drm/i915: Also record time difference if vblank evasion fails, v2.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197}
198
2dba3239
MT
199#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202}
203
84b790f8
BW
204enum {
205 ADVANCED_CONTEXT = 0,
2dba3239 206 LEGACY_32B_CONTEXT,
84b790f8
BW
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209};
2dba3239
MT
210#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
84b790f8
BW
214enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219};
220#define GEN8_CTX_ID_SHIFT 32
17ee950d 221#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 222
8ba319da 223static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
7ba717cf 224
73e4d07f
OM
225/**
226 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227 * @dev: DRM device.
228 * @enable_execlists: value of i915.enable_execlists module parameter.
229 *
230 * Only certain platforms support Execlists (the prerequisites being
27401d12 231 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
232 *
233 * Return: 1 if Execlists is supported and has to be enabled.
234 */
127f1003
OM
235int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236{
bd84b1e9
DV
237 WARN_ON(i915.enable_ppgtt == -1);
238
a0bd6c31
ZL
239 /* On platforms with execlist available, vGPU will only
240 * support execlist mode, no ring buffer mode.
241 */
242 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
243 return 1;
244
70ee45e1
DL
245 if (INTEL_INFO(dev)->gen >= 9)
246 return 1;
247
127f1003
OM
248 if (enable_execlists == 0)
249 return 0;
250
14bf993e
OM
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
252 i915.use_mmio_flip >= 0)
127f1003
OM
253 return 1;
254
255 return 0;
256}
ede7d42b 257
73e4d07f
OM
258/**
259 * intel_execlists_ctx_id() - get the Execlists Context ID
260 * @ctx_obj: Logical Ring Context backing object.
261 *
262 * Do not confuse with ctx->id! Unfortunately we have a name overload
263 * here: the old context ID we pass to userspace as a handler so that
264 * they can refer to a context, and the new context ID we pass to the
265 * ELSP so that the GPU can inform us of the context status via
266 * interrupts.
267 *
268 * Return: 20-bits globally unique context ID.
269 */
84b790f8
BW
270u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
271{
d1675198
AD
272 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
273 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
274
275 /* LRCA is required to be 4K aligned so the more significant 20 bits
276 * are globally unique */
277 return lrca >> 12;
278}
279
919f1f55
DG
280uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
281 struct intel_engine_cs *ring)
84b790f8 282{
203a571b 283 struct drm_device *dev = ring->dev;
919f1f55 284 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 285 uint64_t desc;
d1675198
AD
286 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
287 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
288
289 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
290
291 desc = GEN8_CTX_VALID;
2dba3239 292 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
293 if (IS_GEN8(ctx_obj->base.dev))
294 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
295 desc |= GEN8_CTX_PRIVILEGE;
296 desc |= lrca;
297 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
298
299 /* TODO: WaDisableLiteRestore when we start using semaphore
300 * signalling between Command Streamers */
301 /* desc |= GEN8_CTX_FORCE_RESTORE; */
302
203a571b
NH
303 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
304 if (IS_GEN9(dev) &&
305 INTEL_REVID(dev) <= SKL_REVID_B0 &&
306 (ring->id == BCS || ring->id == VCS ||
307 ring->id == VECS || ring->id == VCS2))
308 desc |= GEN8_CTX_FORCE_RESTORE;
309
84b790f8
BW
310 return desc;
311}
312
cc3c4253
MK
313static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
314 struct drm_i915_gem_request *rq1)
84b790f8 315{
cc3c4253
MK
316
317 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
318 struct drm_device *dev = ring->dev;
319 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 320 uint64_t desc[2];
84b790f8 321
1cff8cc3 322 if (rq1) {
919f1f55 323 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
324 rq1->elsp_submitted++;
325 } else {
326 desc[1] = 0;
327 }
84b790f8 328
919f1f55 329 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 330 rq0->elsp_submitted++;
84b790f8 331
1cff8cc3 332 /* You must always write both descriptors in the order below. */
a6111f7b
CW
333 spin_lock(&dev_priv->uncore.lock);
334 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
335 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
336 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 337
1cff8cc3 338 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 339 /* The context is automatically loaded after the following */
1cff8cc3 340 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 341
1cff8cc3 342 /* ELSP is a wo register, use another nearby reg for posting */
a6111f7b
CW
343 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
344 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
345 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
346}
347
05d9824b 348static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 349{
05d9824b
MK
350 struct intel_engine_cs *ring = rq->ring;
351 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
352 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
353 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
354 struct page *page;
355 uint32_t *reg_state;
356
05d9824b
MK
357 BUG_ON(!ctx_obj);
358 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
359 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
360
d1675198 361 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
362 reg_state = kmap_atomic(page);
363
05d9824b
MK
364 reg_state[CTX_RING_TAIL+1] = rq->tail;
365 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 366
2dba3239
MT
367 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
368 /* True 32b PPGTT with dynamic page allocation: update PDP
369 * registers and point the unallocated PDPs to scratch page.
370 * PML4 is allocated during ppgtt init, so this is not needed
371 * in 48-bit mode.
372 */
d7b2633d
MT
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377 }
378
ae1250b9
OM
379 kunmap_atomic(reg_state);
380
381 return 0;
382}
383
d8cb8875
MK
384static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
385 struct drm_i915_gem_request *rq1)
84b790f8 386{
05d9824b 387 execlists_update_context(rq0);
d8cb8875 388
cc3c4253 389 if (rq1)
05d9824b 390 execlists_update_context(rq1);
84b790f8 391
cc3c4253 392 execlists_elsp_write(rq0, rq1);
84b790f8
BW
393}
394
acdd884a
MT
395static void execlists_context_unqueue(struct intel_engine_cs *ring)
396{
6d3d8274
NH
397 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
398 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
399
400 assert_spin_locked(&ring->execlist_lock);
acdd884a 401
779949f4
PA
402 /*
403 * If irqs are not active generate a warning as batches that finish
404 * without the irqs may get lost and a GPU Hang may occur.
405 */
406 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
407
acdd884a
MT
408 if (list_empty(&ring->execlist_queue))
409 return;
410
411 /* Try to read in pairs */
412 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
413 execlist_link) {
414 if (!req0) {
415 req0 = cursor;
6d3d8274 416 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
417 /* Same ctx: ignore first request, as second request
418 * will update tail past first request's workload */
e1fee72c 419 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 420 list_del(&req0->execlist_link);
c86ee3a9
TD
421 list_add_tail(&req0->execlist_link,
422 &ring->execlist_retired_req_list);
acdd884a
MT
423 req0 = cursor;
424 } else {
425 req1 = cursor;
426 break;
427 }
428 }
429
53292cdb
MT
430 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
431 /*
432 * WaIdleLiteRestore: make sure we never cause a lite
433 * restore with HEAD==TAIL
434 */
d63f820f 435 if (req0->elsp_submitted) {
53292cdb
MT
436 /*
437 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
438 * as we resubmit the request. See gen8_emit_request()
439 * for where we prepare the padding after the end of the
440 * request.
441 */
442 struct intel_ringbuffer *ringbuf;
443
444 ringbuf = req0->ctx->engine[ring->id].ringbuf;
445 req0->tail += 8;
446 req0->tail &= ringbuf->size - 1;
447 }
448 }
449
e1fee72c
OM
450 WARN_ON(req1 && req1->elsp_submitted);
451
d8cb8875 452 execlists_submit_requests(req0, req1);
acdd884a
MT
453}
454
e981e7b1
TD
455static bool execlists_check_remove_request(struct intel_engine_cs *ring,
456 u32 request_id)
457{
6d3d8274 458 struct drm_i915_gem_request *head_req;
e981e7b1
TD
459
460 assert_spin_locked(&ring->execlist_lock);
461
462 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 463 struct drm_i915_gem_request,
e981e7b1
TD
464 execlist_link);
465
466 if (head_req != NULL) {
467 struct drm_i915_gem_object *ctx_obj =
6d3d8274 468 head_req->ctx->engine[ring->id].state;
e981e7b1 469 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
470 WARN(head_req->elsp_submitted == 0,
471 "Never submitted head request\n");
472
473 if (--head_req->elsp_submitted <= 0) {
474 list_del(&head_req->execlist_link);
c86ee3a9
TD
475 list_add_tail(&head_req->execlist_link,
476 &ring->execlist_retired_req_list);
e1fee72c
OM
477 return true;
478 }
e981e7b1
TD
479 }
480 }
481
482 return false;
483}
484
73e4d07f 485/**
3f7531c3 486 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
487 * @ring: Engine Command Streamer to handle.
