drm/i915/kbl: Adding missing IS_KABYLAKE checks.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
17ee950d 226#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 227
8ba319da 228static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
229static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
73e4d07f
OM
266/**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
84b790f8
BW
278u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279{
d1675198
AD
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286}
287
5af05fef
MT
288static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289{
290 struct drm_device *dev = ring->dev;
291
e87a005d 292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
5af05fef
MT
294 (ring->id == VCS || ring->id == VCS2);
295}
296
919f1f55
DG
297uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
84b790f8 299{
919f1f55 300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 301 uint64_t desc;
d1675198
AD
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
306
307 desc = GEN8_CTX_VALID;
2dba3239 308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
203a571b 319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
ec72d588 320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
5af05fef 321 if (disable_lite_restore_wa(ring))
203a571b
NH
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
84b790f8
BW
324 return desc;
325}
326
cc3c4253
MK
327static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
84b790f8 329{
cc3c4253
MK
330
331 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 334 uint64_t desc[2];
84b790f8 335
1cff8cc3 336 if (rq1) {
919f1f55 337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
84b790f8 342
919f1f55 343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 344 rq0->elsp_submitted++;
84b790f8 345
1cff8cc3 346 /* You must always write both descriptors in the order below. */
a6111f7b
CW
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 351
1cff8cc3 352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 353 /* The context is automatically loaded after the following */
1cff8cc3 354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 355
1cff8cc3 356 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
360}
361
05d9824b 362static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
05d9824b
MK
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
368 struct page *page;
369 uint32_t *reg_state;
370
05d9824b
MK
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
033908ae 375 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
376 reg_state = kmap_atomic(page);
377
05d9824b
MK
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 380
2dba3239
MT
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
d7b2633d
MT
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
ae1250b9
OM
393 kunmap_atomic(reg_state);
394
395 return 0;
396}
397
d8cb8875
MK
398static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
84b790f8 400{
05d9824b 401 execlists_update_context(rq0);
d8cb8875 402
cc3c4253 403 if (rq1)
05d9824b 404 execlists_update_context(rq1);
84b790f8 405
cc3c4253 406 execlists_elsp_write(rq0, rq1);
84b790f8
BW
407}
408
acdd884a
MT
409static void execlists_context_unqueue(struct intel_engine_cs *ring)
410{
6d3d8274
NH
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
413
414 assert_spin_locked(&ring->execlist_lock);
acdd884a 415
779949f4
PA
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
acdd884a
MT
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
6d3d8274 430 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
e1fee72c 433 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 434 list_del(&req0->execlist_link);
c86ee3a9
TD
435 list_add_tail(&req0->execlist_link,
436 &ring->execlist_retired_req_list);
acdd884a
MT
437 req0 = cursor;
438 } else {
439 req1 = cursor;
440 break;
441 }
442 }
443
53292cdb
MT
444 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445 /*
446 * WaIdleLiteRestore: make sure we never cause a lite
447 * restore with HEAD==TAIL
448 */
d63f820f 449 if (req0->elsp_submitted) {
53292cdb
MT
450 /*
451 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452 * as we resubmit the request. See gen8_emit_request()
453 * for where we prepare the padding after the end of the
454 * request.
455 */
456 struct intel_ringbuffer *ringbuf;
457
458 ringbuf = req0->ctx->engine[ring->id].ringbuf;
459 req0->tail += 8;
460 req0->tail &= ringbuf->size - 1;
461 }
462 }
463
e1fee72c
OM
464 WARN_ON(req1 && req1->elsp_submitted);
465
d8cb8875 466 execlists_submit_requests(req0, req1);
acdd884a
MT
467}
468
e981e7b1
TD
469static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470 u32 request_id)
471{
6d3d8274 472 struct drm_i915_gem_request *head_req;
e981e7b1
TD
473
474 assert_spin_locked(&ring->execlist_lock);
475
476 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 477 struct drm_i915_gem_request,
e981e7b1
TD
478 execlist_link);
479
480 if (head_req != NULL) {
481 struct drm_i915_gem_object *ctx_obj =
6d3d8274 482 head_req->ctx->engine[ring->id].state;
e981e7b1 483 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
484 WARN(head_req->elsp_submitted == 0,
485 "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted <= 0) {
488 list_del(&head_req->execlist_link);
c86ee3a9
TD
489 list_add_tail(&head_req->execlist_link,
490 &ring->execlist_retired_req_list);
e1fee72c
OM
491 return true;
492 }
e981e7b1
TD
493 }
494 }
495
496 return false;
497}
498
91a41032
BW
499static void get_context_status(struct intel_engine_cs *ring,
500 u8 read_pointer,
501 u32 *status, u32 *context_id)
502{
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504
505 if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
506 return;
507
508 *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
509 *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
510}
511
73e4d07f 512/**
3f7531c3 513 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
514 * @ring: Engine Command Streamer to handle.
