drm/i915: Move releasing of the GEM request from free to retire/cancel
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
978f1e09
CW
231static int execlists_context_deferred_alloc(struct intel_context *ctx,
232 struct intel_engine_cs *engine);
e5292823
TU
233static int intel_lr_context_pin(struct intel_context *ctx,
234 struct intel_engine_cs *engine);
7ba717cf 235
73e4d07f
OM
236/**
237 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238 * @dev: DRM device.
239 * @enable_execlists: value of i915.enable_execlists module parameter.
240 *
241 * Only certain platforms support Execlists (the prerequisites being
27401d12 242 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
243 *
244 * Return: 1 if Execlists is supported and has to be enabled.
245 */
127f1003
OM
246int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247{
bd84b1e9
DV
248 WARN_ON(i915.enable_ppgtt == -1);
249
a0bd6c31
ZL
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
252 */
253 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254 return 1;
255
70ee45e1
DL
256 if (INTEL_INFO(dev)->gen >= 9)
257 return 1;
258
127f1003
OM
259 if (enable_execlists == 0)
260 return 0;
261
14bf993e
OM
262 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263 i915.use_mmio_flip >= 0)
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
0bc40be8 272 struct drm_device *dev = engine->dev;
ca82580c 273
c6a2ac71 274 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
0bc40be8 277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 278 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8
TU
281 engine->ctx_desc_template = GEN8_CTX_VALID;
282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
284 if (IS_GEN8(dev))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c
TU
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 313 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
314 * bits 53-54: mbz, reserved for use by hardware
315 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 316 */
ca82580c
TU
317static void
318intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 319 struct intel_engine_cs *engine)
84b790f8 320{
7069b144 321 u64 desc;
84b790f8 322
7069b144 323 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 324
7069b144
CW
325 desc = engine->ctx_desc_template; /* bits 0-11 */
326 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
327 LRC_PPHWSP_PN * PAGE_SIZE;
328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
0bc40be8 330 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
331}
332
919f1f55 333uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
cc3c4253
MK
339static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340 struct drm_i915_gem_request *rq1)
84b790f8 341{
cc3c4253 342
4a570db5 343 struct intel_engine_cs *engine = rq0->engine;
e2f80391 344 struct drm_device *dev = engine->dev;
6e7cc470 345 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 346 uint64_t desc[2];
84b790f8 347
1cff8cc3 348 if (rq1) {
4a570db5 349 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
350 rq1->elsp_submitted++;
351 } else {
352 desc[1] = 0;
353 }
84b790f8 354
4a570db5 355 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 356 rq0->elsp_submitted++;
84b790f8 357
1cff8cc3 358 /* You must always write both descriptors in the order below. */
e2f80391
TU
359 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
360 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 361
e2f80391 362 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 363 /* The context is automatically loaded after the following */
e2f80391 364 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 365
1cff8cc3 366 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 367 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
368}
369
c6a2ac71
TU
370static void
371execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
372{
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377}
378
379static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 380{
4a570db5 381 struct intel_engine_cs *engine = rq->engine;
05d9824b 382 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 383 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 384
05d9824b 385 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 386
c6a2ac71
TU
387 /* True 32b PPGTT with dynamic page allocation: update PDP
388 * registers and point the unallocated PDPs to scratch page.
389 * PML4 is allocated during ppgtt init, so this is not needed
390 * in 48-bit mode.
391 */
392 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
393 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
394}
395
d8cb8875
MK
396static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
397 struct drm_i915_gem_request *rq1)
84b790f8 398{
26720ab9 399 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 400 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 401
05d9824b 402 execlists_update_context(rq0);
d8cb8875 403
cc3c4253 404 if (rq1)
05d9824b 405 execlists_update_context(rq1);
84b790f8 406
27af5eea 407 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 408 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 409
cc3c4253 410 execlists_elsp_write(rq0, rq1);
26720ab9 411
3756685a 412 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 413 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
414}
415
26720ab9 416static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 417{
6d3d8274 418 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 419 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 420
0bc40be8 421 assert_spin_locked(&engine->execlist_lock);
acdd884a 422
779949f4
PA
423 /*
424 * If irqs are not active generate a warning as batches that finish
425 * without the irqs may get lost and a GPU Hang may occur.
426 */
0bc40be8 427 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 428
acdd884a 429 /* Try to read in pairs */
0bc40be8 430 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
431 execlist_link) {
432 if (!req0) {
433 req0 = cursor;
6d3d8274 434 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
435 /* Same ctx: ignore first request, as second request
436 * will update tail past first request's workload */
e1fee72c 437 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 438 list_move_tail(&req0->execlist_link,
0bc40be8 439 &engine->execlist_retired_req_list);
acdd884a
MT
440 req0 = cursor;
441 } else {
442 req1 = cursor;
c6a2ac71 443 WARN_ON(req1->elsp_submitted);
acdd884a
MT
444 break;
445 }
446 }
447
c6a2ac71
TU
448 if (unlikely(!req0))
449 return;
450
0bc40be8 451 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 452 /*
c6a2ac71
TU
453 * WaIdleLiteRestore: make sure we never cause a lite restore
454 * with HEAD==TAIL.
455 *
456 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
457 * resubmit the request. See gen8_emit_request() for where we
458 * prepare the padding after the end of the request.
53292cdb 459 */
c6a2ac71 460 struct intel_ringbuffer *ringbuf;
53292cdb 461
0bc40be8 462 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
463 req0->tail += 8;
464 req0->tail &= ringbuf->size - 1;
53292cdb
MT
465 }
466
d8cb8875 467 execlists_submit_requests(req0, req1);
acdd884a
MT
468}
469
c6a2ac71 470static unsigned int
0bc40be8 471execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 472{
6d3d8274 473 struct drm_i915_gem_request *head_req;
e981e7b1 474
0bc40be8 475 assert_spin_locked(&engine->execlist_lock);
e981e7b1 476
0bc40be8 477 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 478 struct drm_i915_gem_request,
e981e7b1
TD
479 execlist_link);
480
c6a2ac71
TU
481 if (!head_req)
482 return 0;
e1fee72c 483
7069b144 484 if (unlikely(head_req->ctx->hw_id != request_id))
c6a2ac71
TU
485 return 0;
486
487 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
488
489 if (--head_req->elsp_submitted > 0)
490 return 0;
491
492 list_move_tail(&head_req->execlist_link,
0bc40be8 493 &engine->execlist_retired_req_list);
e981e7b1 494
c6a2ac71 495 return 1;
e981e7b1
TD
496}
497
c6a2ac71 498static u32
0bc40be8 499get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 500 u32 *context_id)
91a41032 501{
0bc40be8 502 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 503 u32 status;
91a41032 504
c6a2ac71
TU
505 read_pointer %= GEN8_CSB_ENTRIES;
506
0bc40be8 507 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
508
509 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
510 return 0;
91a41032 511
0bc40be8 512 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
513 read_pointer));
514
515 return status;
91a41032
BW
516}
517
73e4d07f 518/**
3f7531c3 519 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 520 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
521 *
522 * Check the unread Context Status Buffers and manage the submission of new
523 * contexts to the ELSP accordingly.
