drm/i915: use the yesno helper for logging
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197}
198
2dba3239
MT
199#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202}
203
84b790f8
BW
204enum {
205 ADVANCED_CONTEXT = 0,
2dba3239 206 LEGACY_32B_CONTEXT,
84b790f8
BW
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209};
2dba3239
MT
210#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
84b790f8
BW
214enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219};
220#define GEN8_CTX_ID_SHIFT 32
17ee950d 221#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 222
8ba319da 223static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
7ba717cf 224
73e4d07f
OM
225/**
226 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227 * @dev: DRM device.
228 * @enable_execlists: value of i915.enable_execlists module parameter.
229 *
230 * Only certain platforms support Execlists (the prerequisites being
27401d12 231 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
232 *
233 * Return: 1 if Execlists is supported and has to be enabled.
234 */
127f1003
OM
235int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236{
bd84b1e9
DV
237 WARN_ON(i915.enable_ppgtt == -1);
238
a0bd6c31
ZL
239 /* On platforms with execlist available, vGPU will only
240 * support execlist mode, no ring buffer mode.
241 */
242 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
243 return 1;
244
70ee45e1
DL
245 if (INTEL_INFO(dev)->gen >= 9)
246 return 1;
247
127f1003
OM
248 if (enable_execlists == 0)
249 return 0;
250
14bf993e
OM
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
252 i915.use_mmio_flip >= 0)
127f1003
OM
253 return 1;
254
255 return 0;
256}
ede7d42b 257
73e4d07f
OM
258/**
259 * intel_execlists_ctx_id() - get the Execlists Context ID
260 * @ctx_obj: Logical Ring Context backing object.
261 *
262 * Do not confuse with ctx->id! Unfortunately we have a name overload
263 * here: the old context ID we pass to userspace as a handler so that
264 * they can refer to a context, and the new context ID we pass to the
265 * ELSP so that the GPU can inform us of the context status via
266 * interrupts.
267 *
268 * Return: 20-bits globally unique context ID.
269 */
84b790f8
BW
270u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
271{
d1675198
AD
272 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
273 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
274
275 /* LRCA is required to be 4K aligned so the more significant 20 bits
276 * are globally unique */
277 return lrca >> 12;
278}
279
919f1f55
DG
280uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
281 struct intel_engine_cs *ring)
84b790f8 282{
203a571b 283 struct drm_device *dev = ring->dev;
919f1f55 284 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 285 uint64_t desc;
d1675198
AD
286 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
287 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
288
289 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
290
291 desc = GEN8_CTX_VALID;
2dba3239 292 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
293 if (IS_GEN8(ctx_obj->base.dev))
294 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
295 desc |= GEN8_CTX_PRIVILEGE;
296 desc |= lrca;
297 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
298
299 /* TODO: WaDisableLiteRestore when we start using semaphore
300 * signalling between Command Streamers */
301 /* desc |= GEN8_CTX_FORCE_RESTORE; */
302
203a571b
NH
303 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
304 if (IS_GEN9(dev) &&
305 INTEL_REVID(dev) <= SKL_REVID_B0 &&
306 (ring->id == BCS || ring->id == VCS ||
307 ring->id == VECS || ring->id == VCS2))
308 desc |= GEN8_CTX_FORCE_RESTORE;
309
84b790f8
BW
310 return desc;
311}
312
cc3c4253
MK
313static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
314 struct drm_i915_gem_request *rq1)
84b790f8 315{
cc3c4253
MK
316
317 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
318 struct drm_device *dev = ring->dev;
319 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 320 uint64_t desc[2];
84b790f8 321
1cff8cc3 322 if (rq1) {
919f1f55 323 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
324 rq1->elsp_submitted++;
325 } else {
326 desc[1] = 0;
327 }
84b790f8 328
919f1f55 329 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 330 rq0->elsp_submitted++;
84b790f8 331
1cff8cc3 332 /* You must always write both descriptors in the order below. */
a6111f7b
CW
333 spin_lock(&dev_priv->uncore.lock);
334 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
335 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
336 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 337
1cff8cc3 338 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 339 /* The context is automatically loaded after the following */
1cff8cc3 340 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 341
1cff8cc3 342 /* ELSP is a wo register, use another nearby reg for posting */
a6111f7b
CW
343 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
344 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
345 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
346}
347
05d9824b 348static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 349{
05d9824b
MK
350 struct intel_engine_cs *ring = rq->ring;
351 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
352 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
353 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
354 struct page *page;
355 uint32_t *reg_state;
356
05d9824b
MK
357 BUG_ON(!ctx_obj);
358 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
359 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
360
d1675198 361 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
362 reg_state = kmap_atomic(page);
363
05d9824b
MK
364 reg_state[CTX_RING_TAIL+1] = rq->tail;
365 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 366
2dba3239
MT
367 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
368 /* True 32b PPGTT with dynamic page allocation: update PDP
369 * registers and point the unallocated PDPs to scratch page.
370 * PML4 is allocated during ppgtt init, so this is not needed
371 * in 48-bit mode.
372 */
d7b2633d
MT
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377 }
378
ae1250b9
OM
379 kunmap_atomic(reg_state);
380
381 return 0;
382}
383
d8cb8875
MK
384static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
385 struct drm_i915_gem_request *rq1)
84b790f8 386{
05d9824b 387 execlists_update_context(rq0);
d8cb8875 388
cc3c4253 389 if (rq1)
05d9824b 390 execlists_update_context(rq1);
84b790f8 391
cc3c4253 392 execlists_elsp_write(rq0, rq1);
84b790f8
BW
393}
394
acdd884a
MT
395static void execlists_context_unqueue(struct intel_engine_cs *ring)
396{
6d3d8274
NH
397 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
398 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
399
400 assert_spin_locked(&ring->execlist_lock);
acdd884a 401
779949f4
PA
402 /*
403 * If irqs are not active generate a warning as batches that finish
404 * without the irqs may get lost and a GPU Hang may occur.
405 */
406 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
407
acdd884a
MT
408 if (list_empty(&ring->execlist_queue))
409 return;
410
411 /* Try to read in pairs */
412 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
413 execlist_link) {
414 if (!req0) {
415 req0 = cursor;
6d3d8274 416 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
417 /* Same ctx: ignore first request, as second request
418 * will update tail past first request's workload */
e1fee72c 419 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 420 list_del(&req0->execlist_link);
c86ee3a9
TD
421 list_add_tail(&req0->execlist_link,
422 &ring->execlist_retired_req_list);
acdd884a
MT
423 req0 = cursor;
424 } else {
425 req1 = cursor;
426 break;
427 }
428 }
429
53292cdb
MT
430 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
431 /*
432 * WaIdleLiteRestore: make sure we never cause a lite
433 * restore with HEAD==TAIL
434 */
d63f820f 435 if (req0->elsp_submitted) {
53292cdb
MT
436 /*
437 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
438 * as we resubmit the request. See gen8_emit_request()
439 * for where we prepare the padding after the end of the
440 * request.
441 */
442 struct intel_ringbuffer *ringbuf;
443
444 ringbuf = req0->ctx->engine[ring->id].ringbuf;
445 req0->tail += 8;
446 req0->tail &= ringbuf->size - 1;
447 }
448 }
449
e1fee72c
OM
450 WARN_ON(req1 && req1->elsp_submitted);
451
d8cb8875 452 execlists_submit_requests(req0, req1);
acdd884a
MT
453}
454
e981e7b1
TD
455static bool execlists_check_remove_request(struct intel_engine_cs *ring,
456 u32 request_id)
457{
6d3d8274 458 struct drm_i915_gem_request *head_req;
e981e7b1
TD
459
460 assert_spin_locked(&ring->execlist_lock);
461
462 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 463 struct drm_i915_gem_request,
e981e7b1
TD
464 execlist_link);
465
466 if (head_req != NULL) {
467 struct drm_i915_gem_object *ctx_obj =
6d3d8274 468 head_req->ctx->engine[ring->id].state;
e981e7b1 469 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
470 WARN(head_req->elsp_submitted == 0,
471 "Never submitted head request\n");
472
473 if (--head_req->elsp_submitted <= 0) {
474 list_del(&head_req->execlist_link);
c86ee3a9
TD
475 list_add_tail(&head_req->execlist_link,
476 &ring->execlist_retired_req_list);
e1fee72c
OM
477 return true;
478 }
e981e7b1
TD
479 }
480 }
481
482 return false;
483}
484
73e4d07f 485/**
3f7531c3 486 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
487 * @ring: Engine Command Streamer to handle.