515 *
516 * Check the unread Context Status Buffers and manage the submission of new
517 * contexts to the ELSP accordingly.
518 */
3f7531c3 519void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
520{
521 struct drm_i915_private *dev_priv = ring->dev->dev_private;
522 u32 status_pointer;
523 u8 read_pointer;
524 u8 write_pointer;
5af05fef 525 u32 status = 0;
e981e7b1
TD
526 u32 status_id;
527 u32 submit_contexts = 0;
528
529 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
530
531 read_pointer = ring->next_context_status_buffer;
5590a5f0 532 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 533 if (read_pointer > write_pointer)
dfc53c5e 534 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1
TD
535
536 spin_lock(&ring->execlist_lock);
537
538 while (read_pointer < write_pointer) {
91a41032
BW
539
540 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
541 &status, &status_id);
e981e7b1 542
031a8936
MK
543 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
544 continue;
545
e1fee72c
OM
546 if (status & GEN8_CTX_STATUS_PREEMPTED) {
547 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
548 if (execlists_check_remove_request(ring, status_id))
549 WARN(1, "Lite Restored request removed from queue\n");
550 } else
551 WARN(1, "Preemption without Lite Restore\n");
552 }
553
eba51190
BW
554 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
555 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
556 if (execlists_check_remove_request(ring, status_id))
557 submit_contexts++;
558 }
559 }
560
5af05fef
MT
561 if (disable_lite_restore_wa(ring)) {
562 /* Prevent a ctx to preempt itself */
563 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
564 (submit_contexts != 0))
565 execlists_context_unqueue(ring);
566 } else if (submit_contexts != 0) {
e981e7b1 567 execlists_context_unqueue(ring);
5af05fef 568 }
e981e7b1
TD
569
570 spin_unlock(&ring->execlist_lock);
571
f764a8b1
BW
572 if (unlikely(submit_contexts > 2))
573 DRM_ERROR("More than two context complete events?\n");
574
dfc53c5e 575 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 576
5590a5f0
BW
577 /* Update the read pointer to the old write pointer. Manual ringbuffer
578 * management ftw </sarcasm> */
e981e7b1 579 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
5590a5f0
BW
580 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
581 ring->next_context_status_buffer << 8));
e981e7b1
TD
582}
583
ae70797d 584static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 585{
ae70797d 586 struct intel_engine_cs *ring = request->ring;
6d3d8274 587 struct drm_i915_gem_request *cursor;
f1ad5a1f 588 int num_elements = 0;
acdd884a 589
af3302b9
DV
590 if (request->ctx != ring->default_context)
591 intel_lr_context_pin(request);
592
9bb1af44
JH
593 i915_gem_request_reference(request);
594
b5eba372 595 spin_lock_irq(&ring->execlist_lock);
acdd884a 596
f1ad5a1f
OM
597 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
598 if (++num_elements > 2)
599 break;
600
601 if (num_elements > 2) {
6d3d8274 602 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
603
604 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 605 struct drm_i915_gem_request,
f1ad5a1f
OM
606 execlist_link);
607
ae70797d 608 if (request->ctx == tail_req->ctx) {
f1ad5a1f 609 WARN(tail_req->elsp_submitted != 0,
7ba717cf 610 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 611 list_del(&tail_req->execlist_link);
c86ee3a9
TD
612 list_add_tail(&tail_req->execlist_link,
613 &ring->execlist_retired_req_list);
f1ad5a1f
OM
614 }
615 }
616
6d3d8274 617 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 618 if (num_elements == 0)
acdd884a
MT
619 execlists_context_unqueue(ring);
620
b5eba372 621 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
622
623 return 0;
624}
625
2f20055d 626static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 627{
