel_logical_ring_emit(ringbuf, MI_NOOP);
796 intel_logical_ring_advance(ringbuf);
d1675198 797
f4e2dece 798 if (intel_ring_stopped(engine))
7c17d377 799 return 0;
bc0dce3f 800
f4e2dece
TU
801 if (engine->last_context != request->ctx) {
802 if (engine->last_context)
803 intel_lr_context_unpin(engine->last_context, engine);
804 if (request->ctx != request->i915->kernel_context) {
805 intel_lr_context_pin(request->ctx, engine);
806 engine->last_context = request->ctx;
807 } else {
808 engine->last_context = NULL;
809 }
810 }
811
d1675198
AD
812 if (dev_priv->guc.execbuf_client)
813 i915_guc_submit(dev_priv->guc.execbuf_client, request);
814 else
815 execlists_context_queue(request);
7c17d377
CW
816
817 return 0;
bc0dce3f
JH
818}
819
79bbcc29 820static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
821{
822 uint32_t __iomem *virt;
823 int rem = ringbuf->size - ringbuf->tail;
824
bc0dce3f
JH
825 virt = ringbuf->virtual_start + ringbuf->tail;
826 rem /= 4;
827 while (rem--)
828 iowrite32(MI_NOOP, virt++);
829
830 ringbuf->tail = 0;
831 intel_ring_update_space(ringbuf);
bc0dce3f
JH
832}
833
ae70797d 834static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 835{
ae70797d 836 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
837 int remain_usable = ringbuf->effective_size - ringbuf->tail;
838 int remain_actual = ringbuf->size - ringbuf->tail;
839 int ret, total_bytes, wait_bytes = 0;
840 bool need_wrap = false;
29b1b415 841
79bbcc29
JH
842 if (ringbuf->reserved_in_use)
843 total_bytes = bytes;
844 else
845 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 846
79bbcc29
JH
847 if (unlikely(bytes > remain_usable)) {
848 /*
849 * Not enough space for the basic request. So need to flush
850 * out the remainder and then wait for base + reserved.
851 */
852 wait_bytes = remain_actual + total_bytes;
853 need_wrap = true;
854 } else {
855 if (unlikely(total_bytes > remain_usable)) {
856 /*
857 * The base request will fit but the reserved space
858 * falls off the end. So only need to to wait for the
859 * reserved size after flushing out the remainder.
860 */
861 wait_bytes = remain_actual + ringbuf->reserved_size;
862 need_wrap = true;
863 } else if (total_bytes > ringbuf->space) {
864 /* No wrapping required, just waiting. */
865 wait_bytes = total_bytes;
29b1b415 866 }
bc0dce3f
JH
867 }
868
79bbcc29
JH
869 if (wait_bytes) {
870 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
871 if (unlikely(ret))
872 return ret;
79bbcc29
JH
873
874 if (need_wrap)
875 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
876 }
877
878 return 0;
879}
880
881/**
882 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
883 *
374887ba 884 * @req: The request to start some new work for
bc0dce3f
JH
885 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
886 *
887 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
888 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
889 * and also preallocates a request (every workload submission is still mediated through
890 * requests, same as it did with legacy ringbuffer submission).
891 *
892 * Return: non-zero if the ringbuffer is not ready to be written to.
893 */
3bbaba0c 894int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 895{
4d616a29 896 struct drm_i915_private *dev_priv;
bc0dce3f
JH
897 int ret;
898
4d616a29 899 WARN_ON(req == NULL);
4a570db5 900 dev_priv = req->engine->dev->dev_private;
4d616a29 901
bc0dce3f
JH
902 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
903 dev_priv->mm.interruptible);
904 if (ret)
905 return ret;
906
ae70797d 907 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
908 if (ret)
909 return ret;
910
4d616a29 911 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
912 return 0;
913}
914
ccd98fe4
JH
915int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
916{
917 /*
918 * The first call merely notes the reserve request and is common for
919 * all back ends. The subsequent localised _begin() call actually
920 * ensures that the reservation is available. Without the begin, if
921 * the request creator immediately submitted the request without
922 * adding any commands to it then there might not actually be
923 * sufficient room for the submission commands.
924 */
925 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
926
927 return intel_logical_ring_begin(request, 0);
928}
929
73e4d07f
OM
930/**
931 * execlists_submission() - submit a batchbuffer for execution, Execlists style
932 * @dev: DRM device.
933 * @file: DRM file.
934 * @ring: Engine Command Streamer to submit to.
935 * @ctx: Context to employ for this submission.
936 * @args: execbuffer call arguments.
937 * @vmas: list of vmas.
938 * @batch_obj: the batchbuffer to submit.
939 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 940 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
941 *
942 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
943 * away the submission details of the execbuffer ioctl call.
944 *
945 * Return: non-zero if the submission fails.
946 */
5f19e2bf 947int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 948 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 949 struct list_head *vmas)
454afebd 950{
5f19e2bf 951 struct drm_device *dev = params->dev;
4a570db5 952 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 953 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 954 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 955 u64 exec_start;
ba8b7ccb
OM
956 int instp_mode;
957 u32 instp_mask;
958 int ret;
959
960 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
961 instp_mask = I915_EXEC_CONSTANTS_MASK;
962 switch (instp_mode) {
963 case I915_EXEC_CONSTANTS_REL_GENERAL:
964 case I915_EXEC_CONSTANTS_ABSOLUTE:
965 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 966 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
967 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
968 return -EINVAL;
969 }
970
971 if (instp_mode != dev_priv->relative_constants_mode) {
972 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
973 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
974 return -EINVAL;
975 }
976
977 /* The HW changed the meaning on this bit on gen6 */
978 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
979 }
980 break;
981 default:
982 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
983 return -EINVAL;
984 }
985
ba8b7ccb
OM
986 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
987 DRM_DEBUG("sol reset is gen7 only\n");
988 return -EINVAL;
989 }
990
535fbe82 991 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
992 if (ret)
993 return ret;
994
4a570db5 995 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 996 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 997 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
998 if (ret)
999 return ret;
1000
1001 intel_logical_ring_emit(ringbuf, MI_NOOP);
1002 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 1003 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
1004 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1005 intel_logical_ring_advance(ringbuf);
1006
1007 dev_priv->relative_constants_mode = instp_mode;
1008 }
1009
5f19e2bf
JH
1010 exec_start = params->batch_obj_vm_offset +
1011 args->batch_start_offset;
1012
e2f80391 1013 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
1014 if (ret)
1015 return ret;
1016
95c24161 1017 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 1018
8a8edb59 1019 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 1020 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 1021
454afebd
OM
1022 return 0;
1023}
1024
0bc40be8 1025void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 1026{
6d3d8274 1027 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
1028 struct list_head retired_list;
1029
0bc40be8
TU
1030 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1031 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