488 *
489 * Check the unread Context Status Buffers and manage the submission of new
490 * contexts to the ELSP accordingly.
491 */
3f7531c3 492void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
493{
494 struct drm_i915_private *dev_priv = ring->dev->dev_private;
495 u32 status_pointer;
496 u8 read_pointer;
497 u8 write_pointer;
498 u32 status;
499 u32 status_id;
500 u32 submit_contexts = 0;
501
502 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
503
504 read_pointer = ring->next_context_status_buffer;
505 write_pointer = status_pointer & 0x07;
506 if (read_pointer > write_pointer)
507 write_pointer += 6;
508
509 spin_lock(&ring->execlist_lock);
510
511 while (read_pointer < write_pointer) {
512 read_pointer++;
513 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
514 (read_pointer % 6) * 8);
515 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8 + 4);
517
031a8936
MK
518 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
519 continue;
520
e1fee72c
OM
521 if (status & GEN8_CTX_STATUS_PREEMPTED) {
522 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
523 if (execlists_check_remove_request(ring, status_id))
524 WARN(1, "Lite Restored request removed from queue\n");
525 } else
526 WARN(1, "Preemption without Lite Restore\n");
527 }
528
529 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
530 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
531 if (execlists_check_remove_request(ring, status_id))
532 submit_contexts++;
533 }
534 }
535
536 if (submit_contexts != 0)
537 execlists_context_unqueue(ring);
538
539 spin_unlock(&ring->execlist_lock);
540
541 WARN(submit_contexts > 2, "More than two context complete events?\n");
542 ring->next_context_status_buffer = write_pointer % 6;
543
544 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
cc53699b 545 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
e981e7b1
TD
546}
547
ae70797d 548static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 549{
ae70797d 550 struct intel_engine_cs *ring = request->ring;
6d3d8274 551 struct drm_i915_gem_request *cursor;
f1ad5a1f 552 int num_elements = 0;
acdd884a 553
ae70797d 554 if (request->ctx != ring->default_context)
8ba319da 555 intel_lr_context_pin(request);
9bb1af44
JH
556
557 i915_gem_request_reference(request);
558
b5eba372 559 spin_lock_irq(&ring->execlist_lock);
acdd884a 560
f1ad5a1f
OM
561 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562 if (++num_elements > 2)
563 break;
564
565 if (num_elements > 2) {
6d3d8274 566 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
567
568 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 569 struct drm_i915_gem_request,
f1ad5a1f
OM
570 execlist_link);
571
ae70797d 572 if (request->ctx == tail_req->ctx) {
f1ad5a1f 573 WARN(tail_req->elsp_submitted != 0,
7ba717cf 574 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 575 list_del(&tail_req->execlist_link);
c86ee3a9
TD
576 list_add_tail(&tail_req->execlist_link,
577 &ring->execlist_retired_req_list);
f1ad5a1f
OM
578 }
579 }
580
6d3d8274 581 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 582 if (num_elements == 0)
acdd884a
MT
583 execlists_context_unqueue(ring);
584
b5eba372 585 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
586
587 return 0;
588}
589
2f20055d 590static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 591{
2f20055d 592 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
593 uint32_t flush_domains;
594 int ret;
595
596 flush_domains = 0;
597 if (ring->gpu_caches_dirty)
598 flush_domains = I915_GEM_GPU_DOMAINS;
599
7deb4d39 600 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
601 if (ret)
602 return ret;
603
604 ring->gpu_caches_dirty = false;
605 return 0;
606}
607
535fbe82 608static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
609 struct list_head *vmas)
610{
535fbe82 611 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
612 struct i915_vma *vma;
613 uint32_t flush_domains = 0;
614 bool flush_chipset = false;
615 int ret;
616
617 list_for_each_entry(vma, vmas, exec_list) {
618 struct drm_i915_gem_object *obj = vma->obj;
619
03ade511 620 if (obj->active & other_rings) {
91af127f 621 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
622 if (ret)
623 return ret;
624 }
ba8b7ccb
OM
625
626 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
627 flush_chipset |= i915_gem_clflush_object(obj, false);
628
629 flush_domains |= obj->base.write_domain;
630 }
631
632 if (flush_domains & I915_GEM_DOMAIN_GTT)
633 wmb();
634
635 /* Unconditionally invalidate gpu caches and ensure that we do flush
636 * any residual writes from the previous batch.
637 */
2f20055d 638 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
639}
640
40e895ce 641int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 642{
bc0dce3f
JH
643 int ret;
644
f3cc01f0
MK
645 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
646
40e895ce 647 if (request->ctx != request->ring->default_context) {
8ba319da 648 ret = intel_lr_context_pin(request);
6689cb2b 649 if (ret)
bc0dce3f 650 return ret;
bc0dce3f
JH
651 }
652
bc0dce3f
JH
653 return 0;
654}
655
ae70797d 656static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 657 int bytes)
bc0dce3f 658{
ae70797d
JH
659 struct intel_ringbuffer *ringbuf = req->ringbuf;
660 struct intel_engine_cs *ring = req->ring;
661 struct drm_i915_gem_request *target;
b4716185
CW
662 unsigned space;
663 int ret;
bc0dce3f
JH
664
665 if (intel_ring_space(ringbuf) >= bytes)
666 return 0;
667
79bbcc29
JH
668 /* The whole point of reserving space is to not wait! */
669 WARN_ON(ringbuf->reserved_in_use);
670
ae70797d 671 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
672 /*
673 * The request queue is per-engine, so can contain requests
674 * from multiple ringbuffers. Here, we must ignore any that
675 * aren't from the ringbuffer we're considering.
676 */
ae70797d 677 if (target->ringbuf != ringbuf)
bc0dce3f
JH
678 continue;
679
680 /* Would completion of this request free enough space? */
ae70797d 681 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
682 ringbuf->size);
683 if (space >= bytes)
bc0dce3f 684 break;
bc0dce3f
JH
685 }
686
ae70797d 687 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
688 return -ENOSPC;
689
ae70797d 690 ret = i915_wait_request(target);
bc0dce3f
JH
691 if (ret)
692 return ret;
693
b4716185
CW
694 ringbuf->space = space;
695 return 0;
bc0dce3f
JH
696}
697
698/*
699 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 700 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
701 *
702 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
703 * really happens during submission is that the context and current tail will be placed
704 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
705 * point, the tail *inside* the context is updated and the ELSP written to.
706 */
707static void
ae70797d 708intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 709{
ae70797d 710 struct intel_engine_cs *ring = request->ring;
d1675198 711 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 712
ae70797d 713 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 714
d1675198
AD
715 request->tail = request->ringbuf->tail;
716
bc0dce3f
JH
717 if (intel_ring_stopped(ring))
718 return;
719
d1675198
AD
720 if (dev_priv->guc.execbuf_client)
721 i915_guc_submit(dev_priv->guc.execbuf_client, request);
722 else
723 execlists_context_queue(request);
bc0dce3f
JH
724}
725
79bbcc29 726static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
727{
728 uint32_t __iomem *virt;
729 int rem = ringbuf->size - ringbuf->tail;
730
bc0dce3f
JH
731 virt = ringbuf->virtual_start + ringbuf->tail;
732 rem /= 4;
733 while (rem--)
734 iowrite32(MI_NOOP, virt++);
735
736 ringbuf->tail = 0;
737 intel_ring_update_space(ringbuf);
bc0dce3f
JH
738}
739
ae70797d 740static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 741{
ae70797d 742 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
743 int remain_usable = ringbuf->effective_size - ringbuf->tail;
744 int remain_actual = ringbuf->size - ringbuf->tail;
745 int ret, total_bytes, wait_bytes = 0;
746 bool need_wrap = false;
29b1b415 747
79bbcc29
JH
748 if (ringbuf->reserved_in_use)
749 total_bytes = bytes;
750 else
751 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 752
79bbcc29
JH
753 if (unlikely(bytes > remain_usable)) {
754 /*
755 * Not enough space for the basic request. So need to flush
756 * out the remainder and then wait for base + reserved.
757 */
758 wait_bytes = remain_actual + total_bytes;
759 need_wrap = true;
760 } else {
761 if (unlikely(total_bytes > remain_usable)) {
762 /*
763 * The base request will fit but the reserved space
764 * falls off the end. So only need to to wait for the
765 * reserved size after flushing out the remainder.