488 *
489 * Check the unread Context Status Buffers and manage the submission of new
490 * contexts to the ELSP accordingly.
491 */
3f7531c3 492void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
493{
494 struct drm_i915_private *dev_priv = ring->dev->dev_private;
495 u32 status_pointer;
496 u8 read_pointer;
497 u8 write_pointer;
498 u32 status;
499 u32 status_id;
500 u32 submit_contexts = 0;
501
502 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
503
504 read_pointer = ring->next_context_status_buffer;
505 write_pointer = status_pointer & 0x07;
506 if (read_pointer > write_pointer)
507 write_pointer += 6;
508
509 spin_lock(&ring->execlist_lock);
510
511 while (read_pointer < write_pointer) {
512 read_pointer++;
513 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
514 (read_pointer % 6) * 8);
515 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8 + 4);
517
031a8936
MK
518 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
519 continue;
520
e1fee72c
OM
521 if (status & GEN8_CTX_STATUS_PREEMPTED) {
522 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
523 if (execlists_check_remove_request(ring, status_id))
524 WARN(1, "Lite Restored request removed from queue\n");
525 } else
526 WARN(1, "Preemption without Lite Restore\n");
527 }
528
529 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
530 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
531 if (execlists_check_remove_request(ring, status_id))
532 submit_contexts++;
533 }
534 }
535
536 if (submit_contexts != 0)
537 execlists_context_unqueue(ring);
538
539 spin_unlock(&ring->execlist_lock);
540
541 WARN(submit_contexts > 2, "More than two context complete events?\n");
542 ring->next_context_status_buffer = write_pointer % 6;
543
544 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
cc53699b 545 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
e981e7b1
TD
546}
547
ae70797d 548static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 549{
ae70797d 550 struct intel_engine_cs *ring = request->ring;
6d3d8274 551 struct drm_i915_gem_request *cursor;
f1ad5a1f 552 int num_elements = 0;
acdd884a 553
ae70797d 554 if (request->ctx != ring->default_context)
8ba319da 555 intel_lr_context_pin(request);
9bb1af44
JH
556
557 i915_gem_request_reference(request);
558
b5eba372 559 spin_lock_irq(&ring->execlist_lock);
acdd884a 560
f1ad5a1f
OM
561 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562 if (++num_elements > 2)
563 break;
564
565 if (num_elements > 2) {
6d3d8274 566 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
567
568 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 569 struct drm_i915_gem_request,
f1ad5a1f
OM
570 execlist_link);
571
ae70797d 572 if (request->ctx == tail_req->ctx) {
f1ad5a1f 573 WARN(tail_req->elsp_submitted != 0,
7ba717cf 574 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 575 list_del(&tail_req->execlist_link);
c86ee3a9
TD
576 list_add_tail(&tail_req->execlist_link,
577 &ring->execlist_retired_req_list);
f1ad5a1f
OM
578 }
579 }
580
6d3d8274 581 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 582 if (num_elements == 0)
acdd884a
MT
583 execlists_context_unqueue(ring);
584
b5eba372 585 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
586
587 return 0;
588}
589
2f20055d 590static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 591{
2f20055d 592 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
593 uint32_t flush_domains;
594 int ret;
595
596 flush_domains = 0;
597 if (ring->gpu_caches_dirty)
598 flush_domains = I915_GEM_GPU_DOMAINS;
599
7deb4d39 600 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
601 if (ret)
602 return ret;
603
604 ring->gpu_caches_dirty = false;
605 return 0;
606}
607
535fbe82 608static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
609 struct list_head *vmas)
610{
535fbe82 611 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
612 struct i915_vma *vma;
613 uint32_t flush_domains = 0;
614 bool flush_chipset = false;
615 int ret;
616
617 list_for_each_entry(vma, vmas, exec_list) {
618 struct drm_i915_gem_object *obj = vma->obj;
619
03ade511 620 if (obj->active & other_rings) {
91af127f 621 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
622 if (ret)
623 return ret;
624 }
ba8b7ccb
OM
625
626 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
627 flush_chipset |= i915_gem_clflush_object(obj, false);
628
629 flush_domains |= obj->base.write_domain;
630 }
631
632 if (flush_domains & I915_GEM_DOMAIN_GTT)
633 wmb();
634
635 /* Unconditionally invalidate gpu caches and ensure that we do flush
636 * any residual writes from the previous batch.
637 */
2f20055d 638 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
639}
640
40e895ce 641int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 642{
bc0dce3f
JH
643 int ret;
644
f3cc01f0
MK
645 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
646
40e895ce 647 if (request->ctx != request->ring->default_context) {
8ba319da 648 ret = intel_lr_context_pin(request);
6689cb2b 649 if (ret)
bc0dce3f 650 return ret;
bc0dce3f
JH
651 }
652
bc0dce3f
JH
653 return 0;
654}
655
ae70797d 656static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 657 int bytes)
bc0dce3f 658{
ae70797d
JH
659 struct intel_ringbuffer *ringbuf = req->ringbuf;
660 struct intel_engine_cs *ring = req->ring;
661 struct drm_i915_gem_request *target;
b4716185
CW
662 unsigned space;
663 int ret;
bc0dce3f
JH
664
665 if (intel_ring_space(ringbuf) >= bytes)
666 return 0;
667
79bbcc29
JH
668 /* The whole point of reserving space is to not wait! */
669 WARN_ON(ringbuf->reserved_in_use);
670
ae70797d 671 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
672 /*
673 * The request queue is per-engine, so can contain requests
674 * from multiple ringbuffers. Here, we must ignore any that
675 * aren't from the ringbuffer we're considering.
676 */
ae70797d 677 if (target->ringbuf != ringbuf)
bc0dce3f
JH
678 continue;
679
680 /* Would completion of this request free enough space? */
ae70797d 681 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
682 ringbuf->size);
683 if (space >= bytes)
bc0dce3f 684 break;
bc0dce3f
JH
685 }
686
ae70797d 687 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
688 return -ENOSPC;
689
ae70797d 690 ret = i915_wait_request(target);
bc0dce3f
JH
691 if (ret)
692 return ret;
693
b4716185
CW
694 ringbuf->space = space;
695 return 0;
bc0dce3f
JH
696}
697
698/*
699 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 700 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
701 *
702 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
703 * really happens during submission is that the context and current tail will be placed
704 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
705 * point, the tail *inside* the context is updated and the ELSP written to.
706 */
707static void
ae70797d 708intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 709{
ae70797d 710 struct intel_engine_cs *ring = request->ring;
d1675198 711 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 712
ae70797d 713 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 714
d1675198
AD
715 request->tail = request->ringbuf->tail;
716
bc0dce3f
JH
717 if (intel_ring_stopped(ring))
718 return;
719
d1675198
AD
720 if (dev_priv->guc.execbuf_client)
721 i915_guc_submit(dev_priv->guc.execbuf_client, request);
722 else
723 execlists_context_queue(request);
bc0dce3f
JH
724}
725
79bbcc29 726static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
727{
728 uint32_t __iomem *virt;
729 int rem = ringbuf->size - ringbuf->tail;
730
bc0dce3f
JH
731 virt = ringbuf->virtual_start + ringbuf->tail;
732 rem /= 4;
733 while (rem--)
734 iowrite32(MI_NOOP, virt++);
735
736 ringbuf->tail = 0;
737 intel_ring_update_space(ringbuf);
bc0dce3f
JH
738}
739
ae70797d 740static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 741{
ae70797d 742 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
743 int remain_usable = ringbuf->effective_size - ringbuf->tail;
744 int remain_actual = ringbuf->size - ringbuf->tail;
745 int ret, total_bytes, wait_bytes = 0;
746 bool need_wrap = false;
29b1b415 747
79bbcc29
JH
748 if (ringbuf->reserved_in_use)
749 total_bytes = bytes;
750 else
751 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 752
79bbcc29
JH
753 if (unlikely(bytes > remain_usable)) {
754 /*
755 * Not enough space for the basic request. So need to flush
756 * out the remainder and then wait for base + reserved.
757 */
758 wait_bytes = remain_actual + total_bytes;
759 need_wrap = true;
760 } else {
761 if (unlikely(total_bytes > remain_usable)) {
762 /*
763 * The base request will fit but the reserved space
764 * falls off the end. So only need to to wait for the
765 * reserved size after flushing out the remainder.