1032 return;
1033
1034 INIT_LIST_HEAD(&retired_list);
0bc40be8
TU
1035 spin_lock_irq(&engine->execlist_lock);
1036 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1037 spin_unlock_irq(&engine->execlist_lock);
c86ee3a9
TD
1038
1039 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1040 struct intel_context *ctx = req->ctx;
1041 struct drm_i915_gem_object *ctx_obj =
0bc40be8 1042 ctx->engine[engine->id].state;
af3302b9 1043
ed54c1a1 1044 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 1045 intel_lr_context_unpin(ctx, engine);
e5292823 1046
c86ee3a9 1047 list_del(&req->execlist_link);
f8210795 1048 i915_gem_request_unreference(req);
c86ee3a9
TD
1049 }
1050}
1051
0bc40be8 1052void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 1053{
0bc40be8 1054 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
1055 int ret;
1056
0bc40be8 1057 if (!intel_ring_initialized(engine))
9832b9da
OM
1058 return;
1059
0bc40be8
TU
1060 ret = intel_ring_idle(engine);
1061 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
9832b9da 1062 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 1063 engine->name, ret);
9832b9da
OM
1064
1065 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
1066 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1067 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1068 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
1069 return;
1070 }
0bc40be8 1071 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1072}
1073
4866d729 1074int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1075{
4a570db5 1076 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
1077 int ret;
1078
e2f80391 1079 if (!engine->gpu_caches_dirty)
48e29f55
OM
1080 return 0;
1081
e2f80391 1082 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1083 if (ret)
1084 return ret;
1085
e2f80391 1086 engine->gpu_caches_dirty = false;
48e29f55
OM
1087 return 0;
1088}
1089
e5292823 1090static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 1091 struct intel_engine_cs *engine)
dcb4c12a 1092{
0bc40be8 1093 struct drm_device *dev = engine->dev;
e84fe803 1094 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
1095 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1096 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
82352e90 1097 struct page *lrc_state_page;
77b04a04 1098 uint32_t *lrc_reg_state;
ca82580c 1099 int ret;
dcb4c12a 1100
0bc40be8 1101 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 1102
e84fe803
NH
1103 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1104 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1105 if (ret)
1106 return ret;
7ba717cf 1107
82352e90
TU
1108 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1109 if (WARN_ON(!lrc_state_page)) {
1110 ret = -ENODEV;
1111 goto unpin_ctx_obj;
1112 }
1113
0bc40be8 1114 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803
NH
1115 if (ret)
1116 goto unpin_ctx_obj;
d1675198 1117
0bc40be8
TU
1118 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1119 intel_lr_context_descriptor_update(ctx, engine);
77b04a04
TU
1120 lrc_reg_state = kmap(lrc_state_page);
1121 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 1122 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 1123 ctx_obj->dirty = true;
e93c28f3 1124
e84fe803
NH
1125 /* Invalidate GuC TLB. */
1126 if (i915.enable_guc_submission)
1127 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1128
7ba717cf
TD
1129 return ret;
1130
1131unpin_ctx_obj:
1132 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1133
1134 return ret;
1135}
1136
e5292823
TU
1137static int intel_lr_context_pin(struct intel_context *ctx,
1138 struct intel_engine_cs *engine)
e84fe803
NH
1139{
1140 int ret = 0;
e84fe803 1141
e5292823
TU
1142 if (ctx->engine[engine->id].pin_count++ == 0) {
1143 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
1144 if (ret)
1145 goto reset_pin_count;
321fe304
TU
1146
1147 i915_gem_context_reference(ctx);
e84fe803
NH
1148 }
1149 return ret;
1150
a7cbedec 1151reset_pin_count:
e5292823 1152 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1153 return ret;
1154}
1155
e5292823
TU
1156void intel_lr_context_unpin(struct intel_context *ctx,
1157 struct intel_engine_cs *engine)
dcb4c12a 1158{
e5292823 1159 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1160
f4e2dece 1161 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823
TU
1162 if (--ctx->engine[engine->id].pin_count == 0) {
1163 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1164 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1165 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1166 ctx->engine[engine->id].lrc_vma = NULL;
1167 ctx->engine[engine->id].lrc_desc = 0;
1168 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1169
1170 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1171 }
1172}
1173
e2be4faf 1174static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1175{
1176 int ret, i;
4a570db5 1177 struct intel_engine_cs *engine = req->engine;
e2be4faf 1178 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1179 struct drm_device *dev = engine->dev;
771b9a53
MT
1180 struct drm_i915_private *dev_priv = dev->dev_private;
1181 struct i915_workarounds *w = &dev_priv->workarounds;
1182
cd7feaaa 1183 if (w->count == 0)
771b9a53
MT
1184 return 0;
1185
e2f80391 1186 engine->gpu_caches_dirty = true;
4866d729 1187 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1188 if (ret)
1189 return ret;
1190
4d616a29 1191 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1192 if (ret)
1193 return ret;
1194
1195 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1196 for (i = 0; i < w->count; i++) {
f92a9162 1197 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1198 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1199 }
1200 intel_logical_ring_emit(ringbuf, MI_NOOP);
1201
1202 intel_logical_ring_advance(ringbuf);
1203
e2f80391 1204 engine->gpu_caches_dirty = true;
4866d729 1205 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1206 if (ret)
1207 return ret;
1208
1209 return 0;
1210}
1211
83b8a982 1212#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1213 do { \
83b8a982
AS
1214 int __index = (index)++; \
1215 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1216 return -ENOSPC; \
1217 } \
83b8a982 1218 batch[__index] = (cmd); \
17ee950d
AS
1219 } while (0)
1220
8f40db77 1221#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1222 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1223
1224/*
1225 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1226 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1227 * but there is a slight complication as this is applied in WA batch where the
1228 * values are only initialized once so we cannot take register value at the
1229 * beginning and reuse it further; hence we save its value to memory, upload a
1230 * constant value with bit21 set and then we restore it back with the saved value.
1231 * To simplify the WA, a constant value is formed by using the default value
1232 * of this register. This shouldn't be a problem because we are only modifying
1233 * it for a short period and this batch in non-premptible. We can ofcourse
1234 * use additional instructions that read the actual value of the register
1235 * at that time and set our bit of interest but it makes the WA complicated.
1236 *
1237 * This WA is also required for Gen9 so extracting as a function avoids
1238 * code duplication.
1239 */
0bc40be8 1240static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1241 uint32_t *const batch,
1242 uint32_t index)
1243{
1244 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1245
a4106a78
AS
1246 /*
1247 * WaDisableLSQCROPERFforOCL:skl
1248 * This WA is implemented in skl_init_clock_gating() but since
1249 * this batch updates GEN8_L3SQCREG4 with default value we need to
1250 * set this bit here to retain the WA during flush.