766 */
767 wait_bytes = remain_actual + ringbuf->reserved_size;
768 need_wrap = true;
769 } else if (total_bytes > ringbuf->space) {
770 /* No wrapping required, just waiting. */
771 wait_bytes = total_bytes;
29b1b415 772 }
bc0dce3f
JH
773 }
774
79bbcc29
JH
775 if (wait_bytes) {
776 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
777 if (unlikely(ret))
778 return ret;
79bbcc29
JH
779
780 if (need_wrap)
781 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
782 }
783
784 return 0;
785}
786
787/**
788 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
789 *
4d616a29 790 * @request: The request to start some new work for
4d78c8dc 791 * @ctx: Logical ring context whose ringbuffer is being prepared.
bc0dce3f
JH
792 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
793 *
794 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
795 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
796 * and also preallocates a request (every workload submission is still mediated through
797 * requests, same as it did with legacy ringbuffer submission).
798 *
799 * Return: non-zero if the ringbuffer is not ready to be written to.
800 */
3bbaba0c 801int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 802{
4d616a29 803 struct drm_i915_private *dev_priv;
bc0dce3f
JH
804 int ret;
805
4d616a29
JH
806 WARN_ON(req == NULL);
807 dev_priv = req->ring->dev->dev_private;
808
bc0dce3f
JH
809 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
810 dev_priv->mm.interruptible);
811 if (ret)
812 return ret;
813
ae70797d 814 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
815 if (ret)
816 return ret;
817
4d616a29 818 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
819 return 0;
820}
821
ccd98fe4
JH
822int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
823{
824 /*
825 * The first call merely notes the reserve request and is common for
826 * all back ends. The subsequent localised _begin() call actually
827 * ensures that the reservation is available. Without the begin, if
828 * the request creator immediately submitted the request without
829 * adding any commands to it then there might not actually be
830 * sufficient room for the submission commands.
831 */
832 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
833
834 return intel_logical_ring_begin(request, 0);
835}
836
73e4d07f
OM
837/**
838 * execlists_submission() - submit a batchbuffer for execution, Execlists style
839 * @dev: DRM device.
840 * @file: DRM file.
841 * @ring: Engine Command Streamer to submit to.
842 * @ctx: Context to employ for this submission.
843 * @args: execbuffer call arguments.
844 * @vmas: list of vmas.
845 * @batch_obj: the batchbuffer to submit.
846 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 847 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
848 *
849 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
850 * away the submission details of the execbuffer ioctl call.
851 *
852 * Return: non-zero if the submission fails.
853 */
5f19e2bf 854int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 855 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 856 struct list_head *vmas)
454afebd 857{
5f19e2bf
JH
858 struct drm_device *dev = params->dev;
859 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 860 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
861 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
862 u64 exec_start;
ba8b7ccb
OM
863 int instp_mode;
864 u32 instp_mask;
865 int ret;
866
867 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
868 instp_mask = I915_EXEC_CONSTANTS_MASK;
869 switch (instp_mode) {
870 case I915_EXEC_CONSTANTS_REL_GENERAL:
871 case I915_EXEC_CONSTANTS_ABSOLUTE:
872 case I915_EXEC_CONSTANTS_REL_SURFACE:
873 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
874 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
875 return -EINVAL;
876 }
877
878 if (instp_mode != dev_priv->relative_constants_mode) {
879 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
880 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
881 return -EINVAL;
882 }
883
884 /* The HW changed the meaning on this bit on gen6 */
885 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
886 }
887 break;
888 default:
889 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
890 return -EINVAL;
891 }
892
893 if (args->num_cliprects != 0) {
894 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
895 return -EINVAL;
896 } else {
897 if (args->DR4 == 0xffffffff) {
898 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
899 args->DR4 = 0;
900 }
901
902 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
903 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
904 return -EINVAL;
905 }
906 }
907
908 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
909 DRM_DEBUG("sol reset is gen7 only\n");
910 return -EINVAL;
911 }
912
535fbe82 913 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
914 if (ret)
915 return ret;
916
917 if (ring == &dev_priv->ring[RCS] &&
918 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 919 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
920 if (ret)
921 return ret;
922
923 intel_logical_ring_emit(ringbuf, MI_NOOP);
924 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
925 intel_logical_ring_emit(ringbuf, INSTPM);
926 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
927 intel_logical_ring_advance(ringbuf);
928
929 dev_priv->relative_constants_mode = instp_mode;
930 }
931
5f19e2bf
JH
932 exec_start = params->batch_obj_vm_offset +
933 args->batch_start_offset;
934
be795fc1 935 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
936 if (ret)
937 return ret;
938
95c24161 939 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 940
8a8edb59 941 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 942 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 943
454afebd
OM
944 return 0;
945}
946
c86ee3a9
TD
947void intel_execlists_retire_requests(struct intel_engine_cs *ring)
948{
6d3d8274 949 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
950 struct list_head retired_list;
951
952 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
953 if (list_empty(&ring->execlist_retired_req_list))
954 return;
955
956 INIT_LIST_HEAD(&retired_list);
b5eba372 957 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 958 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 959 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
960
961 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 962 struct intel_context *ctx = req->ctx;
7ba717cf
TD
963 struct drm_i915_gem_object *ctx_obj =
964 ctx->engine[ring->id].state;
965
966 if (ctx_obj && (ctx != ring->default_context))
8ba319da 967 intel_lr_context_unpin(req);
c86ee3a9 968 list_del(&req->execlist_link);
f8210795 969 i915_gem_request_unreference(req);
c86ee3a9
TD
970 }
971}
972
454afebd
OM
973void intel_logical_ring_stop(struct intel_engine_cs *ring)
974{
9832b9da
OM
975 struct drm_i915_private *dev_priv = ring->dev->dev_private;
976 int ret;
977
978 if (!intel_ring_initialized(ring))
979 return;
980
981 ret = intel_ring_idle(ring);
982 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
983 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
984 ring->name, ret);
985
986 /* TODO: Is this correct with Execlists enabled? */
987 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
988 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
989 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
990 return;
991 }
992 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
993}
994
4866d729 995int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 996{
4866d729 997 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
998 int ret;
999
1000 if (!ring->gpu_caches_dirty)
1001 return 0;
1002
7deb4d39 1003 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1004 if (ret)
1005 return ret;
1006
1007 ring->gpu_caches_dirty = false;
1008 return 0;
1009}
1010
8ba319da 1011static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
dcb4c12a 1012{
d1675198 1013 struct drm_i915_private *dev_priv = rq->i915;
8ba319da
MK
1014 struct intel_engine_cs *ring = rq->ring;
1015 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1016 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1017 int ret = 0;
1018
1019 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1020 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
d1675198
AD
1021 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1022 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
dcb4c12a 1023 if (ret)
a7cbedec 1024 goto reset_pin_count;
7ba717cf
TD
1025
1026 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1027 if (ret)
1028 goto unpin_ctx_obj;
d1675198 1029
903ecd0b 1030 ctx_obj->dirty = true;
e93c28f3 1031
d1675198
AD
1032 /* Invalidate GuC TLB. */
1033 if (i915.enable_guc_submission)
1034 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a
OM
1035 }
1036
7ba717cf
TD
1037 return ret;
1038
1039unpin_ctx_obj:
1040 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec 1041reset_pin_count:
8ba319da 1042 rq->ctx->engine[ring->id].pin_count = 0;
7ba717cf 1043
dcb4c12a
OM
1044 return ret;
1045}
1046
8ba319da 1047void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1048{
8ba319da
MK
1049 struct intel_engine_cs *ring = rq->ring;
1050 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1051 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1052
1053 if (ctx_obj) {
1054 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1055 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1056 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1057 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1058 }
dcb4c12a
OM
1059 }
1060}
1061
e2be4faf 1062static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1063{
1064 int ret, i;
e2be4faf
JH
1065 struct intel_engine_cs *ring = req->ring;
1066 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1067 struct drm_device *dev = ring->dev;
1068 struct drm_i915_private *dev_priv = dev->dev_private;
1069 struct i915_workarounds *w = &dev_priv->workarounds;
1070
e6c1abb7 1071 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1072 return 0;
1073
1074 ring->gpu_caches_dirty = true;
4866d729 1075 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1076 if (ret)
1077 return ret;
1078
4d616a29 1079 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1080 if (ret)
1081 return ret;
1082
1083 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1084 for (i = 0; i < w->count; i++) {
1085 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1086 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1087 }
1088 intel_logical_ring_emit(ringbuf, MI_NOOP);
1089
1090 intel_logical_ring_advance(ringbuf);
1091
1092 ring->gpu_caches_dirty = true;
4866d729 1093 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1094 if (ret)
1095 return ret;
1096
1097 return 0;
1098}
1099
83b8a982 1100#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1101 do { \
83b8a982
AS
1102 int __index = (index)++; \
1103 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1104 return -ENOSPC; \
1105 } \
83b8a982 1106 batch[__index] = (cmd); \
17ee950d
AS
1107 } while (0)
1108
9e000847
AS
1109
1110/*
1111 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1112 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1113 * but there is a slight complication as this is applied in WA batch where the
1114 * values are only initialized once so we cannot take register value at the
1115 * beginning and reuse it further; hence we save its value to memory, upload a
1116 * constant value with bit21 set and then we restore it back with the saved value.
