drm/i915: Bail out early if WA batch is not available for given Gen
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
191
192#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d7b2633d 193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
e5815a2e
MT
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198}
199
84b790f8
BW
200enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205};
206#define GEN8_CTX_MODE_SHIFT 3
207enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212};
213#define GEN8_CTX_ID_SHIFT 32
17ee950d 214#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 215
7ba717cf
TD
216static int intel_lr_context_pin(struct intel_engine_cs *ring,
217 struct intel_context *ctx);
218
73e4d07f
OM
219/**
220 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221 * @dev: DRM device.
222 * @enable_execlists: value of i915.enable_execlists module parameter.
223 *
224 * Only certain platforms support Execlists (the prerequisites being
27401d12 225 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
226 *
227 * Return: 1 if Execlists is supported and has to be enabled.
228 */
127f1003
OM
229int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230{
bd84b1e9
DV
231 WARN_ON(i915.enable_ppgtt == -1);
232
70ee45e1
DL
233 if (INTEL_INFO(dev)->gen >= 9)
234 return 1;
235
127f1003
OM
236 if (enable_execlists == 0)
237 return 0;
238
14bf993e
OM
239 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240 i915.use_mmio_flip >= 0)
127f1003
OM
241 return 1;
242
243 return 0;
244}
ede7d42b 245
73e4d07f
OM
246/**
247 * intel_execlists_ctx_id() - get the Execlists Context ID
248 * @ctx_obj: Logical Ring Context backing object.
249 *
250 * Do not confuse with ctx->id! Unfortunately we have a name overload
251 * here: the old context ID we pass to userspace as a handler so that
252 * they can refer to a context, and the new context ID we pass to the
253 * ELSP so that the GPU can inform us of the context status via
254 * interrupts.
255 *
256 * Return: 20-bits globally unique context ID.
257 */
84b790f8
BW
258u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259{
260 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 /* LRCA is required to be 4K aligned so the more significant 20 bits
263 * are globally unique */
264 return lrca >> 12;
265}
266
203a571b
NH
267static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268 struct drm_i915_gem_object *ctx_obj)
84b790f8 269{
203a571b 270 struct drm_device *dev = ring->dev;
84b790f8
BW
271 uint64_t desc;
272 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
273
274 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
275
276 desc = GEN8_CTX_VALID;
277 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
51847fb9
AS
278 if (IS_GEN8(ctx_obj->base.dev))
279 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
280 desc |= GEN8_CTX_PRIVILEGE;
281 desc |= lrca;
282 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
203a571b
NH
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 if (IS_GEN9(dev) &&
290 INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 (ring->id == BCS || ring->id == VCS ||
292 ring->id == VECS || ring->id == VCS2))
293 desc |= GEN8_CTX_FORCE_RESTORE;
294
84b790f8
BW
295 return desc;
296}
297
298static void execlists_elsp_write(struct intel_engine_cs *ring,
299 struct drm_i915_gem_object *ctx_obj0,
300 struct drm_i915_gem_object *ctx_obj1)
301{
6e7cc470
TU
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
304 uint64_t temp = 0;
305 uint32_t desc[4];
306
307 /* XXX: You must always write both descriptors in the order below. */
308 if (ctx_obj1)
203a571b 309 temp = execlists_ctx_descriptor(ring, ctx_obj1);
84b790f8
BW
310 else
311 temp = 0;
312 desc[1] = (u32)(temp >> 32);
313 desc[0] = (u32)temp;
314
203a571b 315 temp = execlists_ctx_descriptor(ring, ctx_obj0);
84b790f8
BW
316 desc[3] = (u32)(temp >> 32);
317 desc[2] = (u32)temp;
318
a6111f7b
CW
319 spin_lock(&dev_priv->uncore.lock);
320 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
6daccb0b 324
84b790f8 325 /* The context is automatically loaded after the following */
a6111f7b 326 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
84b790f8
BW
327
328 /* ELSP is a wo register, so use another nearby reg for posting instead */
a6111f7b
CW
329 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
332}
333
7ba717cf
TD
334static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335 struct drm_i915_gem_object *ring_obj,
d7b2633d 336 struct i915_hw_ppgtt *ppgtt,
7ba717cf 337 u32 tail)
ae1250b9
OM
338{
339 struct page *page;
340 uint32_t *reg_state;
341
342 page = i915_gem_object_get_page(ctx_obj, 1);
343 reg_state = kmap_atomic(page);
344
345 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 346 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9 347
d7b2633d
MT
348 /* True PPGTT with dynamic page allocation: update PDP registers and
349 * point the unallocated PDPs to the scratch page
350 */
351 if (ppgtt) {
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356 }
357
ae1250b9
OM
358 kunmap_atomic(reg_state);
359
360 return 0;
361}
362
cd0707cb
DG
363static void execlists_submit_contexts(struct intel_engine_cs *ring,
364 struct intel_context *to0, u32 tail0,
365 struct intel_context *to1, u32 tail1)
84b790f8 366{
7ba717cf
TD
367 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 369 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 370 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 371
84b790f8 372 BUG_ON(!ctx_obj0);
acdd884a 373 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 374 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 375
d7b2633d 376 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
ae1250b9 377
84b790f8 378 if (to1) {
7ba717cf 379 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
380 ctx_obj1 = to1->engine[ring->id].state;
381 BUG_ON(!ctx_obj1);
acdd884a 382 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 383 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 384
d7b2633d 385 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
84b790f8
BW
386 }
387
388 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
389}
390
acdd884a
MT
391static void execlists_context_unqueue(struct intel_engine_cs *ring)
392{
6d3d8274
NH
393 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
395
396 assert_spin_locked(&ring->execlist_lock);
acdd884a 397
779949f4
PA
398 /*
399 * If irqs are not active generate a warning as batches that finish
400 * without the irqs may get lost and a GPU Hang may occur.
401 */
402 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
acdd884a
MT
404 if (list_empty(&ring->execlist_queue))
405 return;
406
407 /* Try to read in pairs */
408 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409 execlist_link) {
410 if (!req0) {
411 req0 = cursor;
6d3d8274 412 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
413 /* Same ctx: ignore first request, as second request
414 * will update tail past first request's workload */
e1fee72c 415 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 416 list_del(&req0->execlist_link);
c86ee3a9
TD
417 list_add_tail(&req0->execlist_link,
418 &ring->execlist_retired_req_list);
acdd884a
MT
419 req0 = cursor;
420 } else {
421 req1 = cursor;
422 break;
423 }
424 }
425
53292cdb
MT
426 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427 /*
428 * WaIdleLiteRestore: make sure we never cause a lite
429 * restore with HEAD==TAIL
430 */
d63f820f 431 if (req0->elsp_submitted) {
53292cdb
MT
432 /*
433 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434 * as we resubmit the request. See gen8_emit_request()
435 * for where we prepare the padding after the end of the
436 * request.