524 */
27af5eea 525static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 526{
27af5eea 527 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 528 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 529 u32 status_pointer;
c6a2ac71 530 unsigned int read_pointer, write_pointer;
26720ab9
TU
531 u32 csb[GEN8_CSB_ENTRIES][2];
532 unsigned int csb_read = 0, i;
c6a2ac71
TU
533 unsigned int submit_contexts = 0;
534
3756685a 535 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 536
0bc40be8 537 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 538
0bc40be8 539 read_pointer = engine->next_context_status_buffer;
5590a5f0 540 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 541 if (read_pointer > write_pointer)
dfc53c5e 542 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 543
e981e7b1 544 while (read_pointer < write_pointer) {
26720ab9
TU
545 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
546 break;
547 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
548 &csb[csb_read][1]);
549 csb_read++;
550 }
91a41032 551
26720ab9
TU
552 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
553
554 /* Update the read pointer to the old write pointer. Manual ringbuffer
555 * management ftw </sarcasm> */
556 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
557 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
558 engine->next_context_status_buffer << 8));
559
3756685a 560 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
561
562 spin_lock(&engine->execlist_lock);
563
564 for (i = 0; i < csb_read; i++) {
565 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
566 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
567 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
568 WARN(1, "Lite Restored request removed from queue\n");
569 } else
570 WARN(1, "Preemption without Lite Restore\n");
571 }
572
26720ab9 573 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
574 GEN8_CTX_STATUS_ELEMENT_SWITCH))
575 submit_contexts +=
26720ab9 576 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
577 }
578
c6a2ac71 579 if (submit_contexts) {
0bc40be8 580 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
581 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
582 execlists_context_unqueue(engine);
5af05fef 583 }
e981e7b1 584
0bc40be8 585 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
586
587 if (unlikely(submit_contexts > 2))
588 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
589}
590
c6a2ac71 591static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 592{
4a570db5 593 struct intel_engine_cs *engine = request->engine;
6d3d8274 594 struct drm_i915_gem_request *cursor;
f1ad5a1f 595 int num_elements = 0;
acdd884a 596
24f1d3cc 597 intel_lr_context_pin(request->ctx, request->engine);
9bb1af44
JH
598 i915_gem_request_reference(request);
599
27af5eea 600 spin_lock_bh(&engine->execlist_lock);
acdd884a 601
e2f80391 602 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
603 if (++num_elements > 2)
604 break;
605
606 if (num_elements > 2) {
6d3d8274 607 struct drm_i915_gem_request *tail_req;
f1ad5a1f 608
e2f80391 609 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 610 struct drm_i915_gem_request,
f1ad5a1f
OM
611 execlist_link);
612
ae70797d 613 if (request->ctx == tail_req->ctx) {
f1ad5a1f 614 WARN(tail_req->elsp_submitted != 0,
7ba717cf 615 "More than 2 already-submitted reqs queued\n");
7eb08a25 616 list_move_tail(&tail_req->execlist_link,
e2f80391 617 &engine->execlist_retired_req_list);
f1ad5a1f
OM
618 }
619 }
620
e2f80391 621 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 622 if (num_elements == 0)
e2f80391 623 execlists_context_unqueue(engine);
acdd884a 624
27af5eea 625 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
626}
627
2f20055d 628static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 629{
4a570db5 630 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
631 uint32_t flush_domains;
632 int ret;
633
634 flush_domains = 0;
e2f80391 635 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
636 flush_domains = I915_GEM_GPU_DOMAINS;
637
e2f80391 638 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
639 if (ret)
640 return ret;
641
e2f80391 642 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
643 return 0;
644}
645
535fbe82 646static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
647 struct list_head *vmas)
648{
666796da 649 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
650 struct i915_vma *vma;
651 uint32_t flush_domains = 0;
652 bool flush_chipset = false;
653 int ret;
654
655 list_for_each_entry(vma, vmas, exec_list) {
656 struct drm_i915_gem_object *obj = vma->obj;
657
03ade511 658 if (obj->active & other_rings) {
4a570db5 659 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
660 if (ret)
661 return ret;
662 }
ba8b7ccb
OM
663
664 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
665 flush_chipset |= i915_gem_clflush_object(obj, false);
666
667 flush_domains |= obj->base.write_domain;
668 }
669
670 if (flush_domains & I915_GEM_DOMAIN_GTT)
671 wmb();
672
673 /* Unconditionally invalidate gpu caches and ensure that we do flush
674 * any residual writes from the previous batch.
675 */
2f20055d 676 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
677}
678
40e895ce 679int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 680{
24f1d3cc 681 struct intel_engine_cs *engine = request->engine;
bfa01200 682 int ret;
bc0dce3f 683
6310346e
CW
684 /* Flush enough space to reduce the likelihood of waiting after
685 * we start building the request - in which case we will just
686 * have to repeat work.
687 */
688 request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
689
978f1e09
CW
690 if (request->ctx->engine[engine->id].state == NULL) {
691 ret = execlists_context_deferred_alloc(request->ctx, engine);
692 if (ret)
693 return ret;
694 }
695
24f1d3cc 696 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
f3cc01f0 697
a7e02199
AD
698 if (i915.enable_guc_submission) {
699 /*
700 * Check that the GuC has space for the request before
701 * going any further, as the i915_add_request() call
702 * later on mustn't fail ...
703 */
704 struct intel_guc *guc = &request->i915->guc;
705
706 ret = i915_guc_wq_check_space(guc->execbuf_client);
707 if (ret)
708 return ret;
709 }
710
24f1d3cc
CW
711 ret = intel_lr_context_pin(request->ctx, engine);
712 if (ret)
713 return ret;
e28e404c 714
bfa01200
CW
715 ret = intel_ring_begin(request, 0);
716 if (ret)
717 goto err_unpin;
718
24f1d3cc
CW
719 if (!request->ctx->engine[engine->id].initialised) {
720 ret = engine->init_context(request);
721 if (ret)
722 goto err_unpin;
723
724 request->ctx->engine[engine->id].initialised = true;
725 }
726
727 /* Note that after this point, we have committed to using
728 * this request as it is being used to both track the
729 * state of engine initialisation and liveness of the
730 * golden renderstate above. Think twice before you try
731 * to cancel/unwind this request now.
732 */
733
6310346e 734 request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
735 return 0;
736
737err_unpin:
24f1d3cc 738 intel_lr_context_unpin(request->ctx, engine);
e28e404c 739 return ret;
bc0dce3f
JH
740}
741
bc0dce3f
JH
742/*
743 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 744 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
745 *
746 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
747 * really happens during submission is that the context and current tail will be placed
748 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
749 * point, the tail *inside* the context is updated and the ELSP written to.
750 */
7c17d377 751static int
ae70797d 752intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 753{
7c17d377 754 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 755 struct drm_i915_private *dev_priv = request->i915;
4a570db5 756 struct intel_engine_cs *engine = request->engine;
bc0dce3f 757
7c17d377
CW
758 intel_logical_ring_advance(ringbuf);
759 request->tail = ringbuf->tail;
bc0dce3f 760
7c17d377
CW
761 /*
762 * Here we add two extra NOOPs as padding to avoid
763 * lite restore of a context with HEAD==TAIL.
764 *
765 * Caller must reserve WA_TAIL_DWORDS for us!
766 */
767 intel_logical_ring_emit(ringbuf, MI_NOOP);
768 intel_logical_ring_emit(ringbuf, MI_NOOP);
769 intel_logical_ring_advance(ringbuf);
d1675198 770
117897f4 771 if (intel_engine_stopped(engine))
7c17d377 772 return 0;
bc0dce3f 773
f4e2dece
TU
774 if (engine->last_context != request->ctx) {
775 if (engine->last_context)
776 intel_lr_context_unpin(engine->last_context, engine);
24f1d3cc
CW
777 intel_lr_context_pin(request->ctx, engine);
778 engine->last_context = request->ctx;
f4e2dece
TU
779 }
780
d1675198
AD
781 if (dev_priv->guc.execbuf_client)
782 i915_guc_submit(dev_priv->guc.execbuf_client, request);
783 else
784 execlists_context_queue(request);
7c17d377
CW
785
786 return 0;
bc0dce3f
JH
787}
788
73e4d07f
OM
789/**
790 * execlists_submission() - submit a batchbuffer for execution, Execlists style
791 * @dev: DRM device.
792 * @file: DRM file.
793 * @ring: Engine Command Streamer to submit to.
794 * @ctx: Context to employ for this submission.
795 * @args: execbuffer call arguments.
796 * @vmas: list of vmas.
797 * @batch_obj: the batchbuffer to submit.
798 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 799 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
800 *
801 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
802 * away the submission details of the execbuffer ioctl call.
803 *
804 * Return: non-zero if the submission fails.