2f20055d 628 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
629 uint32_t flush_domains;
630 int ret;
631
632 flush_domains = 0;
633 if (ring->gpu_caches_dirty)
634 flush_domains = I915_GEM_GPU_DOMAINS;
635
7deb4d39 636 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
637 if (ret)
638 return ret;
639
640 ring->gpu_caches_dirty = false;
641 return 0;
642}
643
535fbe82 644static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
645 struct list_head *vmas)
646{
535fbe82 647 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
648 struct i915_vma *vma;
649 uint32_t flush_domains = 0;
650 bool flush_chipset = false;
651 int ret;
652
653 list_for_each_entry(vma, vmas, exec_list) {
654 struct drm_i915_gem_object *obj = vma->obj;
655
03ade511 656 if (obj->active & other_rings) {
91af127f 657 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
658 if (ret)
659 return ret;
660 }
ba8b7ccb
OM
661
662 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
663 flush_chipset |= i915_gem_clflush_object(obj, false);
664
665 flush_domains |= obj->base.write_domain;
666 }
667
668 if (flush_domains & I915_GEM_DOMAIN_GTT)
669 wmb();
670
671 /* Unconditionally invalidate gpu caches and ensure that we do flush
672 * any residual writes from the previous batch.
673 */
2f20055d 674 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
675}
676
40e895ce 677int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 678{
bc0dce3f
JH
679 int ret;
680
f3cc01f0
MK
681 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
682
40e895ce 683 if (request->ctx != request->ring->default_context) {
8ba319da 684 ret = intel_lr_context_pin(request);
6689cb2b 685 if (ret)
bc0dce3f 686 return ret;
bc0dce3f
JH
687 }
688
a7e02199
AD
689 if (i915.enable_guc_submission) {
690 /*
691 * Check that the GuC has space for the request before
692 * going any further, as the i915_add_request() call
693 * later on mustn't fail ...
694 */
695 struct intel_guc *guc = &request->i915->guc;
696
697 ret = i915_guc_wq_check_space(guc->execbuf_client);
698 if (ret)
699 return ret;
700 }
701
bc0dce3f
JH
702 return 0;
703}
704
ae70797d 705static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 706 int bytes)
bc0dce3f 707{
ae70797d
JH
708 struct intel_ringbuffer *ringbuf = req->ringbuf;
709 struct intel_engine_cs *ring = req->ring;
710 struct drm_i915_gem_request *target;
b4716185
CW
711 unsigned space;
712 int ret;
bc0dce3f
JH
713
714 if (intel_ring_space(ringbuf) >= bytes)
715 return 0;
716
79bbcc29
JH
717 /* The whole point of reserving space is to not wait! */
718 WARN_ON(ringbuf->reserved_in_use);
719
ae70797d 720 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
721 /*
722 * The request queue is per-engine, so can contain requests
723 * from multiple ringbuffers. Here, we must ignore any that
724 * aren't from the ringbuffer we're considering.
725 */
ae70797d 726 if (target->ringbuf != ringbuf)
bc0dce3f
JH
727 continue;
728
729 /* Would completion of this request free enough space? */
ae70797d 730 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
731 ringbuf->size);
732 if (space >= bytes)
bc0dce3f 733 break;
bc0dce3f
JH
734 }
735
ae70797d 736 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
737 return -ENOSPC;
738
ae70797d 739 ret = i915_wait_request(target);
bc0dce3f
JH
740 if (ret)
741 return ret;
742
b4716185
CW
743 ringbuf->space = space;
744 return 0;
bc0dce3f
JH
745}
746
747/*
748 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 749 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
750 *
751 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
752 * really happens during submission is that the context and current tail will be placed
753 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
754 * point, the tail *inside* the context is updated and the ELSP written to.