437 */
438 struct intel_ringbuffer *ringbuf;
439
440 ringbuf = req0->ctx->engine[ring->id].ringbuf;
441 req0->tail += 8;
442 req0->tail &= ringbuf->size - 1;
443 }
444 }
445
e1fee72c
OM
446 WARN_ON(req1 && req1->elsp_submitted);
447
6d3d8274
NH
448 execlists_submit_contexts(ring, req0->ctx, req0->tail,
449 req1 ? req1->ctx : NULL,
450 req1 ? req1->tail : 0);
e1fee72c
OM
451
452 req0->elsp_submitted++;
453 if (req1)
454 req1->elsp_submitted++;
acdd884a
MT
455}
456
e981e7b1
TD
457static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458 u32 request_id)
459{
6d3d8274 460 struct drm_i915_gem_request *head_req;
e981e7b1
TD
461
462 assert_spin_locked(&ring->execlist_lock);
463
464 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 465 struct drm_i915_gem_request,
e981e7b1
TD
466 execlist_link);
467
468 if (head_req != NULL) {
469 struct drm_i915_gem_object *ctx_obj =
6d3d8274 470 head_req->ctx->engine[ring->id].state;
e981e7b1 471 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
472 WARN(head_req->elsp_submitted == 0,
473 "Never submitted head request\n");
474
475 if (--head_req->elsp_submitted <= 0) {
476 list_del(&head_req->execlist_link);
c86ee3a9
TD
477 list_add_tail(&head_req->execlist_link,
478 &ring->execlist_retired_req_list);
e1fee72c
OM
479 return true;
480 }
e981e7b1
TD
481 }
482 }
483
484 return false;
485}
486
73e4d07f 487/**
3f7531c3 488 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
489 * @ring: Engine Command Streamer to handle.
490 *
491 * Check the unread Context Status Buffers and manage the submission of new
492 * contexts to the ELSP accordingly.
493 */
3f7531c3 494void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
495{
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 status_pointer;
498 u8 read_pointer;
499 u8 write_pointer;
500 u32 status;
501 u32 status_id;
502 u32 submit_contexts = 0;
503
504 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506 read_pointer = ring->next_context_status_buffer;
507 write_pointer = status_pointer & 0x07;
508 if (read_pointer > write_pointer)
509 write_pointer += 6;
510
511 spin_lock(&ring->execlist_lock);
512
513 while (read_pointer < write_pointer) {
514 read_pointer++;
515 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8);
517 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518 (read_pointer % 6) * 8 + 4);
519
e1fee72c
OM
520 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522 if (execlists_check_remove_request(ring, status_id))
523 WARN(1, "Lite Restored request removed from queue\n");
524 } else
525 WARN(1, "Preemption without Lite Restore\n");
526 }
527
528 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
530 if (execlists_check_remove_request(ring, status_id))
531 submit_contexts++;
532 }
533 }
534
535 if (submit_contexts != 0)
536 execlists_context_unqueue(ring);
537
538 spin_unlock(&ring->execlist_lock);
539
540 WARN(submit_contexts > 2, "More than two context complete events?\n");
541 ring->next_context_status_buffer = write_pointer % 6;
542
543 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544 ((u32)ring->next_context_status_buffer & 0x07) << 8);
545}
546
ae70797d 547static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 548{
ae70797d 549 struct intel_engine_cs *ring = request->ring;
6d3d8274 550 struct drm_i915_gem_request *cursor;
f1ad5a1f 551 int num_elements = 0;
acdd884a 552
ae70797d
JH
553 if (request->ctx != ring->default_context)
554 intel_lr_context_pin(ring, request->ctx);
9bb1af44
JH
555
556 i915_gem_request_reference(request);
557
ae70797d 558 request->tail = request->ringbuf->tail;
2d12955a 559
b5eba372 560 spin_lock_irq(&ring->execlist_lock);
acdd884a 561
f1ad5a1f
OM
562 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
563 if (++num_elements > 2)
564 break;
565
566 if (num_elements > 2) {
6d3d8274 567 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
568
569 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 570 struct drm_i915_gem_request,
f1ad5a1f
OM
571 execlist_link);
572
ae70797d 573 if (request->ctx == tail_req->ctx) {
f1ad5a1f 574 WARN(tail_req->elsp_submitted != 0,
7ba717cf 575 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 576 list_del(&tail_req->execlist_link);
c86ee3a9
TD
577 list_add_tail(&tail_req->execlist_link,
578 &ring->execlist_retired_req_list);
f1ad5a1f
OM
579 }
580 }
581
6d3d8274 582 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 583 if (num_elements == 0)
acdd884a
MT
584 execlists_context_unqueue(ring);
585
b5eba372 586 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
587
588 return 0;
589}
590
2f20055d 591static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 592{
2f20055d 593 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
594 uint32_t flush_domains;
595 int ret;
596
597 flush_domains = 0;
598 if (ring->gpu_caches_dirty)
599 flush_domains = I915_GEM_GPU_DOMAINS;
600
7deb4d39 601 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
602 if (ret)
603 return ret;
604
605 ring->gpu_caches_dirty = false;
606 return 0;
607}
608
535fbe82 609static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
610 struct list_head *vmas)
611{
535fbe82 612 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
613 struct i915_vma *vma;
614 uint32_t flush_domains = 0;
615 bool flush_chipset = false;
616 int ret;
617
618 list_for_each_entry(vma, vmas, exec_list) {
619 struct drm_i915_gem_object *obj = vma->obj;
620
03ade511 621 if (obj->active & other_rings) {
91af127f 622 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
623 if (ret)
624 return ret;
625 }
ba8b7ccb
OM
626
627 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
628 flush_chipset |= i915_gem_clflush_object(obj, false);
629
630 flush_domains |= obj->base.write_domain;
631 }
632
633 if (flush_domains & I915_GEM_DOMAIN_GTT)
634 wmb();
635
636 /* Unconditionally invalidate gpu caches and ensure that we do flush
637 * any residual writes from the previous batch.
638 */
2f20055d 639 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
640}
641
40e895ce 642int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 643{
bc0dce3f
JH
644 int ret;
645
40e895ce
JH
646 if (request->ctx != request->ring->default_context) {
647 ret = intel_lr_context_pin(request->ring, request->ctx);
6689cb2b 648 if (ret)
bc0dce3f 649 return ret;
bc0dce3f
JH
650 }
651
40e895ce 652 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
bc0dce3f 653
bc0dce3f
JH
654 return 0;
655}
656
ae70797d 657static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 658 int bytes)
bc0dce3f 659{
ae70797d
JH
660 struct intel_ringbuffer *ringbuf = req->ringbuf;
661 struct intel_engine_cs *ring = req->ring;
662 struct drm_i915_gem_request *target;
b4716185
CW
663 unsigned space;
664 int ret;
bc0dce3f 665
29b1b415
JH
666 /* The whole point of reserving space is to not wait! */
667 WARN_ON(ringbuf->reserved_in_use);
668
bc0dce3f
JH
669 if (intel_ring_space(ringbuf) >= bytes)
670 return 0;
671
ae70797d 672 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
673 /*
674 * The request queue is per-engine, so can contain requests
675 * from multiple ringbuffers. Here, we must ignore any that
676 * aren't from the ringbuffer we're considering.
677 */
ae70797d 678 if (target->ringbuf != ringbuf)
bc0dce3f
JH
679 continue;
680
681 /* Would completion of this request free enough space? */
ae70797d 682 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
683 ringbuf->size);
684 if (space >= bytes)
bc0dce3f 685 break;
bc0dce3f
JH
686 }
687
ae70797d 688 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
689 return -ENOSPC;
690
ae70797d 691 ret = i915_wait_request(target);
bc0dce3f
JH
692 if (ret)
693 return ret;
694
b4716185
CW
695 ringbuf->space = space;
696 return 0;
bc0dce3f
JH
697}
698
699/*
700 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 701 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
702 *
703 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
704 * really happens during submission is that the context and current tail will be placed
705 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
706 * point, the tail *inside* the context is updated and the ELSP written to.