1251 */
0bc40be8 1252 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1253 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1254
f1afe24f 1255 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1256 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1257 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1258 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1259 wa_ctx_emit(batch, index, 0);
1260
1261 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1262 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1263 wa_ctx_emit(batch, index, l3sqc4_flush);
1264
1265 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1267 PIPE_CONTROL_DC_FLUSH_ENABLE));
1268 wa_ctx_emit(batch, index, 0);
1269 wa_ctx_emit(batch, index, 0);
1270 wa_ctx_emit(batch, index, 0);
1271 wa_ctx_emit(batch, index, 0);
1272
f1afe24f 1273 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1274 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1275 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1276 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1277 wa_ctx_emit(batch, index, 0);
9e000847
AS
1278
1279 return index;
1280}
1281
17ee950d
AS
1282static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1283 uint32_t offset,
1284 uint32_t start_alignment)
1285{
1286 return wa_ctx->offset = ALIGN(offset, start_alignment);
1287}
1288
1289static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1290 uint32_t offset,
1291 uint32_t size_alignment)
1292{
1293 wa_ctx->size = offset - wa_ctx->offset;
1294
1295 WARN(wa_ctx->size % size_alignment,
1296 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1297 wa_ctx->size, size_alignment);
1298 return 0;
1299}
1300
1301/**
1302 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1303 *
1304 * @ring: only applicable for RCS
1305 * @wa_ctx: structure representing wa_ctx
1306 * offset: specifies start of the batch, should be cache-aligned. This is updated
1307 * with the offset value received as input.
1308 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1309 * @batch: page in which WA are loaded
1310 * @offset: This field specifies the start of the batch, it should be
1311 * cache-aligned otherwise it is adjusted accordingly.
1312 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1313 * initialized at the beginning and shared across all contexts but this field
1314 * helps us to have multiple batches at different offsets and select them based
1315 * on a criteria. At the moment this batch always start at the beginning of the page
1316 * and at this point we don't have multiple wa_ctx batch buffers.
1317 *
1318 * The number of WA applied are not known at the beginning; we use this field
1319 * to return the no of DWORDS written.
4d78c8dc 1320 *
17ee950d
AS
1321 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1322 * so it adds NOOPs as padding to make it cacheline aligned.
1323 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1324 * makes a complete batch buffer.
1325 *
1326 * Return: non-zero if we exceed the PAGE_SIZE limit.
1327 */
1328
0bc40be8 1329static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1330 struct i915_wa_ctx_bb *wa_ctx,
1331 uint32_t *const batch,
1332 uint32_t *offset)
1333{
0160f055 1334 uint32_t scratch_addr;
17ee950d
AS
1335 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1336
7ad00d1a 1337 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1338 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1339
c82435bb 1340 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1341 if (IS_BROADWELL(engine->dev)) {
1342 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1343 if (rc < 0)
1344 return rc;
1345 index = rc;
c82435bb
AS
1346 }
1347
0160f055
AS
1348 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1349 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1350 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1351
83b8a982
AS
1352 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1353 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1354 PIPE_CONTROL_GLOBAL_GTT_IVB |
1355 PIPE_CONTROL_CS_STALL |
1356 PIPE_CONTROL_QW_WRITE));
1357 wa_ctx_emit(batch, index, scratch_addr);
1358 wa_ctx_emit(batch, index, 0);
1359 wa_ctx_emit(batch, index, 0);
1360 wa_ctx_emit(batch, index, 0);
0160f055 1361
17ee950d
AS
1362 /* Pad to end of cacheline */
1363 while (index % CACHELINE_DWORDS)
83b8a982 1364 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1365
1366 /*
1367 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1368 * execution depends on the length specified in terms of cache lines
1369 * in the register CTX_RCS_INDIRECT_CTX
1370 */
1371
1372 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1373}
1374
1375/**
1376 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1377 *
1378 * @ring: only applicable for RCS
1379 * @wa_ctx: structure representing wa_ctx
1380 * offset: specifies start of the batch, should be cache-aligned.
1381 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1382 * @batch: page in which WA are loaded
17ee950d
AS
1383 * @offset: This field specifies the start of this batch.
1384 * This batch is started immediately after indirect_ctx batch. Since we ensure
1385 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1386 *
1387 * The number of DWORDS written are returned using this field.
1388 *
1389 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1390 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1391 */
0bc40be8 1392static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1393 struct i915_wa_ctx_bb *wa_ctx,
1394 uint32_t *const batch,
1395 uint32_t *offset)
1396{
1397 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1398
7ad00d1a 1399 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1400 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1401
83b8a982 1402 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1403
1404 return wa_ctx_end(wa_ctx, *offset = index, 1);
1405}
1406
0bc40be8 1407static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1408 struct i915_wa_ctx_bb *wa_ctx,
1409 uint32_t *const batch,
1410 uint32_t *offset)
1411{
a4106a78 1412 int ret;
0bc40be8 1413 struct drm_device *dev = engine->dev;
0504cffc
AS
1414 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1415
0907c8f7 1416 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1417 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1418 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1419 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1420
a4106a78 1421 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1422 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1423 if (ret < 0)
1424 return ret;
1425 index = ret;
1426
0504cffc
AS
1427 /* Pad to end of cacheline */
1428 while (index % CACHELINE_DWORDS)
1429 wa_ctx_emit(batch, index, MI_NOOP);
1430
1431 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1432}
1433
0bc40be8 1434static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1435 struct i915_wa_ctx_bb *wa_ctx,
1436 uint32_t *const batch,
1437 uint32_t *offset)
1438{
0bc40be8 1439 struct drm_device *dev = engine->dev;
0504cffc
AS
1440 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1441
9b01435d 1442 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1443 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1444 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1445 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1446 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1447 wa_ctx_emit(batch, index,
1448 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1449 wa_ctx_emit(batch, index, MI_NOOP);
1450 }
1451
0907c8f7 1452 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1453 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1454 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1455 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1456
0504cffc
AS
1457 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1458
1459 return wa_ctx_end(wa_ctx, *offset = index, 1);
1460}
1461
0bc40be8 1462static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1463{
1464 int ret;
1465
0bc40be8
TU
1466 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1467 PAGE_ALIGN(size));
1468 if (!engine->wa_ctx.obj) {
17ee950d
AS
1469 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1470 return -ENOMEM;
1471 }
1472
0bc40be8 1473 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1474 if (ret) {
1475 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1476 ret);
0bc40be8 1477 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1478 return ret;
1479 }
1480
1481 return 0;
1482}
1483
0bc40be8 1484static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1485{
0bc40be8
TU
1486 if (engine->wa_ctx.obj) {
1487 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1488 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1489 engine->wa_ctx.obj = NULL;
17ee950d
AS
1490 }
1491}
1492
0bc40be8 1493static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1494{
1495 int ret;
1496 uint32_t *batch;
1497 uint32_t offset;
1498 struct page *page;
0bc40be8 1499 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1500
0bc40be8 1501 WARN_ON(engine->id != RCS);
17ee950d 1502
5e60d790 1503 /* update this when WA for higher Gen are added */
0bc40be8 1504 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1505 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1506 INTEL_INFO(engine->dev)->gen);
5e60d790 1507 return 0;
0504cffc 1508 }
5e60d790 1509
c4db7599 1510 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1511 if (engine->scratch.obj == NULL) {
1512 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1513 return -EINVAL;
1514 }
1515
0bc40be8 1516 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1517 if (ret) {
1518 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1519 return ret;
1520 }
1521
033908ae 1522 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1523 batch = kmap_atomic(page);
1524 offset = 0;
1525
0bc40be8
TU
1526 if (INTEL_INFO(engine->dev)->gen == 8) {
1527 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1528 &wa_ctx->indirect_ctx,
1529 batch,
1530 &offset);
1531 if (ret)
1532 goto out;
1533
0bc40be8 1534 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1535 &wa_ctx->per_ctx,
1536 batch,
1537 &offset);
1538 if (ret)
1539 goto out;
0bc40be8
TU
1540 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1541 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1542 &wa_ctx->indirect_ctx,
1543 batch,
1544 &offset);
1545 if (ret)
1546 goto out;
1547
0bc40be8 1548 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1549 &wa_ctx->per_ctx,
1550 batch,
1551 &offset);
1552 if (ret)
1553 goto out;
17ee950d
AS
1554 }
1555
1556out:
1557 kunmap_atomic(batch);
1558 if (ret)
0bc40be8 1559 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1560
1561 return ret;
1562}
1563
0bc40be8 1564static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1565{
0bc40be8 1566 struct drm_device *dev = engine->dev;
9b1136d5 1567 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1568 unsigned int next_context_status_buffer_hw;
9b1136d5 1569
0bc40be8
TU
1570 lrc_setup_hardware_status_page(engine,
1571 dev_priv->kernel_context->engine[engine->id].state);
e84fe803 1572
0bc40be8
TU
1573 I915_WRITE_IMR(engine,
1574 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1575 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1576
0bc40be8 1577 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1578 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1579 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1580 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1581
1582 /*
1583 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1584 * zero, we need to read the write pointer from hardware and use its
1585 * value because "this register is power context save restored".