755 */
756static void
ae70797d 757intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 758{
ae70797d 759 struct intel_engine_cs *ring = request->ring;
d1675198 760 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 761
ae70797d 762 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 763
d1675198
AD
764 request->tail = request->ringbuf->tail;
765
bc0dce3f
JH
766 if (intel_ring_stopped(ring))
767 return;
768
d1675198
AD
769 if (dev_priv->guc.execbuf_client)
770 i915_guc_submit(dev_priv->guc.execbuf_client, request);
771 else
772 execlists_context_queue(request);
bc0dce3f
JH
773}
774
79bbcc29 775static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
776{
777 uint32_t __iomem *virt;
778 int rem = ringbuf->size - ringbuf->tail;
779
bc0dce3f
JH
780 virt = ringbuf->virtual_start + ringbuf->tail;
781 rem /= 4;
782 while (rem--)
783 iowrite32(MI_NOOP, virt++);
784
785 ringbuf->tail = 0;
786 intel_ring_update_space(ringbuf);
bc0dce3f
JH
787}
788
ae70797d 789static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 790{
ae70797d 791 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
792 int remain_usable = ringbuf->effective_size - ringbuf->tail;
793 int remain_actual = ringbuf->size - ringbuf->tail;
794 int ret, total_bytes, wait_bytes = 0;
795 bool need_wrap = false;
29b1b415 796
79bbcc29
JH
797 if (ringbuf->reserved_in_use)
798 total_bytes = bytes;
799 else
800 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 801
79bbcc29
JH
802 if (unlikely(bytes > remain_usable)) {
803 /*
804 * Not enough space for the basic request. So need to flush
805 * out the remainder and then wait for base + reserved.
806 */
807 wait_bytes = remain_actual + total_bytes;
808 need_wrap = true;
809 } else {
810 if (unlikely(total_bytes > remain_usable)) {
811 /*
812 * The base request will fit but the reserved space
813 * falls off the end. So only need to to wait for the
814 * reserved size after flushing out the remainder.
815 */
816 wait_bytes = remain_actual + ringbuf->reserved_size;
817 need_wrap = true;
818 } else if (total_bytes > ringbuf->space) {
819 /* No wrapping required, just waiting. */
820 wait_bytes = total_bytes;
29b1b415 821 }
bc0dce3f
JH
822 }
823
79bbcc29
JH
824 if (wait_bytes) {
825 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
826 if (unlikely(ret))
827 return ret;
79bbcc29
JH
828
829 if (need_wrap)
830 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
831 }
832
833 return 0;
834}
835
836/**
837 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
838 *
374887ba 839 * @req: The request to start some new work for
bc0dce3f
JH
840 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
841 *
842 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
843 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
844 * and also preallocates a request (every workload submission is still mediated through
845 * requests, same as it did with legacy ringbuffer submission).
846 *
847 * Return: non-zero if the ringbuffer is not ready to be written to.
848 */
3bbaba0c 849int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 850{
4d616a29 851 struct drm_i915_private *dev_priv;
bc0dce3f
JH
852 int ret;
853
4d616a29
JH
854 WARN_ON(req == NULL);
855 dev_priv = req->ring->dev->dev_private;
856
bc0dce3f
JH
857 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
858 dev_priv->mm.interruptible);
859 if (ret)
860 return ret;
861
ae70797d 862 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
863 if (ret)
864 return ret;
865
4d616a29 866 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
867 return 0;
868}
869
ccd98fe4
JH
870int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
871{
872 /*
873 * The first call merely notes the reserve request and is common for
874 * all back ends. The subsequent localised _begin() call actually
875 * ensures that the reservation is available. Without the begin, if
876 * the request creator immediately submitted the request without
877 * adding any commands to it then there might not actually be
878 * sufficient room for the submission commands.
879 */
880 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
881
882 return intel_logical_ring_begin(request, 0);
883}
884
73e4d07f
OM
885/**
886 * execlists_submission() - submit a batchbuffer for execution, Execlists style
887 * @dev: DRM device.
888 * @file: DRM file.
889 * @ring: Engine Command Streamer to submit to.
890 * @ctx: Context to employ for this submission.
891 * @args: execbuffer call arguments.
892 * @vmas: list of vmas.
893 * @batch_obj: the batchbuffer to submit.