805 */
5f19e2bf 806int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 807 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 808 struct list_head *vmas)
454afebd 809{
5f19e2bf 810 struct drm_device *dev = params->dev;
4a570db5 811 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 812 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 813 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 814 u64 exec_start;
ba8b7ccb
OM
815 int instp_mode;
816 u32 instp_mask;
817 int ret;
818
819 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
820 instp_mask = I915_EXEC_CONSTANTS_MASK;
821 switch (instp_mode) {
822 case I915_EXEC_CONSTANTS_REL_GENERAL:
823 case I915_EXEC_CONSTANTS_ABSOLUTE:
824 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 825 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
826 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
827 return -EINVAL;
828 }
829
830 if (instp_mode != dev_priv->relative_constants_mode) {
831 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
832 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
833 return -EINVAL;
834 }
835
836 /* The HW changed the meaning on this bit on gen6 */
837 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
838 }
839 break;
840 default:
841 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
842 return -EINVAL;
843 }
844
ba8b7ccb
OM
845 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
846 DRM_DEBUG("sol reset is gen7 only\n");
847 return -EINVAL;
848 }
849
535fbe82 850 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
851 if (ret)
852 return ret;
853
4a570db5 854 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 855 instp_mode != dev_priv->relative_constants_mode) {
987046ad 856 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
857 if (ret)
858 return ret;
859
860 intel_logical_ring_emit(ringbuf, MI_NOOP);
861 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 862 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
863 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
864 intel_logical_ring_advance(ringbuf);
865
866 dev_priv->relative_constants_mode = instp_mode;
867 }
868
5f19e2bf
JH
869 exec_start = params->batch_obj_vm_offset +
870 args->batch_start_offset;
871
e2f80391 872 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
873 if (ret)
874 return ret;
875
95c24161 876 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 877
8a8edb59 878 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 879
454afebd
OM
880 return 0;
881}
882
0bc40be8 883void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 884{
6d3d8274 885 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
886 struct list_head retired_list;
887
0bc40be8
TU
888 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
889 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
890 return;
891
892 INIT_LIST_HEAD(&retired_list);
27af5eea 893 spin_lock_bh(&engine->execlist_lock);
0bc40be8 894 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 895 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
896
897 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
24f1d3cc 898 intel_lr_context_unpin(req->ctx, engine);
e5292823 899
c86ee3a9 900 list_del(&req->execlist_link);
f8210795 901 i915_gem_request_unreference(req);
c86ee3a9
TD
902 }
903}
904
0bc40be8 905void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 906{
0bc40be8 907 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
908 int ret;
909
117897f4 910 if (!intel_engine_initialized(engine))
9832b9da
OM
911 return;
912
666796da 913 ret = intel_engine_idle(engine);
f4457ae7 914 if (ret)
9832b9da 915 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 916 engine->name, ret);
9832b9da
OM
917
918 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
919 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
920 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
921 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
922 return;
923 }
0bc40be8 924 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
925}
926
4866d729 927int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 928{
4a570db5 929 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
930 int ret;
931
e2f80391 932 if (!engine->gpu_caches_dirty)
48e29f55
OM
933 return 0;
934
e2f80391 935 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
936 if (ret)
937 return ret;
938
e2f80391 939 engine->gpu_caches_dirty = false;
48e29f55
OM
940 return 0;
941}
942
24f1d3cc
CW
943static int intel_lr_context_pin(struct intel_context *ctx,
944 struct intel_engine_cs *engine)
dcb4c12a 945{
24f1d3cc
CW
946 struct drm_i915_private *dev_priv = ctx->i915;
947 struct drm_i915_gem_object *ctx_obj;
948 struct intel_ringbuffer *ringbuf;
7d774cac
TU
949 void *vaddr;
950 u32 *lrc_reg_state;
ca82580c 951 int ret;
dcb4c12a 952
24f1d3cc 953 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 954
24f1d3cc
CW
955 if (ctx->engine[engine->id].pin_count++)
956 return 0;
957
958 ctx_obj = ctx->engine[engine->id].state;
e84fe803
NH
959 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
960 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
961 if (ret)
24f1d3cc 962 goto err;
7ba717cf 963
7d774cac
TU
964 vaddr = i915_gem_object_pin_map(ctx_obj);
965 if (IS_ERR(vaddr)) {
966 ret = PTR_ERR(vaddr);
82352e90
TU
967 goto unpin_ctx_obj;
968 }
969
7d774cac
TU
970 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
971
24f1d3cc 972 ringbuf = ctx->engine[engine->id].ringbuf;
0bc40be8 973 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 974 if (ret)
7d774cac 975 goto unpin_map;
d1675198 976
24f1d3cc 977 i915_gem_context_reference(ctx);
0bc40be8
TU
978 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
979 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 980 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 981 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 982 ctx_obj->dirty = true;
e93c28f3 983
e84fe803
NH
984 /* Invalidate GuC TLB. */
985 if (i915.enable_guc_submission)
986 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 987
24f1d3cc 988 return 0;
7ba717cf 989
7d774cac
TU
990unpin_map:
991 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
992unpin_ctx_obj:
993 i915_gem_object_ggtt_unpin(ctx_obj);
24f1d3cc
CW
994err:
995 ctx->engine[engine->id].pin_count = 0;
e84fe803
NH
996 return ret;
997}
998
24f1d3cc
CW
999void intel_lr_context_unpin(struct intel_context *ctx,
1000 struct intel_engine_cs *engine)
e84fe803 1001{
24f1d3cc 1002 struct drm_i915_gem_object *ctx_obj;
e84fe803 1003
24f1d3cc
CW
1004 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1005 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
321fe304 1006
24f1d3cc
CW
1007 if (--ctx->engine[engine->id].pin_count)
1008 return;
e84fe803 1009
24f1d3cc 1010 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
dcb4c12a 1011
24f1d3cc
CW
1012 ctx_obj = ctx->engine[engine->id].state;
1013 i915_gem_object_unpin_map(ctx_obj);
1014 i915_gem_object_ggtt_unpin(ctx_obj);
af3302b9 1015
24f1d3cc
CW
1016 ctx->engine[engine->id].lrc_vma = NULL;
1017 ctx->engine[engine->id].lrc_desc = 0;
1018 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304 1019
24f1d3cc 1020 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1021}
1022
e2be4faf 1023static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1024{
1025 int ret, i;
4a570db5 1026 struct intel_engine_cs *engine = req->engine;
e2be4faf 1027 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1028 struct drm_device *dev = engine->dev;
771b9a53
MT
1029 struct drm_i915_private *dev_priv = dev->dev_private;
1030 struct i915_workarounds *w = &dev_priv->workarounds;
1031
cd7feaaa 1032 if (w->count == 0)
771b9a53
MT
1033 return 0;
1034
e2f80391 1035 engine->gpu_caches_dirty = true;
4866d729 1036 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1037 if (ret)
1038 return ret;
1039
987046ad 1040 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1041 if (ret)
1042 return ret;
1043
1044 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1045 for (i = 0; i < w->count; i++) {
f92a9162 1046 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1047 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1048 }
1049 intel_logical_ring_emit(ringbuf, MI_NOOP);
1050
1051 intel_logical_ring_advance(ringbuf);
1052
e2f80391 1053 engine->gpu_caches_dirty = true;
4866d729 1054 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1055 if (ret)
1056 return ret;
1057
1058 return 0;
1059}
1060
83b8a982 1061#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1062 do { \
83b8a982
AS
1063 int __index = (index)++; \
1064 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1065 return -ENOSPC; \
1066 } \
83b8a982 1067 batch[__index] = (cmd); \
17ee950d
AS
1068 } while (0)
1069
8f40db77 1070#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1071 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1072
1073/*
1074 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1075 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1076 * but there is a slight complication as this is applied in WA batch where the
1077 * values are only initialized once so we cannot take register value at the
1078 * beginning and reuse it further; hence we save its value to memory, upload a
1079 * constant value with bit21 set and then we restore it back with the saved value.
1080 * To simplify the WA, a constant value is formed by using the default value
1081 * of this register. This shouldn't be a problem because we are only modifying
1082 * it for a short period and this batch in non-premptible. We can ofcourse
1083 * use additional instructions that read the actual value of the register
1084 * at that time and set our bit of interest but it makes the WA complicated.
1085 *
1086 * This WA is also required for Gen9 so extracting as a function avoids
1087 * code duplication.
1088 */
0bc40be8 1089static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1090 uint32_t *const batch,
1091 uint32_t index)
1092{
1093 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1094
a4106a78
AS
1095 /*
1096 * WaDisableLSQCROPERFforOCL:skl
1097 * This WA is implemented in skl_init_clock_gating() but since
1098 * this batch updates GEN8_L3SQCREG4 with default value we need to
1099 * set this bit here to retain the WA during flush.
1100 */
0bc40be8 1101 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1102 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1103
f1afe24f 1104 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1105 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1106 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1107 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1108 wa_ctx_emit(batch, index, 0);
1109
1110 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1111 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1112 wa_ctx_emit(batch, index, l3sqc4_flush);
1113
1114 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1115 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1116 PIPE_CONTROL_DC_FLUSH_ENABLE));
1117 wa_ctx_emit(batch, index, 0);
1118 wa_ctx_emit(batch, index, 0);
1119 wa_ctx_emit(batch, index, 0);
1120 wa_ctx_emit(batch, index, 0);
1121
f1afe24f 1122 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1123 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1124 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1125 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1126 wa_ctx_emit(batch, index, 0);
9e000847
AS
1127
1128 return index;
1129}
1130
17ee950d
AS
1131static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1132 uint32_t offset,
1133 uint32_t start_alignment)
1134{
1135 return wa_ctx->offset = ALIGN(offset, start_alignment);
1136}
1137
1138static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1139 uint32_t offset,
1140 uint32_t size_alignment)
1141{
1142 wa_ctx->size = offset - wa_ctx->offset;
1143
1144 WARN(wa_ctx->size % size_alignment,
1145 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1146 wa_ctx->size, size_alignment);
1147 return 0;
1148}
1149
1150/**
1151 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1152 *
1153 * @ring: only applicable for RCS
1154 * @wa_ctx: structure representing wa_ctx
1155 * offset: specifies start of the batch, should be cache-aligned. This is updated
1156 * with the offset value received as input.