1117 * To simplify the WA, a constant value is formed by using the default value
1118 * of this register. This shouldn't be a problem because we are only modifying
1119 * it for a short period and this batch in non-premptible. We can ofcourse
1120 * use additional instructions that read the actual value of the register
1121 * at that time and set our bit of interest but it makes the WA complicated.
1122 *
1123 * This WA is also required for Gen9 so extracting as a function avoids
1124 * code duplication.
1125 */
1126static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1127 uint32_t *const batch,
1128 uint32_t index)
1129{
1130 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1131
a4106a78
AS
1132 /*
1133 * WaDisableLSQCROPERFforOCL:skl
1134 * This WA is implemented in skl_init_clock_gating() but since
1135 * this batch updates GEN8_L3SQCREG4 with default value we need to
1136 * set this bit here to retain the WA during flush.
1137 */
1138 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1139 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1140
f1afe24f 1141 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982
AS
1142 MI_SRM_LRM_GLOBAL_GTT));
1143 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1144 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1145 wa_ctx_emit(batch, index, 0);
1146
1147 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1148 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1149 wa_ctx_emit(batch, index, l3sqc4_flush);
1150
1151 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1152 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1153 PIPE_CONTROL_DC_FLUSH_ENABLE));
1154 wa_ctx_emit(batch, index, 0);
1155 wa_ctx_emit(batch, index, 0);
1156 wa_ctx_emit(batch, index, 0);
1157 wa_ctx_emit(batch, index, 0);
1158
f1afe24f 1159 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982
AS
1160 MI_SRM_LRM_GLOBAL_GTT));
1161 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1162 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1163 wa_ctx_emit(batch, index, 0);
9e000847
AS
1164
1165 return index;
1166}
1167
17ee950d
AS
1168static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1169 uint32_t offset,
1170 uint32_t start_alignment)
1171{
1172 return wa_ctx->offset = ALIGN(offset, start_alignment);
1173}
1174
1175static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1176 uint32_t offset,
1177 uint32_t size_alignment)
1178{
1179 wa_ctx->size = offset - wa_ctx->offset;
1180
1181 WARN(wa_ctx->size % size_alignment,
1182 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1183 wa_ctx->size, size_alignment);
1184 return 0;
1185}
1186
1187/**
1188 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1189 *
1190 * @ring: only applicable for RCS
1191 * @wa_ctx: structure representing wa_ctx
1192 * offset: specifies start of the batch, should be cache-aligned. This is updated
1193 * with the offset value received as input.
1194 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1195 * @batch: page in which WA are loaded
1196 * @offset: This field specifies the start of the batch, it should be
1197 * cache-aligned otherwise it is adjusted accordingly.
1198 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1199 * initialized at the beginning and shared across all contexts but this field
1200 * helps us to have multiple batches at different offsets and select them based
1201 * on a criteria. At the moment this batch always start at the beginning of the page
1202 * and at this point we don't have multiple wa_ctx batch buffers.
1203 *
1204 * The number of WA applied are not known at the beginning; we use this field
1205 * to return the no of DWORDS written.
4d78c8dc 1206 *
17ee950d
AS
1207 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1208 * so it adds NOOPs as padding to make it cacheline aligned.
1209 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1210 * makes a complete batch buffer.
1211 *
1212 * Return: non-zero if we exceed the PAGE_SIZE limit.
1213 */
1214
1215static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1216 struct i915_wa_ctx_bb *wa_ctx,
1217 uint32_t *const batch,
1218 uint32_t *offset)
1219{
0160f055 1220 uint32_t scratch_addr;
17ee950d
AS
1221 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1222
7ad00d1a 1223 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1224 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1225
c82435bb
AS
1226 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1227 if (IS_BROADWELL(ring->dev)) {
9e000847
AS
1228 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1229 if (index < 0)
1230 return index;
c82435bb
AS
1231 }
1232
0160f055
AS
1233 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1234 /* Actual scratch location is at 128 bytes offset */
1235 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1236
83b8a982
AS
1237 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1238 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1239 PIPE_CONTROL_GLOBAL_GTT_IVB |
1240 PIPE_CONTROL_CS_STALL |
1241 PIPE_CONTROL_QW_WRITE));
1242 wa_ctx_emit(batch, index, scratch_addr);
1243 wa_ctx_emit(batch, index, 0);
1244 wa_ctx_emit(batch, index, 0);
1245 wa_ctx_emit(batch, index, 0);
0160f055 1246
17ee950d
AS
1247 /* Pad to end of cacheline */
1248 while (index % CACHELINE_DWORDS)
83b8a982 1249 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1250
1251 /*
1252 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1253 * execution depends on the length specified in terms of cache lines
1254 * in the register CTX_RCS_INDIRECT_CTX
1255 */
1256
1257 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1258}
1259
1260/**
1261 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1262 *
1263 * @ring: only applicable for RCS
1264 * @wa_ctx: structure representing wa_ctx
1265 * offset: specifies start of the batch, should be cache-aligned.
1266 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1267 * @batch: page in which WA are loaded
17ee950d
AS
1268 * @offset: This field specifies the start of this batch.
1269 * This batch is started immediately after indirect_ctx batch. Since we ensure
1270 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1271 *
1272 * The number of DWORDS written are returned using this field.
1273 *
1274 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1275 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1276 */
1277static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1278 struct i915_wa_ctx_bb *wa_ctx,
1279 uint32_t *const batch,
1280 uint32_t *offset)
1281{
1282 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1283
7ad00d1a 1284 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1285 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1286
83b8a982 1287 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1288
1289 return wa_ctx_end(wa_ctx, *offset = index, 1);
1290}
1291
0504cffc
AS
1292static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1293 struct i915_wa_ctx_bb *wa_ctx,
1294 uint32_t *const batch,
1295 uint32_t *offset)
1296{
a4106a78 1297 int ret;
0907c8f7 1298 struct drm_device *dev = ring->dev;
0504cffc
AS
1299 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1300
0907c8f7
AS
1301 /* WaDisableCtxRestoreArbitration:skl,bxt */
1302 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1303 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1304 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1305
a4106a78
AS
1306 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1307 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1308 if (ret < 0)
1309 return ret;
1310 index = ret;
1311
0504cffc
AS
1312 /* Pad to end of cacheline */
1313 while (index % CACHELINE_DWORDS)
1314 wa_ctx_emit(batch, index, MI_NOOP);
1315
1316 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1317}
1318
1319static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1320 struct i915_wa_ctx_bb *wa_ctx,
1321 uint32_t *const batch,
1322 uint32_t *offset)
1323{
0907c8f7 1324 struct drm_device *dev = ring->dev;
0504cffc
AS
1325 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1326
9b01435d
AS
1327 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1328 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1329 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1330 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1331 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1332 wa_ctx_emit(batch, index,
1333 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1334 wa_ctx_emit(batch, index, MI_NOOP);
1335 }
1336
0907c8f7
AS
1337 /* WaDisableCtxRestoreArbitration:skl,bxt */
1338 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1339 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1340 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1341
0504cffc
AS
1342 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1343
1344 return wa_ctx_end(wa_ctx, *offset = index, 1);
1345}
1346
17ee950d
AS
1347static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1348{
1349 int ret;
1350
1351 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1352 if (!ring->wa_ctx.obj) {
1353 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1354 return -ENOMEM;
1355 }
1356
1357 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1358 if (ret) {
1359 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1360 ret);
1361 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1362 return ret;
1363 }
1364
1365 return 0;
1366}
1367
1368static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1369{
1370 if (ring->wa_ctx.obj) {
1371 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1372 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1373 ring->wa_ctx.obj = NULL;
1374 }
1375}
1376
1377static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1378{
1379 int ret;
1380 uint32_t *batch;
1381 uint32_t offset;
1382 struct page *page;
1383 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1384
1385 WARN_ON(ring->id != RCS);
1386
5e60d790 1387 /* update this when WA for higher Gen are added */
0504cffc
AS
1388 if (INTEL_INFO(ring->dev)->gen > 9) {
1389 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1390 INTEL_INFO(ring->dev)->gen);
5e60d790 1391 return 0;
0504cffc 1392 }
5e60d790 1393
c4db7599
AS
1394 /* some WA perform writes to scratch page, ensure it is valid */
1395 if (ring->scratch.obj == NULL) {
1396 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1397 return -EINVAL;
1398 }
1399
17ee950d
AS
1400 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1401 if (ret) {
1402 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1403 return ret;
1404 }
1405
