drm/i915: Replace the pinned context address with its unique ID
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
e5292823
TU
231static int intel_lr_context_pin(struct intel_context *ctx,
232 struct intel_engine_cs *engine);
7ba717cf 233
73e4d07f
OM
234/**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev: DRM device.
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
27401d12 240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
127f1003
OM
244int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
245{
bd84b1e9
DV
246 WARN_ON(i915.enable_ppgtt == -1);
247
a0bd6c31
ZL
248 /* On platforms with execlist available, vGPU will only
249 * support execlist mode, no ring buffer mode.
250 */
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
252 return 1;
253
70ee45e1
DL
254 if (INTEL_INFO(dev)->gen >= 9)
255 return 1;
256
127f1003
OM
257 if (enable_execlists == 0)
258 return 0;
259
14bf993e
OM
260 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
261 i915.use_mmio_flip >= 0)
127f1003
OM
262 return 1;
263
264 return 0;
265}
ede7d42b 266
ca82580c 267static void
0bc40be8 268logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 269{
0bc40be8 270 struct drm_device *dev = engine->dev;
ca82580c 271
c6a2ac71 272 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 273 engine->idle_lite_restore_wa = ~0;
c6a2ac71 274
0bc40be8 275 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 276 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 277 (engine->id == VCS || engine->id == VCS2);
ca82580c 278
0bc40be8
TU
279 engine->ctx_desc_template = GEN8_CTX_VALID;
280 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
281 GEN8_CTX_ADDRESSING_MODE_SHIFT;
282 if (IS_GEN8(dev))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
73e4d07f 299 *
ca82580c
TU
300 * @ctx: Context to work on
301 * @ring: Engine the descriptor will be used with
73e4d07f 302 *
ca82580c
TU
303 * The context descriptor encodes various attributes of a context,
304 * including its GTT address and some flags. Because it's fairly
305 * expensive to calculate, we'll just do it once and cache the result,
306 * which remains valid until the context is unpinned.
307 *
308 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 311 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c
TU
315static void
316intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
7069b144 319 u64 desc;
84b790f8 320
7069b144 321 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 322
7069b144
CW
323 desc = engine->ctx_desc_template; /* bits 0-11 */
324 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
325 LRC_PPHWSP_PN * PAGE_SIZE;
326 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 327
0bc40be8 328 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
329}
330
919f1f55 331uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 332 struct intel_engine_cs *engine)
84b790f8 333{
0bc40be8 334 return ctx->engine[engine->id].lrc_desc;
ca82580c 335}
203a571b 336
cc3c4253
MK
337static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
338 struct drm_i915_gem_request *rq1)
84b790f8 339{
cc3c4253 340
4a570db5 341 struct intel_engine_cs *engine = rq0->engine;
e2f80391 342 struct drm_device *dev = engine->dev;
6e7cc470 343 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 344 uint64_t desc[2];
84b790f8 345
1cff8cc3 346 if (rq1) {
4a570db5 347 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
348 rq1->elsp_submitted++;
349 } else {
350 desc[1] = 0;
351 }
84b790f8 352
4a570db5 353 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 354 rq0->elsp_submitted++;
84b790f8 355
1cff8cc3 356 /* You must always write both descriptors in the order below. */
e2f80391
TU
357 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
358 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 359
e2f80391 360 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 361 /* The context is automatically loaded after the following */
e2f80391 362 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 363
1cff8cc3 364 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 365 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
366}
367
c6a2ac71
TU
368static void
369execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
370{
371 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
372 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
375}
376
377static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 378{
4a570db5 379 struct intel_engine_cs *engine = rq->engine;
05d9824b 380 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 381 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 382
05d9824b 383 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 384
c6a2ac71
TU
385 /* True 32b PPGTT with dynamic page allocation: update PDP
386 * registers and point the unallocated PDPs to scratch page.
387 * PML4 is allocated during ppgtt init, so this is not needed
388 * in 48-bit mode.
389 */
390 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
391 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
392}
393
d8cb8875
MK
394static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
395 struct drm_i915_gem_request *rq1)
84b790f8 396{
26720ab9 397 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 398 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 399
05d9824b 400 execlists_update_context(rq0);
d8cb8875 401
cc3c4253 402 if (rq1)
05d9824b 403 execlists_update_context(rq1);
84b790f8 404
27af5eea 405 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 406 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 407
cc3c4253 408 execlists_elsp_write(rq0, rq1);
26720ab9 409
3756685a 410 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 411 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
412}
413
26720ab9 414static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 415{
6d3d8274 416 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 417 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 418
0bc40be8 419 assert_spin_locked(&engine->execlist_lock);
acdd884a 420
779949f4
PA
421 /*
422 * If irqs are not active generate a warning as batches that finish
423 * without the irqs may get lost and a GPU Hang may occur.
424 */
0bc40be8 425 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 426
acdd884a 427 /* Try to read in pairs */
0bc40be8 428 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
429 execlist_link) {
430 if (!req0) {
431 req0 = cursor;
6d3d8274 432 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
433 /* Same ctx: ignore first request, as second request
434 * will update tail past first request's workload */
e1fee72c 435 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 436 list_move_tail(&req0->execlist_link,
0bc40be8 437 &engine->execlist_retired_req_list);
acdd884a
MT
438 req0 = cursor;
439 } else {
440 req1 = cursor;
c6a2ac71 441 WARN_ON(req1->elsp_submitted);
acdd884a
MT
442 break;
443 }
444 }
445
c6a2ac71
TU
446 if (unlikely(!req0))
447 return;
448
0bc40be8 449 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 450 /*
c6a2ac71
TU
451 * WaIdleLiteRestore: make sure we never cause a lite restore
452 * with HEAD==TAIL.
453 *
454 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
455 * resubmit the request. See gen8_emit_request() for where we
456 * prepare the padding after the end of the request.
53292cdb 457 */
c6a2ac71 458 struct intel_ringbuffer *ringbuf;
53292cdb 459
0bc40be8 460 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
461 req0->tail += 8;
462 req0->tail &= ringbuf->size - 1;
53292cdb
MT
463 }
464
d8cb8875 465 execlists_submit_requests(req0, req1);
acdd884a
MT
466}
467
c6a2ac71 468static unsigned int
0bc40be8 469execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 470{
6d3d8274 471 struct drm_i915_gem_request *head_req;
e981e7b1 472
0bc40be8 473 assert_spin_locked(&engine->execlist_lock);
e981e7b1 474
0bc40be8 475 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 476 struct drm_i915_gem_request,
e981e7b1
TD
477 execlist_link);
478
c6a2ac71
TU
479 if (!head_req)
480 return 0;
e1fee72c 481
7069b144 482 if (unlikely(head_req->ctx->hw_id != request_id))
c6a2ac71
TU
483 return 0;
484
485 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted > 0)
488 return 0;
489
490 list_move_tail(&head_req->execlist_link,
0bc40be8 491 &engine->execlist_retired_req_list);
e981e7b1 492
c6a2ac71 493 return 1;
e981e7b1
TD
494}
495
c6a2ac71 496static u32
0bc40be8 497get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 498 u32 *context_id)
91a41032 499{
0bc40be8 500 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 501 u32 status;
91a41032 502
c6a2ac71
TU
503 read_pointer %= GEN8_CSB_ENTRIES;
504
0bc40be8 505 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
506
507 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
508 return 0;
91a41032 509
0bc40be8 510 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
511 read_pointer));
512
513 return status;
91a41032
BW
514}
515
73e4d07f 516/**
3f7531c3 517 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 518 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
519 *
520 * Check the unread Context Status Buffers and manage the submission of new
521 * contexts to the ELSP accordingly.