1586 * Effectively, these states have been observed:
1587 *
1588 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1589 * BDW | CSB regs not reset | CSB regs reset |
1590 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1591 * SKL | ? | ? |
1592 * BXT | ? | ? |
dfc53c5e 1593 */
5590a5f0 1594 next_context_status_buffer_hw =
0bc40be8 1595 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1596
1597 /*
1598 * When the CSB registers are reset (also after power-up / gpu reset),
1599 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1600 * this special case, so the first element read is CSB[0].
1601 */
1602 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1603 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1604
0bc40be8
TU
1605 engine->next_context_status_buffer = next_context_status_buffer_hw;
1606 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1607
0bc40be8 1608 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
9b1136d5
OM
1609
1610 return 0;
1611}
1612
0bc40be8 1613static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1614{
0bc40be8 1615 struct drm_device *dev = engine->dev;
9b1136d5
OM
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 int ret;
1618
0bc40be8 1619 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1620 if (ret)
1621 return ret;
1622
1623 /* We need to disable the AsyncFlip performance optimisations in order
1624 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1625 * programmed to '1' on all products.
1626 *
1627 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1628 */
1629 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1630
9b1136d5
OM
1631 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1632
0bc40be8 1633 return init_workarounds_ring(engine);
9b1136d5
OM
1634}
1635
0bc40be8 1636static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1637{
1638 int ret;
1639
0bc40be8 1640 ret = gen8_init_common_ring(engine);
82ef822e
DL
1641 if (ret)
1642 return ret;
1643
0bc40be8 1644 return init_workarounds_ring(engine);
82ef822e
DL
1645}
1646
7a01a0a2
MT
1647static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1648{
1649 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1650 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1651 struct intel_ringbuffer *ringbuf = req->ringbuf;
1652 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1653 int i, ret;
1654
1655 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1656 if (ret)
1657 return ret;
1658
1659 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1660 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1661 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1662
e2f80391
TU
1663 intel_logical_ring_emit_reg(ringbuf,
1664 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1665 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1666 intel_logical_ring_emit_reg(ringbuf,
1667 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1668 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1669 }
1670
1671 intel_logical_ring_emit(ringbuf, MI_NOOP);
1672 intel_logical_ring_advance(ringbuf);
1673
1674 return 0;
1675}
1676
be795fc1 1677static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1678 u64 offset, unsigned dispatch_flags)
15648585 1679{
be795fc1 1680 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1681 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1682 int ret;
1683
7a01a0a2
MT
1684 /* Don't rely in hw updating PDPs, specially in lite-restore.
1685 * Ideally, we should set Force PD Restore in ctx descriptor,
1686 * but we can't. Force Restore would be a second option, but
1687 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1688 * not idle). PML4 is allocated during ppgtt init so this is
1689 * not needed in 48-bit.*/
7a01a0a2 1690 if (req->ctx->ppgtt &&
4a570db5 1691 (intel_ring_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1692 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1693 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1694 ret = intel_logical_ring_emit_pdps(req);
1695 if (ret)
1696 return ret;
1697 }
7a01a0a2 1698
4a570db5 1699 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->engine);
7a01a0a2
MT
1700 }
1701
4d616a29 1702 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1703 if (ret)
1704 return ret;
1705
1706 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1707 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1708 (ppgtt<<8) |
1709 (dispatch_flags & I915_DISPATCH_RS ?
1710 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1711 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1712 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1713 intel_logical_ring_emit(ringbuf, MI_NOOP);
1714 intel_logical_ring_advance(ringbuf);
1715
1716 return 0;
1717}
1718
0bc40be8 1719static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1720{
0bc40be8 1721 struct drm_device *dev = engine->dev;
73d477f6
OM
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 unsigned long flags;
1724
7cd512f1 1725 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1726 return false;
1727
1728 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1729 if (engine->irq_refcount++ == 0) {
1730 I915_WRITE_IMR(engine,
1731 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1732 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1733 }
1734 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1735
1736 return true;
1737}
1738
0bc40be8 1739static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1740{
0bc40be8 1741 struct drm_device *dev = engine->dev;
73d477f6
OM
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 unsigned long flags;
1744
1745 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1746 if (--engine->irq_refcount == 0) {
1747 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1748 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1749 }
1750 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1751}
1752
7deb4d39 1753static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1754 u32 invalidate_domains,
1755 u32 unused)
1756{
7deb4d39 1757 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1758 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1759 struct drm_device *dev = engine->dev;
4712274c
OM
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 uint32_t cmd;
1762 int ret;
1763
4d616a29 1764 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1765 if (ret)
1766 return ret;
1767
1768 cmd = MI_FLUSH_DW + 1;
1769
f0a1fb10
CW
1770 /* We always require a command barrier so that subsequent
1771 * commands, such as breadcrumb interrupts, are strictly ordered
1772 * wrt the contents of the write cache being flushed to memory
1773 * (and thus being coherent from the CPU).