1406 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1407 batch = kmap_atomic(page);
1408 offset = 0;
1409
1410 if (INTEL_INFO(ring->dev)->gen == 8) {
1411 ret = gen8_init_indirectctx_bb(ring,
1412 &wa_ctx->indirect_ctx,
1413 batch,
1414 &offset);
1415 if (ret)
1416 goto out;
1417
1418 ret = gen8_init_perctx_bb(ring,
1419 &wa_ctx->per_ctx,
1420 batch,
1421 &offset);
1422 if (ret)
1423 goto out;
0504cffc
AS
1424 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1425 ret = gen9_init_indirectctx_bb(ring,
1426 &wa_ctx->indirect_ctx,
1427 batch,
1428 &offset);
1429 if (ret)
1430 goto out;
1431
1432 ret = gen9_init_perctx_bb(ring,
1433 &wa_ctx->per_ctx,
1434 batch,
1435 &offset);
1436 if (ret)
1437 goto out;
17ee950d
AS
1438 }
1439
1440out:
1441 kunmap_atomic(batch);
1442 if (ret)
1443 lrc_destroy_wa_ctx_obj(ring);
1444
1445 return ret;
1446}
1447
9b1136d5
OM
1448static int gen8_init_common_ring(struct intel_engine_cs *ring)
1449{
1450 struct drm_device *dev = ring->dev;
1451 struct drm_i915_private *dev_priv = dev->dev_private;
1452
73d477f6
OM
1453 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1454 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1455
2e5356da
AS
1456 if (ring->status_page.obj) {
1457 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1458 (u32)ring->status_page.gfx_addr);
1459 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1460 }
1461
9b1136d5
OM
1462 I915_WRITE(RING_MODE_GEN7(ring),
1463 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1464 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1465 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1466 ring->next_context_status_buffer = 0;
9b1136d5
OM
1467 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1468
1469 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1470
1471 return 0;
1472}
1473
1474static int gen8_init_render_ring(struct intel_engine_cs *ring)
1475{
1476 struct drm_device *dev = ring->dev;
1477 struct drm_i915_private *dev_priv = dev->dev_private;
1478 int ret;
1479
1480 ret = gen8_init_common_ring(ring);
1481 if (ret)
1482 return ret;
1483
1484 /* We need to disable the AsyncFlip performance optimisations in order
1485 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1486 * programmed to '1' on all products.
1487 *
1488 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1489 */
1490 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1491
9b1136d5
OM
1492 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1493
771b9a53 1494 return init_workarounds_ring(ring);
9b1136d5
OM
1495}
1496
82ef822e
DL
1497static int gen9_init_render_ring(struct intel_engine_cs *ring)
1498{
1499 int ret;
1500
1501 ret = gen8_init_common_ring(ring);
1502 if (ret)
1503 return ret;
1504
1505 return init_workarounds_ring(ring);
1506}
1507
7a01a0a2
MT
1508static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1509{
1510 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1511 struct intel_engine_cs *ring = req->ring;
1512 struct intel_ringbuffer *ringbuf = req->ringbuf;
1513 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1514 int i, ret;
1515
1516 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1517 if (ret)
1518 return ret;
1519
1520 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1521 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1522 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1523
1524 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1525 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1526 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1527 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1528 }
1529
1530 intel_logical_ring_emit(ringbuf, MI_NOOP);
1531 intel_logical_ring_advance(ringbuf);
1532
1533 return 0;
1534}
1535
be795fc1 1536static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1537 u64 offset, unsigned dispatch_flags)
15648585 1538{
be795fc1 1539 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1540 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1541 int ret;
1542
7a01a0a2
MT
1543 /* Don't rely in hw updating PDPs, specially in lite-restore.
1544 * Ideally, we should set Force PD Restore in ctx descriptor,
1545 * but we can't. Force Restore would be a second option, but
1546 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1547 * not idle). PML4 is allocated during ppgtt init so this is
1548 * not needed in 48-bit.*/
7a01a0a2
MT
1549 if (req->ctx->ppgtt &&
1550 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1551 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1552 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1553 ret = intel_logical_ring_emit_pdps(req);
1554 if (ret)
1555 return ret;
1556 }
7a01a0a2
MT
1557
1558 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1559 }
1560
4d616a29 1561 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1562 if (ret)
1563 return ret;
1564
1565 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1566 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1567 (ppgtt<<8) |
1568 (dispatch_flags & I915_DISPATCH_RS ?
1569 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1570 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1571 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1572 intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 intel_logical_ring_advance(ringbuf);
1574
1575 return 0;
1576}
1577
73d477f6
OM
1578static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1579{
1580 struct drm_device *dev = ring->dev;
1581 struct drm_i915_private *dev_priv = dev->dev_private;
1582 unsigned long flags;
1583
7cd512f1 1584 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1585 return false;
1586
1587 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 if (ring->irq_refcount++ == 0) {
1589 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1590 POSTING_READ(RING_IMR(ring->mmio_base));
1591 }
1592 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1593
1594 return true;
1595}
1596
1597static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1598{
1599 struct drm_device *dev = ring->dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604 if (--ring->irq_refcount == 0) {
1605 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1606 POSTING_READ(RING_IMR(ring->mmio_base));
1607 }
1608 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609}
1610
7deb4d39 1611static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1612 u32 invalidate_domains,
1613 u32 unused)
1614{
7deb4d39 1615 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1616 struct intel_engine_cs *ring = ringbuf->ring;
1617 struct drm_device *dev = ring->dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 uint32_t cmd;
1620 int ret;
1621
4d616a29 1622 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1623 if (ret)
1624 return ret;
1625
1626 cmd = MI_FLUSH_DW + 1;
1627
f0a1fb10
CW
1628 /* We always require a command barrier so that subsequent
1629 * commands, such as breadcrumb interrupts, are strictly ordered
1630 * wrt the contents of the write cache being flushed to memory
1631 * (and thus being coherent from the CPU).
1632 */
1633 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1634
1635 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1636 cmd |= MI_INVALIDATE_TLB;
1637 if (ring == &dev_priv->ring[VCS])
1638 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1639 }
1640
1641 intel_logical_ring_emit(ringbuf, cmd);
1642 intel_logical_ring_emit(ringbuf,
1643 I915_GEM_HWS_SCRATCH_ADDR |
1644 MI_FLUSH_DW_USE_GTT);
1645 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1646 intel_logical_ring_emit(ringbuf, 0); /* value */
1647 intel_logical_ring_advance(ringbuf);
1648
1649 return 0;
1650}
1651
7deb4d39 1652static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1653 u32 invalidate_domains,
1654 u32 flush_domains)
1655{
7deb4d39 1656 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1657 struct intel_engine_cs *ring = ringbuf->ring;
1658 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1659 bool vf_flush_wa;
4712274c
OM
1660 u32 flags = 0;
1661 int ret;
1662
1663 flags |= PIPE_CONTROL_CS_STALL;
1664
1665 if (flush_domains) {
1666 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1667 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1668 }
1669
1670 if (invalidate_domains) {
1671 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1672 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1673 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1674 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1675 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1676 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1677 flags |= PIPE_CONTROL_QW_WRITE;
1678 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1679 }
1680
9647ff36
ID
1681 /*
1682 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1683 * control.
1684 */
1685 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1686 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1687
4d616a29 1688 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1689 if (ret)
1690 return ret;
1691
9647ff36
ID
1692 if (vf_flush_wa) {
1693 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1694 intel_logical_ring_emit(ringbuf, 0);
1695 intel_logical_ring_emit(ringbuf, 0);
1696 intel_logical_ring_emit(ringbuf, 0);
1697 intel_logical_ring_emit(ringbuf, 0);
1698 intel_logical_ring_emit(ringbuf, 0);
1699 }
1700
4712274c
OM
1701 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1702 intel_logical_ring_emit(ringbuf, flags);
1703 intel_logical_ring_emit(ringbuf, scratch_addr);
1704 intel_logical_ring_emit(ringbuf, 0);
1705 intel_logical_ring_emit(ringbuf, 0);
1706 intel_logical_ring_emit(ringbuf, 0);
1707 intel_logical_ring_advance(ringbuf);
1708
1709 return 0;
1710}
1711
e94e37ad
OM
1712static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1713{
1714 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1715}
1716
1717static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1718{
1719 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1720}
1721
319404df
ID
1722static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1723{
1724
1725 /*
1726 * On BXT A steppings there is a HW coherency issue whereby the
1727 * MI_STORE_DATA_IMM storing the completed request's seqno
1728 * occasionally doesn't invalidate the CPU cache. Work around this by
1729 * clflushing the corresponding cacheline whenever the caller wants
1730 * the coherency to be guaranteed. Note that this cacheline is known
1731 * to be clean at this point, since we only write it in
1732 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1733 * this clflush in practice becomes an invalidate operation.