766 */
767 wait_bytes = remain_actual + ringbuf->reserved_size;
768 need_wrap = true;
769 } else if (total_bytes > ringbuf->space) {
770 /* No wrapping required, just waiting. */
771 wait_bytes = total_bytes;
29b1b415 772 }
bc0dce3f
JH
773 }
774
79bbcc29
JH
775 if (wait_bytes) {
776 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
777 if (unlikely(ret))
778 return ret;
79bbcc29
JH
779
780 if (need_wrap)
781 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
782 }
783
784 return 0;
785}
786
787/**
788 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
789 *
4d616a29 790 * @request: The request to start some new work for
4d78c8dc 791 * @ctx: Logical ring context whose ringbuffer is being prepared.
bc0dce3f
JH
792 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
793 *
794 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
795 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
796 * and also preallocates a request (every workload submission is still mediated through
797 * requests, same as it did with legacy ringbuffer submission).
798 *
799 * Return: non-zero if the ringbuffer is not ready to be written to.
800 */
3bbaba0c 801int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 802{
4d616a29 803 struct drm_i915_private *dev_priv;
bc0dce3f
JH
804 int ret;
805
4d616a29
JH
806 WARN_ON(req == NULL);
807 dev_priv = req->ring->dev->dev_private;
808
bc0dce3f
JH
809 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
810 dev_priv->mm.interruptible);
811 if (ret)
812 return ret;
813
ae70797d 814 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
815 if (ret)
816 return ret;
817
4d616a29 818 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
819 return 0;
820}
821
ccd98fe4
JH
822int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
823{
824 /*
825 * The first call merely notes the reserve request and is common for
826 * all back ends. The subsequent localised _begin() call actually
827 * ensures that the reservation is available. Without the begin, if
828 * the request creator immediately submitted the request without
829 * adding any commands to it then there might not actually be
830 * sufficient room for the submission commands.
831 */
832 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
833
834 return intel_logical_ring_begin(request, 0);
835}
836
73e4d07f
OM
837/**
838 * execlists_submission() - submit a batchbuffer for execution, Execlists style
839 * @dev: DRM device.
840 * @file: DRM file.
841 * @ring: Engine Command Streamer to submit to.
842 * @ctx: Context to employ for this submission.
843 * @args: execbuffer call arguments.
844 * @vmas: list of vmas.
845 * @batch_obj: the batchbuffer to submit.
846 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 847 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
848 *
849 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
850 * away the submission details of the execbuffer ioctl call.
851 *
852 * Return: non-zero if the submission fails.
853 */
5f19e2bf 854int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 855 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 856 struct list_head *vmas)
454afebd 857{
5f19e2bf
JH
858 struct drm_device *dev = params->dev;
859 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 860 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
861 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
862 u64 exec_start;
ba8b7ccb
OM
863 int instp_mode;
864 u32 instp_mask;
865 int ret;
866
867 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
868 instp_mask = I915_EXEC_CONSTANTS_MASK;
869 switch (instp_mode) {
870 case I915_EXEC_CONSTANTS_REL_GENERAL:
871 case I915_EXEC_CONSTANTS_ABSOLUTE:
872 case I915_EXEC_CONSTANTS_REL_SURFACE:
873 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
874 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
875 return -EINVAL;
876 }
877
878 if (instp_mode != dev_priv->relative_constants_mode) {
879 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
880 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
881 return -EINVAL;
882 }
883
884 /* The HW changed the meaning on this bit on gen6 */
885 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
886 }
887 break;
888 default:
889 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
890 return -EINVAL;
891 }
892
893 if (args->num_cliprects != 0) {
894 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
895 return -EINVAL;
896 } else {
897 if (args->DR4 == 0xffffffff) {
898 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
899 args->DR4 = 0;
900 }
901
902 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
903 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
904 return -EINVAL;
905 }
906 }
907
908 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
909 DRM_DEBUG("sol reset is gen7 only\n");
910 return -EINVAL;
911 }
912
535fbe82 913 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
914 if (ret)
915 return ret;
916
917 if (ring == &dev_priv->ring[RCS] &&
918 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 919 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
920 if (ret)
921 return ret;
922
923 intel_logical_ring_emit(ringbuf, MI_NOOP);
924 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
925 intel_logical_ring_emit(ringbuf, INSTPM);
926 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
927 intel_logical_ring_advance(ringbuf);
928
929 dev_priv->relative_constants_mode = instp_mode;
930 }
931
5f19e2bf
JH
932 exec_start = params->batch_obj_vm_offset +
933 args->batch_start_offset;
934
be795fc1 935 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
936 if (ret)
937 return ret;
938
95c24161 939 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 940
8a8edb59 941 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 942 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 943
454afebd
OM
944 return 0;
945}
946
c86ee3a9
TD
947void intel_execlists_retire_requests(struct intel_engine_cs *ring)
948{
6d3d8274 949 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
950 struct list_head retired_list;
951
952 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
953 if (list_empty(&ring->execlist_retired_req_list))
954 return;
955
956 INIT_LIST_HEAD(&retired_list);
b5eba372 957 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 958 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 959 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
960
961 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 962 struct intel_context *ctx = req->ctx;
7ba717cf
TD
963 struct drm_i915_gem_object *ctx_obj =
964 ctx->engine[ring->id].state;
965
966 if (ctx_obj && (ctx != ring->default_context))
8ba319da 967 intel_lr_context_unpin(req);
c86ee3a9 968 list_del(&req->execlist_link);
f8210795 969 i915_gem_request_unreference(req);
c86ee3a9
TD
970 }
971}
972
454afebd
OM
973void intel_logical_ring_stop(struct intel_engine_cs *ring)
974{
9832b9da
OM
975 struct drm_i915_private *dev_priv = ring->dev->dev_private;
976 int ret;
977
978 if (!intel_ring_initialized(ring))
979 return;
980
981 ret = intel_ring_idle(ring);
982 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
983 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
984 ring->name, ret);
985
986 /* TODO: Is this correct with Execlists enabled? */
987 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
988 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
989 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
990 return;
991 }
992 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
993}
994
4866d729 995int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 996{
4866d729 997 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
998 int ret;
999
1000 if (!ring->gpu_caches_dirty)
1001 return 0;
1002
7deb4d39 1003 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1004 if (ret)
1005 return ret;
1006
1007 ring->gpu_caches_dirty = false;
1008 return 0;
1009}
1010
8ba319da 1011static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
dcb4c12a 1012{
d1675198 1013 struct drm_i915_private *dev_priv = rq->i915;
8ba319da
MK
1014 struct intel_engine_cs *ring = rq->ring;
1015 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1016 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1017 int ret = 0;
1018
1019 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1020 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
d1675198
AD
1021 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1022 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
dcb4c12a 1023 if (ret)
a7cbedec 1024 goto reset_pin_count;
7ba717cf
TD
1025
1026 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1027 if (ret)
1028 goto unpin_ctx_obj;
d1675198
AD
1029
1030 /* Invalidate GuC TLB. */
1031 if (i915.enable_guc_submission)
1032 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a
OM
1033 }
1034
7ba717cf
TD
1035 return ret;
1036
1037unpin_ctx_obj:
1038 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec 1039reset_pin_count:
8ba319da 1040 rq->ctx->engine[ring->id].pin_count = 0;
7ba717cf 1041
dcb4c12a
OM
1042 return ret;
1043}
1044
8ba319da 1045void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1046{
8ba319da
MK
1047 struct intel_engine_cs *ring = rq->ring;
1048 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1049 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1050
1051 if (ctx_obj) {
1052 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1053 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1054 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1055 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1056 }
dcb4c12a
OM
1057 }
1058}
1059
e2be4faf 1060static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1061{
1062 int ret, i;
e2be4faf
JH
1063 struct intel_engine_cs *ring = req->ring;
1064 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1065 struct drm_device *dev = ring->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct i915_workarounds *w = &dev_priv->workarounds;
1068
e6c1abb7 1069 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1070 return 0;
1071
1072 ring->gpu_caches_dirty = true;
4866d729 1073 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1074 if (ret)
1075 return ret;
1076
4d616a29 1077 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1078 if (ret)
1079 return ret;
1080
1081 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1082 for (i = 0; i < w->count; i++) {
1083 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1084 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1085 }
1086 intel_logical_ring_emit(ringbuf, MI_NOOP);
1087
1088 intel_logical_ring_advance(ringbuf);
1089
1090 ring->gpu_caches_dirty = true;
4866d729 1091 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1092 if (ret)
1093 return ret;
1094
1095 return 0;
1096}
1097
83b8a982 1098#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1099 do { \
83b8a982
AS
1100 int __index = (index)++; \
1101 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1102 return -ENOSPC; \
1103 } \
83b8a982 1104 batch[__index] = (cmd); \
17ee950d
AS
1105 } while (0)
1106
9e000847
AS
1107
1108/*
1109 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1110 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1111 * but there is a slight complication as this is applied in WA batch where the
1112 * values are only initialized once so we cannot take register value at the
1113 * beginning and reuse it further; hence we save its value to memory, upload a
1114 * constant value with bit21 set and then we restore it back with the saved value.