1157 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1158 * @batch: page in which WA are loaded
1159 * @offset: This field specifies the start of the batch, it should be
1160 * cache-aligned otherwise it is adjusted accordingly.
1161 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1162 * initialized at the beginning and shared across all contexts but this field
1163 * helps us to have multiple batches at different offsets and select them based
1164 * on a criteria. At the moment this batch always start at the beginning of the page
1165 * and at this point we don't have multiple wa_ctx batch buffers.
1166 *
1167 * The number of WA applied are not known at the beginning; we use this field
1168 * to return the no of DWORDS written.
4d78c8dc 1169 *
17ee950d
AS
1170 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1171 * so it adds NOOPs as padding to make it cacheline aligned.
1172 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1173 * makes a complete batch buffer.
1174 *
1175 * Return: non-zero if we exceed the PAGE_SIZE limit.
1176 */
1177
0bc40be8 1178static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1179 struct i915_wa_ctx_bb *wa_ctx,
1180 uint32_t *const batch,
1181 uint32_t *offset)
1182{
0160f055 1183 uint32_t scratch_addr;
17ee950d
AS
1184 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1185
7ad00d1a 1186 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1187 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1188
c82435bb 1189 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1190 if (IS_BROADWELL(engine->dev)) {
1191 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1192 if (rc < 0)
1193 return rc;
1194 index = rc;
c82435bb
AS
1195 }
1196
0160f055
AS
1197 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1198 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1199 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1200
83b8a982
AS
1201 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1202 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1203 PIPE_CONTROL_GLOBAL_GTT_IVB |
1204 PIPE_CONTROL_CS_STALL |
1205 PIPE_CONTROL_QW_WRITE));
1206 wa_ctx_emit(batch, index, scratch_addr);
1207 wa_ctx_emit(batch, index, 0);
1208 wa_ctx_emit(batch, index, 0);
1209 wa_ctx_emit(batch, index, 0);
0160f055 1210
17ee950d
AS
1211 /* Pad to end of cacheline */
1212 while (index % CACHELINE_DWORDS)
83b8a982 1213 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1214
1215 /*
1216 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1217 * execution depends on the length specified in terms of cache lines
1218 * in the register CTX_RCS_INDIRECT_CTX
1219 */
1220
1221 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1222}
1223
1224/**
1225 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1226 *
1227 * @ring: only applicable for RCS
1228 * @wa_ctx: structure representing wa_ctx
1229 * offset: specifies start of the batch, should be cache-aligned.
1230 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1231 * @batch: page in which WA are loaded
17ee950d
AS
1232 * @offset: This field specifies the start of this batch.
1233 * This batch is started immediately after indirect_ctx batch. Since we ensure
1234 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1235 *
1236 * The number of DWORDS written are returned using this field.
1237 *
1238 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1239 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1240 */
0bc40be8 1241static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1242 struct i915_wa_ctx_bb *wa_ctx,
1243 uint32_t *const batch,
1244 uint32_t *offset)
1245{
1246 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1247
7ad00d1a 1248 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1249 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1250
83b8a982 1251 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1252
1253 return wa_ctx_end(wa_ctx, *offset = index, 1);
1254}
1255
0bc40be8 1256static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1257 struct i915_wa_ctx_bb *wa_ctx,
1258 uint32_t *const batch,
1259 uint32_t *offset)
1260{
a4106a78 1261 int ret;
0bc40be8 1262 struct drm_device *dev = engine->dev;
0504cffc
AS
1263 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1264
0907c8f7 1265 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1266 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1267 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1268 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1269
a4106a78 1270 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1271 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1272 if (ret < 0)
1273 return ret;
1274 index = ret;
1275
0504cffc
AS
1276 /* Pad to end of cacheline */
1277 while (index % CACHELINE_DWORDS)
1278 wa_ctx_emit(batch, index, MI_NOOP);
1279
1280 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1281}
1282
0bc40be8 1283static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1284 struct i915_wa_ctx_bb *wa_ctx,
1285 uint32_t *const batch,
1286 uint32_t *offset)
1287{
0bc40be8 1288 struct drm_device *dev = engine->dev;
0504cffc
AS
1289 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1290
9b01435d 1291 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1292 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1294 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1295 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1296 wa_ctx_emit(batch, index,
1297 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1298 wa_ctx_emit(batch, index, MI_NOOP);
1299 }
1300
b1e429fe
TG
1301 /* WaClearTdlStateAckDirtyBits:bxt */
1302 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1303 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1304
1305 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1306 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1307
1308 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1309 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1310
1311 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1312 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1313
1314 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1315 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1316 wa_ctx_emit(batch, index, 0x0);
1317 wa_ctx_emit(batch, index, MI_NOOP);
1318 }
1319
0907c8f7 1320 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1321 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1322 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1323 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1324
0504cffc
AS
1325 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1326
1327 return wa_ctx_end(wa_ctx, *offset = index, 1);
1328}
1329
0bc40be8 1330static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1331{
1332 int ret;
1333
d37cd8a8 1334 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
0bc40be8 1335 PAGE_ALIGN(size));
fe3db79b 1336 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1337 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1338 ret = PTR_ERR(engine->wa_ctx.obj);
1339 engine->wa_ctx.obj = NULL;
1340 return ret;
17ee950d
AS
1341 }
1342
0bc40be8 1343 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1344 if (ret) {
1345 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1346 ret);
0bc40be8 1347 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1348 return ret;
1349 }
1350
1351 return 0;
1352}
1353
0bc40be8 1354static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1355{
0bc40be8
TU
1356 if (engine->wa_ctx.obj) {
1357 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1358 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1359 engine->wa_ctx.obj = NULL;
17ee950d
AS
1360 }
1361}
1362
0bc40be8 1363static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1364{
1365 int ret;
1366 uint32_t *batch;
1367 uint32_t offset;
1368 struct page *page;
0bc40be8 1369 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1370
0bc40be8 1371 WARN_ON(engine->id != RCS);
17ee950d 1372
5e60d790 1373 /* update this when WA for higher Gen are added */
0bc40be8 1374 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1375 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1376 INTEL_INFO(engine->dev)->gen);
5e60d790 1377 return 0;
0504cffc 1378 }
5e60d790 1379
c4db7599 1380 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1381 if (engine->scratch.obj == NULL) {
1382 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1383 return -EINVAL;
1384 }
1385
0bc40be8 1386 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1387 if (ret) {
1388 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1389 return ret;
1390 }
1391
033908ae 1392 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1393 batch = kmap_atomic(page);
1394 offset = 0;
1395
0bc40be8
TU
1396 if (INTEL_INFO(engine->dev)->gen == 8) {
1397 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1398 &wa_ctx->indirect_ctx,
1399 batch,
1400 &offset);
1401 if (ret)
1402 goto out;
1403
0bc40be8 1404 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1405 &wa_ctx->per_ctx,
1406 batch,
1407 &offset);
1408 if (ret)
1409 goto out;
0bc40be8
TU
1410 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1411 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1412 &wa_ctx->indirect_ctx,
1413 batch,
1414 &offset);
1415 if (ret)
1416 goto out;
1417
0bc40be8 1418 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1419 &wa_ctx->per_ctx,
1420 batch,
1421 &offset);
1422 if (ret)
1423 goto out;
17ee950d
AS
1424 }
1425
1426out:
1427 kunmap_atomic(batch);
1428 if (ret)
0bc40be8 1429 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1430
1431 return ret;
1432}
1433
04794adb
TU
1434static void lrc_init_hws(struct intel_engine_cs *engine)
1435{
1436 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1437
1438 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1439 (u32)engine->status_page.gfx_addr);
1440 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1441}
1442
0bc40be8 1443static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1444{
0bc40be8 1445 struct drm_device *dev = engine->dev;
9b1136d5 1446 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1447 unsigned int next_context_status_buffer_hw;
9b1136d5 1448
04794adb 1449 lrc_init_hws(engine);
e84fe803 1450
0bc40be8
TU
1451 I915_WRITE_IMR(engine,
1452 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1453 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1454
0bc40be8 1455 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1456 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1457 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1458 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1459
1460 /*
1461 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1462 * zero, we need to read the write pointer from hardware and use its
1463 * value because "this register is power context save restored".