1774 */
1775 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1776
1777 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1778 cmd |= MI_INVALIDATE_TLB;
4a570db5 1779 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1780 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1781 }
1782
1783 intel_logical_ring_emit(ringbuf, cmd);
1784 intel_logical_ring_emit(ringbuf,
1785 I915_GEM_HWS_SCRATCH_ADDR |
1786 MI_FLUSH_DW_USE_GTT);
1787 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1788 intel_logical_ring_emit(ringbuf, 0); /* value */
1789 intel_logical_ring_advance(ringbuf);
1790
1791 return 0;
1792}
1793
7deb4d39 1794static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1795 u32 invalidate_domains,
1796 u32 flush_domains)
1797{
7deb4d39 1798 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1799 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1800 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1801 bool vf_flush_wa = false;
4712274c
OM
1802 u32 flags = 0;
1803 int ret;
1804
1805 flags |= PIPE_CONTROL_CS_STALL;
1806
1807 if (flush_domains) {
1808 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1809 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1810 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1811 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1812 }
1813
1814 if (invalidate_domains) {
1815 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1816 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1817 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1818 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1819 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1820 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1821 flags |= PIPE_CONTROL_QW_WRITE;
1822 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1823
1a5a9ce7
BW
1824 /*
1825 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1826 * pipe control.
1827 */
e2f80391 1828 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1829 vf_flush_wa = true;
1830 }
9647ff36 1831
4d616a29 1832 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1833 if (ret)
1834 return ret;
1835
9647ff36
ID
1836 if (vf_flush_wa) {
1837 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1838 intel_logical_ring_emit(ringbuf, 0);
1839 intel_logical_ring_emit(ringbuf, 0);
1840 intel_logical_ring_emit(ringbuf, 0);
1841 intel_logical_ring_emit(ringbuf, 0);
1842 intel_logical_ring_emit(ringbuf, 0);
1843 }
1844
4712274c
OM
1845 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1846 intel_logical_ring_emit(ringbuf, flags);
1847 intel_logical_ring_emit(ringbuf, scratch_addr);
1848 intel_logical_ring_emit(ringbuf, 0);
1849 intel_logical_ring_emit(ringbuf, 0);
1850 intel_logical_ring_emit(ringbuf, 0);
1851 intel_logical_ring_advance(ringbuf);
1852
1853 return 0;
1854}
1855
0bc40be8 1856static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
e94e37ad 1857{
0bc40be8 1858 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1859}
1860
0bc40be8 1861static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1862{
0bc40be8 1863 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1864}
1865
0bc40be8
TU
1866static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
1867 bool lazy_coherency)
319404df
ID
1868{
1869
1870 /*
1871 * On BXT A steppings there is a HW coherency issue whereby the
1872 * MI_STORE_DATA_IMM storing the completed request's seqno
1873 * occasionally doesn't invalidate the CPU cache. Work around this by
1874 * clflushing the corresponding cacheline whenever the caller wants
1875 * the coherency to be guaranteed. Note that this cacheline is known
1876 * to be clean at this point, since we only write it in
1877 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1878 * this clflush in practice becomes an invalidate operation.
1879 */
1880
1881 if (!lazy_coherency)
0bc40be8 1882 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df 1883
0bc40be8 1884 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1885}
1886
0bc40be8 1887static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1888{
0bc40be8 1889 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1890
1891 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1892 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1893}
1894
7c17d377
CW
1895/*
1896 * Reserve space for 2 NOOPs at the end of each request to be
1897 * used as a workaround for not being allowed to do lite
1898 * restore with HEAD==TAIL (WaIdleLiteRestore).
1899 */
1900#define WA_TAIL_DWORDS 2
1901
1902static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1903{
1904 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1905}
1906
c4e76638 1907static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1908{
c4e76638 1909 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1910 int ret;
1911
7c17d377 1912 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1913 if (ret)
1914 return ret;
1915
7c17d377
CW
1916 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1917 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1918
4da46e1e 1919 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1920 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1921 intel_logical_ring_emit(ringbuf,
4a570db5 1922 hws_seqno_address(request->engine) |
7c17d377 1923 MI_FLUSH_DW_USE_GTT);
4da46e1e 1924 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1925 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1926 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1927 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1928 return intel_logical_ring_advance_and_submit(request);
1929}
4da46e1e 1930
7c17d377
CW
1931static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1932{
1933 struct intel_ringbuffer *ringbuf = request->ringbuf;
1934 int ret;
53292cdb 1935
7c17d377
CW
1936 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1937 if (ret)
1938 return ret;
1939
1940 /* w/a for post sync ops following a GPGPU operation we
1941 * need a prior CS_STALL, which is emitted by the flush
1942 * following the batch.
1943 */
1944 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1945 intel_logical_ring_emit(ringbuf,
1946 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1947 PIPE_CONTROL_CS_STALL |
1948 PIPE_CONTROL_QW_WRITE));
4a570db5 1949 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1950 intel_logical_ring_emit(ringbuf, 0);
1951 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1952 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1953 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1954}
1955
be01363f 1956static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1957{
cef437ad 1958 struct render_state so;
cef437ad
DL
1959 int ret;
1960
4a570db5 1961 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1962 if (ret)
1963 return ret;
1964
1965 if (so.rodata == NULL)
1966 return 0;
1967
4a570db5 1968 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1969 I915_DISPATCH_SECURE);
cef437ad
DL
1970 if (ret)
1971 goto out;
1972
4a570db5 1973 ret = req->engine->emit_bb_start(req,
84e81020
AS
1974 (so.ggtt_offset + so.aux_batch_offset),
1975 I915_DISPATCH_SECURE);
1976 if (ret)
1977 goto out;
1978
b2af0376 1979 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1980
cef437ad
DL
1981out:
1982 i915_gem_render_state_fini(&so);
1983 return ret;
1984}
1985
8753181e 1986static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1987{
1988 int ret;
1989
e2be4faf 1990 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1991 if (ret)
1992 return ret;
1993
3bbaba0c
PA
1994 ret = intel_rcs_context_init_mocs(req);
1995 /*
1996 * Failing to program the MOCS is non-fatal.The system will not
1997 * run at peak performance. So generate an error and carry on.
1998 */
1999 if (ret)
2000 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2001
be01363f 2002 return intel_lr_context_render_state_init(req);
e7778be1
TD
2003}
2004
73e4d07f
OM
2005/**
2006 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2007 *
2008 * @ring: Engine Command Streamer.