1115 * To simplify the WA, a constant value is formed by using the default value
1116 * of this register. This shouldn't be a problem because we are only modifying
1117 * it for a short period and this batch in non-premptible. We can ofcourse
1118 * use additional instructions that read the actual value of the register
1119 * at that time and set our bit of interest but it makes the WA complicated.
1120 *
1121 * This WA is also required for Gen9 so extracting as a function avoids
1122 * code duplication.
1123 */
1124static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1125 uint32_t *const batch,
1126 uint32_t index)
1127{
1128 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1129
a4106a78
AS
1130 /*
1131 * WaDisableLSQCROPERFforOCL:skl
1132 * This WA is implemented in skl_init_clock_gating() but since
1133 * this batch updates GEN8_L3SQCREG4 with default value we need to
1134 * set this bit here to retain the WA during flush.
1135 */
1136 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1137 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1138
f1afe24f 1139 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982
AS
1140 MI_SRM_LRM_GLOBAL_GTT));
1141 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1142 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1143 wa_ctx_emit(batch, index, 0);
1144
1145 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1146 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1147 wa_ctx_emit(batch, index, l3sqc4_flush);
1148
1149 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1150 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1151 PIPE_CONTROL_DC_FLUSH_ENABLE));
1152 wa_ctx_emit(batch, index, 0);
1153 wa_ctx_emit(batch, index, 0);
1154 wa_ctx_emit(batch, index, 0);
1155 wa_ctx_emit(batch, index, 0);
1156
f1afe24f 1157 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982
AS
1158 MI_SRM_LRM_GLOBAL_GTT));
1159 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1160 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1161 wa_ctx_emit(batch, index, 0);
9e000847
AS
1162
1163 return index;
1164}
1165
17ee950d
AS
1166static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1167 uint32_t offset,
1168 uint32_t start_alignment)
1169{
1170 return wa_ctx->offset = ALIGN(offset, start_alignment);
1171}
1172
1173static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1174 uint32_t offset,
1175 uint32_t size_alignment)
1176{
1177 wa_ctx->size = offset - wa_ctx->offset;
1178
1179 WARN(wa_ctx->size % size_alignment,
1180 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1181 wa_ctx->size, size_alignment);
1182 return 0;
1183}
1184
1185/**
1186 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1187 *
1188 * @ring: only applicable for RCS
1189 * @wa_ctx: structure representing wa_ctx
1190 * offset: specifies start of the batch, should be cache-aligned. This is updated
1191 * with the offset value received as input.
1192 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1193 * @batch: page in which WA are loaded
1194 * @offset: This field specifies the start of the batch, it should be
1195 * cache-aligned otherwise it is adjusted accordingly.
1196 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1197 * initialized at the beginning and shared across all contexts but this field
1198 * helps us to have multiple batches at different offsets and select them based
1199 * on a criteria. At the moment this batch always start at the beginning of the page
1200 * and at this point we don't have multiple wa_ctx batch buffers.
1201 *
1202 * The number of WA applied are not known at the beginning; we use this field
1203 * to return the no of DWORDS written.
4d78c8dc 1204 *
17ee950d
AS
1205 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1206 * so it adds NOOPs as padding to make it cacheline aligned.
1207 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1208 * makes a complete batch buffer.
1209 *
1210 * Return: non-zero if we exceed the PAGE_SIZE limit.
1211 */
1212
1213static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1214 struct i915_wa_ctx_bb *wa_ctx,
1215 uint32_t *const batch,
1216 uint32_t *offset)
1217{
0160f055 1218 uint32_t scratch_addr;
17ee950d
AS
1219 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1220
7ad00d1a 1221 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1222 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1223
c82435bb
AS
1224 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1225 if (IS_BROADWELL(ring->dev)) {
9e000847
AS
1226 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1227 if (index < 0)
1228 return index;
c82435bb
AS
1229 }
1230
0160f055
AS
1231 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1232 /* Actual scratch location is at 128 bytes offset */
1233 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1234
83b8a982
AS
1235 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1236 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1237 PIPE_CONTROL_GLOBAL_GTT_IVB |
1238 PIPE_CONTROL_CS_STALL |
1239 PIPE_CONTROL_QW_WRITE));
1240 wa_ctx_emit(batch, index, scratch_addr);
1241 wa_ctx_emit(batch, index, 0);
1242 wa_ctx_emit(batch, index, 0);
1243 wa_ctx_emit(batch, index, 0);
0160f055 1244
17ee950d
AS
1245 /* Pad to end of cacheline */
1246 while (index % CACHELINE_DWORDS)
83b8a982 1247 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1248
1249 /*
1250 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1251 * execution depends on the length specified in terms of cache lines
1252 * in the register CTX_RCS_INDIRECT_CTX
1253 */
1254
1255 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1256}
1257
1258/**
1259 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1260 *
1261 * @ring: only applicable for RCS
1262 * @wa_ctx: structure representing wa_ctx
1263 * offset: specifies start of the batch, should be cache-aligned.
1264 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1265 * @batch: page in which WA are loaded
17ee950d
AS
1266 * @offset: This field specifies the start of this batch.
1267 * This batch is started immediately after indirect_ctx batch. Since we ensure
1268 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1269 *
1270 * The number of DWORDS written are returned using this field.
1271 *
1272 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1273 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1274 */
1275static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1276 struct i915_wa_ctx_bb *wa_ctx,
1277 uint32_t *const batch,
1278 uint32_t *offset)
1279{
1280 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1281
7ad00d1a 1282 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1283 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1284
83b8a982 1285 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1286
1287 return wa_ctx_end(wa_ctx, *offset = index, 1);
1288}
1289
0504cffc
AS
1290static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1291 struct i915_wa_ctx_bb *wa_ctx,
1292 uint32_t *const batch,
1293 uint32_t *offset)
1294{
a4106a78 1295 int ret;
0907c8f7 1296 struct drm_device *dev = ring->dev;
0504cffc
AS
1297 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298
0907c8f7
AS
1299 /* WaDisableCtxRestoreArbitration:skl,bxt */
1300 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1301 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1302 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1303
a4106a78
AS
1304 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1305 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1306 if (ret < 0)
1307 return ret;
1308 index = ret;
1309
0504cffc
AS
1310 /* Pad to end of cacheline */
1311 while (index % CACHELINE_DWORDS)
1312 wa_ctx_emit(batch, index, MI_NOOP);
1313
1314 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1315}
1316
1317static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1318 struct i915_wa_ctx_bb *wa_ctx,
1319 uint32_t *const batch,
1320 uint32_t *offset)
1321{
0907c8f7 1322 struct drm_device *dev = ring->dev;
0504cffc
AS
1323 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1324
9b01435d
AS
1325 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1326 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1327 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1328 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1329 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1330 wa_ctx_emit(batch, index,
1331 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1332 wa_ctx_emit(batch, index, MI_NOOP);
1333 }
1334
0907c8f7
AS
1335 /* WaDisableCtxRestoreArbitration:skl,bxt */
1336 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1337 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1338 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1339
0504cffc
AS
1340 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1341
1342 return wa_ctx_end(wa_ctx, *offset = index, 1);
1343}
1344
17ee950d
AS
1345static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1346{
1347 int ret;
1348
1349 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1350 if (!ring->wa_ctx.obj) {
1351 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1352 return -ENOMEM;
1353 }
1354
1355 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1356 if (ret) {
1357 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1358 ret);
1359 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1360 return ret;
1361 }
1362
1363 return 0;
1364}
1365
1366static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1367{
1368 if (ring->wa_ctx.obj) {
1369 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1370 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1371 ring->wa_ctx.obj = NULL;
1372 }
1373}
1374
1375static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1376{
1377 int ret;
1378 uint32_t *batch;
1379 uint32_t offset;
1380 struct page *page;
1381 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1382
1383 WARN_ON(ring->id != RCS);
1384
5e60d790 1385 /* update this when WA for higher Gen are added */
0504cffc
AS
1386 if (INTEL_INFO(ring->dev)->gen > 9) {
1387 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1388 INTEL_INFO(ring->dev)->gen);
5e60d790 1389 return 0;
0504cffc 1390 }
5e60d790 1391
c4db7599
AS
1392 /* some WA perform writes to scratch page, ensure it is valid */
1393 if (ring->scratch.obj == NULL) {
1394 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1395 return -EINVAL;
1396 }
1397
17ee950d
AS
1398 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1399 if (ret) {
1400 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1401 return ret;
1402 }
1403
1404 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1405 batch = kmap_atomic(page);
1406 offset = 0;
1407
1408 if (INTEL_INFO(ring->dev)->gen == 8) {
1409 ret = gen8_init_indirectctx_bb(ring,
1410 &wa_ctx->indirect_ctx,
1411 batch,
1412 &offset);
1413 if (ret)
1414 goto out;
1415
1416 ret = gen8_init_perctx_bb(ring,
1417 &wa_ctx->per_ctx,
1418 batch,
1419 &offset);
1420 if (ret)
1421 goto out;
0504cffc
AS
1422 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1423 ret = gen9_init_indirectctx_bb(ring,
1424 &wa_ctx->indirect_ctx,
1425 batch,
1426 &offset);
1427 if (ret)
1428 goto out;
1429
1430 ret = gen9_init_perctx_bb(ring,
1431 &wa_ctx->per_ctx,
1432 batch,
1433 &offset);
1434 if (ret)
1435 goto out;
17ee950d
AS
1436 }
1437
1438out:
1439 kunmap_atomic(batch);
1440 if (ret)
1441 lrc_destroy_wa_ctx_obj(ring);
1442
1443 return ret;
1444}
1445
9b1136d5
OM
1446static int gen8_init_common_ring(struct intel_engine_cs *ring)
1447{
1448 struct drm_device *dev = ring->dev;
1449 struct drm_i915_private *dev_priv = dev->dev_private;
1450
73d477f6
OM
1451 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1452 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1453
2e5356da
AS
1454 if (ring->status_page.obj) {
1455 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1456 (u32)ring->status_page.gfx_addr);
1457 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1458 }
1459
9b1136d5
OM
1460 I915_WRITE(RING_MODE_GEN7(ring),
1461 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1462 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1463 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1464 ring->next_context_status_buffer = 0;
9b1136d5
OM
1465 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1466
1467 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1468
1469 return 0;
1470}
1471
1472static int gen8_init_render_ring(struct intel_engine_cs *ring)
1473{
1474 struct drm_device *dev = ring->dev;
1475 struct drm_i915_private *dev_priv = dev->dev_private;
1476 int ret;
1477
1478 ret = gen8_init_common_ring(ring);
1479 if (ret)
1480 return ret;
1481
1482 /* We need to disable the AsyncFlip performance optimisations in order
1483 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1484 * programmed to '1' on all products.