707 */
708static void
ae70797d 709intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 710{
ae70797d 711 struct intel_engine_cs *ring = request->ring;
bc0dce3f 712
ae70797d 713 intel_logical_ring_advance(request->ringbuf);
bc0dce3f
JH
714
715 if (intel_ring_stopped(ring))
716 return;
717
ae70797d 718 execlists_context_queue(request);
bc0dce3f
JH
719}
720
ae70797d 721static int logical_ring_wrap_buffer(struct drm_i915_gem_request *req)
bc0dce3f 722{
ae70797d 723 struct intel_ringbuffer *ringbuf = req->ringbuf;
bc0dce3f
JH
724 uint32_t __iomem *virt;
725 int rem = ringbuf->size - ringbuf->tail;
726
29b1b415
JH
727 /* Can't wrap if space has already been reserved! */
728 WARN_ON(ringbuf->reserved_in_use);
729
bc0dce3f 730 if (ringbuf->space < rem) {
ae70797d 731 int ret = logical_ring_wait_for_space(req, rem);
bc0dce3f
JH
732
733 if (ret)
734 return ret;
735 }
736
737 virt = ringbuf->virtual_start + ringbuf->tail;
738 rem /= 4;
739 while (rem--)
740 iowrite32(MI_NOOP, virt++);
741
742 ringbuf->tail = 0;
743 intel_ring_update_space(ringbuf);
744
745 return 0;
746}
747
ae70797d 748static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 749{
ae70797d 750 struct intel_ringbuffer *ringbuf = req->ringbuf;
bc0dce3f
JH
751 int ret;
752
29b1b415
JH
753 /*
754 * Add on the reserved size to the request to make sure that after
755 * the intended commands have been emitted, there is guaranteed to
756 * still be enough free space to send them to the hardware.
757 */
758 if (!ringbuf->reserved_in_use)
759 bytes += ringbuf->reserved_size;
760
bc0dce3f 761 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
ae70797d 762 ret = logical_ring_wrap_buffer(req);
bc0dce3f
JH
763 if (unlikely(ret))
764 return ret;
29b1b415
JH
765
766 if(ringbuf->reserved_size) {
767 uint32_t size = ringbuf->reserved_size;
768
769 intel_ring_reserved_space_cancel(ringbuf);
770 intel_ring_reserved_space_reserve(ringbuf, size);
771 }
bc0dce3f
JH
772 }
773
774 if (unlikely(ringbuf->space < bytes)) {
ae70797d 775 ret = logical_ring_wait_for_space(req, bytes);
bc0dce3f
JH
776 if (unlikely(ret))
777 return ret;
778 }
779
780 return 0;
781}
782
783/**
784 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
785 *
4d616a29 786 * @request: The request to start some new work for
4d78c8dc 787 * @ctx: Logical ring context whose ringbuffer is being prepared.
bc0dce3f
JH
788 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
789 *
790 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
791 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
792 * and also preallocates a request (every workload submission is still mediated through
793 * requests, same as it did with legacy ringbuffer submission).
794 *
795 * Return: non-zero if the ringbuffer is not ready to be written to.
796 */
4d616a29
JH
797static int intel_logical_ring_begin(struct drm_i915_gem_request *req,
798 int num_dwords)
bc0dce3f 799{
4d616a29 800 struct drm_i915_private *dev_priv;
bc0dce3f
JH
801 int ret;
802
4d616a29
JH
803 WARN_ON(req == NULL);
804 dev_priv = req->ring->dev->dev_private;
805
bc0dce3f
JH
806 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
807 dev_priv->mm.interruptible);
808 if (ret)
809 return ret;
810
ae70797d 811 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
812 if (ret)
813 return ret;
814
4d616a29 815 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
816 return 0;
817}
818
ccd98fe4
JH
819int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
820{
821 /*
822 * The first call merely notes the reserve request and is common for
823 * all back ends. The subsequent localised _begin() call actually
824 * ensures that the reservation is available. Without the begin, if
825 * the request creator immediately submitted the request without
826 * adding any commands to it then there might not actually be
827 * sufficient room for the submission commands.
828 */
829 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
830
831 return intel_logical_ring_begin(request, 0);
832}
833
73e4d07f
OM
834/**
835 * execlists_submission() - submit a batchbuffer for execution, Execlists style
836 * @dev: DRM device.
837 * @file: DRM file.
838 * @ring: Engine Command Streamer to submit to.
839 * @ctx: Context to employ for this submission.
840 * @args: execbuffer call arguments.
841 * @vmas: list of vmas.
842 * @batch_obj: the batchbuffer to submit.
843 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 844 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
845 *
846 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
847 * away the submission details of the execbuffer ioctl call.
848 *
849 * Return: non-zero if the submission fails.
850 */
5f19e2bf 851int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 852 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 853 struct list_head *vmas)
454afebd 854{
5f19e2bf
JH
855 struct drm_device *dev = params->dev;
856 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 857 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
858 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
859 u64 exec_start;
ba8b7ccb
OM
860 int instp_mode;
861 u32 instp_mask;
862 int ret;
863
864 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
865 instp_mask = I915_EXEC_CONSTANTS_MASK;
866 switch (instp_mode) {
867 case I915_EXEC_CONSTANTS_REL_GENERAL:
868 case I915_EXEC_CONSTANTS_ABSOLUTE:
869 case I915_EXEC_CONSTANTS_REL_SURFACE:
870 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
871 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
872 return -EINVAL;
873 }
874
875 if (instp_mode != dev_priv->relative_constants_mode) {
876 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
877 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
878 return -EINVAL;
879 }
880
881 /* The HW changed the meaning on this bit on gen6 */
882 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
883 }
884 break;
885 default:
886 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
887 return -EINVAL;
888 }
889
890 if (args->num_cliprects != 0) {
891 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
892 return -EINVAL;
893 } else {
894 if (args->DR4 == 0xffffffff) {
895 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
896 args->DR4 = 0;
897 }
898
899 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
900 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
901 return -EINVAL;
902 }
903 }
904
905 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
906 DRM_DEBUG("sol reset is gen7 only\n");
907 return -EINVAL;
908 }
909
535fbe82 910 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
911 if (ret)
912 return ret;
913
914 if (ring == &dev_priv->ring[RCS] &&
915 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 916 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
917 if (ret)
918 return ret;
919
920 intel_logical_ring_emit(ringbuf, MI_NOOP);
921 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
922 intel_logical_ring_emit(ringbuf, INSTPM);
923 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
924 intel_logical_ring_advance(ringbuf);
925
926 dev_priv->relative_constants_mode = instp_mode;
927 }
928
5f19e2bf
JH
929 exec_start = params->batch_obj_vm_offset +
930 args->batch_start_offset;
931
be795fc1 932 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
933 if (ret)
934 return ret;
935
95c24161 936 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 937
8a8edb59 938 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 939 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 940
454afebd
OM
941 return 0;
942}
943
c86ee3a9
TD
944void intel_execlists_retire_requests(struct intel_engine_cs *ring)
945{
6d3d8274 946 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
947 struct list_head retired_list;
948
949 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
950 if (list_empty(&ring->execlist_retired_req_list))
951 return;
952
953 INIT_LIST_HEAD(&retired_list);
b5eba372 954 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 955 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 956 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
957
958 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 959 struct intel_context *ctx = req->ctx;
7ba717cf
TD
960 struct drm_i915_gem_object *ctx_obj =