522 */
27af5eea 523static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 524{
27af5eea 525 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 526 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 527 u32 status_pointer;
c6a2ac71 528 unsigned int read_pointer, write_pointer;
26720ab9
TU
529 u32 csb[GEN8_CSB_ENTRIES][2];
530 unsigned int csb_read = 0, i;
c6a2ac71
TU
531 unsigned int submit_contexts = 0;
532
3756685a 533 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 534
0bc40be8 535 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 536
0bc40be8 537 read_pointer = engine->next_context_status_buffer;
5590a5f0 538 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 539 if (read_pointer > write_pointer)
dfc53c5e 540 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 541
e981e7b1 542 while (read_pointer < write_pointer) {
26720ab9
TU
543 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
544 break;
545 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
546 &csb[csb_read][1]);
547 csb_read++;
548 }
91a41032 549
26720ab9
TU
550 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
551
552 /* Update the read pointer to the old write pointer. Manual ringbuffer
553 * management ftw </sarcasm> */
554 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
555 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
556 engine->next_context_status_buffer << 8));
557
3756685a 558 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
559
560 spin_lock(&engine->execlist_lock);
561
562 for (i = 0; i < csb_read; i++) {
563 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
564 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
565 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
566 WARN(1, "Lite Restored request removed from queue\n");
567 } else
568 WARN(1, "Preemption without Lite Restore\n");
569 }
570
26720ab9 571 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
572 GEN8_CTX_STATUS_ELEMENT_SWITCH))
573 submit_contexts +=
26720ab9 574 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
575 }
576
c6a2ac71 577 if (submit_contexts) {
0bc40be8 578 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
579 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
580 execlists_context_unqueue(engine);
5af05fef 581 }
e981e7b1 582
0bc40be8 583 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
584
585 if (unlikely(submit_contexts > 2))
586 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
587}
588
c6a2ac71 589static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 590{
4a570db5 591 struct intel_engine_cs *engine = request->engine;
6d3d8274 592 struct drm_i915_gem_request *cursor;
f1ad5a1f 593 int num_elements = 0;
acdd884a 594
ed54c1a1 595 if (request->ctx != request->i915->kernel_context)
e2f80391 596 intel_lr_context_pin(request->ctx, engine);
af3302b9 597
9bb1af44
JH
598 i915_gem_request_reference(request);
599
27af5eea 600 spin_lock_bh(&engine->execlist_lock);
acdd884a 601
e2f80391 602 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
603 if (++num_elements > 2)
604 break;
605
606 if (num_elements > 2) {
6d3d8274 607 struct drm_i915_gem_request *tail_req;
f1ad5a1f 608
e2f80391 609 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 610 struct drm_i915_gem_request,
f1ad5a1f
OM
611 execlist_link);
612
ae70797d 613 if (request->ctx == tail_req->ctx) {
f1ad5a1f 614 WARN(tail_req->elsp_submitted != 0,
7ba717cf 615 "More than 2 already-submitted reqs queued\n");
7eb08a25 616 list_move_tail(&tail_req->execlist_link,
e2f80391 617 &engine->execlist_retired_req_list);
f1ad5a1f
OM
618 }
619 }
620
e2f80391 621 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 622 if (num_elements == 0)
e2f80391 623 execlists_context_unqueue(engine);
acdd884a 624
27af5eea 625 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
626}
627
2f20055d 628static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 629{
4a570db5 630 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
631 uint32_t flush_domains;
632 int ret;
633
634 flush_domains = 0;
e2f80391 635 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
636 flush_domains = I915_GEM_GPU_DOMAINS;
637
e2f80391 638 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
639 if (ret)
640 return ret;
641
e2f80391 642 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
643 return 0;
644}
645
535fbe82 646static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
647 struct list_head *vmas)
648{
666796da 649 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
650 struct i915_vma *vma;
651 uint32_t flush_domains = 0;
652 bool flush_chipset = false;
653 int ret;
654
655 list_for_each_entry(vma, vmas, exec_list) {
656 struct drm_i915_gem_object *obj = vma->obj;
657
03ade511 658 if (obj->active & other_rings) {
4a570db5 659 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
660 if (ret)
661 return ret;
662 }
ba8b7ccb
OM
663
664 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
665 flush_chipset |= i915_gem_clflush_object(obj, false);
666
667 flush_domains |= obj->base.write_domain;
668 }
669
670 if (flush_domains & I915_GEM_DOMAIN_GTT)
671 wmb();
672
673 /* Unconditionally invalidate gpu caches and ensure that we do flush
674 * any residual writes from the previous batch.
675 */
2f20055d 676 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
677}
678
40e895ce 679int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 680{
bfa01200 681 int ret;
bc0dce3f 682
6310346e
CW
683 /* Flush enough space to reduce the likelihood of waiting after
684 * we start building the request - in which case we will just
685 * have to repeat work.
686 */
687 request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
688
4a570db5 689 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 690
a7e02199
AD
691 if (i915.enable_guc_submission) {
692 /*
693 * Check that the GuC has space for the request before
694 * going any further, as the i915_add_request() call
695 * later on mustn't fail ...
696 */
697 struct intel_guc *guc = &request->i915->guc;
698
699 ret = i915_guc_wq_check_space(guc->execbuf_client);
700 if (ret)
701 return ret;
702 }
703
bfa01200 704 if (request->ctx != request->i915->kernel_context) {
4a570db5 705 ret = intel_lr_context_pin(request->ctx, request->engine);
bfa01200
CW
706 if (ret)
707 return ret;
708 }
e28e404c 709
bfa01200
CW
710 ret = intel_ring_begin(request, 0);
711 if (ret)
712 goto err_unpin;
713
6310346e 714 request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
715 return 0;
716
717err_unpin:
718 if (request->ctx != request->i915->kernel_context)
719 intel_lr_context_unpin(request->ctx, request->engine);
e28e404c 720 return ret;
bc0dce3f
JH
721}
722
bc0dce3f
JH
723/*
724 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 725 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
726 *
727 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
728 * really happens during submission is that the context and current tail will be placed
729 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
730 * point, the tail *inside* the context is updated and the ELSP written to.
731 */
7c17d377 732static int
ae70797d 733intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 734{
7c17d377 735 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 736 struct drm_i915_private *dev_priv = request->i915;
4a570db5 737 struct intel_engine_cs *engine = request->engine;
bc0dce3f 738
7c17d377
CW
739 intel_logical_ring_advance(ringbuf);
740 request->tail = ringbuf->tail;
bc0dce3f 741
7c17d377
CW
742 /*
743 * Here we add two extra NOOPs as padding to avoid
744 * lite restore of a context with HEAD==TAIL.
745 *
746 * Caller must reserve WA_TAIL_DWORDS for us!
747 */
748 intel_logical_ring_emit(ringbuf, MI_NOOP);
749 intel_logical_ring_emit(ringbuf, MI_NOOP);
750 intel_logical_ring_advance(ringbuf);
d1675198 751
117897f4 752 if (intel_engine_stopped(engine))
7c17d377 753 return 0;
bc0dce3f 754
f4e2dece
TU
755 if (engine->last_context != request->ctx) {
756 if (engine->last_context)
757 intel_lr_context_unpin(engine->last_context, engine);
758 if (request->ctx != request->i915->kernel_context) {
759 intel_lr_context_pin(request->ctx, engine);
760 engine->last_context = request->ctx;
761 } else {
762 engine->last_context = NULL;
763 }
764 }
765
d1675198
AD
766 if (dev_priv->guc.execbuf_client)
767 i915_guc_submit(dev_priv->guc.execbuf_client, request);
768 else
769 execlists_context_queue(request);
7c17d377
CW
770
771 return 0;
bc0dce3f
JH
772}
773
73e4d07f
OM
774/**
775 * execlists_submission() - submit a batchbuffer for execution, Execlists style
776 * @dev: DRM device.
777 * @file: DRM file.
778 * @ring: Engine Command Streamer to submit to.
779 * @ctx: Context to employ for this submission.
780 * @args: execbuffer call arguments.
781 * @vmas: list of vmas.
782 * @batch_obj: the batchbuffer to submit.
783 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 784 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
785 *
786 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
787 * away the submission details of the execbuffer ioctl call.
788 *
789 * Return: non-zero if the submission fails.