2009 *
2010 */
0bc40be8 2011void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 2012{
6402c330 2013 struct drm_i915_private *dev_priv;
9832b9da 2014
0bc40be8 2015 if (!intel_ring_initialized(engine))
48d82387
OM
2016 return;
2017
0bc40be8 2018 dev_priv = engine->dev->dev_private;
6402c330 2019
0bc40be8
TU
2020 if (engine->buffer) {
2021 intel_logical_ring_stop(engine);
2022 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 2023 }
48d82387 2024
0bc40be8
TU
2025 if (engine->cleanup)
2026 engine->cleanup(engine);
48d82387 2027
0bc40be8
TU
2028 i915_cmd_parser_fini_ring(engine);
2029 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 2030
0bc40be8
TU
2031 if (engine->status_page.obj) {
2032 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2033 engine->status_page.obj = NULL;
48d82387 2034 }
17ee950d 2035
0bc40be8
TU
2036 engine->idle_lite_restore_wa = 0;
2037 engine->disable_lite_restore_wa = false;
2038 engine->ctx_desc_template = 0;
ca82580c 2039
0bc40be8
TU
2040 lrc_destroy_wa_ctx_obj(engine);
2041 engine->dev = NULL;
454afebd
OM
2042}
2043
c9cacf93
TU
2044static void
2045logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 2046 struct intel_engine_cs *engine)
c9cacf93
TU
2047{
2048 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
2049 engine->init_hw = gen8_init_common_ring;
2050 engine->emit_request = gen8_emit_request;
2051 engine->emit_flush = gen8_emit_flush;
2052 engine->irq_get = gen8_logical_ring_get_irq;
2053 engine->irq_put = gen8_logical_ring_put_irq;
2054 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93 2055 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
0bc40be8
TU
2056 engine->get_seqno = bxt_a_get_seqno;
2057 engine->set_seqno = bxt_a_set_seqno;
c9cacf93 2058 } else {
0bc40be8
TU
2059 engine->get_seqno = gen8_get_seqno;
2060 engine->set_seqno = gen8_set_seqno;
c9cacf93
TU
2061 }
2062}
2063
d9f3af96 2064static inline void
0bc40be8 2065logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 2066{
0bc40be8
TU
2067 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2068 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
2069}
2070
c9cacf93 2071static int
0bc40be8 2072logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 2073{
ed54c1a1 2074 struct intel_context *dctx = to_i915(dev)->kernel_context;
48d82387 2075 int ret;
48d82387
OM
2076
2077 /* Intentionally left blank. */
0bc40be8 2078 engine->buffer = NULL;
48d82387 2079
0bc40be8
TU
2080 engine->dev = dev;
2081 INIT_LIST_HEAD(&engine->active_list);
2082 INIT_LIST_HEAD(&engine->request_list);
2083 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2084 init_waitqueue_head(&engine->irq_queue);
48d82387 2085
0bc40be8
TU
2086 INIT_LIST_HEAD(&engine->buffers);
2087 INIT_LIST_HEAD(&engine->execlist_queue);
2088 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2089 spin_lock_init(&engine->execlist_lock);
acdd884a 2090
0bc40be8 2091 logical_ring_init_platform_invariants(engine);
ca82580c 2092
0bc40be8 2093 ret = i915_cmd_parser_init_ring(engine);
48d82387 2094 if (ret)
b0366a54 2095 goto error;
48d82387 2096
0bc40be8 2097 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2098 if (ret)
b0366a54 2099 goto error;
e84fe803
NH
2100
2101 /* As this is the default context, always pin it */
0bc40be8 2102 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2103 if (ret) {
2104 DRM_ERROR(
2105 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2106 engine->name, ret);
b0366a54 2107 goto error;
e84fe803 2108 }
564ddb2f 2109
b0366a54
DG
2110 return 0;
2111
2112error:
0bc40be8 2113 intel_logical_ring_cleanup(engine);
564ddb2f 2114 return ret;
454afebd
OM
2115}
2116
2117static int logical_render_ring_init(struct drm_device *dev)
2118{
2119 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2120 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2121 int ret;
454afebd 2122
e2f80391
TU
2123 engine->name = "render ring";
2124 engine->id = RCS;
2125 engine->exec_id = I915_EXEC_RENDER;
2126 engine->guc_id = GUC_RENDER_ENGINE;
2127 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2128
e2f80391 2129 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2130 if (HAS_L3_DPF(dev))
e2f80391 2131 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2132
e2f80391 2133 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2134
2135 /* Override some for render ring. */
82ef822e 2136 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2137 engine->init_hw = gen9_init_render_ring;
82ef822e 2138 else
e2f80391
TU
2139 engine->init_hw = gen8_init_render_ring;
2140 engine->init_context = gen8_init_rcs_context;
2141 engine->cleanup = intel_fini_pipe_control;
2142 engine->emit_flush = gen8_emit_flush_render;
2143 engine->emit_request = gen8_emit_request_render;
9b1136d5 2144
e2f80391 2145 engine->dev = dev;
c4db7599 2146
e2f80391 2147 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2148 if (ret)
2149 return ret;
2150
e2f80391 2151 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2152 if (ret) {
2153 /*
2154 * We continue even if we fail to initialize WA batch
2155 * because we only expect rare glitches but nothing
2156 * critical to prevent us from using GPU
2157 */
2158 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2159 ret);
2160 }
2161
e2f80391 2162 ret = logical_ring_init(dev, engine);
c4db7599 2163 if (ret) {
e2f80391 2164 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2165 }
17ee950d
AS
2166
2167 return ret;
454afebd
OM
2168}
2169
2170static int logical_bsd_ring_init(struct drm_device *dev)
2171{
2172 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2173 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2174
e2f80391
TU
2175 engine->name = "bsd ring";
2176 engine->id = VCS;
2177 engine->exec_id = I915_EXEC_BSD;
2178 engine->guc_id = GUC_VIDEO_ENGINE;
2179 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2180
e2f80391
TU
2181 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2182 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2183
e2f80391 2184 return logical_ring_init(dev, engine);
454afebd
OM
2185}
2186
2187static int logical_bsd2_ring_init(struct drm_device *dev)
2188{
2189 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2190 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2191
e2f80391
TU
2192 engine->name = "bsd2 ring";
2193 engine->id = VCS2;
2194 engine->exec_id = I915_EXEC_BSD;
2195 engine->guc_id = GUC_VIDEO_ENGINE2;
2196 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2197
e2f80391
TU
2198 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2199 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2200
e2f80391 2201 return logical_ring_init(dev, engine);
454afebd
OM
2202}
2203
2204static int logical_blt_ring_init(struct drm_device *dev)
2205{
2206 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2207 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2208
e2f80391
TU
2209 engine->name = "blitter ring";
2210 engine->id = BCS;
2211 engine->exec_id = I915_EXEC_BLT;
2212 engine->guc_id = GUC_BLITTER_ENGINE;
2213 engine->mmio_base = BLT_RING_BASE;
454afebd 2214
e2f80391
TU
2215 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2216 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2217
e2f80391 2218 return logical_ring_init(dev, engine);
454afebd
OM
2219}
2220
2221static int logical_vebox_ring_init(struct drm_device *dev)
2222{
2223 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2224 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2225
e2f80391
TU
2226 engine->name = "video enhancement ring";
2227 engine->id = VECS;
2228 engine->exec_id = I915_EXEC_VEBOX;
2229 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2230 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2231
e2f80391
TU
2232 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2233 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2234
e2f80391 2235 return logical_ring_init(dev, engine);
454afebd
OM
2236}
2237
73e4d07f
OM
2238/**
2239 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2240 * @dev: DRM device.
2241 *
2242 * This function inits the engines for an Execlists submission style (the equivalent in the
2243 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2244 * those engines that are present in the hardware.
2245 *
2246 * Return: non-zero if the initialization failed.