961 ctx->engine[ring->id].state;
962
963 if (ctx_obj && (ctx != ring->default_context))
964 intel_lr_context_unpin(ring, ctx);
c86ee3a9 965 list_del(&req->execlist_link);
f8210795 966 i915_gem_request_unreference(req);
c86ee3a9
TD
967 }
968}
969
454afebd
OM
970void intel_logical_ring_stop(struct intel_engine_cs *ring)
971{
9832b9da
OM
972 struct drm_i915_private *dev_priv = ring->dev->dev_private;
973 int ret;
974
975 if (!intel_ring_initialized(ring))
976 return;
977
978 ret = intel_ring_idle(ring);
979 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
980 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
981 ring->name, ret);
982
983 /* TODO: Is this correct with Execlists enabled? */
984 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
985 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
986 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
987 return;
988 }
989 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
990}
991
4866d729 992int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 993{
4866d729 994 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
995 int ret;
996
997 if (!ring->gpu_caches_dirty)
998 return 0;
999
7deb4d39 1000 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1001 if (ret)
1002 return ret;
1003
1004 ring->gpu_caches_dirty = false;
1005 return 0;
1006}
1007
dcb4c12a
OM
1008static int intel_lr_context_pin(struct intel_engine_cs *ring,
1009 struct intel_context *ctx)
1010{
1011 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1012 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1013 int ret = 0;
1014
1015 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1016 if (ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1017 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1018 GEN8_LR_CONTEXT_ALIGN, 0);
1019 if (ret)
a7cbedec 1020 goto reset_pin_count;
7ba717cf
TD
1021
1022 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1023 if (ret)
1024 goto unpin_ctx_obj;
dcb4c12a
OM
1025 }
1026
7ba717cf
TD
1027 return ret;
1028
1029unpin_ctx_obj:
1030 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec
MK
1031reset_pin_count:
1032 ctx->engine[ring->id].pin_count = 0;
7ba717cf 1033
dcb4c12a
OM
1034 return ret;
1035}
1036
1037void intel_lr_context_unpin(struct intel_engine_cs *ring,
1038 struct intel_context *ctx)
1039{
1040 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1041 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1042
1043 if (ctx_obj) {
1044 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1045 if (--ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1046 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1047 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1048 }
dcb4c12a
OM
1049 }
1050}
1051
e2be4faf 1052static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1053{
1054 int ret, i;
e2be4faf
JH
1055 struct intel_engine_cs *ring = req->ring;
1056 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1057 struct drm_device *dev = ring->dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 struct i915_workarounds *w = &dev_priv->workarounds;
1060
e6c1abb7 1061 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1062 return 0;
1063
1064 ring->gpu_caches_dirty = true;
4866d729 1065 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1066 if (ret)
1067 return ret;
1068
4d616a29 1069 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1070 if (ret)
1071 return ret;
1072
1073 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1074 for (i = 0; i < w->count; i++) {
1075 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1076 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1077 }
1078 intel_logical_ring_emit(ringbuf, MI_NOOP);
1079
1080 intel_logical_ring_advance(ringbuf);
1081
1082 ring->gpu_caches_dirty = true;
4866d729 1083 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1084 if (ret)
1085 return ret;
1086
1087 return 0;
1088}
1089
17ee950d
AS
1090#define wa_ctx_emit(batch, cmd) \
1091 do { \
1092 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1093 return -ENOSPC; \
1094 } \
1095 batch[index++] = (cmd); \
1096 } while (0)
1097
1098static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1099 uint32_t offset,
1100 uint32_t start_alignment)
1101{
1102 return wa_ctx->offset = ALIGN(offset, start_alignment);
1103}
1104
1105static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1106 uint32_t offset,
1107 uint32_t size_alignment)
1108{
1109 wa_ctx->size = offset - wa_ctx->offset;
1110
1111 WARN(wa_ctx->size % size_alignment,
1112 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1113 wa_ctx->size, size_alignment);
1114 return 0;
1115}
1116
1117/**
1118 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1119 *
1120 * @ring: only applicable for RCS
1121 * @wa_ctx: structure representing wa_ctx
1122 * offset: specifies start of the batch, should be cache-aligned. This is updated
1123 * with the offset value received as input.
1124 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1125 * @batch: page in which WA are loaded
1126 * @offset: This field specifies the start of the batch, it should be
1127 * cache-aligned otherwise it is adjusted accordingly.
1128 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1129 * initialized at the beginning and shared across all contexts but this field
1130 * helps us to have multiple batches at different offsets and select them based
1131 * on a criteria. At the moment this batch always start at the beginning of the page
1132 * and at this point we don't have multiple wa_ctx batch buffers.
1133 *
1134 * The number of WA applied are not known at the beginning; we use this field
1135 * to return the no of DWORDS written.
4d78c8dc 1136 *
17ee950d
AS
1137 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1138 * so it adds NOOPs as padding to make it cacheline aligned.
1139 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1140 * makes a complete batch buffer.
1141 *
1142 * Return: non-zero if we exceed the PAGE_SIZE limit.
1143 */
1144
1145static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1146 struct i915_wa_ctx_bb *wa_ctx,
1147 uint32_t *const batch,
1148 uint32_t *offset)
1149{
1150 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1151
7ad00d1a
AS
1152 /* WaDisableCtxRestoreArbitration:bdw,chv */
1153 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1154
c82435bb
AS
1155 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1156 if (IS_BROADWELL(ring->dev)) {
1157 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1158 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1159 GEN8_LQSC_FLUSH_COHERENT_LINES);
1160
1161 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1162 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1163 wa_ctx_emit(batch, l3sqc4_flush);
1164
1165 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1166 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1167 PIPE_CONTROL_DC_FLUSH_ENABLE));
1168 wa_ctx_emit(batch, 0);
1169 wa_ctx_emit(batch, 0);
1170 wa_ctx_emit(batch, 0);
1171 wa_ctx_emit(batch, 0);
1172
1173 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1174 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1175 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1176 }
1177
17ee950d
AS
1178 /* Pad to end of cacheline */
1179 while (index % CACHELINE_DWORDS)
1180 wa_ctx_emit(batch, MI_NOOP);
1181
1182 /*
1183 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1184 * execution depends on the length specified in terms of cache lines
1185 * in the register CTX_RCS_INDIRECT_CTX
1186 */
1187
1188 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1189}
1190
1191/**
1192 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1193 *
1194 * @ring: only applicable for RCS
1195 * @wa_ctx: structure representing wa_ctx
1196 * offset: specifies start of the batch, should be cache-aligned.
1197 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1198 * @batch: page in which WA are loaded
17ee950d
AS
1199 * @offset: This field specifies the start of this batch.
1200 * This batch is started immediately after indirect_ctx batch. Since we ensure
1201 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1202 *
1203 * The number of DWORDS written are returned using this field.