790 */
5f19e2bf 791int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 792 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 793 struct list_head *vmas)
454afebd 794{
5f19e2bf 795 struct drm_device *dev = params->dev;
4a570db5 796 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 797 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 798 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 799 u64 exec_start;
ba8b7ccb
OM
800 int instp_mode;
801 u32 instp_mask;
802 int ret;
803
804 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
805 instp_mask = I915_EXEC_CONSTANTS_MASK;
806 switch (instp_mode) {
807 case I915_EXEC_CONSTANTS_REL_GENERAL:
808 case I915_EXEC_CONSTANTS_ABSOLUTE:
809 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 810 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
811 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
812 return -EINVAL;
813 }
814
815 if (instp_mode != dev_priv->relative_constants_mode) {
816 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
817 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
818 return -EINVAL;
819 }
820
821 /* The HW changed the meaning on this bit on gen6 */
822 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
823 }
824 break;
825 default:
826 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
827 return -EINVAL;
828 }
829
ba8b7ccb
OM
830 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
831 DRM_DEBUG("sol reset is gen7 only\n");
832 return -EINVAL;
833 }
834
535fbe82 835 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
836 if (ret)
837 return ret;
838
4a570db5 839 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 840 instp_mode != dev_priv->relative_constants_mode) {
987046ad 841 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
842 if (ret)
843 return ret;
844
845 intel_logical_ring_emit(ringbuf, MI_NOOP);
846 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 847 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
848 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
849 intel_logical_ring_advance(ringbuf);
850
851 dev_priv->relative_constants_mode = instp_mode;
852 }
853
5f19e2bf
JH
854 exec_start = params->batch_obj_vm_offset +
855 args->batch_start_offset;
856
e2f80391 857 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
858 if (ret)
859 return ret;
860
95c24161 861 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 862
8a8edb59 863 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 864
454afebd
OM
865 return 0;
866}
867
0bc40be8 868void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 869{
6d3d8274 870 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
871 struct list_head retired_list;
872
0bc40be8
TU
873 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
874 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
875 return;
876
877 INIT_LIST_HEAD(&retired_list);
27af5eea 878 spin_lock_bh(&engine->execlist_lock);
0bc40be8 879 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 880 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
881
882 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
883 struct intel_context *ctx = req->ctx;
884 struct drm_i915_gem_object *ctx_obj =
0bc40be8 885 ctx->engine[engine->id].state;
af3302b9 886
ed54c1a1 887 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 888 intel_lr_context_unpin(ctx, engine);
e5292823 889
c86ee3a9 890 list_del(&req->execlist_link);
f8210795 891 i915_gem_request_unreference(req);
c86ee3a9
TD
892 }
893}
894
0bc40be8 895void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 896{
0bc40be8 897 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
898 int ret;
899
117897f4 900 if (!intel_engine_initialized(engine))
9832b9da
OM
901 return;
902
666796da 903 ret = intel_engine_idle(engine);
f4457ae7 904 if (ret)
9832b9da 905 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 906 engine->name, ret);
9832b9da
OM
907
908 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
909 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
910 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
911 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
912 return;
913 }
0bc40be8 914 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
915}
916
4866d729 917int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 918{
4a570db5 919 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
920 int ret;
921
e2f80391 922 if (!engine->gpu_caches_dirty)
48e29f55
OM
923 return 0;
924
e2f80391 925 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
926 if (ret)
927 return ret;
928
e2f80391 929 engine->gpu_caches_dirty = false;
48e29f55
OM
930 return 0;
931}
932
e5292823 933static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 934 struct intel_engine_cs *engine)
dcb4c12a 935{
0bc40be8 936 struct drm_device *dev = engine->dev;
e84fe803 937 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
938 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
939 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
7d774cac
TU
940 void *vaddr;
941 u32 *lrc_reg_state;
ca82580c 942 int ret;
dcb4c12a 943
0bc40be8 944 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 945
e84fe803
NH
946 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
947 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
948 if (ret)
949 return ret;
7ba717cf 950
7d774cac
TU
951 vaddr = i915_gem_object_pin_map(ctx_obj);
952 if (IS_ERR(vaddr)) {
953 ret = PTR_ERR(vaddr);
82352e90
TU
954 goto unpin_ctx_obj;
955 }
956
7d774cac
TU
957 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
958
0bc40be8 959 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 960 if (ret)
7d774cac 961 goto unpin_map;
d1675198 962
0bc40be8
TU
963 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
964 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 965 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 966 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 967 ctx_obj->dirty = true;
e93c28f3 968
e84fe803
NH
969 /* Invalidate GuC TLB. */
970 if (i915.enable_guc_submission)
971 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 972
7ba717cf
TD
973 return ret;
974
7d774cac
TU
975unpin_map:
976 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
977unpin_ctx_obj:
978 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
979
980 return ret;
981}
982
e5292823
TU
983static int intel_lr_context_pin(struct intel_context *ctx,
984 struct intel_engine_cs *engine)
e84fe803
NH
985{
986 int ret = 0;
e84fe803 987
e5292823
TU
988 if (ctx->engine[engine->id].pin_count++ == 0) {
989 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
990 if (ret)
991 goto reset_pin_count;
321fe304
TU
992
993 i915_gem_context_reference(ctx);
e84fe803
NH
994 }
995 return ret;
996
a7cbedec 997reset_pin_count:
e5292823 998 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
999 return ret;
1000}
1001
e5292823
TU
1002void intel_lr_context_unpin(struct intel_context *ctx,
1003 struct intel_engine_cs *engine)
dcb4c12a 1004{
e5292823 1005 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1006
f4e2dece 1007 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823 1008 if (--ctx->engine[engine->id].pin_count == 0) {
7d774cac 1009 i915_gem_object_unpin_map(ctx_obj);
e5292823 1010 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1011 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1012 ctx->engine[engine->id].lrc_vma = NULL;
1013 ctx->engine[engine->id].lrc_desc = 0;
1014 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1015
1016 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1017 }
1018}
1019
e2be4faf 1020static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1021{
1022 int ret, i;
4a570db5 1023 struct intel_engine_cs *engine = req->engine;
e2be4faf 1024 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1025 struct drm_device *dev = engine->dev;
771b9a53
MT
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct i915_workarounds *w = &dev_priv->workarounds;
1028
cd7feaaa 1029 if (w->count == 0)
771b9a53
MT
1030 return 0;
1031
e2f80391 1032 engine->gpu_caches_dirty = true;
4866d729 1033 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1034 if (ret)
1035 return ret;
1036
987046ad 1037 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1038 if (ret)
1039 return ret;
1040
1041 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1042 for (i = 0; i < w->count; i++) {
f92a9162 1043 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1044 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1045 }
1046 intel_logical_ring_emit(ringbuf, MI_NOOP);
1047
1048 intel_logical_ring_advance(ringbuf);
1049
e2f80391 1050 engine->gpu_caches_dirty = true;
4866d729 1051 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1052 if (ret)
1053 return ret;
1054
1055 return 0;
1056}
1057
83b8a982 1058#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1059 do { \
83b8a982
AS
1060 int __index = (index)++; \
1061 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1062 return -ENOSPC; \
1063 } \
83b8a982 1064 batch[__index] = (cmd); \
17ee950d
AS
1065 } while (0)
1066
8f40db77 1067#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1068 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1069
1070/*
1071 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1072 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1073 * but there is a slight complication as this is applied in WA batch where the
1074 * values are only initialized once so we cannot take register value at the
1075 * beginning and reuse it further; hence we save its value to memory, upload a
1076 * constant value with bit21 set and then we restore it back with the saved value.
1077 * To simplify the WA, a constant value is formed by using the default value
1078 * of this register. This shouldn't be a problem because we are only modifying
1079 * it for a short period and this batch in non-premptible. We can ofcourse
1080 * use additional instructions that read the actual value of the register
1081 * at that time and set our bit of interest but it makes the WA complicated.
1082 *
1083 * This WA is also required for Gen9 so extracting as a function avoids
1084 * code duplication.
1085 */
0bc40be8 1086static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1087 uint32_t *const batch,
1088 uint32_t index)
1089{
1090 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1091
a4106a78
AS
1092 /*
1093 * WaDisableLSQCROPERFforOCL:skl
1094 * This WA is implemented in skl_init_clock_gating() but since
1095 * this batch updates GEN8_L3SQCREG4 with default value we need to
1096 * set this bit here to retain the WA during flush.
1097 */
0bc40be8 1098 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1099 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1100
f1afe24f 1101 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1102 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1103 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1104 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1105 wa_ctx_emit(batch, index, 0);
1106
1107 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1108 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1109 wa_ctx_emit(batch, index, l3sqc4_flush);
1110
1111 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1112 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1113 PIPE_CONTROL_DC_FLUSH_ENABLE));
1114 wa_ctx_emit(batch, index, 0);
1115 wa_ctx_emit(batch, index, 0);
1116 wa_ctx_emit(batch, index, 0);
1117 wa_ctx_emit(batch, index, 0);
1118
f1afe24f 1119 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1120 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1121 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1122 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1123 wa_ctx_emit(batch, index, 0);
9e000847
AS
1124
1125 return index;
1126}
1127
17ee950d
AS
1128static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1129 uint32_t offset,
1130 uint32_t start_alignment)
1131{
1132 return wa_ctx->offset = ALIGN(offset, start_alignment);
1133}
1134
1135static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1136 uint32_t offset,
1137 uint32_t size_alignment)
1138{
1139 wa_ctx->size = offset - wa_ctx->offset;
1140
1141 WARN(wa_ctx->size % size_alignment,
1142 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1143 wa_ctx->size, size_alignment);
1144 return 0;
1145}
1146
1147/**
1148 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1149 *
1150 * @ring: only applicable for RCS
1151 * @wa_ctx: structure representing wa_ctx
1152 * offset: specifies start of the batch, should be cache-aligned. This is updated
1153 * with the offset value received as input.