894 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 895 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
896 *
897 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
898 * away the submission details of the execbuffer ioctl call.
899 *
900 * Return: non-zero if the submission fails.
901 */
5f19e2bf 902int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 903 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 904 struct list_head *vmas)
454afebd 905{
5f19e2bf
JH
906 struct drm_device *dev = params->dev;
907 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 908 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
909 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
910 u64 exec_start;
ba8b7ccb
OM
911 int instp_mode;
912 u32 instp_mask;
913 int ret;
914
915 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
916 instp_mask = I915_EXEC_CONSTANTS_MASK;
917 switch (instp_mode) {
918 case I915_EXEC_CONSTANTS_REL_GENERAL:
919 case I915_EXEC_CONSTANTS_ABSOLUTE:
920 case I915_EXEC_CONSTANTS_REL_SURFACE:
921 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
922 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
923 return -EINVAL;
924 }
925
926 if (instp_mode != dev_priv->relative_constants_mode) {
927 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
928 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
929 return -EINVAL;
930 }
931
932 /* The HW changed the meaning on this bit on gen6 */
933 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
934 }
935 break;
936 default:
937 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
938 return -EINVAL;
939 }
940
ba8b7ccb
OM
941 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
942 DRM_DEBUG("sol reset is gen7 only\n");
943 return -EINVAL;
944 }
945
535fbe82 946 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
947 if (ret)
948 return ret;
949
950 if (ring == &dev_priv->ring[RCS] &&
951 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 952 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
953 if (ret)
954 return ret;
955
956 intel_logical_ring_emit(ringbuf, MI_NOOP);
957 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 958 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
959 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
960 intel_logical_ring_advance(ringbuf);
961
962 dev_priv->relative_constants_mode = instp_mode;
963 }
964
5f19e2bf
JH
965 exec_start = params->batch_obj_vm_offset +
966 args->batch_start_offset;
967
be795fc1 968 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
969 if (ret)
970 return ret;
971
95c24161 972 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 973
8a8edb59 974 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 975 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 976
454afebd
OM
977 return 0;
978}
979
c86ee3a9
TD
980void intel_execlists_retire_requests(struct intel_engine_cs *ring)
981{
6d3d8274 982 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
983 struct list_head retired_list;
984
985 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
986 if (list_empty(&ring->execlist_retired_req_list))
987 return;
988
989 INIT_LIST_HEAD(&retired_list);
b5eba372 990 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 991 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 992 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
993
994 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
995 struct intel_context *ctx = req->ctx;
996 struct drm_i915_gem_object *ctx_obj =
997 ctx->engine[ring->id].state;
998
999 if (ctx_obj && (ctx != ring->default_context))
1000 intel_lr_context_unpin(req);
c86ee3a9 1001 list_del(&req->execlist_link);
f8210795 1002 i915_gem_request_unreference(req);
c86ee3a9
TD
1003 }
1004}
1005
454afebd
OM
1006void intel_logical_ring_stop(struct intel_engine_cs *ring)
1007{
9832b9da
OM
1008 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1009 int ret;
1010
1011 if (!intel_ring_initialized(ring))
1012 return;
1013
1014 ret = intel_ring_idle(ring);
1015 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1016 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1017 ring->name, ret);
1018
1019 /* TODO: Is this correct with Execlists enabled? */
1020 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1021 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1022 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1023 return;
1024 }
1025 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1026}
1027
4866d729 1028int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1029{
4866d729 1030 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1031 int ret;
1032
1033 if (!ring->gpu_caches_dirty)
1034 return 0;
1035
7deb4d39 1036 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1037 if (ret)
1038 return ret;
1039
1040 ring->gpu_caches_dirty = false;
1041 return 0;
1042}
1043
e84fe803
NH
1044static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1045 struct drm_i915_gem_object *ctx_obj,
1046 struct intel_ringbuffer *ringbuf)