1204 *
1205 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1206 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1207 */
1208static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1209 struct i915_wa_ctx_bb *wa_ctx,
1210 uint32_t *const batch,
1211 uint32_t *offset)
1212{
1213 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1214
7ad00d1a
AS
1215 /* WaDisableCtxRestoreArbitration:bdw,chv */
1216 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1217
17ee950d
AS
1218 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1219
1220 return wa_ctx_end(wa_ctx, *offset = index, 1);
1221}
1222
1223static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1224{
1225 int ret;
1226
1227 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1228 if (!ring->wa_ctx.obj) {
1229 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1230 return -ENOMEM;
1231 }
1232
1233 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1234 if (ret) {
1235 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1236 ret);
1237 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1238 return ret;
1239 }
1240
1241 return 0;
1242}
1243
1244static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1245{
1246 if (ring->wa_ctx.obj) {
1247 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1248 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1249 ring->wa_ctx.obj = NULL;
1250 }
1251}
1252
1253static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1254{
1255 int ret;
1256 uint32_t *batch;
1257 uint32_t offset;
1258 struct page *page;
1259 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1260
1261 WARN_ON(ring->id != RCS);
1262
5e60d790
AS
1263 /* update this when WA for higher Gen are added */
1264 if (WARN(INTEL_INFO(ring->dev)->gen > 8,
1265 "WA batch buffer is not initialized for Gen%d\n",
1266 INTEL_INFO(ring->dev)->gen))
1267 return 0;
1268
c4db7599
AS
1269 /* some WA perform writes to scratch page, ensure it is valid */
1270 if (ring->scratch.obj == NULL) {
1271 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1272 return -EINVAL;
1273 }
1274
17ee950d
AS
1275 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1276 if (ret) {
1277 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1278 return ret;
1279 }
1280
1281 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1282 batch = kmap_atomic(page);
1283 offset = 0;
1284
1285 if (INTEL_INFO(ring->dev)->gen == 8) {
1286 ret = gen8_init_indirectctx_bb(ring,
1287 &wa_ctx->indirect_ctx,
1288 batch,
1289 &offset);
1290 if (ret)
1291 goto out;
1292
1293 ret = gen8_init_perctx_bb(ring,
1294 &wa_ctx->per_ctx,
1295 batch,
1296 &offset);
1297 if (ret)
1298 goto out;
17ee950d
AS
1299 }
1300
1301out:
1302 kunmap_atomic(batch);
1303 if (ret)
1304 lrc_destroy_wa_ctx_obj(ring);
1305
1306 return ret;
1307}
1308
9b1136d5
OM
1309static int gen8_init_common_ring(struct intel_engine_cs *ring)
1310{
1311 struct drm_device *dev = ring->dev;
1312 struct drm_i915_private *dev_priv = dev->dev_private;
1313
73d477f6
OM
1314 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1315 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1316
9b1136d5
OM
1317 I915_WRITE(RING_MODE_GEN7(ring),
1318 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1319 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1320 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1321 ring->next_context_status_buffer = 0;
9b1136d5
OM
1322 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1323
1324 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1325
1326 return 0;
1327}
1328
1329static int gen8_init_render_ring(struct intel_engine_cs *ring)
1330{
1331 struct drm_device *dev = ring->dev;
1332 struct drm_i915_private *dev_priv = dev->dev_private;
1333 int ret;
1334
1335 ret = gen8_init_common_ring(ring);
1336 if (ret)
1337 return ret;
1338
1339 /* We need to disable the AsyncFlip performance optimisations in order
1340 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1341 * programmed to '1' on all products.
1342 *
1343 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1344 */
1345 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1346
9b1136d5
OM
1347 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1348
771b9a53 1349 return init_workarounds_ring(ring);
9b1136d5
OM
1350}
1351
82ef822e
DL
1352static int gen9_init_render_ring(struct intel_engine_cs *ring)
1353{
1354 int ret;
1355
1356 ret = gen8_init_common_ring(ring);
1357 if (ret)
1358 return ret;
1359
1360 return init_workarounds_ring(ring);
1361}
1362
be795fc1 1363static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1364 u64 offset, unsigned dispatch_flags)
15648585 1365{
be795fc1 1366 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1367 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1368 int ret;
1369
4d616a29 1370 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1371 if (ret)
1372 return ret;
1373
1374 /* FIXME(BDW): Address space and security selectors. */
1375 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1376 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1377 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1378 intel_logical_ring_emit(ringbuf, MI_NOOP);
1379 intel_logical_ring_advance(ringbuf);
1380
1381 return 0;
1382}
1383
73d477f6
OM
1384static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1385{
1386 struct drm_device *dev = ring->dev;
1387 struct drm_i915_private *dev_priv = dev->dev_private;
1388 unsigned long flags;
1389
7cd512f1 1390 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1391 return false;
1392
1393 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1394 if (ring->irq_refcount++ == 0) {
1395 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1396 POSTING_READ(RING_IMR(ring->mmio_base));
1397 }
1398 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1399
1400 return true;
1401}
1402
1403static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1404{
1405 struct drm_device *dev = ring->dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
1407 unsigned long flags;
1408
1409 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1410 if (--ring->irq_refcount == 0) {
1411 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1412 POSTING_READ(RING_IMR(ring->mmio_base));
1413 }
1414 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1415}
1416
7deb4d39 1417static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1418 u32 invalidate_domains,
1419 u32 unused)
1420{
7deb4d39 1421 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1422 struct intel_engine_cs *ring = ringbuf->ring;
1423 struct drm_device *dev = ring->dev;
1424 struct drm_i915_private *dev_priv = dev->dev_private;
1425 uint32_t cmd;
1426 int ret;
1427
4d616a29 1428 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1429 if (ret)
1430 return ret;
1431
1432 cmd = MI_FLUSH_DW + 1;
1433
f0a1fb10
CW
1434 /* We always require a command barrier so that subsequent
1435 * commands, such as breadcrumb interrupts, are strictly ordered
1436 * wrt the contents of the write cache being flushed to memory
1437 * (and thus being coherent from the CPU).
1438 */
1439 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1440
1441 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1442 cmd |= MI_INVALIDATE_TLB;
1443 if (ring == &dev_priv->ring[VCS])
1444 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1445 }
1446
1447 intel_logical_ring_emit(ringbuf, cmd);
1448 intel_logical_ring_emit(ringbuf,
1449 I915_GEM_HWS_SCRATCH_ADDR |
1450 MI_FLUSH_DW_USE_GTT);
1451 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1452 intel_logical_ring_emit(ringbuf, 0); /* value */
1453 intel_logical_ring_advance(ringbuf);
1454
1455 return 0;
1456}
1457
7deb4d39 1458static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1459 u32 invalidate_domains,
1460 u32 flush_domains)
1461{
7deb4d39 1462 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1463 struct intel_engine_cs *ring = ringbuf->ring;
1464 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1465 bool vf_flush_wa;
4712274c
OM
1466 u32 flags = 0;
1467 int ret;
1468
1469 flags |= PIPE_CONTROL_CS_STALL;
1470
1471 if (flush_domains) {
1472 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1473 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1474 }
1475
1476 if (invalidate_domains) {
1477 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1478 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1479 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1480 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1481 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1482 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1483 flags |= PIPE_CONTROL_QW_WRITE;
1484 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1485 }
1486
9647ff36
ID
1487 /*
1488 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1489 * control.
1490 */
1491 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1492 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1493
4d616a29 1494 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1495 if (ret)
1496 return ret;
1497
9647ff36
ID
1498 if (vf_flush_wa) {
1499 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1500 intel_logical_ring_emit(ringbuf, 0);
1501 intel_logical_ring_emit(ringbuf, 0);
1502 intel_logical_ring_emit(ringbuf, 0);
1503 intel_logical_ring_emit(ringbuf, 0);
1504 intel_logical_ring_emit(ringbuf, 0);
1505 }
1506
4712274c
OM
1507 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1508 intel_logical_ring_emit(ringbuf, flags);
1509 intel_logical_ring_emit(ringbuf, scratch_addr);
1510 intel_logical_ring_emit(ringbuf, 0);
1511 intel_logical_ring_emit(ringbuf, 0);
1512 intel_logical_ring_emit(ringbuf, 0);
1513 intel_logical_ring_advance(ringbuf);
1514
1515 return 0;
1516}
1517
e94e37ad
OM
1518static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1519{
1520 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1521}
1522
1523static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1524{
1525 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1526}
1527
c4e76638 1528static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1529{
c4e76638 1530 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1531 struct intel_engine_cs *ring = ringbuf->ring;
1532 u32 cmd;
1533 int ret;
1534
53292cdb
MT
1535 /*
1536 * Reserve space for 2 NOOPs at the end of each request to be
1537 * used as a workaround for not being allowed to do lite
1538 * restore with HEAD==TAIL (WaIdleLiteRestore).