1154 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1155 * @batch: page in which WA are loaded
1156 * @offset: This field specifies the start of the batch, it should be
1157 * cache-aligned otherwise it is adjusted accordingly.
1158 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1159 * initialized at the beginning and shared across all contexts but this field
1160 * helps us to have multiple batches at different offsets and select them based
1161 * on a criteria. At the moment this batch always start at the beginning of the page
1162 * and at this point we don't have multiple wa_ctx batch buffers.
1163 *
1164 * The number of WA applied are not known at the beginning; we use this field
1165 * to return the no of DWORDS written.
4d78c8dc 1166 *
17ee950d
AS
1167 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1168 * so it adds NOOPs as padding to make it cacheline aligned.
1169 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1170 * makes a complete batch buffer.
1171 *
1172 * Return: non-zero if we exceed the PAGE_SIZE limit.
1173 */
1174
0bc40be8 1175static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1176 struct i915_wa_ctx_bb *wa_ctx,
1177 uint32_t *const batch,
1178 uint32_t *offset)
1179{
0160f055 1180 uint32_t scratch_addr;
17ee950d
AS
1181 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1182
7ad00d1a 1183 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1184 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1185
c82435bb 1186 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1187 if (IS_BROADWELL(engine->dev)) {
1188 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1189 if (rc < 0)
1190 return rc;
1191 index = rc;
c82435bb
AS
1192 }
1193
0160f055
AS
1194 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1195 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1196 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1197
83b8a982
AS
1198 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1199 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1200 PIPE_CONTROL_GLOBAL_GTT_IVB |
1201 PIPE_CONTROL_CS_STALL |
1202 PIPE_CONTROL_QW_WRITE));
1203 wa_ctx_emit(batch, index, scratch_addr);
1204 wa_ctx_emit(batch, index, 0);
1205 wa_ctx_emit(batch, index, 0);
1206 wa_ctx_emit(batch, index, 0);
0160f055 1207
17ee950d
AS
1208 /* Pad to end of cacheline */
1209 while (index % CACHELINE_DWORDS)
83b8a982 1210 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1211
1212 /*
1213 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1214 * execution depends on the length specified in terms of cache lines
1215 * in the register CTX_RCS_INDIRECT_CTX
1216 */
1217
1218 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1219}
1220
1221/**
1222 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1223 *
1224 * @ring: only applicable for RCS
1225 * @wa_ctx: structure representing wa_ctx
1226 * offset: specifies start of the batch, should be cache-aligned.
1227 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1228 * @batch: page in which WA are loaded
17ee950d
AS
1229 * @offset: This field specifies the start of this batch.
1230 * This batch is started immediately after indirect_ctx batch. Since we ensure
1231 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1232 *
1233 * The number of DWORDS written are returned using this field.
1234 *
1235 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1236 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1237 */
0bc40be8 1238static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1239 struct i915_wa_ctx_bb *wa_ctx,
1240 uint32_t *const batch,
1241 uint32_t *offset)
1242{
1243 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1244
7ad00d1a 1245 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1246 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1247
83b8a982 1248 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1249
1250 return wa_ctx_end(wa_ctx, *offset = index, 1);
1251}
1252
0bc40be8 1253static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1254 struct i915_wa_ctx_bb *wa_ctx,
1255 uint32_t *const batch,
1256 uint32_t *offset)
1257{
a4106a78 1258 int ret;
0bc40be8 1259 struct drm_device *dev = engine->dev;
0504cffc
AS
1260 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1261
0907c8f7 1262 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1263 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1264 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1265 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1266
a4106a78 1267 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1268 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1269 if (ret < 0)
1270 return ret;
1271 index = ret;
1272
0504cffc
AS
1273 /* Pad to end of cacheline */
1274 while (index % CACHELINE_DWORDS)
1275 wa_ctx_emit(batch, index, MI_NOOP);
1276
1277 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1278}
1279
0bc40be8 1280static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1281 struct i915_wa_ctx_bb *wa_ctx,
1282 uint32_t *const batch,
1283 uint32_t *offset)
1284{
0bc40be8 1285 struct drm_device *dev = engine->dev;
0504cffc
AS
1286 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1287
9b01435d 1288 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1289 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1290 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1291 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1292 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1293 wa_ctx_emit(batch, index,
1294 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1295 wa_ctx_emit(batch, index, MI_NOOP);
1296 }
1297
b1e429fe
TG
1298 /* WaClearTdlStateAckDirtyBits:bxt */
1299 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1300 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1301
1302 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1303 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1304
1305 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1306 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1307
1308 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1309 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1310
1311 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1312 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1313 wa_ctx_emit(batch, index, 0x0);
1314 wa_ctx_emit(batch, index, MI_NOOP);
1315 }
1316
0907c8f7 1317 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1318 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1319 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1320 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1321
0504cffc
AS
1322 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1323
1324 return wa_ctx_end(wa_ctx, *offset = index, 1);
1325}
1326
0bc40be8 1327static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1328{
1329 int ret;
1330
d37cd8a8 1331 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
0bc40be8 1332 PAGE_ALIGN(size));
fe3db79b 1333 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1334 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1335 ret = PTR_ERR(engine->wa_ctx.obj);
1336 engine->wa_ctx.obj = NULL;
1337 return ret;
17ee950d
AS
1338 }
1339
0bc40be8 1340 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1341 if (ret) {
1342 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1343 ret);
0bc40be8 1344 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1345 return ret;
1346 }
1347
1348 return 0;
1349}
1350
0bc40be8 1351static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1352{
0bc40be8
TU
1353 if (engine->wa_ctx.obj) {
1354 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1355 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1356 engine->wa_ctx.obj = NULL;
17ee950d
AS
1357 }
1358}
1359
0bc40be8 1360static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1361{
1362 int ret;
1363 uint32_t *batch;
1364 uint32_t offset;
1365 struct page *page;
0bc40be8 1366 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1367
0bc40be8 1368 WARN_ON(engine->id != RCS);
17ee950d 1369
5e60d790 1370 /* update this when WA for higher Gen are added */
0bc40be8 1371 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1372 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1373 INTEL_INFO(engine->dev)->gen);
5e60d790 1374 return 0;
0504cffc 1375 }
5e60d790 1376
c4db7599 1377 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1378 if (engine->scratch.obj == NULL) {
1379 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1380 return -EINVAL;
1381 }
1382
0bc40be8 1383 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1384 if (ret) {
1385 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1386 return ret;
1387 }
1388
033908ae 1389 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1390 batch = kmap_atomic(page);
1391 offset = 0;
1392
0bc40be8
TU
1393 if (INTEL_INFO(engine->dev)->gen == 8) {
1394 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1395 &wa_ctx->indirect_ctx,
1396 batch,
1397 &offset);
1398 if (ret)
1399 goto out;
1400
0bc40be8 1401 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1402 &wa_ctx->per_ctx,
1403 batch,
1404 &offset);
1405 if (ret)
1406 goto out;
0bc40be8
TU
1407 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1408 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1409 &wa_ctx->indirect_ctx,
1410 batch,
1411 &offset);
1412 if (ret)
1413 goto out;
1414
0bc40be8 1415 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1416 &wa_ctx->per_ctx,
1417 batch,
1418 &offset);
1419 if (ret)
1420 goto out;
17ee950d
AS
1421 }
1422
1423out:
1424 kunmap_atomic(batch);
1425 if (ret)
0bc40be8 1426 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1427
1428 return ret;
1429}
1430
04794adb
TU
1431static void lrc_init_hws(struct intel_engine_cs *engine)
1432{
1433 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1434
1435 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1436 (u32)engine->status_page.gfx_addr);
1437 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1438}
1439
0bc40be8 1440static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1441{
0bc40be8 1442 struct drm_device *dev = engine->dev;
9b1136d5 1443 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1444 unsigned int next_context_status_buffer_hw;
9b1136d5 1445
04794adb 1446 lrc_init_hws(engine);
e84fe803 1447
0bc40be8
TU
1448 I915_WRITE_IMR(engine,
1449 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1450 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1451
0bc40be8 1452 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1453 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1454 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1455 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1456
1457 /*
1458 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1459 * zero, we need to read the write pointer from hardware and use its
1460 * value because "this register is power context save restored".