1485 *
1486 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1487 */
1488 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1489
9b1136d5
OM
1490 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1491
771b9a53 1492 return init_workarounds_ring(ring);
9b1136d5
OM
1493}
1494
82ef822e
DL
1495static int gen9_init_render_ring(struct intel_engine_cs *ring)
1496{
1497 int ret;
1498
1499 ret = gen8_init_common_ring(ring);
1500 if (ret)
1501 return ret;
1502
1503 return init_workarounds_ring(ring);
1504}
1505
7a01a0a2
MT
1506static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1507{
1508 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1509 struct intel_engine_cs *ring = req->ring;
1510 struct intel_ringbuffer *ringbuf = req->ringbuf;
1511 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1512 int i, ret;
1513
1514 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1515 if (ret)
1516 return ret;
1517
1518 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1519 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1520 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1521
1522 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1523 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1524 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1525 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1526 }
1527
1528 intel_logical_ring_emit(ringbuf, MI_NOOP);
1529 intel_logical_ring_advance(ringbuf);
1530
1531 return 0;
1532}
1533
be795fc1 1534static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1535 u64 offset, unsigned dispatch_flags)
15648585 1536{
be795fc1 1537 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1538 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1539 int ret;
1540
7a01a0a2
MT
1541 /* Don't rely in hw updating PDPs, specially in lite-restore.
1542 * Ideally, we should set Force PD Restore in ctx descriptor,
1543 * but we can't. Force Restore would be a second option, but
1544 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1545 * not idle). PML4 is allocated during ppgtt init so this is
1546 * not needed in 48-bit.*/
7a01a0a2
MT
1547 if (req->ctx->ppgtt &&
1548 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1549 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1550 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1551 ret = intel_logical_ring_emit_pdps(req);
1552 if (ret)
1553 return ret;
1554 }
7a01a0a2
MT
1555
1556 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1557 }
1558
4d616a29 1559 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1560 if (ret)
1561 return ret;
1562
1563 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1564 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1565 (ppgtt<<8) |
1566 (dispatch_flags & I915_DISPATCH_RS ?
1567 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1568 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1569 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1570 intel_logical_ring_emit(ringbuf, MI_NOOP);
1571 intel_logical_ring_advance(ringbuf);
1572
1573 return 0;
1574}
1575
73d477f6
OM
1576static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1577{
1578 struct drm_device *dev = ring->dev;
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 unsigned long flags;
1581
7cd512f1 1582 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1583 return false;
1584
1585 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1586 if (ring->irq_refcount++ == 0) {
1587 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1588 POSTING_READ(RING_IMR(ring->mmio_base));
1589 }
1590 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1591
1592 return true;
1593}
1594
1595static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1596{
1597 struct drm_device *dev = ring->dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 unsigned long flags;
1600
1601 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1602 if (--ring->irq_refcount == 0) {
1603 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1604 POSTING_READ(RING_IMR(ring->mmio_base));
1605 }
1606 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1607}
1608
7deb4d39 1609static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1610 u32 invalidate_domains,
1611 u32 unused)
1612{
7deb4d39 1613 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1614 struct intel_engine_cs *ring = ringbuf->ring;
1615 struct drm_device *dev = ring->dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 uint32_t cmd;
1618 int ret;
1619
4d616a29 1620 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1621 if (ret)
1622 return ret;
1623
1624 cmd = MI_FLUSH_DW + 1;
1625
f0a1fb10
CW
1626 /* We always require a command barrier so that subsequent
1627 * commands, such as breadcrumb interrupts, are strictly ordered
1628 * wrt the contents of the write cache being flushed to memory
1629 * (and thus being coherent from the CPU).
1630 */
1631 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1632
1633 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1634 cmd |= MI_INVALIDATE_TLB;
1635 if (ring == &dev_priv->ring[VCS])
1636 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1637 }
1638
1639 intel_logical_ring_emit(ringbuf, cmd);
1640 intel_logical_ring_emit(ringbuf,
1641 I915_GEM_HWS_SCRATCH_ADDR |
1642 MI_FLUSH_DW_USE_GTT);
1643 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1644 intel_logical_ring_emit(ringbuf, 0); /* value */
1645 intel_logical_ring_advance(ringbuf);
1646
1647 return 0;
1648}
1649
7deb4d39 1650static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1651 u32 invalidate_domains,
1652 u32 flush_domains)
1653{
7deb4d39 1654 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1655 struct intel_engine_cs *ring = ringbuf->ring;
1656 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1657 bool vf_flush_wa;
4712274c
OM
1658 u32 flags = 0;
1659 int ret;
1660
1661 flags |= PIPE_CONTROL_CS_STALL;
1662
1663 if (flush_domains) {
1664 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1665 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1666 }
1667
1668 if (invalidate_domains) {
1669 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1670 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1671 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1672 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1673 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1674 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1675 flags |= PIPE_CONTROL_QW_WRITE;
1676 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1677 }
1678
9647ff36
ID
1679 /*
1680 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1681 * control.
1682 */
1683 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1684 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1685
4d616a29 1686 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1687 if (ret)
1688 return ret;
1689
9647ff36
ID
1690 if (vf_flush_wa) {
1691 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1692 intel_logical_ring_emit(ringbuf, 0);
1693 intel_logical_ring_emit(ringbuf, 0);
1694 intel_logical_ring_emit(ringbuf, 0);
1695 intel_logical_ring_emit(ringbuf, 0);
1696 intel_logical_ring_emit(ringbuf, 0);
1697 }
1698
4712274c
OM
1699 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1700 intel_logical_ring_emit(ringbuf, flags);
1701 intel_logical_ring_emit(ringbuf, scratch_addr);
1702 intel_logical_ring_emit(ringbuf, 0);
1703 intel_logical_ring_emit(ringbuf, 0);
1704 intel_logical_ring_emit(ringbuf, 0);
1705 intel_logical_ring_advance(ringbuf);
1706
1707 return 0;
1708}
1709
e94e37ad
OM
1710static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1711{
1712 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1713}
1714
1715static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1716{
1717 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1718}
1719
319404df
ID
1720static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1721{
1722
1723 /*
1724 * On BXT A steppings there is a HW coherency issue whereby the
1725 * MI_STORE_DATA_IMM storing the completed request's seqno
1726 * occasionally doesn't invalidate the CPU cache. Work around this by
1727 * clflushing the corresponding cacheline whenever the caller wants
1728 * the coherency to be guaranteed. Note that this cacheline is known
1729 * to be clean at this point, since we only write it in
1730 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1731 * this clflush in practice becomes an invalidate operation.