1539 */
4d616a29 1540 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1541 if (ret)
1542 return ret;
1543
8edfbb8b 1544 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1545 cmd |= MI_GLOBAL_GTT;
1546
1547 intel_logical_ring_emit(ringbuf, cmd);
1548 intel_logical_ring_emit(ringbuf,
1549 (ring->status_page.gfx_addr +
1550 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1551 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1552 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1553 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1554 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1555 intel_logical_ring_advance_and_submit(request);
4da46e1e 1556
53292cdb
MT
1557 /*
1558 * Here we add two extra NOOPs as padding to avoid
1559 * lite restore of a context with HEAD==TAIL.
1560 */
1561 intel_logical_ring_emit(ringbuf, MI_NOOP);
1562 intel_logical_ring_emit(ringbuf, MI_NOOP);
1563 intel_logical_ring_advance(ringbuf);
1564
4da46e1e
OM
1565 return 0;
1566}
1567
be01363f 1568static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1569{
cef437ad 1570 struct render_state so;
cef437ad
DL
1571 int ret;
1572
be01363f 1573 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1574 if (ret)
1575 return ret;
1576
1577 if (so.rodata == NULL)
1578 return 0;
1579
be795fc1 1580 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1581 I915_DISPATCH_SECURE);
cef437ad
DL
1582 if (ret)
1583 goto out;
1584
b2af0376 1585 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1586
cef437ad
DL
1587out:
1588 i915_gem_render_state_fini(&so);
1589 return ret;
1590}
1591
8753181e 1592static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1593{
1594 int ret;
1595
e2be4faf 1596 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1597 if (ret)
1598 return ret;
1599
be01363f 1600 return intel_lr_context_render_state_init(req);
e7778be1
TD
1601}
1602
73e4d07f
OM
1603/**
1604 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1605 *
1606 * @ring: Engine Command Streamer.
1607 *
1608 */
454afebd
OM
1609void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1610{
6402c330 1611 struct drm_i915_private *dev_priv;
9832b9da 1612
48d82387
OM
1613 if (!intel_ring_initialized(ring))
1614 return;
1615
6402c330
JH
1616 dev_priv = ring->dev->dev_private;
1617
9832b9da
OM
1618 intel_logical_ring_stop(ring);
1619 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1620
1621 if (ring->cleanup)
1622 ring->cleanup(ring);
1623
1624 i915_cmd_parser_fini_ring(ring);
06fbca71 1625 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1626
1627 if (ring->status_page.obj) {
1628 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1629 ring->status_page.obj = NULL;
1630 }
17ee950d
AS
1631
1632 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1633}
1634
1635static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1636{
48d82387 1637 int ret;
48d82387
OM
1638
1639 /* Intentionally left blank. */
1640 ring->buffer = NULL;
1641
1642 ring->dev = dev;
1643 INIT_LIST_HEAD(&ring->active_list);
1644 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1645 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1646 init_waitqueue_head(&ring->irq_queue);
1647
acdd884a 1648 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1649 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1650 spin_lock_init(&ring->execlist_lock);
1651
48d82387
OM
1652 ret = i915_cmd_parser_init_ring(ring);
1653 if (ret)
1654 return ret;
1655
564ddb2f
OM
1656 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1657
1658 return ret;
454afebd
OM
1659}
1660
1661static int logical_render_ring_init(struct drm_device *dev)
1662{
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1665 int ret;
454afebd
OM
1666
1667 ring->name = "render ring";
1668 ring->id = RCS;
1669 ring->mmio_base = RENDER_RING_BASE;
1670 ring->irq_enable_mask =
1671 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1672 ring->irq_keep_mask =
1673 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1674 if (HAS_L3_DPF(dev))
1675 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1676
82ef822e
DL
1677 if (INTEL_INFO(dev)->gen >= 9)
1678 ring->init_hw = gen9_init_render_ring;
1679 else
1680 ring->init_hw = gen8_init_render_ring;
e7778be1 1681 ring->init_context = gen8_init_rcs_context;
9b1136d5 1682 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1683 ring->get_seqno = gen8_get_seqno;
1684 ring->set_seqno = gen8_set_seqno;
4da46e1e 1685 ring->emit_request = gen8_emit_request;
4712274c 1686 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1687 ring->irq_get = gen8_logical_ring_get_irq;
1688 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1689 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1690
99be1dfe 1691 ring->dev = dev;
c4db7599
AS
1692
1693 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1694 if (ret)
1695 return ret;
1696
17ee950d
AS
1697 ret = intel_init_workaround_bb(ring);
1698 if (ret) {
1699 /*
1700 * We continue even if we fail to initialize WA batch
1701 * because we only expect rare glitches but nothing
1702 * critical to prevent us from using GPU
1703 */
1704 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1705 ret);
1706 }
1707
c4db7599
AS
1708 ret = logical_ring_init(dev, ring);
1709 if (ret) {
17ee950d 1710 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1711 }
17ee950d
AS
1712
1713 return ret;
454afebd
OM
1714}
1715
1716static int logical_bsd_ring_init(struct drm_device *dev)
1717{
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1720
1721 ring->name = "bsd ring";
1722 ring->id = VCS;
1723 ring->mmio_base = GEN6_BSD_RING_BASE;
1724 ring->irq_enable_mask =
1725 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1726 ring->irq_keep_mask =
1727 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1728
ecfe00d8 1729 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1730 ring->get_seqno = gen8_get_seqno;
1731 ring->set_seqno = gen8_set_seqno;
4da46e1e 1732 ring->emit_request = gen8_emit_request;
4712274c 1733 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1734 ring->irq_get = gen8_logical_ring_get_irq;
1735 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1736 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1737
454afebd
OM
1738 return logical_ring_init(dev, ring);
1739}
1740
1741static int logical_bsd2_ring_init(struct drm_device *dev)
1742{
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1745
1746 ring->name = "bds2 ring";
1747 ring->id = VCS2;
1748 ring->mmio_base = GEN8_BSD2_RING_BASE;
1749 ring->irq_enable_mask =
1750 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1751 ring->irq_keep_mask =
1752 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1753
ecfe00d8 1754 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1755 ring->get_seqno = gen8_get_seqno;
1756 ring->set_seqno = gen8_set_seqno;
4da46e1e 1757 ring->emit_request = gen8_emit_request;
4712274c 1758 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1759 ring->irq_get = gen8_logical_ring_get_irq;
1760 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1761 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1762
454afebd
OM
1763 return logical_ring_init(dev, ring);
1764}
1765
1766static int logical_blt_ring_init(struct drm_device *dev)
1767{
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1770
1771 ring->name = "blitter ring";
1772 ring->id = BCS;
1773 ring->mmio_base = BLT_RING_BASE;
1774 ring->irq_enable_mask =
1775 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1776 ring->irq_keep_mask =
1777 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1778
ecfe00d8 1779 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1780 ring->get_seqno = gen8_get_seqno;
1781 ring->set_seqno = gen8_set_seqno;
4da46e1e 1782 ring->emit_request = gen8_emit_request;
4712274c 1783 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1784 ring->irq_get = gen8_logical_ring_get_irq;
1785 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1786 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1787
454afebd
OM
1788 return logical_ring_init(dev, ring);
1789}
1790
1791static int logical_vebox_ring_init(struct drm_device *dev)
1792{
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1795
1796 ring->name = "video enhancement ring";
1797 ring->id = VECS;
1798 ring->mmio_base = VEBOX_RING_BASE;
1799 ring->irq_enable_mask =
1800 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1801 ring->irq_keep_mask =
1802 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1803
ecfe00d8 1804 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1805 ring->get_seqno = gen8_get_seqno;
1806 ring->set_seqno = gen8_set_seqno;
4da46e1e 1807 ring->emit_request = gen8_emit_request;
4712274c 1808 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1809 ring->irq_get = gen8_logical_ring_get_irq;
1810 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1811 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1812
454afebd
OM
1813 return logical_ring_init(dev, ring);
1814}
1815
73e4d07f
OM
1816/**
1817 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1818 * @dev: DRM device.