dcb4c12a 1047{
e84fe803
NH
1048 struct drm_device *dev = ring->dev;
1049 struct drm_i915_private *dev_priv = dev->dev_private;
dcb4c12a
OM
1050 int ret = 0;
1051
1052 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
e84fe803
NH
1053 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1054 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1055 if (ret)
1056 return ret;
7ba717cf 1057
e84fe803
NH
1058 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1059 if (ret)
1060 goto unpin_ctx_obj;
d1675198 1061
e84fe803 1062 ctx_obj->dirty = true;
e93c28f3 1063
e84fe803
NH
1064 /* Invalidate GuC TLB. */
1065 if (i915.enable_guc_submission)
1066 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1067
7ba717cf
TD
1068 return ret;
1069
1070unpin_ctx_obj:
1071 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1072
1073 return ret;
1074}
1075
1076static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1077{
1078 int ret = 0;
1079 struct intel_engine_cs *ring = rq->ring;
1080 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1081 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1082
1083 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1084 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1085 if (ret)
1086 goto reset_pin_count;
1087 }
1088 return ret;
1089
a7cbedec 1090reset_pin_count:
8ba319da 1091 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1092 return ret;
1093}
1094
af3302b9 1095void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1096{
af3302b9
DV
1097 struct intel_engine_cs *ring = rq->ring;
1098 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1099 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1100
dcb4c12a
OM
1101 if (ctx_obj) {
1102 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
af3302b9 1103 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1104 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1105 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1106 }
dcb4c12a
OM
1107 }
1108}
1109
e2be4faf 1110static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1111{
1112 int ret, i;
e2be4faf
JH
1113 struct intel_engine_cs *ring = req->ring;
1114 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1115 struct drm_device *dev = ring->dev;
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 struct i915_workarounds *w = &dev_priv->workarounds;
1118
e6c1abb7 1119 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1120 return 0;
1121
1122 ring->gpu_caches_dirty = true;
4866d729 1123 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1124 if (ret)
1125 return ret;
1126
4d616a29 1127 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1128 if (ret)
1129 return ret;
1130
1131 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1132 for (i = 0; i < w->count; i++) {
f92a9162 1133 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1134 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1135 }
1136 intel_logical_ring_emit(ringbuf, MI_NOOP);
1137
1138 intel_logical_ring_advance(ringbuf);
1139
1140 ring->gpu_caches_dirty = true;
4866d729 1141 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1142 if (ret)
1143 return ret;
1144
1145 return 0;
1146}
1147
83b8a982 1148#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1149 do { \
83b8a982
AS
1150 int __index = (index)++; \
1151 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1152 return -ENOSPC; \
1153 } \
83b8a982 1154 batch[__index] = (cmd); \
17ee950d
AS
1155 } while (0)
1156
8f40db77 1157#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1158 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1159
1160/*
1161 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1162 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1163 * but there is a slight complication as this is applied in WA batch where the
1164 * values are only initialized once so we cannot take register value at the
1165 * beginning and reuse it further; hence we save its value to memory, upload a
1166 * constant value with bit21 set and then we restore it back with the saved value.
1167 * To simplify the WA, a constant value is formed by using the default value
1168 * of this register. This shouldn't be a problem because we are only modifying
1169 * it for a short period and this batch in non-premptible. We can ofcourse
1170 * use additional instructions that read the actual value of the register
1171 * at that time and set our bit of interest but it makes the WA complicated.
1172 *
1173 * This WA is also required for Gen9 so extracting as a function avoids
1174 * code duplication.
1175 */
1176static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1177 uint32_t *const batch,
1178 uint32_t index)
1179{
1180 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1181
a4106a78
AS
1182 /*
1183 * WaDisableLSQCROPERFforOCL:skl
1184 * This WA is implemented in skl_init_clock_gating() but since
1185 * this batch updates GEN8_L3SQCREG4 with default value we need to
1186 * set this bit here to retain the WA during flush.