1464 * Effectively, these states have been observed:
1465 *
1466 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1467 * BDW | CSB regs not reset | CSB regs reset |
1468 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1469 * SKL | ? | ? |
1470 * BXT | ? | ? |
dfc53c5e 1471 */
5590a5f0 1472 next_context_status_buffer_hw =
0bc40be8 1473 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1474
1475 /*
1476 * When the CSB registers are reset (also after power-up / gpu reset),
1477 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1478 * this special case, so the first element read is CSB[0].
1479 */
1480 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1481 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1482
0bc40be8
TU
1483 engine->next_context_status_buffer = next_context_status_buffer_hw;
1484 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1485
fc0768ce 1486 intel_engine_init_hangcheck(engine);
9b1136d5 1487
0ccdacf6 1488 return intel_mocs_init_engine(engine);
9b1136d5
OM
1489}
1490
0bc40be8 1491static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1492{
0bc40be8 1493 struct drm_device *dev = engine->dev;
9b1136d5
OM
1494 struct drm_i915_private *dev_priv = dev->dev_private;
1495 int ret;
1496
0bc40be8 1497 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1498 if (ret)
1499 return ret;
1500
1501 /* We need to disable the AsyncFlip performance optimisations in order
1502 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1503 * programmed to '1' on all products.
1504 *
1505 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1506 */
1507 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1508
9b1136d5
OM
1509 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1510
0bc40be8 1511 return init_workarounds_ring(engine);
9b1136d5
OM
1512}
1513
0bc40be8 1514static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1515{
1516 int ret;
1517
0bc40be8 1518 ret = gen8_init_common_ring(engine);
82ef822e
DL
1519 if (ret)
1520 return ret;
1521
0bc40be8 1522 return init_workarounds_ring(engine);
82ef822e
DL
1523}
1524
7a01a0a2
MT
1525static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1526{
1527 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1528 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1529 struct intel_ringbuffer *ringbuf = req->ringbuf;
1530 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1531 int i, ret;
1532
987046ad 1533 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1534 if (ret)
1535 return ret;
1536
1537 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1538 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1539 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1540
e2f80391
TU
1541 intel_logical_ring_emit_reg(ringbuf,
1542 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1543 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1544 intel_logical_ring_emit_reg(ringbuf,
1545 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1546 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1547 }
1548
1549 intel_logical_ring_emit(ringbuf, MI_NOOP);
1550 intel_logical_ring_advance(ringbuf);
1551
1552 return 0;
1553}
1554
be795fc1 1555static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1556 u64 offset, unsigned dispatch_flags)
15648585 1557{
be795fc1 1558 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1559 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1560 int ret;
1561
7a01a0a2
MT
1562 /* Don't rely in hw updating PDPs, specially in lite-restore.
1563 * Ideally, we should set Force PD Restore in ctx descriptor,
1564 * but we can't. Force Restore would be a second option, but
1565 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1566 * not idle). PML4 is allocated during ppgtt init so this is
1567 * not needed in 48-bit.*/
7a01a0a2 1568 if (req->ctx->ppgtt &&
666796da 1569 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1570 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1571 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1572 ret = intel_logical_ring_emit_pdps(req);
1573 if (ret)
1574 return ret;
1575 }
7a01a0a2 1576
666796da 1577 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1578 }
1579
987046ad 1580 ret = intel_ring_begin(req, 4);
15648585
OM
1581 if (ret)
1582 return ret;
1583
1584 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1585 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1586 (ppgtt<<8) |
1587 (dispatch_flags & I915_DISPATCH_RS ?
1588 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1589 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1590 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1591 intel_logical_ring_emit(ringbuf, MI_NOOP);
1592 intel_logical_ring_advance(ringbuf);
1593
1594 return 0;
1595}
1596
0bc40be8 1597static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1598{
0bc40be8 1599 struct drm_device *dev = engine->dev;
73d477f6
OM
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 unsigned long flags;
1602
7cd512f1 1603 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1604 return false;
1605
1606 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1607 if (engine->irq_refcount++ == 0) {
1608 I915_WRITE_IMR(engine,
1609 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1610 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1611 }
1612 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613
1614 return true;
1615}
1616
0bc40be8 1617static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1618{
0bc40be8 1619 struct drm_device *dev = engine->dev;
73d477f6
OM
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 unsigned long flags;
1622
1623 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1624 if (--engine->irq_refcount == 0) {
1625 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1626 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1627 }
1628 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1629}
1630
7deb4d39 1631static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1632 u32 invalidate_domains,
1633 u32 unused)
1634{
7deb4d39 1635 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1636 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1637 struct drm_device *dev = engine->dev;
4712274c
OM
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 uint32_t cmd;
1640 int ret;
1641
987046ad 1642 ret = intel_ring_begin(request, 4);
4712274c
OM
1643 if (ret)
1644 return ret;
1645
1646 cmd = MI_FLUSH_DW + 1;
1647
f0a1fb10
CW
1648 /* We always require a command barrier so that subsequent
1649 * commands, such as breadcrumb interrupts, are strictly ordered
1650 * wrt the contents of the write cache being flushed to memory
1651 * (and thus being coherent from the CPU).
1652 */
1653 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1654
1655 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1656 cmd |= MI_INVALIDATE_TLB;
4a570db5 1657 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1658 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1659 }
1660
1661 intel_logical_ring_emit(ringbuf, cmd);
1662 intel_logical_ring_emit(ringbuf,
1663 I915_GEM_HWS_SCRATCH_ADDR |
1664 MI_FLUSH_DW_USE_GTT);
1665 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1666 intel_logical_ring_emit(ringbuf, 0); /* value */
1667 intel_logical_ring_advance(ringbuf);
1668
1669 return 0;
1670}
1671
7deb4d39 1672static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1673 u32 invalidate_domains,
1674 u32 flush_domains)
1675{
7deb4d39 1676 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1677 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1678 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1679 bool vf_flush_wa = false;
4712274c
OM
1680 u32 flags = 0;
1681 int ret;
1682
1683 flags |= PIPE_CONTROL_CS_STALL;
1684
1685 if (flush_domains) {
1686 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1687 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1688 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1689 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1690 }
1691
1692 if (invalidate_domains) {
1693 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1694 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1695 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1697 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1698 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1699 flags |= PIPE_CONTROL_QW_WRITE;
1700 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1701
1a5a9ce7
BW
1702 /*
1703 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1704 * pipe control.
1705 */
e2f80391 1706 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1707 vf_flush_wa = true;
1708 }
9647ff36 1709
987046ad 1710 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1711 if (ret)
1712 return ret;
1713
9647ff36
ID
1714 if (vf_flush_wa) {
1715 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1716 intel_logical_ring_emit(ringbuf, 0);
1717 intel_logical_ring_emit(ringbuf, 0);
1718 intel_logical_ring_emit(ringbuf, 0);
1719 intel_logical_ring_emit(ringbuf, 0);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 }
1722
4712274c
OM
1723 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1724 intel_logical_ring_emit(ringbuf, flags);
1725 intel_logical_ring_emit(ringbuf, scratch_addr);
1726 intel_logical_ring_emit(ringbuf, 0);
1727 intel_logical_ring_emit(ringbuf, 0);
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_advance(ringbuf);
1730
1731 return 0;
1732}
1733
c04e0f3b 1734static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1735{
0bc40be8 1736 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1737}
1738
0bc40be8 1739static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1740{
0bc40be8 1741 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1742}
1743
c04e0f3b 1744static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1745{
319404df
ID
1746 /*
1747 * On BXT A steppings there is a HW coherency issue whereby the
1748 * MI_STORE_DATA_IMM storing the completed request's seqno
1749 * occasionally doesn't invalidate the CPU cache. Work around this by
1750 * clflushing the corresponding cacheline whenever the caller wants
1751 * the coherency to be guaranteed. Note that this cacheline is known
1752 * to be clean at this point, since we only write it in
1753 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1754 * this clflush in practice becomes an invalidate operation.
1755 */
c04e0f3b 1756 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1757}
1758
0bc40be8 1759static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1760{
0bc40be8 1761 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1762
1763 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1764 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1765}
1766
7c17d377
CW
1767/*
1768 * Reserve space for 2 NOOPs at the end of each request to be
1769 * used as a workaround for not being allowed to do lite
1770 * restore with HEAD==TAIL (WaIdleLiteRestore).