2247 */
454afebd
OM
2248int intel_logical_rings_init(struct drm_device *dev)
2249{
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 int ret;
2252
2253 ret = logical_render_ring_init(dev);
2254 if (ret)
2255 return ret;
2256
2257 if (HAS_BSD(dev)) {
2258 ret = logical_bsd_ring_init(dev);
2259 if (ret)
2260 goto cleanup_render_ring;
2261 }
2262
2263 if (HAS_BLT(dev)) {
2264 ret = logical_blt_ring_init(dev);
2265 if (ret)
2266 goto cleanup_bsd_ring;
2267 }
2268
2269 if (HAS_VEBOX(dev)) {
2270 ret = logical_vebox_ring_init(dev);
2271 if (ret)
2272 goto cleanup_blt_ring;
2273 }
2274
2275 if (HAS_BSD2(dev)) {
2276 ret = logical_bsd2_ring_init(dev);
2277 if (ret)
2278 goto cleanup_vebox_ring;
2279 }
2280
454afebd
OM
2281 return 0;
2282
454afebd 2283cleanup_vebox_ring:
4a570db5 2284 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2285cleanup_blt_ring:
4a570db5 2286 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2287cleanup_bsd_ring:
4a570db5 2288 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2289cleanup_render_ring:
4a570db5 2290 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2291
2292 return ret;
2293}
2294
0cea6502
JM
2295static u32
2296make_rpcs(struct drm_device *dev)
2297{
2298 u32 rpcs = 0;
2299
2300 /*
2301 * No explicit RPCS request is needed to ensure full
2302 * slice/subslice/EU enablement prior to Gen9.
2303 */
2304 if (INTEL_INFO(dev)->gen < 9)
2305 return 0;
2306
2307 /*
2308 * Starting in Gen9, render power gating can leave
2309 * slice/subslice/EU in a partially enabled state. We
2310 * must make an explicit request through RPCS for full
2311 * enablement.
2312 */
2313 if (INTEL_INFO(dev)->has_slice_pg) {
2314 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2315 rpcs |= INTEL_INFO(dev)->slice_total <<
2316 GEN8_RPCS_S_CNT_SHIFT;
2317 rpcs |= GEN8_RPCS_ENABLE;
2318 }
2319
2320 if (INTEL_INFO(dev)->has_subslice_pg) {
2321 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2322 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2323 GEN8_RPCS_SS_CNT_SHIFT;
2324 rpcs |= GEN8_RPCS_ENABLE;
2325 }
2326
2327 if (INTEL_INFO(dev)->has_eu_pg) {
2328 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2329 GEN8_RPCS_EU_MIN_SHIFT;
2330 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2331 GEN8_RPCS_EU_MAX_SHIFT;
2332 rpcs |= GEN8_RPCS_ENABLE;
2333 }
2334
2335 return rpcs;
2336}
2337
0bc40be8 2338static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2339{
2340 u32 indirect_ctx_offset;
2341
0bc40be8 2342 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2343 default:
0bc40be8 2344 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2345 /* fall through */
2346 case 9:
2347 indirect_ctx_offset =
2348 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2349 break;
2350 case 8:
2351 indirect_ctx_offset =
2352 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2353 break;
2354 }
2355
2356 return indirect_ctx_offset;
2357}
2358
8670d6f9
OM
2359static int
2360populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2361 struct intel_engine_cs *engine,
2362 struct intel_ringbuffer *ringbuf)
8670d6f9 2363{
0bc40be8 2364 struct drm_device *dev = engine->dev;
2d965536 2365 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2366 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2367 struct page *page;
2368 uint32_t *reg_state;
2369 int ret;
2370
2d965536
TD
2371 if (!ppgtt)
2372 ppgtt = dev_priv->mm.aliasing_ppgtt;
2373
8670d6f9
OM
2374 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2375 if (ret) {
2376 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2377 return ret;
2378 }
2379
2380 ret = i915_gem_object_get_pages(ctx_obj);
2381 if (ret) {
2382 DRM_DEBUG_DRIVER("Could not get object pages\n");
2383 return ret;
2384 }
2385
2386 i915_gem_object_pin_pages(ctx_obj);
2387
2388 /* The second page of the context object contains some fields which must
2389 * be set up prior to the first execution. */
033908ae 2390 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2391 reg_state = kmap_atomic(page);
2392
2393 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2394 * commands followed by (reg, value) pairs. The values we are setting here are
2395 * only for the first context restore: on a subsequent save, the GPU will
2396 * recreate this batchbuffer with new values (including all the missing
2397 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2398 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2399 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2400 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2401 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2402 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2403 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2404 (HAS_RESOURCE_STREAMER(dev) ?
2405 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2406 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2407 0);
2408 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2409 0);
7ba717cf
TD
2410 /* Ring buffer start address is not known until the buffer is pinned.
2411 * It is written to the context image in execlists_update_context()
2412 */
0bc40be8
TU
2413 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2414 RING_START(engine->mmio_base), 0);
2415 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2416 RING_CTL(engine->mmio_base),
0d925ea0 2417 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2418 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2419 RING_BBADDR_UDW(engine->mmio_base), 0);
2420 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2421 RING_BBADDR(engine->mmio_base), 0);
2422 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2423 RING_BBSTATE(engine->mmio_base),
0d925ea0 2424 RING_BB_PPGTT);
0bc40be8
TU
2425 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2426 RING_SBBADDR_UDW(engine->mmio_base), 0);
2427 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2428 RING_SBBADDR(engine->mmio_base), 0);
2429 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2430 RING_SBBSTATE(engine->mmio_base), 0);
2431 if (engine->id == RCS) {
2432 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2433 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2434 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2435 RING_INDIRECT_CTX(engine->mmio_base), 0);
2436 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2437 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2438 if (engine->wa_ctx.obj) {
2439 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2440 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2441
2442 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2443 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2444 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2445
2446 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2447 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2448
2449 reg_state[CTX_BB_PER_CTX_PTR+1] =
2450 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2451 0x01;
2452 }
8670d6f9 2453 }
0d925ea0 2454 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2455 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2456 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2457 /* PDP values well be assigned later if needed */
0bc40be8
TU
2458 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2459 0);
2460 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2461 0);
2462 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2463 0);
2464 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2465 0);
2466 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2467 0);
2468 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2469 0);
2470 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2471 0);
2472 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2473 0);
d7b2633d 2474
2dba3239
MT
2475 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2476 /* 64b PPGTT (48bit canonical)
2477 * PDP0_DESCRIPTOR contains the base address to PML4 and
2478 * other PDP Descriptors are ignored.
2479 */
2480 ASSIGN_CTX_PML4(ppgtt, reg_state);
2481 } else {
2482 /* 32b PPGTT
2483 * PDP*_DESCRIPTOR contains the base address of space supported.
2484 * With dynamic page allocation, PDPs may not be allocated at
2485 * this point. Point the unallocated PDPs to the scratch page
2486 */
c6a2ac71 2487 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2488 }
2489
0bc40be8 2490 if (engine->id == RCS) {
8670d6f9 2491 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2492 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2493 make_rpcs(dev));
8670d6f9
OM
2494 }
2495
2496 kunmap_atomic(reg_state);
8670d6f9
OM
2497 i915_gem_object_unpin_pages(ctx_obj);
2498
2499 return 0;
2500}
2501
73e4d07f
OM
2502/**
2503 * intel_lr_context_free() - free the LRC specific bits of a context
2504 * @ctx: the LR context to free.