1819 *
1820 * This function inits the engines for an Execlists submission style (the equivalent in the
1821 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1822 * those engines that are present in the hardware.
1823 *
1824 * Return: non-zero if the initialization failed.
1825 */
454afebd
OM
1826int intel_logical_rings_init(struct drm_device *dev)
1827{
1828 struct drm_i915_private *dev_priv = dev->dev_private;
1829 int ret;
1830
1831 ret = logical_render_ring_init(dev);
1832 if (ret)
1833 return ret;
1834
1835 if (HAS_BSD(dev)) {
1836 ret = logical_bsd_ring_init(dev);
1837 if (ret)
1838 goto cleanup_render_ring;
1839 }
1840
1841 if (HAS_BLT(dev)) {
1842 ret = logical_blt_ring_init(dev);
1843 if (ret)
1844 goto cleanup_bsd_ring;
1845 }
1846
1847 if (HAS_VEBOX(dev)) {
1848 ret = logical_vebox_ring_init(dev);
1849 if (ret)
1850 goto cleanup_blt_ring;
1851 }
1852
1853 if (HAS_BSD2(dev)) {
1854 ret = logical_bsd2_ring_init(dev);
1855 if (ret)
1856 goto cleanup_vebox_ring;
1857 }
1858
1859 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1860 if (ret)
1861 goto cleanup_bsd2_ring;
1862
1863 return 0;
1864
1865cleanup_bsd2_ring:
1866 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1867cleanup_vebox_ring:
1868 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1869cleanup_blt_ring:
1870 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1871cleanup_bsd_ring:
1872 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1873cleanup_render_ring:
1874 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1875
1876 return ret;
1877}
1878
0cea6502
JM
1879static u32
1880make_rpcs(struct drm_device *dev)
1881{
1882 u32 rpcs = 0;
1883
1884 /*
1885 * No explicit RPCS request is needed to ensure full
1886 * slice/subslice/EU enablement prior to Gen9.
1887 */
1888 if (INTEL_INFO(dev)->gen < 9)
1889 return 0;
1890
1891 /*
1892 * Starting in Gen9, render power gating can leave
1893 * slice/subslice/EU in a partially enabled state. We
1894 * must make an explicit request through RPCS for full
1895 * enablement.
1896 */
1897 if (INTEL_INFO(dev)->has_slice_pg) {
1898 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1899 rpcs |= INTEL_INFO(dev)->slice_total <<
1900 GEN8_RPCS_S_CNT_SHIFT;
1901 rpcs |= GEN8_RPCS_ENABLE;
1902 }
1903
1904 if (INTEL_INFO(dev)->has_subslice_pg) {
1905 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1906 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1907 GEN8_RPCS_SS_CNT_SHIFT;
1908 rpcs |= GEN8_RPCS_ENABLE;
1909 }
1910
1911 if (INTEL_INFO(dev)->has_eu_pg) {
1912 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1913 GEN8_RPCS_EU_MIN_SHIFT;
1914 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1915 GEN8_RPCS_EU_MAX_SHIFT;
1916 rpcs |= GEN8_RPCS_ENABLE;
1917 }
1918
1919 return rpcs;
1920}
1921
8670d6f9
OM
1922static int
1923populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1924 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1925{
2d965536
TD
1926 struct drm_device *dev = ring->dev;
1927 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1928 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1929 struct page *page;
1930 uint32_t *reg_state;
1931 int ret;
1932
2d965536
TD
1933 if (!ppgtt)
1934 ppgtt = dev_priv->mm.aliasing_ppgtt;
1935
8670d6f9
OM
1936 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1937 if (ret) {
1938 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1939 return ret;
1940 }
1941
1942 ret = i915_gem_object_get_pages(ctx_obj);
1943 if (ret) {
1944 DRM_DEBUG_DRIVER("Could not get object pages\n");
1945 return ret;
1946 }
1947
1948 i915_gem_object_pin_pages(ctx_obj);
1949
1950 /* The second page of the context object contains some fields which must
1951 * be set up prior to the first execution. */
1952 page = i915_gem_object_get_page(ctx_obj, 1);
1953 reg_state = kmap_atomic(page);
1954
1955 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1956 * commands followed by (reg, value) pairs. The values we are setting here are
1957 * only for the first context restore: on a subsequent save, the GPU will
1958 * recreate this batchbuffer with new values (including all the missing
1959 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1960 if (ring->id == RCS)
1961 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1962 else
1963 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1964 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1965 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1966 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5
ZW
1967 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1968 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9
OM
1969 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1970 reg_state[CTX_RING_HEAD+1] = 0;
1971 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1972 reg_state[CTX_RING_TAIL+1] = 0;
1973 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1974 /* Ring buffer start address is not known until the buffer is pinned.
1975 * It is written to the context image in execlists_update_context()
1976 */
8670d6f9
OM
1977 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1978 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1979 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1980 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1981 reg_state[CTX_BB_HEAD_U+1] = 0;
1982 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1983 reg_state[CTX_BB_HEAD_L+1] = 0;
1984 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1985 reg_state[CTX_BB_STATE+1] = (1<<5);
1986 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1987 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1988 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1989 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1990 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1991 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1992 if (ring->id == RCS) {
8670d6f9
OM
1993 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1994 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1995 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1996 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1997 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1998 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
1999 if (ring->wa_ctx.obj) {
2000 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2001 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2002
2003 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2004 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2005 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2006
2007 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2008 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2009
2010 reg_state[CTX_BB_PER_CTX_PTR+1] =
2011 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2012 0x01;
2013 }
8670d6f9
OM
2014 }
2015 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2016 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2017 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2018 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2019 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2020 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2021 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2022 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2023 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2024 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2025 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2026 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d
MT
2027
2028 /* With dynamic page allocation, PDPs may not be allocated at this point,
2029 * Point the unallocated PDPs to the scratch page
e5815a2e
MT
2030 */
2031 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2032 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2033 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2034 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
8670d6f9
OM
2035 if (ring->id == RCS) {
2036 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2037 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2038 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2039 }
2040
2041 kunmap_atomic(reg_state);
2042
2043 ctx_obj->dirty = 1;
2044 set_page_dirty(page);
2045 i915_gem_object_unpin_pages(ctx_obj);
2046
2047 return 0;
2048}
2049
73e4d07f
OM
2050/**
2051 * intel_lr_context_free() - free the LRC specific bits of a context
2052 * @ctx: the LR context to free.
2053 *
2054 * The real context freeing is done in i915_gem_context_free: this only
2055 * takes care of the bits that are LRC related: the per-engine backing
2056 * objects and the logical ringbuffer.