1734 */
1735
1736 if (!lazy_coherency)
1737 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1738
1739 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1740}
1741
1742static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1743{
1744 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1745
1746 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1747 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1748}
1749
c4e76638 1750static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1751{
c4e76638 1752 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1753 struct intel_engine_cs *ring = ringbuf->ring;
1754 u32 cmd;
1755 int ret;
1756
53292cdb
MT
1757 /*
1758 * Reserve space for 2 NOOPs at the end of each request to be
1759 * used as a workaround for not being allowed to do lite
1760 * restore with HEAD==TAIL (WaIdleLiteRestore).
1761 */
4d616a29 1762 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1763 if (ret)
1764 return ret;
1765
8edfbb8b 1766 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1767 cmd |= MI_GLOBAL_GTT;
1768
1769 intel_logical_ring_emit(ringbuf, cmd);
1770 intel_logical_ring_emit(ringbuf,
1771 (ring->status_page.gfx_addr +
1772 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1773 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1774 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1775 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1776 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1777 intel_logical_ring_advance_and_submit(request);
4da46e1e 1778
53292cdb
MT
1779 /*
1780 * Here we add two extra NOOPs as padding to avoid
1781 * lite restore of a context with HEAD==TAIL.
1782 */
1783 intel_logical_ring_emit(ringbuf, MI_NOOP);
1784 intel_logical_ring_emit(ringbuf, MI_NOOP);
1785 intel_logical_ring_advance(ringbuf);
1786
4da46e1e
OM
1787 return 0;
1788}
1789
be01363f 1790static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1791{
cef437ad 1792 struct render_state so;
cef437ad
DL
1793 int ret;
1794
be01363f 1795 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1796 if (ret)
1797 return ret;
1798
1799 if (so.rodata == NULL)
1800 return 0;
1801
be795fc1 1802 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1803 I915_DISPATCH_SECURE);
cef437ad
DL
1804 if (ret)
1805 goto out;
1806
84e81020
AS
1807 ret = req->ring->emit_bb_start(req,
1808 (so.ggtt_offset + so.aux_batch_offset),
1809 I915_DISPATCH_SECURE);
1810 if (ret)
1811 goto out;
1812
b2af0376 1813 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1814
cef437ad
DL
1815out:
1816 i915_gem_render_state_fini(&so);
1817 return ret;
1818}
1819
8753181e 1820static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1821{
1822 int ret;
1823
e2be4faf 1824 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1825 if (ret)
1826 return ret;
1827
3bbaba0c
PA
1828 ret = intel_rcs_context_init_mocs(req);
1829 /*
1830 * Failing to program the MOCS is non-fatal.The system will not
1831 * run at peak performance. So generate an error and carry on.
1832 */
1833 if (ret)
1834 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1835
be01363f 1836 return intel_lr_context_render_state_init(req);
e7778be1
TD
1837}
1838
73e4d07f
OM
1839/**
1840 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1841 *
1842 * @ring: Engine Command Streamer.
1843 *
1844 */
454afebd
OM
1845void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1846{
6402c330 1847 struct drm_i915_private *dev_priv;
9832b9da 1848
48d82387
OM
1849 if (!intel_ring_initialized(ring))
1850 return;
1851
6402c330
JH
1852 dev_priv = ring->dev->dev_private;
1853
9832b9da
OM
1854 intel_logical_ring_stop(ring);
1855 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1856
1857 if (ring->cleanup)
1858 ring->cleanup(ring);
1859
1860 i915_cmd_parser_fini_ring(ring);
06fbca71 1861 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1862
1863 if (ring->status_page.obj) {
1864 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1865 ring->status_page.obj = NULL;
1866 }
17ee950d
AS
1867
1868 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1869}
1870
1871static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1872{
48d82387 1873 int ret;
48d82387
OM
1874
1875 /* Intentionally left blank. */
1876 ring->buffer = NULL;
1877
1878 ring->dev = dev;
1879 INIT_LIST_HEAD(&ring->active_list);
1880 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1881 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1882 init_waitqueue_head(&ring->irq_queue);
1883
acdd884a 1884 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1885 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1886 spin_lock_init(&ring->execlist_lock);
1887
48d82387
OM
1888 ret = i915_cmd_parser_init_ring(ring);
1889 if (ret)
1890 return ret;
1891
564ddb2f
OM
1892 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1893
1894 return ret;
454afebd
OM
1895}
1896
1897static int logical_render_ring_init(struct drm_device *dev)
1898{
1899 struct drm_i915_private *dev_priv = dev->dev_private;
1900 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1901 int ret;
454afebd
OM
1902
1903 ring->name = "render ring";
1904 ring->id = RCS;
1905 ring->mmio_base = RENDER_RING_BASE;
1906 ring->irq_enable_mask =
1907 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1908 ring->irq_keep_mask =
1909 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1910 if (HAS_L3_DPF(dev))
1911 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1912
82ef822e
DL
1913 if (INTEL_INFO(dev)->gen >= 9)
1914 ring->init_hw = gen9_init_render_ring;
1915 else
1916 ring->init_hw = gen8_init_render_ring;
e7778be1 1917 ring->init_context = gen8_init_rcs_context;
9b1136d5 1918 ring->cleanup = intel_fini_pipe_control;
319404df
ID
1919 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1920 ring->get_seqno = bxt_a_get_seqno;
1921 ring->set_seqno = bxt_a_set_seqno;
1922 } else {
1923 ring->get_seqno = gen8_get_seqno;
1924 ring->set_seqno = gen8_set_seqno;
1925 }
4da46e1e 1926 ring->emit_request = gen8_emit_request;
4712274c 1927 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1928 ring->irq_get = gen8_logical_ring_get_irq;
1929 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1930 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1931
99be1dfe 1932 ring->dev = dev;
c4db7599
AS
1933
1934 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1935 if (ret)
1936 return ret;
1937
17ee950d
AS
1938 ret = intel_init_workaround_bb(ring);
1939 if (ret) {
1940 /*
1941 * We continue even if we fail to initialize WA batch
1942 * because we only expect rare glitches but nothing
1943 * critical to prevent us from using GPU
1944 */
1945 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1946 ret);
1947 }
1948
c4db7599
AS
1949 ret = logical_ring_init(dev, ring);
1950 if (ret) {
17ee950d 1951 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1952 }
17ee950d
AS
1953
1954 return ret;
454afebd
OM
1955}
1956
1957static int logical_bsd_ring_init(struct drm_device *dev)
1958{
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1961
1962 ring->name = "bsd ring";
1963 ring->id = VCS;
1964 ring->mmio_base = GEN6_BSD_RING_BASE;
1965 ring->irq_enable_mask =
1966 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1967 ring->irq_keep_mask =
1968 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1969
ecfe00d8 1970 ring->init_hw = gen8_init_common_ring;
319404df
ID
1971 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1972 ring->get_seqno = bxt_a_get_seqno;
1973 ring->set_seqno = bxt_a_set_seqno;
1974 } else {
1975 ring->get_seqno = gen8_get_seqno;
1976 ring->set_seqno = gen8_set_seqno;
1977 }
4da46e1e 1978 ring->emit_request = gen8_emit_request;
4712274c 1979 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1980 ring->irq_get = gen8_logical_ring_get_irq;
1981 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1982 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1983
454afebd
OM
1984 return logical_ring_init(dev, ring);
1985}
1986
1987static int logical_bsd2_ring_init(struct drm_device *dev)
1988{
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1991
1992 ring->name = "bds2 ring";
1993 ring->id = VCS2;
1994 ring->mmio_base = GEN8_BSD2_RING_BASE;
1995 ring->irq_enable_mask =
1996 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1997 ring->irq_keep_mask =
1998 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1999
ecfe00d8 2000 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
2001 ring->get_seqno = gen8_get_seqno;
2002 ring->set_seqno = gen8_set_seqno;
4da46e1e 2003 ring->emit_request = gen8_emit_request;
4712274c 2004 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2005 ring->irq_get = gen8_logical_ring_get_irq;
2006 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2007 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2008
454afebd
OM
2009 return logical_ring_init(dev, ring);
2010}
2011
2012static int logical_blt_ring_init(struct drm_device *dev)
2013{
2014 struct drm_i915_private *dev_priv = dev->dev_private;
2015 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2016
2017 ring->name = "blitter ring";
2018 ring->id = BCS;
2019 ring->mmio_base = BLT_RING_BASE;
2020 ring->irq_enable_mask =
2021 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2022 ring->irq_keep_mask =
2023 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2024
ecfe00d8 2025 ring->init_hw = gen8_init_common_ring;
319404df
ID
2026 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2027 ring->get_seqno = bxt_a_get_seqno;
2028 ring->set_seqno = bxt_a_set_seqno;
2029 } else {
2030 ring->get_seqno = gen8_get_seqno;
2031 ring->set_seqno = gen8_set_seqno;
2032 }
4da46e1e 2033 ring->emit_request = gen8_emit_request;
4712274c 2034 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2035 ring->irq_get = gen8_logical_ring_get_irq;
2036 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2037 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2038
454afebd
OM
2039 return logical_ring_init(dev, ring);
2040}
2041
2042static int logical_vebox_ring_init(struct drm_device *dev)
2043{
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2046
2047 ring->name = "video enhancement ring";
2048 ring->id = VECS;
2049 ring->mmio_base = VEBOX_RING_BASE;
2050 ring->irq_enable_mask =
2051 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2052 ring->irq_keep_mask =
2053 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2054
ecfe00d8 2055 ring->init_hw = gen8_init_common_ring;
319404df
ID
2056 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2057 ring->get_seqno = bxt_a_get_seqno;
2058 ring->set_seqno = bxt_a_set_seqno;
2059 } else {
2060 ring->get_seqno = gen8_get_seqno;
2061 ring->set_seqno = gen8_set_seqno;
2062 }
4da46e1e 2063 ring->emit_request = gen8_emit_request;
4712274c 2064 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2065 ring->irq_get = gen8_logical_ring_get_irq;
2066 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2067 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2068
454afebd
OM
2069 return logical_ring_init(dev, ring);
2070}
2071
73e4d07f
OM
2072/**
2073 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2074 * @dev: DRM device.