1771 */
1772#define WA_TAIL_DWORDS 2
1773
1774static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1775{
1776 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1777}
1778
c4e76638 1779static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1780{
c4e76638 1781 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1782 int ret;
1783
987046ad 1784 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1785 if (ret)
1786 return ret;
1787
7c17d377
CW
1788 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1789 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1790
4da46e1e 1791 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1792 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1793 intel_logical_ring_emit(ringbuf,
4a570db5 1794 hws_seqno_address(request->engine) |
7c17d377 1795 MI_FLUSH_DW_USE_GTT);
4da46e1e 1796 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1797 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1798 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1799 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1800 return intel_logical_ring_advance_and_submit(request);
1801}
4da46e1e 1802
7c17d377
CW
1803static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1804{
1805 struct intel_ringbuffer *ringbuf = request->ringbuf;
1806 int ret;
53292cdb 1807
987046ad 1808 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1809 if (ret)
1810 return ret;
1811
ce81a65c
MW
1812 /* We're using qword write, seqno should be aligned to 8 bytes. */
1813 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1814
7c17d377
CW
1815 /* w/a for post sync ops following a GPGPU operation we
1816 * need a prior CS_STALL, which is emitted by the flush
1817 * following the batch.
1818 */
ce81a65c 1819 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1820 intel_logical_ring_emit(ringbuf,
1821 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1822 PIPE_CONTROL_CS_STALL |
1823 PIPE_CONTROL_QW_WRITE));
4a570db5 1824 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1825 intel_logical_ring_emit(ringbuf, 0);
1826 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1827 /* We're thrashing one dword of HWS. */
1828 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1829 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1830 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1831 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1832}
1833
be01363f 1834static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1835{
cef437ad 1836 struct render_state so;
cef437ad
DL
1837 int ret;
1838
4a570db5 1839 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1840 if (ret)
1841 return ret;
1842
1843 if (so.rodata == NULL)
1844 return 0;
1845
4a570db5 1846 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1847 I915_DISPATCH_SECURE);
cef437ad
DL
1848 if (ret)
1849 goto out;
1850
4a570db5 1851 ret = req->engine->emit_bb_start(req,
84e81020
AS
1852 (so.ggtt_offset + so.aux_batch_offset),
1853 I915_DISPATCH_SECURE);
1854 if (ret)
1855 goto out;
1856
b2af0376 1857 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1858
cef437ad
DL
1859out:
1860 i915_gem_render_state_fini(&so);
1861 return ret;
1862}
1863
8753181e 1864static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1865{
1866 int ret;
1867
e2be4faf 1868 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1869 if (ret)
1870 return ret;
1871
3bbaba0c
PA
1872 ret = intel_rcs_context_init_mocs(req);
1873 /*
1874 * Failing to program the MOCS is non-fatal.The system will not
1875 * run at peak performance. So generate an error and carry on.
1876 */
1877 if (ret)
1878 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1879
be01363f 1880 return intel_lr_context_render_state_init(req);
e7778be1
TD
1881}
1882
73e4d07f
OM
1883/**
1884 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1885 *
1886 * @ring: Engine Command Streamer.
1887 *
1888 */
0bc40be8 1889void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1890{
6402c330 1891 struct drm_i915_private *dev_priv;
9832b9da 1892
117897f4 1893 if (!intel_engine_initialized(engine))
48d82387
OM
1894 return;
1895
27af5eea
TU
1896 /*
1897 * Tasklet cannot be active at this point due intel_mark_active/idle
1898 * so this is just for documentation.
1899 */
1900 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1901 tasklet_kill(&engine->irq_tasklet);
1902
0bc40be8 1903 dev_priv = engine->dev->dev_private;
6402c330 1904
0bc40be8
TU
1905 if (engine->buffer) {
1906 intel_logical_ring_stop(engine);
1907 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1908 }
48d82387 1909
0bc40be8
TU
1910 if (engine->cleanup)
1911 engine->cleanup(engine);
48d82387 1912
0bc40be8
TU
1913 i915_cmd_parser_fini_ring(engine);
1914 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1915
0bc40be8 1916 if (engine->status_page.obj) {
7d774cac 1917 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1918 engine->status_page.obj = NULL;
48d82387 1919 }
24f1d3cc 1920 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1921
0bc40be8
TU
1922 engine->idle_lite_restore_wa = 0;
1923 engine->disable_lite_restore_wa = false;
1924 engine->ctx_desc_template = 0;
ca82580c 1925
0bc40be8
TU
1926 lrc_destroy_wa_ctx_obj(engine);
1927 engine->dev = NULL;
454afebd
OM
1928}
1929
c9cacf93
TU
1930static void
1931logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1932 struct intel_engine_cs *engine)
c9cacf93
TU
1933{
1934 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1935 engine->init_hw = gen8_init_common_ring;
1936 engine->emit_request = gen8_emit_request;
1937 engine->emit_flush = gen8_emit_flush;
1938 engine->irq_get = gen8_logical_ring_get_irq;
1939 engine->irq_put = gen8_logical_ring_put_irq;
1940 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1941 engine->get_seqno = gen8_get_seqno;
1942 engine->set_seqno = gen8_set_seqno;
c9cacf93 1943 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1944 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1945 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1946 }
1947}
1948
d9f3af96 1949static inline void
0bc40be8 1950logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1951{
0bc40be8
TU
1952 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1953 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1954}
1955
7d774cac 1956static int
04794adb
TU
1957lrc_setup_hws(struct intel_engine_cs *engine,
1958 struct drm_i915_gem_object *dctx_obj)
1959{
7d774cac 1960 void *hws;
04794adb
TU
1961
1962 /* The HWSP is part of the default context object in LRC mode. */
1963 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1964 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1965 hws = i915_gem_object_pin_map(dctx_obj);
1966 if (IS_ERR(hws))
1967 return PTR_ERR(hws);
1968 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1969 engine->status_page.obj = dctx_obj;
7d774cac
TU
1970
1971 return 0;
04794adb
TU
1972}
1973
c9cacf93 1974static int
0bc40be8 1975logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1976{
3756685a
TU
1977 struct drm_i915_private *dev_priv = to_i915(dev);
1978 struct intel_context *dctx = dev_priv->kernel_context;
1979 enum forcewake_domains fw_domains;
48d82387 1980 int ret;
48d82387
OM
1981
1982 /* Intentionally left blank. */
0bc40be8 1983 engine->buffer = NULL;
48d82387 1984
0bc40be8
TU
1985 engine->dev = dev;
1986 INIT_LIST_HEAD(&engine->active_list);
1987 INIT_LIST_HEAD(&engine->request_list);
1988 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1989 init_waitqueue_head(&engine->irq_queue);
48d82387 1990
0bc40be8
TU
1991 INIT_LIST_HEAD(&engine->buffers);
1992 INIT_LIST_HEAD(&engine->execlist_queue);
1993 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1994 spin_lock_init(&engine->execlist_lock);
acdd884a 1995
27af5eea
TU
1996 tasklet_init(&engine->irq_tasklet,
1997 intel_lrc_irq_handler, (unsigned long)engine);
1998
0bc40be8 1999 logical_ring_init_platform_invariants(engine);
ca82580c 2000
3756685a
TU
2001 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2002 RING_ELSP(engine),
2003 FW_REG_WRITE);
2004
2005 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2006 RING_CONTEXT_STATUS_PTR(engine),
2007 FW_REG_READ | FW_REG_WRITE);
2008
2009 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2010 RING_CONTEXT_STATUS_BUF_BASE(engine),
2011 FW_REG_READ);
2012
2013 engine->fw_domains = fw_domains;
2014
0bc40be8 2015 ret = i915_cmd_parser_init_ring(engine);
48d82387 2016 if (ret)
b0366a54 2017 goto error;
48d82387 2018
978f1e09 2019 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2020 if (ret)
b0366a54 2021 goto error;
e84fe803
NH
2022
2023 /* As this is the default context, always pin it */
24f1d3cc 2024 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2025 if (ret) {
24f1d3cc
CW
2026 DRM_ERROR("Failed to pin context for %s: %d\n",
2027 engine->name, ret);
b0366a54 2028 goto error;
e84fe803 2029 }
564ddb2f 2030
04794adb 2031 /* And setup the hardware status page. */
7d774cac
TU
2032 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2033 if (ret) {
2034 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2035 goto error;
2036 }
04794adb 2037
b0366a54
DG
2038 return 0;
2039
2040error:
0bc40be8 2041 intel_logical_ring_cleanup(engine);
564ddb2f 2042 return ret;
454afebd
OM
2043}
2044
2045static int logical_render_ring_init(struct drm_device *dev)
2046{