1461 * Effectively, these states have been observed:
1462 *
1463 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1464 * BDW | CSB regs not reset | CSB regs reset |
1465 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1466 * SKL | ? | ? |
1467 * BXT | ? | ? |
dfc53c5e 1468 */
5590a5f0 1469 next_context_status_buffer_hw =
0bc40be8 1470 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1471
1472 /*
1473 * When the CSB registers are reset (also after power-up / gpu reset),
1474 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1475 * this special case, so the first element read is CSB[0].
1476 */
1477 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1478 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1479
0bc40be8
TU
1480 engine->next_context_status_buffer = next_context_status_buffer_hw;
1481 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1482
fc0768ce 1483 intel_engine_init_hangcheck(engine);
9b1136d5 1484
0ccdacf6 1485 return intel_mocs_init_engine(engine);
9b1136d5
OM
1486}
1487
0bc40be8 1488static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1489{
0bc40be8 1490 struct drm_device *dev = engine->dev;
9b1136d5
OM
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 int ret;
1493
0bc40be8 1494 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1495 if (ret)
1496 return ret;
1497
1498 /* We need to disable the AsyncFlip performance optimisations in order
1499 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1500 * programmed to '1' on all products.
1501 *
1502 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1503 */
1504 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1505
9b1136d5
OM
1506 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1507
0bc40be8 1508 return init_workarounds_ring(engine);
9b1136d5
OM
1509}
1510
0bc40be8 1511static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1512{
1513 int ret;
1514
0bc40be8 1515 ret = gen8_init_common_ring(engine);
82ef822e
DL
1516 if (ret)
1517 return ret;
1518
0bc40be8 1519 return init_workarounds_ring(engine);
82ef822e
DL
1520}
1521
7a01a0a2
MT
1522static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1523{
1524 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1525 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1526 struct intel_ringbuffer *ringbuf = req->ringbuf;
1527 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1528 int i, ret;
1529
987046ad 1530 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1531 if (ret)
1532 return ret;
1533
1534 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1535 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1536 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1537
e2f80391
TU
1538 intel_logical_ring_emit_reg(ringbuf,
1539 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1540 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1541 intel_logical_ring_emit_reg(ringbuf,
1542 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1543 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1544 }
1545
1546 intel_logical_ring_emit(ringbuf, MI_NOOP);
1547 intel_logical_ring_advance(ringbuf);
1548
1549 return 0;
1550}
1551
be795fc1 1552static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1553 u64 offset, unsigned dispatch_flags)
15648585 1554{
be795fc1 1555 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1556 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1557 int ret;
1558
7a01a0a2
MT
1559 /* Don't rely in hw updating PDPs, specially in lite-restore.
1560 * Ideally, we should set Force PD Restore in ctx descriptor,
1561 * but we can't. Force Restore would be a second option, but
1562 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1563 * not idle). PML4 is allocated during ppgtt init so this is
1564 * not needed in 48-bit.*/
7a01a0a2 1565 if (req->ctx->ppgtt &&
666796da 1566 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1567 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1568 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1569 ret = intel_logical_ring_emit_pdps(req);
1570 if (ret)
1571 return ret;
1572 }
7a01a0a2 1573
666796da 1574 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1575 }
1576
987046ad 1577 ret = intel_ring_begin(req, 4);
15648585
OM
1578 if (ret)
1579 return ret;
1580
1581 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1582 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1583 (ppgtt<<8) |
1584 (dispatch_flags & I915_DISPATCH_RS ?
1585 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1586 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1587 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1588 intel_logical_ring_emit(ringbuf, MI_NOOP);
1589 intel_logical_ring_advance(ringbuf);
1590
1591 return 0;
1592}
1593
0bc40be8 1594static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1595{
0bc40be8 1596 struct drm_device *dev = engine->dev;
73d477f6
OM
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 unsigned long flags;
1599
7cd512f1 1600 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1601 return false;
1602
1603 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1604 if (engine->irq_refcount++ == 0) {
1605 I915_WRITE_IMR(engine,
1606 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1607 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1608 }
1609 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1610
1611 return true;
1612}
1613
0bc40be8 1614static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1615{
0bc40be8 1616 struct drm_device *dev = engine->dev;
73d477f6
OM
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 unsigned long flags;
1619
1620 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1621 if (--engine->irq_refcount == 0) {
1622 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1623 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1624 }
1625 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1626}
1627
7deb4d39 1628static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1629 u32 invalidate_domains,
1630 u32 unused)
1631{
7deb4d39 1632 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1633 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1634 struct drm_device *dev = engine->dev;
4712274c
OM
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 uint32_t cmd;
1637 int ret;
1638
987046ad 1639 ret = intel_ring_begin(request, 4);
4712274c
OM
1640 if (ret)
1641 return ret;
1642
1643 cmd = MI_FLUSH_DW + 1;
1644
f0a1fb10
CW
1645 /* We always require a command barrier so that subsequent
1646 * commands, such as breadcrumb interrupts, are strictly ordered
1647 * wrt the contents of the write cache being flushed to memory
1648 * (and thus being coherent from the CPU).
1649 */
1650 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1651
1652 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1653 cmd |= MI_INVALIDATE_TLB;
4a570db5 1654 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1655 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1656 }
1657
1658 intel_logical_ring_emit(ringbuf, cmd);
1659 intel_logical_ring_emit(ringbuf,
1660 I915_GEM_HWS_SCRATCH_ADDR |
1661 MI_FLUSH_DW_USE_GTT);
1662 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1663 intel_logical_ring_emit(ringbuf, 0); /* value */
1664 intel_logical_ring_advance(ringbuf);
1665
1666 return 0;
1667}
1668
7deb4d39 1669static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1670 u32 invalidate_domains,
1671 u32 flush_domains)
1672{
7deb4d39 1673 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1674 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1675 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1676 bool vf_flush_wa = false;
4712274c
OM
1677 u32 flags = 0;
1678 int ret;
1679
1680 flags |= PIPE_CONTROL_CS_STALL;
1681
1682 if (flush_domains) {
1683 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1684 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1685 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1686 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1687 }
1688
1689 if (invalidate_domains) {
1690 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1691 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1693 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1694 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1695 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_QW_WRITE;
1697 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1698
1a5a9ce7
BW
1699 /*
1700 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1701 * pipe control.
1702 */
e2f80391 1703 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1704 vf_flush_wa = true;
1705 }
9647ff36 1706
987046ad 1707 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1708 if (ret)
1709 return ret;
1710
9647ff36
ID
1711 if (vf_flush_wa) {
1712 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_emit(ringbuf, 0);
1715 intel_logical_ring_emit(ringbuf, 0);
1716 intel_logical_ring_emit(ringbuf, 0);
1717 intel_logical_ring_emit(ringbuf, 0);
1718 }
1719
4712274c
OM
1720 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1721 intel_logical_ring_emit(ringbuf, flags);
1722 intel_logical_ring_emit(ringbuf, scratch_addr);
1723 intel_logical_ring_emit(ringbuf, 0);
1724 intel_logical_ring_emit(ringbuf, 0);
1725 intel_logical_ring_emit(ringbuf, 0);
1726 intel_logical_ring_advance(ringbuf);
1727
1728 return 0;
1729}
1730
c04e0f3b 1731static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1732{
0bc40be8 1733 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1734}
1735
0bc40be8 1736static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1737{
0bc40be8 1738 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1739}
1740
c04e0f3b 1741static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1742{
319404df
ID
1743 /*
1744 * On BXT A steppings there is a HW coherency issue whereby the
1745 * MI_STORE_DATA_IMM storing the completed request's seqno
1746 * occasionally doesn't invalidate the CPU cache. Work around this by
1747 * clflushing the corresponding cacheline whenever the caller wants
1748 * the coherency to be guaranteed. Note that this cacheline is known
1749 * to be clean at this point, since we only write it in
1750 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1751 * this clflush in practice becomes an invalidate operation.
1752 */
c04e0f3b 1753 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1754}
1755
0bc40be8 1756static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1757{
0bc40be8 1758 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1759
1760 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1761 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1762}
1763
7c17d377
CW
1764/*
1765 * Reserve space for 2 NOOPs at the end of each request to be
1766 * used as a workaround for not being allowed to do lite
1767 * restore with HEAD==TAIL (WaIdleLiteRestore).