1732 */
1733
1734 if (!lazy_coherency)
1735 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1736
1737 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1738}
1739
1740static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1741{
1742 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1743
1744 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1745 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1746}
1747
c4e76638 1748static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1749{
c4e76638 1750 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1751 struct intel_engine_cs *ring = ringbuf->ring;
1752 u32 cmd;
1753 int ret;
1754
53292cdb
MT
1755 /*
1756 * Reserve space for 2 NOOPs at the end of each request to be
1757 * used as a workaround for not being allowed to do lite
1758 * restore with HEAD==TAIL (WaIdleLiteRestore).
1759 */
4d616a29 1760 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1761 if (ret)
1762 return ret;
1763
8edfbb8b 1764 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1765 cmd |= MI_GLOBAL_GTT;
1766
1767 intel_logical_ring_emit(ringbuf, cmd);
1768 intel_logical_ring_emit(ringbuf,
1769 (ring->status_page.gfx_addr +
1770 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1771 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1772 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1773 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1774 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1775 intel_logical_ring_advance_and_submit(request);
4da46e1e 1776
53292cdb
MT
1777 /*
1778 * Here we add two extra NOOPs as padding to avoid
1779 * lite restore of a context with HEAD==TAIL.
1780 */
1781 intel_logical_ring_emit(ringbuf, MI_NOOP);
1782 intel_logical_ring_emit(ringbuf, MI_NOOP);
1783 intel_logical_ring_advance(ringbuf);
1784
4da46e1e
OM
1785 return 0;
1786}
1787
be01363f 1788static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1789{
cef437ad 1790 struct render_state so;
cef437ad
DL
1791 int ret;
1792
be01363f 1793 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1794 if (ret)
1795 return ret;
1796
1797 if (so.rodata == NULL)
1798 return 0;
1799
be795fc1 1800 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1801 I915_DISPATCH_SECURE);
cef437ad
DL
1802 if (ret)
1803 goto out;
1804
84e81020
AS
1805 ret = req->ring->emit_bb_start(req,
1806 (so.ggtt_offset + so.aux_batch_offset),
1807 I915_DISPATCH_SECURE);
1808 if (ret)
1809 goto out;
1810
b2af0376 1811 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1812
cef437ad
DL
1813out:
1814 i915_gem_render_state_fini(&so);
1815 return ret;
1816}
1817
8753181e 1818static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1819{
1820 int ret;
1821
e2be4faf 1822 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1823 if (ret)
1824 return ret;
1825
3bbaba0c
PA
1826 ret = intel_rcs_context_init_mocs(req);
1827 /*
1828 * Failing to program the MOCS is non-fatal.The system will not
1829 * run at peak performance. So generate an error and carry on.
1830 */
1831 if (ret)
1832 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1833
be01363f 1834 return intel_lr_context_render_state_init(req);
e7778be1
TD
1835}
1836
73e4d07f
OM
1837/**
1838 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1839 *
1840 * @ring: Engine Command Streamer.
1841 *
1842 */
454afebd
OM
1843void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1844{
6402c330 1845 struct drm_i915_private *dev_priv;
9832b9da 1846
48d82387
OM
1847 if (!intel_ring_initialized(ring))
1848 return;
1849
6402c330
JH
1850 dev_priv = ring->dev->dev_private;
1851
9832b9da
OM
1852 intel_logical_ring_stop(ring);
1853 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1854
1855 if (ring->cleanup)
1856 ring->cleanup(ring);
1857
1858 i915_cmd_parser_fini_ring(ring);
06fbca71 1859 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1860
1861 if (ring->status_page.obj) {
1862 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1863 ring->status_page.obj = NULL;
1864 }
17ee950d
AS
1865
1866 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1867}
1868
1869static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1870{
48d82387 1871 int ret;
48d82387
OM
1872
1873 /* Intentionally left blank. */
1874 ring->buffer = NULL;
1875
1876 ring->dev = dev;
1877 INIT_LIST_HEAD(&ring->active_list);
1878 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1879 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1880 init_waitqueue_head(&ring->irq_queue);
1881
acdd884a 1882 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1883 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1884 spin_lock_init(&ring->execlist_lock);
1885
48d82387
OM
1886 ret = i915_cmd_parser_init_ring(ring);
1887 if (ret)
1888 return ret;
1889
564ddb2f
OM
1890 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1891
1892 return ret;
454afebd
OM
1893}
1894
1895static int logical_render_ring_init(struct drm_device *dev)
1896{
1897 struct drm_i915_private *dev_priv = dev->dev_private;
1898 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1899 int ret;
454afebd
OM
1900
1901 ring->name = "render ring";
1902 ring->id = RCS;
1903 ring->mmio_base = RENDER_RING_BASE;
1904 ring->irq_enable_mask =
1905 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1906 ring->irq_keep_mask =
1907 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1908 if (HAS_L3_DPF(dev))
1909 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1910
82ef822e
DL
1911 if (INTEL_INFO(dev)->gen >= 9)
1912 ring->init_hw = gen9_init_render_ring;
1913 else
1914 ring->init_hw = gen8_init_render_ring;
e7778be1 1915 ring->init_context = gen8_init_rcs_context;
9b1136d5 1916 ring->cleanup = intel_fini_pipe_control;
319404df
ID
1917 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1918 ring->get_seqno = bxt_a_get_seqno;
1919 ring->set_seqno = bxt_a_set_seqno;
1920 } else {
1921 ring->get_seqno = gen8_get_seqno;
1922 ring->set_seqno = gen8_set_seqno;
1923 }
4da46e1e 1924 ring->emit_request = gen8_emit_request;
4712274c 1925 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1926 ring->irq_get = gen8_logical_ring_get_irq;
1927 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1928 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1929
99be1dfe 1930 ring->dev = dev;
c4db7599
AS
1931
1932 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1933 if (ret)
1934 return ret;
1935
17ee950d
AS
1936 ret = intel_init_workaround_bb(ring);
1937 if (ret) {
1938 /*
1939 * We continue even if we fail to initialize WA batch
1940 * because we only expect rare glitches but nothing
1941 * critical to prevent us from using GPU
1942 */
1943 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1944 ret);
1945 }
1946
c4db7599
AS
1947 ret = logical_ring_init(dev, ring);
1948 if (ret) {
17ee950d 1949 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1950 }
17ee950d
AS
1951
1952 return ret;
454afebd
OM
1953}
1954
1955static int logical_bsd_ring_init(struct drm_device *dev)
1956{
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1959
1960 ring->name = "bsd ring";
1961 ring->id = VCS;
1962 ring->mmio_base = GEN6_BSD_RING_BASE;
1963 ring->irq_enable_mask =
1964 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1965 ring->irq_keep_mask =
1966 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1967
ecfe00d8 1968 ring->init_hw = gen8_init_common_ring;
319404df
ID
1969 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1970 ring->get_seqno = bxt_a_get_seqno;
1971 ring->set_seqno = bxt_a_set_seqno;
1972 } else {
1973 ring->get_seqno = gen8_get_seqno;
1974 ring->set_seqno = gen8_set_seqno;
1975 }
4da46e1e 1976 ring->emit_request = gen8_emit_request;
4712274c 1977 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1978 ring->irq_get = gen8_logical_ring_get_irq;
1979 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1980 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1981
454afebd
OM
1982 return logical_ring_init(dev, ring);
1983}
1984
1985static int logical_bsd2_ring_init(struct drm_device *dev)
1986{
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1989
1990 ring->name = "bds2 ring";
1991 ring->id = VCS2;
1992 ring->mmio_base = GEN8_BSD2_RING_BASE;
1993 ring->irq_enable_mask =
1994 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1995 ring->irq_keep_mask =
1996 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1997
ecfe00d8 1998 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1999 ring->get_seqno = gen8_get_seqno;
2000 ring->set_seqno = gen8_set_seqno;
4da46e1e 2001 ring->emit_request = gen8_emit_request;
4712274c 2002 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2003 ring->irq_get = gen8_logical_ring_get_irq;
2004 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2005 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2006
454afebd
OM
2007 return logical_ring_init(dev, ring);
2008}
2009
2010static int logical_blt_ring_init(struct drm_device *dev)
2011{
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2014
2015 ring->name = "blitter ring";
2016 ring->id = BCS;
2017 ring->mmio_base = BLT_RING_BASE;
2018 ring->irq_enable_mask =
2019 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2020 ring->irq_keep_mask =
2021 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2022
ecfe00d8 2023 ring->init_hw = gen8_init_common_ring;
319404df
ID
2024 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2025 ring->get_seqno = bxt_a_get_seqno;
2026 ring->set_seqno = bxt_a_set_seqno;
2027 } else {
2028 ring->get_seqno = gen8_get_seqno;
2029 ring->set_seqno = gen8_set_seqno;
2030 }
4da46e1e 2031 ring->emit_request = gen8_emit_request;
4712274c 2032 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2033 ring->irq_get = gen8_logical_ring_get_irq;
2034 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2035 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2036
454afebd
OM
2037 return logical_ring_init(dev, ring);
2038}
2039
2040static int logical_vebox_ring_init(struct drm_device *dev)
2041{
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2044
2045 ring->name = "video enhancement ring";
2046 ring->id = VECS;
2047 ring->mmio_base = VEBOX_RING_BASE;
2048 ring->irq_enable_mask =
2049 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2050 ring->irq_keep_mask =
2051 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2052
ecfe00d8 2053 ring->init_hw = gen8_init_common_ring;
319404df
ID
2054 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2055 ring->get_seqno = bxt_a_get_seqno;
2056 ring->set_seqno = bxt_a_set_seqno;
2057 } else {
2058 ring->get_seqno = gen8_get_seqno;
2059 ring->set_seqno = gen8_set_seqno;
2060 }
4da46e1e 2061 ring->emit_request = gen8_emit_request;
4712274c 2062 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2063 ring->irq_get = gen8_logical_ring_get_irq;
2064 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2065 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2066
454afebd
OM
2067 return logical_ring_init(dev, ring);
2068}
2069
73e4d07f
OM
2070/**
2071 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2072 * @dev: DRM device.