2057 */
ede7d42b
OM
2058void intel_lr_context_free(struct intel_context *ctx)
2059{
8c857917
OM
2060 int i;
2061
2062 for (i = 0; i < I915_NUM_RINGS; i++) {
2063 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2064
8c857917 2065 if (ctx_obj) {
dcb4c12a
OM
2066 struct intel_ringbuffer *ringbuf =
2067 ctx->engine[i].ringbuf;
2068 struct intel_engine_cs *ring = ringbuf->ring;
2069
7ba717cf
TD
2070 if (ctx == ring->default_context) {
2071 intel_unpin_ringbuffer_obj(ringbuf);
2072 i915_gem_object_ggtt_unpin(ctx_obj);
2073 }
a7cbedec 2074 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2075 intel_destroy_ringbuffer_obj(ringbuf);
2076 kfree(ringbuf);
8c857917
OM
2077 drm_gem_object_unreference(&ctx_obj->base);
2078 }
2079 }
2080}
2081
2082static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2083{
2084 int ret = 0;
2085
468c6816 2086 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2087
2088 switch (ring->id) {
2089 case RCS:
468c6816
MN
2090 if (INTEL_INFO(ring->dev)->gen >= 9)
2091 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2092 else
2093 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2094 break;
2095 case VCS:
2096 case BCS:
2097 case VECS:
2098 case VCS2:
2099 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2100 break;
2101 }
2102
2103 return ret;
ede7d42b
OM
2104}
2105
70b0ea86 2106static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2107 struct drm_i915_gem_object *default_ctx_obj)
2108{
2109 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2110
2111 /* The status page is offset 0 from the default context object
2112 * in LRC mode. */
2113 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2114 ring->status_page.page_addr =
2115 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
2116 ring->status_page.obj = default_ctx_obj;
2117
2118 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2119 (u32)ring->status_page.gfx_addr);
2120 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2121}
2122
73e4d07f
OM
2123/**
2124 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2125 * @ctx: LR context to create.
2126 * @ring: engine to be used with the context.
2127 *
2128 * This function can be called more than once, with different engines, if we plan
2129 * to use the context with them. The context backing objects and the ringbuffers
2130 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2131 * the creation is a deferred call: it's better to make sure first that we need to use
2132 * a given ring with the context.
2133 *
32197aab 2134 * Return: non-zero on error.
73e4d07f 2135 */
ede7d42b
OM
2136int intel_lr_context_deferred_create(struct intel_context *ctx,
2137 struct intel_engine_cs *ring)
2138{
dcb4c12a 2139 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
2140 struct drm_device *dev = ring->dev;
2141 struct drm_i915_gem_object *ctx_obj;
2142 uint32_t context_size;
84c2377f 2143 struct intel_ringbuffer *ringbuf;
8c857917
OM
2144 int ret;
2145
ede7d42b 2146 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2147 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2148
8c857917
OM
2149 context_size = round_up(get_lr_context_size(ring), 4096);
2150
149c86e7 2151 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2152 if (!ctx_obj) {
2153 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2154 return -ENOMEM;
8c857917
OM
2155 }
2156
dcb4c12a
OM
2157 if (is_global_default_ctx) {
2158 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2159 if (ret) {
2160 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2161 ret);
2162 drm_gem_object_unreference(&ctx_obj->base);
2163 return ret;
2164 }
8c857917
OM
2165 }
2166
84c2377f
OM
2167 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2168 if (!ringbuf) {
2169 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2170 ring->name);
84c2377f 2171 ret = -ENOMEM;
7ba717cf 2172 goto error_unpin_ctx;
84c2377f
OM
2173 }
2174
0c7dd53b 2175 ringbuf->ring = ring;
582d67f0 2176
84c2377f
OM
2177 ringbuf->size = 32 * PAGE_SIZE;
2178 ringbuf->effective_size = ringbuf->size;
2179 ringbuf->head = 0;
2180 ringbuf->tail = 0;
84c2377f 2181 ringbuf->last_retired_head = -1;
ebd0fd4b 2182 intel_ring_update_space(ringbuf);
84c2377f 2183
7ba717cf
TD
2184 if (ringbuf->obj == NULL) {
2185 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2186 if (ret) {
2187 DRM_DEBUG_DRIVER(
2188 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2189 ring->name, ret);
7ba717cf
TD
2190 goto error_free_rbuf;
2191 }
2192
2193 if (is_global_default_ctx) {
2194 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2195 if (ret) {
2196 DRM_ERROR(
2197 "Failed to pin and map ringbuffer %s: %d\n",
2198 ring->name, ret);
2199 goto error_destroy_rbuf;
2200 }
2201 }
2202
8670d6f9
OM
2203 }
2204
2205 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2206 if (ret) {
2207 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2208 goto error;
84c2377f
OM
2209 }
2210
2211 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2212 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2213
70b0ea86
DV
2214 if (ctx == ring->default_context)
2215 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2216 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53 2217 if (ring->init_context) {
76c39168
JH
2218 struct drm_i915_gem_request *req;
2219
2220 ret = i915_gem_request_alloc(ring, ctx, &req);
2221 if (ret)
2222 return ret;
2223
8753181e 2224 ret = ring->init_context(req);
e7778be1 2225 if (ret) {
771b9a53 2226 DRM_ERROR("ring init context: %d\n", ret);
76c39168 2227 i915_gem_request_cancel(req);
e7778be1
TD
2228 ctx->engine[ring->id].ringbuf = NULL;
2229 ctx->engine[ring->id].state = NULL;
2230 goto error;
2231 }
76c39168 2232
75289874 2233 i915_add_request_no_flush(req);
771b9a53
MT
2234 }
2235
564ddb2f
OM
2236 ctx->rcs_initialized = true;
2237 }
2238
ede7d42b 2239 return 0;
8670d6f9
OM
2240
2241error:
7ba717cf
TD
2242 if (is_global_default_ctx)
2243 intel_unpin_ringbuffer_obj(ringbuf);
2244error_destroy_rbuf:
2245 intel_destroy_ringbuffer_obj(ringbuf);
2246error_free_rbuf:
8670d6f9 2247 kfree(ringbuf);
7ba717cf 2248error_unpin_ctx:
dcb4c12a
OM
2249 if (is_global_default_ctx)
2250 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2251 drm_gem_object_unreference(&ctx_obj->base);
2252 return ret;
ede7d42b 2253}
3e5b6f05
TD
2254
2255void intel_lr_context_reset(struct drm_device *dev,
2256 struct intel_context *ctx)
2257{
2258 struct drm_i915_private *dev_priv = dev->dev_private;
2259 struct intel_engine_cs *ring;
2260 int i;
2261
2262 for_each_ring(ring, dev_priv, i) {
2263 struct drm_i915_gem_object *ctx_obj =
2264 ctx->engine[ring->id].state;
2265 struct intel_ringbuffer *ringbuf =
2266 ctx->engine[ring->id].ringbuf;
2267 uint32_t *reg_state;
2268 struct page *page;
2269
2270 if (!ctx_obj)
2271 continue;
2272
2273 if (i915_gem_object_get_pages(ctx_obj)) {
2274 WARN(1, "Failed get_pages for context obj\n");
2275 continue;
2276 }
2277 page = i915_gem_object_get_page(ctx_obj, 1);
2278 reg_state = kmap_atomic(page);
2279
2280 reg_state[CTX_RING_HEAD+1] = 0;
2281 reg_state[CTX_RING_TAIL+1] = 0;
2282
2283 kunmap_atomic(reg_state);
2284
2285 ringbuf->head = 0;
2286 ringbuf->tail = 0;
2287 }
2288}
This page took 0.216204 seconds and 5 git commands to generate.