2047 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2048 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2049 int ret;
454afebd 2050
e2f80391
TU
2051 engine->name = "render ring";
2052 engine->id = RCS;
2053 engine->exec_id = I915_EXEC_RENDER;
2054 engine->guc_id = GUC_RENDER_ENGINE;
2055 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2056
e2f80391 2057 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2058 if (HAS_L3_DPF(dev))
e2f80391 2059 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2060
e2f80391 2061 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2062
2063 /* Override some for render ring. */
82ef822e 2064 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2065 engine->init_hw = gen9_init_render_ring;
82ef822e 2066 else
e2f80391
TU
2067 engine->init_hw = gen8_init_render_ring;
2068 engine->init_context = gen8_init_rcs_context;
2069 engine->cleanup = intel_fini_pipe_control;
2070 engine->emit_flush = gen8_emit_flush_render;
2071 engine->emit_request = gen8_emit_request_render;
9b1136d5 2072
e2f80391 2073 engine->dev = dev;
c4db7599 2074
e2f80391 2075 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2076 if (ret)
2077 return ret;
2078
e2f80391 2079 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2080 if (ret) {
2081 /*
2082 * We continue even if we fail to initialize WA batch
2083 * because we only expect rare glitches but nothing
2084 * critical to prevent us from using GPU
2085 */
2086 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2087 ret);
2088 }
2089
e2f80391 2090 ret = logical_ring_init(dev, engine);
c4db7599 2091 if (ret) {
e2f80391 2092 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2093 }
17ee950d
AS
2094
2095 return ret;
454afebd
OM
2096}
2097
2098static int logical_bsd_ring_init(struct drm_device *dev)
2099{
2100 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2101 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2102
e2f80391
TU
2103 engine->name = "bsd ring";
2104 engine->id = VCS;
2105 engine->exec_id = I915_EXEC_BSD;
2106 engine->guc_id = GUC_VIDEO_ENGINE;
2107 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2108
e2f80391
TU
2109 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2110 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2111
e2f80391 2112 return logical_ring_init(dev, engine);
454afebd
OM
2113}
2114
2115static int logical_bsd2_ring_init(struct drm_device *dev)
2116{
2117 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2118 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2119
e2f80391
TU
2120 engine->name = "bsd2 ring";
2121 engine->id = VCS2;
2122 engine->exec_id = I915_EXEC_BSD;
2123 engine->guc_id = GUC_VIDEO_ENGINE2;
2124 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2125
e2f80391
TU
2126 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2127 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2128
e2f80391 2129 return logical_ring_init(dev, engine);
454afebd
OM
2130}
2131
2132static int logical_blt_ring_init(struct drm_device *dev)
2133{
2134 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2135 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2136
e2f80391
TU
2137 engine->name = "blitter ring";
2138 engine->id = BCS;
2139 engine->exec_id = I915_EXEC_BLT;
2140 engine->guc_id = GUC_BLITTER_ENGINE;
2141 engine->mmio_base = BLT_RING_BASE;
454afebd 2142
e2f80391
TU
2143 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2144 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2145
e2f80391 2146 return logical_ring_init(dev, engine);
454afebd
OM
2147}
2148
2149static int logical_vebox_ring_init(struct drm_device *dev)
2150{
2151 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2152 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2153
e2f80391
TU
2154 engine->name = "video enhancement ring";
2155 engine->id = VECS;
2156 engine->exec_id = I915_EXEC_VEBOX;
2157 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2158 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2159
e2f80391
TU
2160 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2161 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2162
e2f80391 2163 return logical_ring_init(dev, engine);
454afebd
OM
2164}
2165
73e4d07f
OM
2166/**
2167 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2168 * @dev: DRM device.
2169 *
2170 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2171 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2172 * those engines that are present in the hardware.
2173 *
2174 * Return: non-zero if the initialization failed.
2175 */
454afebd
OM
2176int intel_logical_rings_init(struct drm_device *dev)
2177{
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179 int ret;
2180
2181 ret = logical_render_ring_init(dev);
2182 if (ret)
2183 return ret;
2184
2185 if (HAS_BSD(dev)) {
2186 ret = logical_bsd_ring_init(dev);
2187 if (ret)
2188 goto cleanup_render_ring;
2189 }
2190
2191 if (HAS_BLT(dev)) {
2192 ret = logical_blt_ring_init(dev);
2193 if (ret)
2194 goto cleanup_bsd_ring;
2195 }
2196
2197 if (HAS_VEBOX(dev)) {
2198 ret = logical_vebox_ring_init(dev);
2199 if (ret)
2200 goto cleanup_blt_ring;
2201 }
2202
2203 if (HAS_BSD2(dev)) {
2204 ret = logical_bsd2_ring_init(dev);
2205 if (ret)
2206 goto cleanup_vebox_ring;
2207 }
2208
454afebd
OM
2209 return 0;
2210
454afebd 2211cleanup_vebox_ring:
4a570db5 2212 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2213cleanup_blt_ring:
4a570db5 2214 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2215cleanup_bsd_ring:
4a570db5 2216 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2217cleanup_render_ring:
4a570db5 2218 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2219
2220 return ret;
2221}
2222
0cea6502
JM
2223static u32
2224make_rpcs(struct drm_device *dev)
2225{
2226 u32 rpcs = 0;
2227
2228 /*
2229 * No explicit RPCS request is needed to ensure full
2230 * slice/subslice/EU enablement prior to Gen9.
2231 */
2232 if (INTEL_INFO(dev)->gen < 9)
2233 return 0;
2234
2235 /*
2236 * Starting in Gen9, render power gating can leave
2237 * slice/subslice/EU in a partially enabled state. We
2238 * must make an explicit request through RPCS for full
2239 * enablement.
2240 */
2241 if (INTEL_INFO(dev)->has_slice_pg) {
2242 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2243 rpcs |= INTEL_INFO(dev)->slice_total <<
2244 GEN8_RPCS_S_CNT_SHIFT;
2245 rpcs |= GEN8_RPCS_ENABLE;
2246 }
2247
2248 if (INTEL_INFO(dev)->has_subslice_pg) {
2249 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2250 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2251 GEN8_RPCS_SS_CNT_SHIFT;
2252 rpcs |= GEN8_RPCS_ENABLE;
2253 }
2254
2255 if (INTEL_INFO(dev)->has_eu_pg) {
2256 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2257 GEN8_RPCS_EU_MIN_SHIFT;
2258 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2259 GEN8_RPCS_EU_MAX_SHIFT;
2260 rpcs |= GEN8_RPCS_ENABLE;
2261 }
2262
2263 return rpcs;
2264}
2265
0bc40be8 2266static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2267{
2268 u32 indirect_ctx_offset;
2269
0bc40be8 2270 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2271 default:
0bc40be8 2272 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2273 /* fall through */
2274 case 9:
2275 indirect_ctx_offset =
2276 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2277 break;
2278 case 8:
2279 indirect_ctx_offset =
2280 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2281 break;
2282 }
2283
2284 return indirect_ctx_offset;
2285}
2286
8670d6f9 2287static int
7d774cac
TU
2288populate_lr_context(struct intel_context *ctx,
2289 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2290 struct intel_engine_cs *engine,
2291 struct intel_ringbuffer *ringbuf)
8670d6f9 2292{
0bc40be8 2293 struct drm_device *dev = engine->dev;
2d965536 2294 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2295 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2296 void *vaddr;
2297 u32 *reg_state;
8670d6f9
OM
2298 int ret;
2299
2d965536
TD
2300 if (!ppgtt)
2301 ppgtt = dev_priv->mm.aliasing_ppgtt;
2302
8670d6f9
OM
2303 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2304 if (ret) {
2305 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2306 return ret;
2307 }
2308
7d774cac
TU
2309 vaddr = i915_gem_object_pin_map(ctx_obj);
2310 if (IS_ERR(vaddr)) {
2311 ret = PTR_ERR(vaddr);
2312 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2313 return ret;
2314 }
7d774cac 2315 ctx_obj->dirty = true;
8670d6f9
OM
2316
2317 /* The second page of the context object contains some fields which must
2318 * be set up prior to the first execution. */
7d774cac 2319 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2320
2321 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2322 * commands followed by (reg, value) pairs. The values we are setting here are
2323 * only for the first context restore: on a subsequent save, the GPU will
2324 * recreate this batchbuffer with new values (including all the missing
2325 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2326 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2327 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2328 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2329 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2330 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2331 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2332 (HAS_RESOURCE_STREAMER(dev) ?