2073 *
2074 * This function inits the engines for an Execlists submission style (the equivalent in the
2075 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2076 * those engines that are present in the hardware.
2077 *
2078 * Return: non-zero if the initialization failed.
2079 */
454afebd
OM
2080int intel_logical_rings_init(struct drm_device *dev)
2081{
2082 struct drm_i915_private *dev_priv = dev->dev_private;
2083 int ret;
2084
2085 ret = logical_render_ring_init(dev);
2086 if (ret)
2087 return ret;
2088
2089 if (HAS_BSD(dev)) {
2090 ret = logical_bsd_ring_init(dev);
2091 if (ret)
2092 goto cleanup_render_ring;
2093 }
2094
2095 if (HAS_BLT(dev)) {
2096 ret = logical_blt_ring_init(dev);
2097 if (ret)
2098 goto cleanup_bsd_ring;
2099 }
2100
2101 if (HAS_VEBOX(dev)) {
2102 ret = logical_vebox_ring_init(dev);
2103 if (ret)
2104 goto cleanup_blt_ring;
2105 }
2106
2107 if (HAS_BSD2(dev)) {
2108 ret = logical_bsd2_ring_init(dev);
2109 if (ret)
2110 goto cleanup_vebox_ring;
2111 }
2112
2113 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2114 if (ret)
2115 goto cleanup_bsd2_ring;
2116
2117 return 0;
2118
2119cleanup_bsd2_ring:
2120 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2121cleanup_vebox_ring:
2122 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2123cleanup_blt_ring:
2124 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2125cleanup_bsd_ring:
2126 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2127cleanup_render_ring:
2128 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2129
2130 return ret;
2131}
2132
0cea6502
JM
2133static u32
2134make_rpcs(struct drm_device *dev)
2135{
2136 u32 rpcs = 0;
2137
2138 /*
2139 * No explicit RPCS request is needed to ensure full
2140 * slice/subslice/EU enablement prior to Gen9.
2141 */
2142 if (INTEL_INFO(dev)->gen < 9)
2143 return 0;
2144
2145 /*
2146 * Starting in Gen9, render power gating can leave
2147 * slice/subslice/EU in a partially enabled state. We
2148 * must make an explicit request through RPCS for full
2149 * enablement.
2150 */
2151 if (INTEL_INFO(dev)->has_slice_pg) {
2152 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2153 rpcs |= INTEL_INFO(dev)->slice_total <<
2154 GEN8_RPCS_S_CNT_SHIFT;
2155 rpcs |= GEN8_RPCS_ENABLE;
2156 }
2157
2158 if (INTEL_INFO(dev)->has_subslice_pg) {
2159 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2160 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2161 GEN8_RPCS_SS_CNT_SHIFT;
2162 rpcs |= GEN8_RPCS_ENABLE;
2163 }
2164
2165 if (INTEL_INFO(dev)->has_eu_pg) {
2166 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2167 GEN8_RPCS_EU_MIN_SHIFT;
2168 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2169 GEN8_RPCS_EU_MAX_SHIFT;
2170 rpcs |= GEN8_RPCS_ENABLE;
2171 }
2172
2173 return rpcs;
2174}
2175
8670d6f9
OM
2176static int
2177populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2178 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2179{
2d965536
TD
2180 struct drm_device *dev = ring->dev;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2182 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2183 struct page *page;
2184 uint32_t *reg_state;
2185 int ret;
2186
2d965536
TD
2187 if (!ppgtt)
2188 ppgtt = dev_priv->mm.aliasing_ppgtt;
2189
8670d6f9
OM
2190 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2191 if (ret) {
2192 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2193 return ret;
2194 }
2195
2196 ret = i915_gem_object_get_pages(ctx_obj);
2197 if (ret) {
2198 DRM_DEBUG_DRIVER("Could not get object pages\n");
2199 return ret;
2200 }
2201
2202 i915_gem_object_pin_pages(ctx_obj);
2203
2204 /* The second page of the context object contains some fields which must
2205 * be set up prior to the first execution. */
d1675198 2206 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2207 reg_state = kmap_atomic(page);
2208
2209 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2210 * commands followed by (reg, value) pairs. The values we are setting here are
2211 * only for the first context restore: on a subsequent save, the GPU will
2212 * recreate this batchbuffer with new values (including all the missing
2213 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2214 if (ring->id == RCS)
2215 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2216 else
2217 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2218 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2219 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2220 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5 2221 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
6922528a
AJ
2222 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2223 CTX_CTRL_RS_CTX_ENABLE);
8670d6f9
OM
2224 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2225 reg_state[CTX_RING_HEAD+1] = 0;
2226 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2227 reg_state[CTX_RING_TAIL+1] = 0;
2228 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
2229 /* Ring buffer start address is not known until the buffer is pinned.
2230 * It is written to the context image in execlists_update_context()
2231 */
8670d6f9
OM
2232 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2233 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2234 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2235 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2236 reg_state[CTX_BB_HEAD_U+1] = 0;
2237 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2238 reg_state[CTX_BB_HEAD_L+1] = 0;
2239 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2240 reg_state[CTX_BB_STATE+1] = (1<<5);
2241 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2242 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2243 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2244 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2245 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2246 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2247 if (ring->id == RCS) {
8670d6f9
OM
2248 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2249 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2250 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2251 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2252 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2253 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2254 if (ring->wa_ctx.obj) {
2255 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2256 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2257
2258 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2259 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2260 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2261
2262 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2263 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2264
2265 reg_state[CTX_BB_PER_CTX_PTR+1] =
2266 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2267 0x01;
2268 }
8670d6f9
OM
2269 }
2270 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2271 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2272 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2273 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2274 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2275 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2276 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2277 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2278 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2279 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2280 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2281 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d 2282
2dba3239
MT
2283 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2284 /* 64b PPGTT (48bit canonical)
2285 * PDP0_DESCRIPTOR contains the base address to PML4 and
2286 * other PDP Descriptors are ignored.
2287 */
2288 ASSIGN_CTX_PML4(ppgtt, reg_state);
2289 } else {
2290 /* 32b PPGTT
2291 * PDP*_DESCRIPTOR contains the base address of space supported.
2292 * With dynamic page allocation, PDPs may not be allocated at
2293 * this point. Point the unallocated PDPs to the scratch page
2294 */
2295 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2296 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2297 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2298 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2299 }
2300
8670d6f9
OM
2301 if (ring->id == RCS) {
2302 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2303 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2304 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2305 }
2306
2307 kunmap_atomic(reg_state);
2308
2309 ctx_obj->dirty = 1;
2310 set_page_dirty(page);
2311 i915_gem_object_unpin_pages(ctx_obj);
2312
2313 return 0;
2314}
2315
73e4d07f
OM
2316/**
2317 * intel_lr_context_free() - free the LRC specific bits of a context
2318 * @ctx: the LR context to free.