1768 */
1769#define WA_TAIL_DWORDS 2
1770
1771static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1772{
1773 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1774}
1775
c4e76638 1776static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1777{
c4e76638 1778 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1779 int ret;
1780
987046ad 1781 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1782 if (ret)
1783 return ret;
1784
7c17d377
CW
1785 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1786 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1787
4da46e1e 1788 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1789 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1790 intel_logical_ring_emit(ringbuf,
4a570db5 1791 hws_seqno_address(request->engine) |
7c17d377 1792 MI_FLUSH_DW_USE_GTT);
4da46e1e 1793 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1794 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1795 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1796 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1797 return intel_logical_ring_advance_and_submit(request);
1798}
4da46e1e 1799
7c17d377
CW
1800static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1801{
1802 struct intel_ringbuffer *ringbuf = request->ringbuf;
1803 int ret;
53292cdb 1804
987046ad 1805 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1806 if (ret)
1807 return ret;
1808
ce81a65c
MW
1809 /* We're using qword write, seqno should be aligned to 8 bytes. */
1810 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1811
7c17d377
CW
1812 /* w/a for post sync ops following a GPGPU operation we
1813 * need a prior CS_STALL, which is emitted by the flush
1814 * following the batch.
1815 */
ce81a65c 1816 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1817 intel_logical_ring_emit(ringbuf,
1818 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1819 PIPE_CONTROL_CS_STALL |
1820 PIPE_CONTROL_QW_WRITE));
4a570db5 1821 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1822 intel_logical_ring_emit(ringbuf, 0);
1823 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1824 /* We're thrashing one dword of HWS. */
1825 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1826 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1827 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1828 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1829}
1830
be01363f 1831static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1832{
cef437ad 1833 struct render_state so;
cef437ad
DL
1834 int ret;
1835
4a570db5 1836 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1837 if (ret)
1838 return ret;
1839
1840 if (so.rodata == NULL)
1841 return 0;
1842
4a570db5 1843 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1844 I915_DISPATCH_SECURE);
cef437ad
DL
1845 if (ret)
1846 goto out;
1847
4a570db5 1848 ret = req->engine->emit_bb_start(req,
84e81020
AS
1849 (so.ggtt_offset + so.aux_batch_offset),
1850 I915_DISPATCH_SECURE);
1851 if (ret)
1852 goto out;
1853
b2af0376 1854 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1855
cef437ad
DL
1856out:
1857 i915_gem_render_state_fini(&so);
1858 return ret;
1859}
1860
8753181e 1861static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1862{
1863 int ret;
1864
e2be4faf 1865 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1866 if (ret)
1867 return ret;
1868
3bbaba0c
PA
1869 ret = intel_rcs_context_init_mocs(req);
1870 /*
1871 * Failing to program the MOCS is non-fatal.The system will not
1872 * run at peak performance. So generate an error and carry on.
1873 */
1874 if (ret)
1875 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1876
be01363f 1877 return intel_lr_context_render_state_init(req);
e7778be1
TD
1878}
1879
73e4d07f
OM
1880/**
1881 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1882 *
1883 * @ring: Engine Command Streamer.
1884 *
1885 */
0bc40be8 1886void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1887{
6402c330 1888 struct drm_i915_private *dev_priv;
9832b9da 1889
117897f4 1890 if (!intel_engine_initialized(engine))
48d82387
OM
1891 return;
1892
27af5eea
TU
1893 /*
1894 * Tasklet cannot be active at this point due intel_mark_active/idle
1895 * so this is just for documentation.
1896 */
1897 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1898 tasklet_kill(&engine->irq_tasklet);
1899
0bc40be8 1900 dev_priv = engine->dev->dev_private;
6402c330 1901
0bc40be8
TU
1902 if (engine->buffer) {
1903 intel_logical_ring_stop(engine);
1904 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1905 }
48d82387 1906
0bc40be8
TU
1907 if (engine->cleanup)
1908 engine->cleanup(engine);
48d82387 1909
0bc40be8
TU
1910 i915_cmd_parser_fini_ring(engine);
1911 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1912
0bc40be8 1913 if (engine->status_page.obj) {
7d774cac 1914 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1915 engine->status_page.obj = NULL;
48d82387 1916 }
17ee950d 1917
0bc40be8
TU
1918 engine->idle_lite_restore_wa = 0;
1919 engine->disable_lite_restore_wa = false;
1920 engine->ctx_desc_template = 0;
ca82580c 1921
0bc40be8
TU
1922 lrc_destroy_wa_ctx_obj(engine);
1923 engine->dev = NULL;
454afebd
OM
1924}
1925
c9cacf93
TU
1926static void
1927logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1928 struct intel_engine_cs *engine)
c9cacf93
TU
1929{
1930 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1931 engine->init_hw = gen8_init_common_ring;
1932 engine->emit_request = gen8_emit_request;
1933 engine->emit_flush = gen8_emit_flush;
1934 engine->irq_get = gen8_logical_ring_get_irq;
1935 engine->irq_put = gen8_logical_ring_put_irq;
1936 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1937 engine->get_seqno = gen8_get_seqno;
1938 engine->set_seqno = gen8_set_seqno;
c9cacf93 1939 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1940 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1941 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1942 }
1943}
1944
d9f3af96 1945static inline void
0bc40be8 1946logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1947{
0bc40be8
TU
1948 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1949 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1950}
1951
7d774cac 1952static int
04794adb
TU
1953lrc_setup_hws(struct intel_engine_cs *engine,
1954 struct drm_i915_gem_object *dctx_obj)
1955{
7d774cac 1956 void *hws;
04794adb
TU
1957
1958 /* The HWSP is part of the default context object in LRC mode. */
1959 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1960 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1961 hws = i915_gem_object_pin_map(dctx_obj);
1962 if (IS_ERR(hws))
1963 return PTR_ERR(hws);
1964 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1965 engine->status_page.obj = dctx_obj;
7d774cac
TU
1966
1967 return 0;
04794adb
TU
1968}
1969
c9cacf93 1970static int
0bc40be8 1971logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1972{
3756685a
TU
1973 struct drm_i915_private *dev_priv = to_i915(dev);
1974 struct intel_context *dctx = dev_priv->kernel_context;
1975 enum forcewake_domains fw_domains;
48d82387 1976 int ret;
48d82387
OM
1977
1978 /* Intentionally left blank. */
0bc40be8 1979 engine->buffer = NULL;
48d82387 1980
0bc40be8
TU
1981 engine->dev = dev;
1982 INIT_LIST_HEAD(&engine->active_list);
1983 INIT_LIST_HEAD(&engine->request_list);
1984 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1985 init_waitqueue_head(&engine->irq_queue);
48d82387 1986
0bc40be8
TU
1987 INIT_LIST_HEAD(&engine->buffers);
1988 INIT_LIST_HEAD(&engine->execlist_queue);
1989 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1990 spin_lock_init(&engine->execlist_lock);
acdd884a 1991
27af5eea
TU
1992 tasklet_init(&engine->irq_tasklet,
1993 intel_lrc_irq_handler, (unsigned long)engine);
1994
0bc40be8 1995 logical_ring_init_platform_invariants(engine);
ca82580c 1996
3756685a
TU
1997 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1998 RING_ELSP(engine),
1999 FW_REG_WRITE);
2000
2001 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2002 RING_CONTEXT_STATUS_PTR(engine),
2003 FW_REG_READ | FW_REG_WRITE);
2004
2005 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2006 RING_CONTEXT_STATUS_BUF_BASE(engine),
2007 FW_REG_READ);
2008
2009 engine->fw_domains = fw_domains;
2010
0bc40be8 2011 ret = i915_cmd_parser_init_ring(engine);
48d82387 2012 if (ret)
b0366a54 2013 goto error;
48d82387 2014
0bc40be8 2015 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2016 if (ret)
b0366a54 2017 goto error;
e84fe803
NH
2018
2019 /* As this is the default context, always pin it */
0bc40be8 2020 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2021 if (ret) {
2022 DRM_ERROR(
2023 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2024 engine->name, ret);
b0366a54 2025 goto error;
e84fe803 2026 }
564ddb2f 2027
04794adb 2028 /* And setup the hardware status page. */
7d774cac
TU
2029 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2030 if (ret) {
2031 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2032 goto error;
2033 }
04794adb 2034
b0366a54
DG
2035 return 0;
2036
2037error:
0bc40be8 2038 intel_logical_ring_cleanup(engine);
564ddb2f 2039 return ret;
454afebd
OM
2040}
2041
2042static int logical_render_ring_init(struct drm_device *dev)
2043{
2044 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2045 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2046 int ret;
454afebd 2047
e2f80391
TU
2048 engine->name = "render ring";