2505 *
2506 * The real context freeing is done in i915_gem_context_free: this only
2507 * takes care of the bits that are LRC related: the per-engine backing
2508 * objects and the logical ringbuffer.
2509 */
ede7d42b
OM
2510void intel_lr_context_free(struct intel_context *ctx)
2511{
8c857917
OM
2512 int i;
2513
e28e404c
DG
2514 for (i = I915_NUM_RINGS; --i >= 0; ) {
2515 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2516 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2517
e28e404c
DG
2518 if (!ctx_obj)
2519 continue;
dcb4c12a 2520
e28e404c
DG
2521 if (ctx == ctx->i915->kernel_context) {
2522 intel_unpin_ringbuffer_obj(ringbuf);
2523 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2524 }
e28e404c
DG
2525
2526 WARN_ON(ctx->engine[i].pin_count);
2527 intel_ringbuffer_free(ringbuf);
2528 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2529 }
2530}
2531
c5d46ee2
DG
2532/**
2533 * intel_lr_context_size() - return the size of the context for an engine
2534 * @ring: which engine to find the context size for
2535 *
2536 * Each engine may require a different amount of space for a context image,
2537 * so when allocating (or copying) an image, this function can be used to
2538 * find the right size for the specific engine.
2539 *
2540 * Return: size (in bytes) of an engine-specific context image
2541 *
2542 * Note: this size includes the HWSP, which is part of the context image
2543 * in LRC mode, but does not include the "shared data page" used with
2544 * GuC submission. The caller should account for this if using the GuC.
2545 */
0bc40be8 2546uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2547{
2548 int ret = 0;
2549
0bc40be8 2550 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2551
0bc40be8 2552 switch (engine->id) {
8c857917 2553 case RCS:
0bc40be8 2554 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2555 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2556 else
2557 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2558 break;
2559 case VCS:
2560 case BCS:
2561 case VECS:
2562 case VCS2:
2563 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2564 break;
2565 }
2566
2567 return ret;
ede7d42b
OM
2568}
2569
0bc40be8
TU
2570static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2571 struct drm_i915_gem_object *default_ctx_obj)
1df06b75 2572{
0bc40be8 2573 struct drm_i915_private *dev_priv = engine->dev->dev_private;
d1675198 2574 struct page *page;
1df06b75 2575
d1675198 2576 /* The HWSP is part of the default context object in LRC mode. */
0bc40be8 2577 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
d1675198
AD
2578 + LRC_PPHWSP_PN * PAGE_SIZE;
2579 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
0bc40be8
TU
2580 engine->status_page.page_addr = kmap(page);
2581 engine->status_page.obj = default_ctx_obj;
1df06b75 2582
0bc40be8
TU
2583 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2584 (u32)engine->status_page.gfx_addr);
2585 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1df06b75
TD
2586}
2587
73e4d07f 2588/**
e84fe803 2589 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2590 * @ctx: LR context to create.
2591 * @ring: engine to be used with the context.
2592 *
2593 * This function can be called more than once, with different engines, if we plan
2594 * to use the context with them. The context backing objects and the ringbuffers
2595 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2596 * the creation is a deferred call: it's better to make sure first that we need to use
2597 * a given ring with the context.
2598 *
32197aab 2599 * Return: non-zero on error.
73e4d07f 2600 */
e84fe803
NH
2601
2602int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2603 struct intel_engine_cs *engine)
ede7d42b 2604{
0bc40be8 2605 struct drm_device *dev = engine->dev;
8c857917
OM
2606 struct drm_i915_gem_object *ctx_obj;
2607 uint32_t context_size;
84c2377f 2608 struct intel_ringbuffer *ringbuf;
8c857917
OM
2609 int ret;
2610
ede7d42b 2611 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2612 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2613
0bc40be8 2614 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2615
d1675198
AD
2616 /* One extra page as the sharing data between driver and GuC */
2617 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2618
149c86e7 2619 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2620 if (!ctx_obj) {
2621 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2622 return -ENOMEM;
8c857917
OM
2623 }
2624
0bc40be8 2625 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2626 if (IS_ERR(ringbuf)) {
2627 ret = PTR_ERR(ringbuf);
e84fe803 2628 goto error_deref_obj;
8670d6f9
OM
2629 }
2630
0bc40be8 2631 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2632 if (ret) {
2633 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2634 goto error_ringbuf;
84c2377f
OM
2635 }
2636
0bc40be8
TU
2637 ctx->engine[engine->id].ringbuf = ringbuf;
2638 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2639
0bc40be8 2640 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2641 struct drm_i915_gem_request *req;
76c39168 2642
0bc40be8 2643 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2644 if (IS_ERR(req)) {
2645 ret = PTR_ERR(req);
2646 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2647 goto error_ringbuf;
771b9a53
MT
2648 }
2649
0bc40be8 2650 ret = engine->init_context(req);
e84fe803
NH
2651 if (ret) {
2652 DRM_ERROR("ring init context: %d\n",
2653 ret);
2654 i915_gem_request_cancel(req);
2655 goto error_ringbuf;
2656 }
2657 i915_add_request_no_flush(req);
564ddb2f 2658 }
ede7d42b 2659 return 0;
8670d6f9 2660
01101fa7
CW
2661error_ringbuf:
2662 intel_ringbuffer_free(ringbuf);
e84fe803 2663error_deref_obj:
8670d6f9 2664 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2665 ctx->engine[engine->id].ringbuf = NULL;
2666 ctx->engine[engine->id].state = NULL;
8670d6f9 2667 return ret;
ede7d42b 2668}
3e5b6f05
TD
2669
2670void intel_lr_context_reset(struct drm_device *dev,
2671 struct intel_context *ctx)
2672{
2673 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2674 struct intel_engine_cs *engine;
3e5b6f05
TD
2675 int i;
2676
e2f80391 2677 for_each_ring(engine, dev_priv, i) {
3e5b6f05 2678 struct drm_i915_gem_object *ctx_obj =
e2f80391 2679 ctx->engine[engine->id].state;
3e5b6f05 2680 struct intel_ringbuffer *ringbuf =
e2f80391 2681 ctx->engine[engine->id].ringbuf;
3e5b6f05
TD
2682 uint32_t *reg_state;
2683 struct page *page;
2684
2685 if (!ctx_obj)
2686 continue;
2687
2688 if (i915_gem_object_get_pages(ctx_obj)) {
2689 WARN(1, "Failed get_pages for context obj\n");
2690 continue;
2691 }
033908ae 2692 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2693 reg_state = kmap_atomic(page);
2694
2695 reg_state[CTX_RING_HEAD+1] = 0;
2696 reg_state[CTX_RING_TAIL+1] = 0;
2697
2698 kunmap_atomic(reg_state);
2699
2700 ringbuf->head = 0;
2701 ringbuf->tail = 0;
2702 }
2703}
This page took 0.339088 seconds and 5 git commands to generate.