2333 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2334 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2335 0);
2336 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2337 0);
7ba717cf
TD
2338 /* Ring buffer start address is not known until the buffer is pinned.
2339 * It is written to the context image in execlists_update_context()
2340 */
0bc40be8
TU
2341 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2342 RING_START(engine->mmio_base), 0);
2343 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2344 RING_CTL(engine->mmio_base),
0d925ea0 2345 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2346 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2347 RING_BBADDR_UDW(engine->mmio_base), 0);
2348 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2349 RING_BBADDR(engine->mmio_base), 0);
2350 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2351 RING_BBSTATE(engine->mmio_base),
0d925ea0 2352 RING_BB_PPGTT);
0bc40be8
TU
2353 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2354 RING_SBBADDR_UDW(engine->mmio_base), 0);
2355 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2356 RING_SBBADDR(engine->mmio_base), 0);
2357 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2358 RING_SBBSTATE(engine->mmio_base), 0);
2359 if (engine->id == RCS) {
2360 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2361 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2362 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2363 RING_INDIRECT_CTX(engine->mmio_base), 0);
2364 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2365 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2366 if (engine->wa_ctx.obj) {
2367 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2368 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2369
2370 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2371 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2372 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2373
2374 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2375 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2376
2377 reg_state[CTX_BB_PER_CTX_PTR+1] =
2378 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2379 0x01;
2380 }
8670d6f9 2381 }
0d925ea0 2382 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2383 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2384 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2385 /* PDP values well be assigned later if needed */
0bc40be8
TU
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2387 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2389 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2391 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2393 0);
2394 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2395 0);
2396 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2397 0);
2398 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2399 0);
2400 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2401 0);
d7b2633d 2402
2dba3239
MT
2403 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2404 /* 64b PPGTT (48bit canonical)
2405 * PDP0_DESCRIPTOR contains the base address to PML4 and
2406 * other PDP Descriptors are ignored.
2407 */
2408 ASSIGN_CTX_PML4(ppgtt, reg_state);
2409 } else {
2410 /* 32b PPGTT
2411 * PDP*_DESCRIPTOR contains the base address of space supported.
2412 * With dynamic page allocation, PDPs may not be allocated at
2413 * this point. Point the unallocated PDPs to the scratch page
2414 */
c6a2ac71 2415 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2416 }
2417
0bc40be8 2418 if (engine->id == RCS) {
8670d6f9 2419 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2420 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2421 make_rpcs(dev));
8670d6f9
OM
2422 }
2423
7d774cac 2424 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2425
2426 return 0;
2427}
2428
73e4d07f
OM
2429/**
2430 * intel_lr_context_free() - free the LRC specific bits of a context
2431 * @ctx: the LR context to free.
2432 *
2433 * The real context freeing is done in i915_gem_context_free: this only
2434 * takes care of the bits that are LRC related: the per-engine backing
2435 * objects and the logical ringbuffer.
2436 */
ede7d42b
OM
2437void intel_lr_context_free(struct intel_context *ctx)
2438{
8c857917
OM
2439 int i;
2440
666796da 2441 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2442 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2443 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2444
e28e404c
DG
2445 if (!ctx_obj)
2446 continue;
dcb4c12a 2447
e28e404c
DG
2448 WARN_ON(ctx->engine[i].pin_count);
2449 intel_ringbuffer_free(ringbuf);
2450 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2451 }
2452}
2453
c5d46ee2
DG
2454/**
2455 * intel_lr_context_size() - return the size of the context for an engine
2456 * @ring: which engine to find the context size for
2457 *
2458 * Each engine may require a different amount of space for a context image,
2459 * so when allocating (or copying) an image, this function can be used to
2460 * find the right size for the specific engine.
2461 *
2462 * Return: size (in bytes) of an engine-specific context image
2463 *
2464 * Note: this size includes the HWSP, which is part of the context image
2465 * in LRC mode, but does not include the "shared data page" used with
2466 * GuC submission. The caller should account for this if using the GuC.
2467 */
0bc40be8 2468uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2469{
2470 int ret = 0;
2471
0bc40be8 2472 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2473
0bc40be8 2474 switch (engine->id) {
8c857917 2475 case RCS:
0bc40be8 2476 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2477 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2478 else
2479 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2480 break;
2481 case VCS:
2482 case BCS:
2483 case VECS:
2484 case VCS2:
2485 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2486 break;
2487 }
2488
2489 return ret;
ede7d42b
OM
2490}
2491
73e4d07f 2492/**
978f1e09 2493 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2494 * @ctx: LR context to create.
978f1e09 2495 * @engine: engine to be used with the context.
73e4d07f
OM
2496 *
2497 * This function can be called more than once, with different engines, if we plan
2498 * to use the context with them. The context backing objects and the ringbuffers
2499 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2500 * the creation is a deferred call: it's better to make sure first that we need to use
2501 * a given ring with the context.
2502 *
32197aab 2503 * Return: non-zero on error.
73e4d07f 2504 */
978f1e09
CW
2505static int execlists_context_deferred_alloc(struct intel_context *ctx,
2506 struct intel_engine_cs *engine)
ede7d42b 2507{
0bc40be8 2508 struct drm_device *dev = engine->dev;
8c857917
OM
2509 struct drm_i915_gem_object *ctx_obj;
2510 uint32_t context_size;
84c2377f 2511 struct intel_ringbuffer *ringbuf;
8c857917
OM
2512 int ret;
2513
ede7d42b 2514 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2515 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2516
0bc40be8 2517 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2518
d1675198
AD
2519 /* One extra page as the sharing data between driver and GuC */
2520 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2521
d37cd8a8 2522 ctx_obj = i915_gem_object_create(dev, context_size);
fe3db79b 2523 if (IS_ERR(ctx_obj)) {
3126a660 2524 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2525 return PTR_ERR(ctx_obj);
8c857917
OM
2526 }
2527
0bc40be8 2528 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2529 if (IS_ERR(ringbuf)) {
2530 ret = PTR_ERR(ringbuf);
e84fe803 2531 goto error_deref_obj;
8670d6f9
OM
2532 }
2533
0bc40be8 2534 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2535 if (ret) {
2536 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2537 goto error_ringbuf;
84c2377f
OM
2538 }
2539
0bc40be8
TU
2540 ctx->engine[engine->id].ringbuf = ringbuf;
2541 ctx->engine[engine->id].state = ctx_obj;
24f1d3cc 2542 ctx->engine[engine->id].initialised = engine->init_context == NULL;
ede7d42b
OM
2543
2544 return 0;
8670d6f9 2545
01101fa7
CW
2546error_ringbuf:
2547 intel_ringbuffer_free(ringbuf);
e84fe803 2548error_deref_obj:
8670d6f9 2549 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2550 ctx->engine[engine->id].ringbuf = NULL;
2551 ctx->engine[engine->id].state = NULL;
8670d6f9 2552 return ret;
ede7d42b 2553}
3e5b6f05 2554
7d774cac
TU
2555void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2556 struct intel_context *ctx)
3e5b6f05 2557{
e2f80391 2558 struct intel_engine_cs *engine;
3e5b6f05 2559
b4ac5afc 2560 for_each_engine(engine, dev_priv) {
3e5b6f05 2561 struct drm_i915_gem_object *ctx_obj =
e2f80391 2562 ctx->engine[engine->id].state;
3e5b6f05 2563 struct intel_ringbuffer *ringbuf =
e2f80391 2564 ctx->engine[engine->id].ringbuf;
7d774cac 2565 void *vaddr;
3e5b6f05 2566 uint32_t *reg_state;
3e5b6f05
TD
2567
2568 if (!ctx_obj)
2569 continue;
2570
7d774cac
TU
2571 vaddr = i915_gem_object_pin_map(ctx_obj);
2572 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2573 continue;
7d774cac
TU
2574
2575 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2576 ctx_obj->dirty = true;
3e5b6f05
TD
2577
2578 reg_state[CTX_RING_HEAD+1] = 0;
2579 reg_state[CTX_RING_TAIL+1] = 0;
2580
7d774cac 2581 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2582
2583 ringbuf->head = 0;
2584 ringbuf->tail = 0;
2585 }
2586}
This page took 0.371748 seconds and 5 git commands to generate.