2049 engine->id = RCS;
2050 engine->exec_id = I915_EXEC_RENDER;
2051 engine->guc_id = GUC_RENDER_ENGINE;
2052 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2053
e2f80391 2054 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2055 if (HAS_L3_DPF(dev))
e2f80391 2056 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2057
e2f80391 2058 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2059
2060 /* Override some for render ring. */
82ef822e 2061 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2062 engine->init_hw = gen9_init_render_ring;
82ef822e 2063 else
e2f80391
TU
2064 engine->init_hw = gen8_init_render_ring;
2065 engine->init_context = gen8_init_rcs_context;
2066 engine->cleanup = intel_fini_pipe_control;
2067 engine->emit_flush = gen8_emit_flush_render;
2068 engine->emit_request = gen8_emit_request_render;
9b1136d5 2069
e2f80391 2070 engine->dev = dev;
c4db7599 2071
e2f80391 2072 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2073 if (ret)
2074 return ret;
2075
e2f80391 2076 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2077 if (ret) {
2078 /*
2079 * We continue even if we fail to initialize WA batch
2080 * because we only expect rare glitches but nothing
2081 * critical to prevent us from using GPU
2082 */
2083 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2084 ret);
2085 }
2086
e2f80391 2087 ret = logical_ring_init(dev, engine);
c4db7599 2088 if (ret) {
e2f80391 2089 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2090 }
17ee950d
AS
2091
2092 return ret;
454afebd
OM
2093}
2094
2095static int logical_bsd_ring_init(struct drm_device *dev)
2096{
2097 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2098 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2099
e2f80391
TU
2100 engine->name = "bsd ring";
2101 engine->id = VCS;
2102 engine->exec_id = I915_EXEC_BSD;
2103 engine->guc_id = GUC_VIDEO_ENGINE;
2104 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2105
e2f80391
TU
2106 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2107 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2108
e2f80391 2109 return logical_ring_init(dev, engine);
454afebd
OM
2110}
2111
2112static int logical_bsd2_ring_init(struct drm_device *dev)
2113{
2114 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2115 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2116
e2f80391
TU
2117 engine->name = "bsd2 ring";
2118 engine->id = VCS2;
2119 engine->exec_id = I915_EXEC_BSD;
2120 engine->guc_id = GUC_VIDEO_ENGINE2;
2121 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2122
e2f80391
TU
2123 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2124 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2125
e2f80391 2126 return logical_ring_init(dev, engine);
454afebd
OM
2127}
2128
2129static int logical_blt_ring_init(struct drm_device *dev)
2130{
2131 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2132 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2133
e2f80391
TU
2134 engine->name = "blitter ring";
2135 engine->id = BCS;
2136 engine->exec_id = I915_EXEC_BLT;
2137 engine->guc_id = GUC_BLITTER_ENGINE;
2138 engine->mmio_base = BLT_RING_BASE;
454afebd 2139
e2f80391
TU
2140 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2141 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2142
e2f80391 2143 return logical_ring_init(dev, engine);
454afebd
OM
2144}
2145
2146static int logical_vebox_ring_init(struct drm_device *dev)
2147{
2148 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2149 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2150
e2f80391
TU
2151 engine->name = "video enhancement ring";
2152 engine->id = VECS;
2153 engine->exec_id = I915_EXEC_VEBOX;
2154 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2155 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2156
e2f80391
TU
2157 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2158 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2159
e2f80391 2160 return logical_ring_init(dev, engine);
454afebd
OM
2161}
2162
73e4d07f
OM
2163/**
2164 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2165 * @dev: DRM device.
2166 *
2167 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2168 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2169 * those engines that are present in the hardware.
2170 *
2171 * Return: non-zero if the initialization failed.
2172 */
454afebd
OM
2173int intel_logical_rings_init(struct drm_device *dev)
2174{
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 int ret;
2177
2178 ret = logical_render_ring_init(dev);
2179 if (ret)
2180 return ret;
2181
2182 if (HAS_BSD(dev)) {
2183 ret = logical_bsd_ring_init(dev);
2184 if (ret)
2185 goto cleanup_render_ring;
2186 }
2187
2188 if (HAS_BLT(dev)) {
2189 ret = logical_blt_ring_init(dev);
2190 if (ret)
2191 goto cleanup_bsd_ring;
2192 }
2193
2194 if (HAS_VEBOX(dev)) {
2195 ret = logical_vebox_ring_init(dev);
2196 if (ret)
2197 goto cleanup_blt_ring;
2198 }
2199
2200 if (HAS_BSD2(dev)) {
2201 ret = logical_bsd2_ring_init(dev);
2202 if (ret)
2203 goto cleanup_vebox_ring;
2204 }
2205
454afebd
OM
2206 return 0;
2207
454afebd 2208cleanup_vebox_ring:
4a570db5 2209 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2210cleanup_blt_ring:
4a570db5 2211 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2212cleanup_bsd_ring:
4a570db5 2213 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2214cleanup_render_ring:
4a570db5 2215 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2216
2217 return ret;
2218}
2219
0cea6502
JM
2220static u32
2221make_rpcs(struct drm_device *dev)
2222{
2223 u32 rpcs = 0;
2224
2225 /*
2226 * No explicit RPCS request is needed to ensure full
2227 * slice/subslice/EU enablement prior to Gen9.
2228 */
2229 if (INTEL_INFO(dev)->gen < 9)
2230 return 0;
2231
2232 /*
2233 * Starting in Gen9, render power gating can leave
2234 * slice/subslice/EU in a partially enabled state. We
2235 * must make an explicit request through RPCS for full
2236 * enablement.
2237 */
2238 if (INTEL_INFO(dev)->has_slice_pg) {
2239 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2240 rpcs |= INTEL_INFO(dev)->slice_total <<
2241 GEN8_RPCS_S_CNT_SHIFT;
2242 rpcs |= GEN8_RPCS_ENABLE;
2243 }
2244
2245 if (INTEL_INFO(dev)->has_subslice_pg) {
2246 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2247 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2248 GEN8_RPCS_SS_CNT_SHIFT;
2249 rpcs |= GEN8_RPCS_ENABLE;
2250 }
2251
2252 if (INTEL_INFO(dev)->has_eu_pg) {
2253 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2254 GEN8_RPCS_EU_MIN_SHIFT;
2255 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2256 GEN8_RPCS_EU_MAX_SHIFT;
2257 rpcs |= GEN8_RPCS_ENABLE;
2258 }
2259
2260 return rpcs;
2261}
2262
0bc40be8 2263static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2264{
2265 u32 indirect_ctx_offset;
2266
0bc40be8 2267 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2268 default:
0bc40be8 2269 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2270 /* fall through */
2271 case 9:
2272 indirect_ctx_offset =
2273 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2274 break;
2275 case 8:
2276 indirect_ctx_offset =
2277 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2278 break;
2279 }
2280
2281 return indirect_ctx_offset;
2282}
2283
8670d6f9 2284static int
7d774cac
TU
2285populate_lr_context(struct intel_context *ctx,
2286 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2287 struct intel_engine_cs *engine,
2288 struct intel_ringbuffer *ringbuf)
8670d6f9 2289{
0bc40be8 2290 struct drm_device *dev = engine->dev;
2d965536 2291 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2292 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2293 void *vaddr;
2294 u32 *reg_state;
8670d6f9
OM
2295 int ret;
2296
2d965536
TD
2297 if (!ppgtt)
2298 ppgtt = dev_priv->mm.aliasing_ppgtt;
2299
8670d6f9
OM
2300 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2301 if (ret) {
2302 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2303 return ret;
2304 }
2305
7d774cac
TU
2306 vaddr = i915_gem_object_pin_map(ctx_obj);
2307 if (IS_ERR(vaddr)) {
2308 ret = PTR_ERR(vaddr);
2309 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2310 return ret;
2311 }
7d774cac 2312 ctx_obj->dirty = true;
8670d6f9
OM
2313
2314 /* The second page of the context object contains some fields which must
2315 * be set up prior to the first execution. */
7d774cac 2316 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2317
2318 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2319 * commands followed by (reg, value) pairs. The values we are setting here are
2320 * only for the first context restore: on a subsequent save, the GPU will
2321 * recreate this batchbuffer with new values (including all the missing
2322 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2323 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2324 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2325 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2326 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2327 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2328 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2329 (HAS_RESOURCE_STREAMER(dev) ?
2330 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2331 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2332 0);
2333 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2334 0);
7ba717cf
TD
2335 /* Ring buffer start address is not known until the buffer is pinned.