2075 *
2076 * This function inits the engines for an Execlists submission style (the equivalent in the
2077 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2078 * those engines that are present in the hardware.
2079 *
2080 * Return: non-zero if the initialization failed.
2081 */
454afebd
OM
2082int intel_logical_rings_init(struct drm_device *dev)
2083{
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 int ret;
2086
2087 ret = logical_render_ring_init(dev);
2088 if (ret)
2089 return ret;
2090
2091 if (HAS_BSD(dev)) {
2092 ret = logical_bsd_ring_init(dev);
2093 if (ret)
2094 goto cleanup_render_ring;
2095 }
2096
2097 if (HAS_BLT(dev)) {
2098 ret = logical_blt_ring_init(dev);
2099 if (ret)
2100 goto cleanup_bsd_ring;
2101 }
2102
2103 if (HAS_VEBOX(dev)) {
2104 ret = logical_vebox_ring_init(dev);
2105 if (ret)
2106 goto cleanup_blt_ring;
2107 }
2108
2109 if (HAS_BSD2(dev)) {
2110 ret = logical_bsd2_ring_init(dev);
2111 if (ret)
2112 goto cleanup_vebox_ring;
2113 }
2114
2115 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2116 if (ret)
2117 goto cleanup_bsd2_ring;
2118
2119 return 0;
2120
2121cleanup_bsd2_ring:
2122 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2123cleanup_vebox_ring:
2124 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2125cleanup_blt_ring:
2126 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2127cleanup_bsd_ring:
2128 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2129cleanup_render_ring:
2130 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2131
2132 return ret;
2133}
2134
0cea6502
JM
2135static u32
2136make_rpcs(struct drm_device *dev)
2137{
2138 u32 rpcs = 0;
2139
2140 /*
2141 * No explicit RPCS request is needed to ensure full
2142 * slice/subslice/EU enablement prior to Gen9.
2143 */
2144 if (INTEL_INFO(dev)->gen < 9)
2145 return 0;
2146
2147 /*
2148 * Starting in Gen9, render power gating can leave
2149 * slice/subslice/EU in a partially enabled state. We
2150 * must make an explicit request through RPCS for full
2151 * enablement.
2152 */
2153 if (INTEL_INFO(dev)->has_slice_pg) {
2154 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2155 rpcs |= INTEL_INFO(dev)->slice_total <<
2156 GEN8_RPCS_S_CNT_SHIFT;
2157 rpcs |= GEN8_RPCS_ENABLE;
2158 }
2159
2160 if (INTEL_INFO(dev)->has_subslice_pg) {
2161 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2162 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2163 GEN8_RPCS_SS_CNT_SHIFT;
2164 rpcs |= GEN8_RPCS_ENABLE;
2165 }
2166
2167 if (INTEL_INFO(dev)->has_eu_pg) {
2168 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2169 GEN8_RPCS_EU_MIN_SHIFT;
2170 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2171 GEN8_RPCS_EU_MAX_SHIFT;
2172 rpcs |= GEN8_RPCS_ENABLE;
2173 }
2174
2175 return rpcs;
2176}
2177
8670d6f9
OM
2178static int
2179populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2180 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2181{
2d965536
TD
2182 struct drm_device *dev = ring->dev;
2183 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2184 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2185 struct page *page;
2186 uint32_t *reg_state;
2187 int ret;
2188
2d965536
TD
2189 if (!ppgtt)
2190 ppgtt = dev_priv->mm.aliasing_ppgtt;
2191
8670d6f9
OM
2192 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2193 if (ret) {
2194 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2195 return ret;
2196 }
2197
2198 ret = i915_gem_object_get_pages(ctx_obj);
2199 if (ret) {
2200 DRM_DEBUG_DRIVER("Could not get object pages\n");
2201 return ret;
2202 }
2203
2204 i915_gem_object_pin_pages(ctx_obj);
2205
2206 /* The second page of the context object contains some fields which must
2207 * be set up prior to the first execution. */
d1675198 2208 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2209 reg_state = kmap_atomic(page);
2210
2211 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2212 * commands followed by (reg, value) pairs. The values we are setting here are
2213 * only for the first context restore: on a subsequent save, the GPU will
2214 * recreate this batchbuffer with new values (including all the missing
2215 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2216 if (ring->id == RCS)
2217 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2218 else
2219 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2220 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2221 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2222 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5 2223 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
6922528a
AJ
2224 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2225 CTX_CTRL_RS_CTX_ENABLE);
8670d6f9
OM
2226 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2227 reg_state[CTX_RING_HEAD+1] = 0;
2228 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2229 reg_state[CTX_RING_TAIL+1] = 0;
2230 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
2231 /* Ring buffer start address is not known until the buffer is pinned.
2232 * It is written to the context image in execlists_update_context()
2233 */
8670d6f9
OM
2234 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2235 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2236 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2237 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2238 reg_state[CTX_BB_HEAD_U+1] = 0;
2239 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2240 reg_state[CTX_BB_HEAD_L+1] = 0;
2241 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2242 reg_state[CTX_BB_STATE+1] = (1<<5);
2243 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2244 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2245 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2246 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2247 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2248 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2249 if (ring->id == RCS) {
8670d6f9
OM
2250 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2251 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2252 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2253 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2254 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2255 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2256 if (ring->wa_ctx.obj) {
2257 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2258 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2259
2260 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2261 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2262 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2263
2264 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2265 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2266
2267 reg_state[CTX_BB_PER_CTX_PTR+1] =
2268 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2269 0x01;
2270 }
8670d6f9
OM
2271 }
2272 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2273 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2274 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2275 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2276 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2277 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2278 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2279 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2280 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2281 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2282 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2283 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d 2284
2dba3239
MT
2285 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2286 /* 64b PPGTT (48bit canonical)
2287 * PDP0_DESCRIPTOR contains the base address to PML4 and
2288 * other PDP Descriptors are ignored.
2289 */
2290 ASSIGN_CTX_PML4(ppgtt, reg_state);
2291 } else {
2292 /* 32b PPGTT
2293 * PDP*_DESCRIPTOR contains the base address of space supported.
2294 * With dynamic page allocation, PDPs may not be allocated at
2295 * this point. Point the unallocated PDPs to the scratch page
2296 */
2297 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2298 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2299 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2300 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2301 }
2302
8670d6f9
OM
2303 if (ring->id == RCS) {
2304 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2305 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2306 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2307 }
2308
2309 kunmap_atomic(reg_state);
2310
2311 ctx_obj->dirty = 1;
2312 set_page_dirty(page);
2313 i915_gem_object_unpin_pages(ctx_obj);
2314
2315 return 0;
2316}
2317
73e4d07f
OM
2318/**
2319 * intel_lr_context_free() - free the LRC specific bits of a context
2320 * @ctx: the LR context to free.