2319 *
2320 * The real context freeing is done in i915_gem_context_free: this only
2321 * takes care of the bits that are LRC related: the per-engine backing
2322 * objects and the logical ringbuffer.
2323 */
ede7d42b
OM
2324void intel_lr_context_free(struct intel_context *ctx)
2325{
8c857917
OM
2326 int i;
2327
2328 for (i = 0; i < I915_NUM_RINGS; i++) {
2329 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2330
8c857917 2331 if (ctx_obj) {
dcb4c12a
OM
2332 struct intel_ringbuffer *ringbuf =
2333 ctx->engine[i].ringbuf;
2334 struct intel_engine_cs *ring = ringbuf->ring;
2335
7ba717cf
TD
2336 if (ctx == ring->default_context) {
2337 intel_unpin_ringbuffer_obj(ringbuf);
2338 i915_gem_object_ggtt_unpin(ctx_obj);
2339 }
a7cbedec 2340 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2341 intel_destroy_ringbuffer_obj(ringbuf);
2342 kfree(ringbuf);
8c857917
OM
2343 drm_gem_object_unreference(&ctx_obj->base);
2344 }
2345 }
2346}
2347
2348static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2349{
2350 int ret = 0;
2351
468c6816 2352 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2353
2354 switch (ring->id) {
2355 case RCS:
468c6816
MN
2356 if (INTEL_INFO(ring->dev)->gen >= 9)
2357 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2358 else
2359 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2360 break;
2361 case VCS:
2362 case BCS:
2363 case VECS:
2364 case VCS2:
2365 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2366 break;
2367 }
2368
2369 return ret;
ede7d42b
OM
2370}
2371
70b0ea86 2372static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2373 struct drm_i915_gem_object *default_ctx_obj)
2374{
2375 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2376 struct page *page;
1df06b75 2377
d1675198
AD
2378 /* The HWSP is part of the default context object in LRC mode. */
2379 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2380 + LRC_PPHWSP_PN * PAGE_SIZE;
2381 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2382 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2383 ring->status_page.obj = default_ctx_obj;
2384
2385 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2386 (u32)ring->status_page.gfx_addr);
2387 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2388}
2389
73e4d07f
OM
2390/**
2391 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2392 * @ctx: LR context to create.
2393 * @ring: engine to be used with the context.
2394 *
2395 * This function can be called more than once, with different engines, if we plan
2396 * to use the context with them. The context backing objects and the ringbuffers
2397 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2398 * the creation is a deferred call: it's better to make sure first that we need to use
2399 * a given ring with the context.
2400 *
32197aab 2401 * Return: non-zero on error.
73e4d07f 2402 */
ede7d42b
OM
2403int intel_lr_context_deferred_create(struct intel_context *ctx,
2404 struct intel_engine_cs *ring)
2405{
dcb4c12a 2406 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917 2407 struct drm_device *dev = ring->dev;
d1675198 2408 struct drm_i915_private *dev_priv = dev->dev_private;
8c857917
OM
2409 struct drm_i915_gem_object *ctx_obj;
2410 uint32_t context_size;
84c2377f 2411 struct intel_ringbuffer *ringbuf;
8c857917
OM
2412 int ret;
2413
ede7d42b 2414 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2415 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2416
8c857917
OM
2417 context_size = round_up(get_lr_context_size(ring), 4096);
2418
d1675198
AD
2419 /* One extra page as the sharing data between driver and GuC */
2420 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2421
149c86e7 2422 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2423 if (!ctx_obj) {
2424 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2425 return -ENOMEM;
8c857917
OM
2426 }
2427
dcb4c12a 2428 if (is_global_default_ctx) {
d1675198
AD
2429 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
2430 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
dcb4c12a
OM
2431 if (ret) {
2432 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2433 ret);
2434 drm_gem_object_unreference(&ctx_obj->base);
2435 return ret;
2436 }
d1675198
AD
2437
2438 /* Invalidate GuC TLB. */
2439 if (i915.enable_guc_submission)
2440 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
8c857917
OM
2441 }
2442
84c2377f
OM
2443 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2444 if (!ringbuf) {
2445 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2446 ring->name);
84c2377f 2447 ret = -ENOMEM;
7ba717cf 2448 goto error_unpin_ctx;
84c2377f
OM
2449 }
2450
0c7dd53b 2451 ringbuf->ring = ring;
582d67f0 2452
d1675198 2453 ringbuf->size = 4 * PAGE_SIZE;
84c2377f
OM
2454 ringbuf->effective_size = ringbuf->size;
2455 ringbuf->head = 0;
2456 ringbuf->tail = 0;
84c2377f 2457 ringbuf->last_retired_head = -1;
ebd0fd4b 2458 intel_ring_update_space(ringbuf);
84c2377f 2459
7ba717cf
TD
2460 if (ringbuf->obj == NULL) {
2461 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2462 if (ret) {
2463 DRM_DEBUG_DRIVER(
2464 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2465 ring->name, ret);
7ba717cf
TD
2466 goto error_free_rbuf;
2467 }
2468
2469 if (is_global_default_ctx) {
2470 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2471 if (ret) {
2472 DRM_ERROR(
2473 "Failed to pin and map ringbuffer %s: %d\n",
2474 ring->name, ret);
2475 goto error_destroy_rbuf;
2476 }
2477 }
2478
8670d6f9
OM
2479 }
2480
2481 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2482 if (ret) {
2483 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2484 goto error;
84c2377f
OM
2485 }
2486
2487 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2488 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2489
70b0ea86
DV
2490 if (ctx == ring->default_context)
2491 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2492 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53 2493 if (ring->init_context) {
76c39168
JH
2494 struct drm_i915_gem_request *req;
2495
2496 ret = i915_gem_request_alloc(ring, ctx, &req);
2497 if (ret)
2498 return ret;
2499
8753181e 2500 ret = ring->init_context(req);
e7778be1 2501 if (ret) {
771b9a53 2502 DRM_ERROR("ring init context: %d\n", ret);
76c39168 2503 i915_gem_request_cancel(req);
e7778be1
TD
2504 ctx->engine[ring->id].ringbuf = NULL;
2505 ctx->engine[ring->id].state = NULL;
2506 goto error;
2507 }
76c39168 2508
75289874 2509 i915_add_request_no_flush(req);
771b9a53
MT
2510 }
2511
564ddb2f
OM
2512 ctx->rcs_initialized = true;
2513 }
2514
ede7d42b 2515 return 0;
8670d6f9
OM
2516
2517error:
7ba717cf
TD
2518 if (is_global_default_ctx)
2519 intel_unpin_ringbuffer_obj(ringbuf);
2520error_destroy_rbuf:
2521 intel_destroy_ringbuffer_obj(ringbuf);
2522error_free_rbuf:
8670d6f9 2523 kfree(ringbuf);
7ba717cf 2524error_unpin_ctx:
dcb4c12a
OM
2525 if (is_global_default_ctx)
2526 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2527 drm_gem_object_unreference(&ctx_obj->base);
2528 return ret;
ede7d42b 2529}
3e5b6f05
TD
2530
2531void intel_lr_context_reset(struct drm_device *dev,
2532 struct intel_context *ctx)
2533{
2534 struct drm_i915_private *dev_priv = dev->dev_private;
2535 struct intel_engine_cs *ring;
2536 int i;
2537
2538 for_each_ring(ring, dev_priv, i) {
2539 struct drm_i915_gem_object *ctx_obj =
2540 ctx->engine[ring->id].state;
2541 struct intel_ringbuffer *ringbuf =
2542 ctx->engine[ring->id].ringbuf;
2543 uint32_t *reg_state;
2544 struct page *page;
2545
2546 if (!ctx_obj)
2547 continue;
2548
2549 if (i915_gem_object_get_pages(ctx_obj)) {
2550 WARN(1, "Failed get_pages for context obj\n");
2551 continue;
2552 }
d1675198 2553 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2554 reg_state = kmap_atomic(page);
2555
2556 reg_state[CTX_RING_HEAD+1] = 0;
2557 reg_state[CTX_RING_TAIL+1] = 0;
2558
2559 kunmap_atomic(reg_state);
2560
2561 ringbuf->head = 0;
2562 ringbuf->tail = 0;
2563 }
2564}
This page took 0.256585 seconds and 5 git commands to generate.