2336 * It is written to the context image in execlists_update_context()
2337 */
0bc40be8
TU
2338 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2339 RING_START(engine->mmio_base), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2341 RING_CTL(engine->mmio_base),
0d925ea0 2342 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2343 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2344 RING_BBADDR_UDW(engine->mmio_base), 0);
2345 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2346 RING_BBADDR(engine->mmio_base), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2348 RING_BBSTATE(engine->mmio_base),
0d925ea0 2349 RING_BB_PPGTT);
0bc40be8
TU
2350 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2351 RING_SBBADDR_UDW(engine->mmio_base), 0);
2352 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2353 RING_SBBADDR(engine->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2355 RING_SBBSTATE(engine->mmio_base), 0);
2356 if (engine->id == RCS) {
2357 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2358 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2359 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2360 RING_INDIRECT_CTX(engine->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2362 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2363 if (engine->wa_ctx.obj) {
2364 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2365 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2366
2367 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2368 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2369 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2370
2371 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2372 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2373
2374 reg_state[CTX_BB_PER_CTX_PTR+1] =
2375 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2376 0x01;
2377 }
8670d6f9 2378 }
0d925ea0 2379 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2380 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2381 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2382 /* PDP values well be assigned later if needed */
0bc40be8
TU
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2388 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2390 0);
2391 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2392 0);
2393 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2394 0);
2395 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2396 0);
2397 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2398 0);
d7b2633d 2399
2dba3239
MT
2400 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2401 /* 64b PPGTT (48bit canonical)
2402 * PDP0_DESCRIPTOR contains the base address to PML4 and
2403 * other PDP Descriptors are ignored.
2404 */
2405 ASSIGN_CTX_PML4(ppgtt, reg_state);
2406 } else {
2407 /* 32b PPGTT
2408 * PDP*_DESCRIPTOR contains the base address of space supported.
2409 * With dynamic page allocation, PDPs may not be allocated at
2410 * this point. Point the unallocated PDPs to the scratch page
2411 */
c6a2ac71 2412 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2413 }
2414
0bc40be8 2415 if (engine->id == RCS) {
8670d6f9 2416 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2417 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2418 make_rpcs(dev));
8670d6f9
OM
2419 }
2420
7d774cac 2421 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2422
2423 return 0;
2424}
2425
73e4d07f
OM
2426/**
2427 * intel_lr_context_free() - free the LRC specific bits of a context
2428 * @ctx: the LR context to free.
2429 *
2430 * The real context freeing is done in i915_gem_context_free: this only
2431 * takes care of the bits that are LRC related: the per-engine backing
2432 * objects and the logical ringbuffer.
2433 */
ede7d42b
OM
2434void intel_lr_context_free(struct intel_context *ctx)
2435{
8c857917
OM
2436 int i;
2437
666796da 2438 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2439 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2440 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2441
e28e404c
DG
2442 if (!ctx_obj)
2443 continue;
dcb4c12a 2444
e28e404c
DG
2445 if (ctx == ctx->i915->kernel_context) {
2446 intel_unpin_ringbuffer_obj(ringbuf);
2447 i915_gem_object_ggtt_unpin(ctx_obj);
7d774cac 2448 i915_gem_object_unpin_map(ctx_obj);
8c857917 2449 }
e28e404c
DG
2450
2451 WARN_ON(ctx->engine[i].pin_count);
2452 intel_ringbuffer_free(ringbuf);
2453 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2454 }
2455}
2456
c5d46ee2
DG
2457/**
2458 * intel_lr_context_size() - return the size of the context for an engine
2459 * @ring: which engine to find the context size for
2460 *
2461 * Each engine may require a different amount of space for a context image,
2462 * so when allocating (or copying) an image, this function can be used to
2463 * find the right size for the specific engine.
2464 *
2465 * Return: size (in bytes) of an engine-specific context image
2466 *
2467 * Note: this size includes the HWSP, which is part of the context image
2468 * in LRC mode, but does not include the "shared data page" used with
2469 * GuC submission. The caller should account for this if using the GuC.
2470 */
0bc40be8 2471uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2472{
2473 int ret = 0;
2474
0bc40be8 2475 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2476
0bc40be8 2477 switch (engine->id) {
8c857917 2478 case RCS:
0bc40be8 2479 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2480 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2481 else
2482 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2483 break;
2484 case VCS:
2485 case BCS:
2486 case VECS:
2487 case VCS2:
2488 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2489 break;
2490 }
2491
2492 return ret;
ede7d42b
OM
2493}
2494
73e4d07f 2495/**
e84fe803 2496 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2497 * @ctx: LR context to create.
2498 * @ring: engine to be used with the context.
2499 *
2500 * This function can be called more than once, with different engines, if we plan
2501 * to use the context with them. The context backing objects and the ringbuffers
2502 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2503 * the creation is a deferred call: it's better to make sure first that we need to use
2504 * a given ring with the context.
2505 *
32197aab 2506 * Return: non-zero on error.
73e4d07f 2507 */
e84fe803
NH
2508
2509int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2510 struct intel_engine_cs *engine)
ede7d42b 2511{
0bc40be8 2512 struct drm_device *dev = engine->dev;
8c857917
OM
2513 struct drm_i915_gem_object *ctx_obj;
2514 uint32_t context_size;
84c2377f 2515 struct intel_ringbuffer *ringbuf;
8c857917
OM
2516 int ret;
2517
ede7d42b 2518 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2519 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2520
0bc40be8 2521 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2522
d1675198
AD
2523 /* One extra page as the sharing data between driver and GuC */
2524 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2525
d37cd8a8 2526 ctx_obj = i915_gem_object_create(dev, context_size);
fe3db79b 2527 if (IS_ERR(ctx_obj)) {
3126a660 2528 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2529 return PTR_ERR(ctx_obj);
8c857917
OM
2530 }
2531
0bc40be8 2532 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2533 if (IS_ERR(ringbuf)) {
2534 ret = PTR_ERR(ringbuf);
e84fe803 2535 goto error_deref_obj;
8670d6f9
OM
2536 }
2537
0bc40be8 2538 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2539 if (ret) {
2540 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2541 goto error_ringbuf;
84c2377f
OM
2542 }
2543
0bc40be8
TU
2544 ctx->engine[engine->id].ringbuf = ringbuf;
2545 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2546
0bc40be8 2547 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2548 struct drm_i915_gem_request *req;
76c39168 2549
0bc40be8 2550 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2551 if (IS_ERR(req)) {
2552 ret = PTR_ERR(req);
2553 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2554 goto error_ringbuf;
771b9a53
MT
2555 }
2556
0bc40be8 2557 ret = engine->init_context(req);
aa9b7810 2558 i915_add_request_no_flush(req);
e84fe803
NH
2559 if (ret) {
2560 DRM_ERROR("ring init context: %d\n",
2561 ret);
e84fe803
NH
2562 goto error_ringbuf;
2563 }
564ddb2f 2564 }
ede7d42b 2565 return 0;
8670d6f9 2566
01101fa7
CW
2567error_ringbuf:
2568 intel_ringbuffer_free(ringbuf);
e84fe803 2569error_deref_obj:
8670d6f9 2570 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2571 ctx->engine[engine->id].ringbuf = NULL;
2572 ctx->engine[engine->id].state = NULL;
8670d6f9 2573 return ret;
ede7d42b 2574}
3e5b6f05 2575
7d774cac
TU
2576void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2577 struct intel_context *ctx)
3e5b6f05 2578{
e2f80391 2579 struct intel_engine_cs *engine;
3e5b6f05 2580
b4ac5afc 2581 for_each_engine(engine, dev_priv) {
3e5b6f05 2582 struct drm_i915_gem_object *ctx_obj =
e2f80391 2583 ctx->engine[engine->id].state;
3e5b6f05 2584 struct intel_ringbuffer *ringbuf =
e2f80391 2585 ctx->engine[engine->id].ringbuf;
7d774cac 2586 void *vaddr;
3e5b6f05 2587 uint32_t *reg_state;
3e5b6f05
TD
2588
2589 if (!ctx_obj)
2590 continue;
2591
7d774cac
TU
2592 vaddr = i915_gem_object_pin_map(ctx_obj);
2593 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2594 continue;
7d774cac
TU
2595
2596 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2597 ctx_obj->dirty = true;
3e5b6f05
TD
2598
2599 reg_state[CTX_RING_HEAD+1] = 0;
2600 reg_state[CTX_RING_TAIL+1] = 0;
2601
7d774cac 2602 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2603
2604 ringbuf->head = 0;
2605 ringbuf->tail = 0;
2606 }
2607}
This page took 0.33998 seconds and 5 git commands to generate.