2321 *
2322 * The real context freeing is done in i915_gem_context_free: this only
2323 * takes care of the bits that are LRC related: the per-engine backing
2324 * objects and the logical ringbuffer.
2325 */
ede7d42b
OM
2326void intel_lr_context_free(struct intel_context *ctx)
2327{
8c857917
OM
2328 int i;
2329
2330 for (i = 0; i < I915_NUM_RINGS; i++) {
2331 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2332
8c857917 2333 if (ctx_obj) {
dcb4c12a
OM
2334 struct intel_ringbuffer *ringbuf =
2335 ctx->engine[i].ringbuf;
2336 struct intel_engine_cs *ring = ringbuf->ring;
2337
7ba717cf
TD
2338 if (ctx == ring->default_context) {
2339 intel_unpin_ringbuffer_obj(ringbuf);
2340 i915_gem_object_ggtt_unpin(ctx_obj);
2341 }
a7cbedec 2342 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2343 intel_destroy_ringbuffer_obj(ringbuf);
2344 kfree(ringbuf);
8c857917
OM
2345 drm_gem_object_unreference(&ctx_obj->base);
2346 }
2347 }
2348}
2349
2350static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2351{
2352 int ret = 0;
2353
468c6816 2354 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2355
2356 switch (ring->id) {
2357 case RCS:
468c6816
MN
2358 if (INTEL_INFO(ring->dev)->gen >= 9)
2359 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2360 else
2361 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2362 break;
2363 case VCS:
2364 case BCS:
2365 case VECS:
2366 case VCS2:
2367 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2368 break;
2369 }
2370
2371 return ret;
ede7d42b
OM
2372}
2373
70b0ea86 2374static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2375 struct drm_i915_gem_object *default_ctx_obj)
2376{
2377 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2378 struct page *page;
1df06b75 2379
d1675198
AD
2380 /* The HWSP is part of the default context object in LRC mode. */
2381 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2382 + LRC_PPHWSP_PN * PAGE_SIZE;
2383 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2384 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2385 ring->status_page.obj = default_ctx_obj;
2386
2387 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2388 (u32)ring->status_page.gfx_addr);
2389 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2390}
2391
73e4d07f
OM
2392/**
2393 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2394 * @ctx: LR context to create.
2395 * @ring: engine to be used with the context.
2396 *
2397 * This function can be called more than once, with different engines, if we plan
2398 * to use the context with them. The context backing objects and the ringbuffers
2399 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2400 * the creation is a deferred call: it's better to make sure first that we need to use
2401 * a given ring with the context.
2402 *
32197aab 2403 * Return: non-zero on error.
73e4d07f 2404 */
ede7d42b
OM
2405int intel_lr_context_deferred_create(struct intel_context *ctx,
2406 struct intel_engine_cs *ring)
2407{
dcb4c12a 2408 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917 2409 struct drm_device *dev = ring->dev;
d1675198 2410 struct drm_i915_private *dev_priv = dev->dev_private;
8c857917
OM
2411 struct drm_i915_gem_object *ctx_obj;
2412 uint32_t context_size;
84c2377f 2413 struct intel_ringbuffer *ringbuf;
8c857917
OM
2414 int ret;
2415
ede7d42b 2416 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2417 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2418
8c857917
OM
2419 context_size = round_up(get_lr_context_size(ring), 4096);
2420
d1675198
AD
2421 /* One extra page as the sharing data between driver and GuC */
2422 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2423
149c86e7 2424 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2425 if (!ctx_obj) {
2426 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2427 return -ENOMEM;
8c857917
OM
2428 }
2429
dcb4c12a 2430 if (is_global_default_ctx) {
d1675198
AD
2431 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
2432 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
dcb4c12a
OM
2433 if (ret) {
2434 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2435 ret);
2436 drm_gem_object_unreference(&ctx_obj->base);
2437 return ret;
2438 }
d1675198
AD
2439
2440 /* Invalidate GuC TLB. */
2441 if (i915.enable_guc_submission)
2442 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
8c857917
OM
2443 }
2444
84c2377f
OM
2445 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2446 if (!ringbuf) {
2447 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2448 ring->name);
84c2377f 2449 ret = -ENOMEM;
7ba717cf 2450 goto error_unpin_ctx;
84c2377f
OM
2451 }
2452
0c7dd53b 2453 ringbuf->ring = ring;
582d67f0 2454
d1675198 2455 ringbuf->size = 4 * PAGE_SIZE;
84c2377f
OM
2456 ringbuf->effective_size = ringbuf->size;
2457 ringbuf->head = 0;
2458 ringbuf->tail = 0;
84c2377f 2459 ringbuf->last_retired_head = -1;
ebd0fd4b 2460 intel_ring_update_space(ringbuf);
84c2377f 2461
7ba717cf
TD
2462 if (ringbuf->obj == NULL) {
2463 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2464 if (ret) {
2465 DRM_DEBUG_DRIVER(
2466 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2467 ring->name, ret);
7ba717cf
TD
2468 goto error_free_rbuf;
2469 }
2470
2471 if (is_global_default_ctx) {
2472 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2473 if (ret) {
2474 DRM_ERROR(
2475 "Failed to pin and map ringbuffer %s: %d\n",
2476 ring->name, ret);
2477 goto error_destroy_rbuf;
2478 }
2479 }
2480
8670d6f9
OM
2481 }
2482
2483 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2484 if (ret) {
2485 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2486 goto error;
84c2377f
OM
2487 }
2488
2489 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2490 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2491
70b0ea86
DV
2492 if (ctx == ring->default_context)
2493 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2494 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53 2495 if (ring->init_context) {
76c39168
JH
2496 struct drm_i915_gem_request *req;
2497
2498 ret = i915_gem_request_alloc(ring, ctx, &req);
2499 if (ret)
2500 return ret;
2501
8753181e 2502 ret = ring->init_context(req);
e7778be1 2503 if (ret) {
771b9a53 2504 DRM_ERROR("ring init context: %d\n", ret);
76c39168 2505 i915_gem_request_cancel(req);
e7778be1
TD
2506 ctx->engine[ring->id].ringbuf = NULL;
2507 ctx->engine[ring->id].state = NULL;
2508 goto error;
2509 }
76c39168 2510
75289874 2511 i915_add_request_no_flush(req);
771b9a53
MT
2512 }
2513
564ddb2f
OM
2514 ctx->rcs_initialized = true;
2515 }
2516
ede7d42b 2517 return 0;
8670d6f9
OM
2518
2519error:
7ba717cf
TD
2520 if (is_global_default_ctx)
2521 intel_unpin_ringbuffer_obj(ringbuf);
2522error_destroy_rbuf:
2523 intel_destroy_ringbuffer_obj(ringbuf);
2524error_free_rbuf:
8670d6f9 2525 kfree(ringbuf);
7ba717cf 2526error_unpin_ctx:
dcb4c12a
OM
2527 if (is_global_default_ctx)
2528 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2529 drm_gem_object_unreference(&ctx_obj->base);
2530 return ret;
ede7d42b 2531}
3e5b6f05
TD
2532
2533void intel_lr_context_reset(struct drm_device *dev,
2534 struct intel_context *ctx)
2535{
2536 struct drm_i915_private *dev_priv = dev->dev_private;
2537 struct intel_engine_cs *ring;
2538 int i;
2539
2540 for_each_ring(ring, dev_priv, i) {
2541 struct drm_i915_gem_object *ctx_obj =
2542 ctx->engine[ring->id].state;
2543 struct intel_ringbuffer *ringbuf =
2544 ctx->engine[ring->id].ringbuf;
2545 uint32_t *reg_state;
2546 struct page *page;
2547
2548 if (!ctx_obj)
2549 continue;
2550
2551 if (i915_gem_object_get_pages(ctx_obj)) {
2552 WARN(1, "Failed get_pages for context obj\n");
2553 continue;
2554 }
d1675198 2555 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2556 reg_state = kmap_atomic(page);
2557
2558 reg_state[CTX_RING_HEAD+1] = 0;
2559 reg_state[CTX_RING_TAIL+1] = 0;
2560
2561 kunmap_atomic(reg_state);
2562
2563 ringbuf->head = 0;
2564 ringbuf->tail = 0;
2565 }
2566}
This page took 0.371966 seconds and 5 git commands to generate.