1187 */
e87a005d 1188 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1189 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1190
f1afe24f 1191 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1192 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1193 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1194 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1195 wa_ctx_emit(batch, index, 0);
1196
1197 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1198 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1199 wa_ctx_emit(batch, index, l3sqc4_flush);
1200
1201 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1202 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1203 PIPE_CONTROL_DC_FLUSH_ENABLE));
1204 wa_ctx_emit(batch, index, 0);
1205 wa_ctx_emit(batch, index, 0);
1206 wa_ctx_emit(batch, index, 0);
1207 wa_ctx_emit(batch, index, 0);
1208
f1afe24f 1209 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1210 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1211 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1212 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1213 wa_ctx_emit(batch, index, 0);
9e000847
AS
1214
1215 return index;
1216}
1217
17ee950d
AS
1218static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1219 uint32_t offset,
1220 uint32_t start_alignment)
1221{
1222 return wa_ctx->offset = ALIGN(offset, start_alignment);
1223}
1224
1225static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1226 uint32_t offset,
1227 uint32_t size_alignment)
1228{
1229 wa_ctx->size = offset - wa_ctx->offset;
1230
1231 WARN(wa_ctx->size % size_alignment,
1232 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1233 wa_ctx->size, size_alignment);
1234 return 0;
1235}
1236
1237/**
1238 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1239 *
1240 * @ring: only applicable for RCS
1241 * @wa_ctx: structure representing wa_ctx
1242 * offset: specifies start of the batch, should be cache-aligned. This is updated
1243 * with the offset value received as input.
1244 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1245 * @batch: page in which WA are loaded
1246 * @offset: This field specifies the start of the batch, it should be
1247 * cache-aligned otherwise it is adjusted accordingly.
1248 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1249 * initialized at the beginning and shared across all contexts but this field
1250 * helps us to have multiple batches at different offsets and select them based
1251 * on a criteria. At the moment this batch always start at the beginning of the page
1252 * and at this point we don't have multiple wa_ctx batch buffers.
1253 *
1254 * The number of WA applied are not known at the beginning; we use this field
1255 * to return the no of DWORDS written.
4d78c8dc 1256 *
17ee950d
AS
1257 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1258 * so it adds NOOPs as padding to make it cacheline aligned.
1259 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1260 * makes a complete batch buffer.
1261 *
1262 * Return: non-zero if we exceed the PAGE_SIZE limit.
1263 */
1264
1265static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1266 struct i915_wa_ctx_bb *wa_ctx,
1267 uint32_t *const batch,
1268 uint32_t *offset)
1269{
0160f055 1270 uint32_t scratch_addr;
17ee950d
AS
1271 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1272
7ad00d1a 1273 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1274 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1275
c82435bb
AS
1276 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1277 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1278 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1279 if (rc < 0)
1280 return rc;
1281 index = rc;
c82435bb
AS
1282 }
1283
0160f055
AS
1284 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1285 /* Actual scratch location is at 128 bytes offset */
1286 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1287
83b8a982
AS
1288 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1289 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1290 PIPE_CONTROL_GLOBAL_GTT_IVB |
1291 PIPE_CONTROL_CS_STALL |
1292 PIPE_CONTROL_QW_WRITE));
1293 wa_ctx_emit(batch, index, scratch_addr);
1294 wa_ctx_emit(batch, index, 0);
1295 wa_ctx_emit(batch, index, 0);
1296 wa_ctx_emit(batch, index, 0);
0160f055 1297
17ee950d
AS
1298 /* Pad to end of cacheline */
1299 while (index % CACHELINE_DWORDS)
83b8a982 1300 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1301
1302 /*
1303 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1304 * execution depends on the length specified in terms of cache lines
1305 * in the register CTX_RCS_INDIRECT_CTX
1306 */
1307
1308 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1309}
1310
1311/**
1312 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1313 *
1314 * @ring: only applicable for RCS
1315 * @wa_ctx: structure representing wa_ctx
1316 * offset: specifies start of the batch, should be cache-aligned.
1317 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1318 * @batch: page in which WA are loaded
17ee950d
AS
1319 * @offset: This field specifies the start of this batch.
1320 * This batch is started immediately after indirect_ctx batch. Since we ensure
1321 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1322 *
1323 * The number of DWORDS written are returned using this field.
1324 *
1325 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1326 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1327 */
1328static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1329 struct i915_wa_ctx_bb *wa_ctx,
1330 uint32_t *const batch,
1331 uint32_t *offset)
1332{
1333 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1334
7ad00d1a 1335 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1336 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1337
83b8a982 1338 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1339
1340 return wa_ctx_end(wa_ctx, *offset = index, 1);
1341}
1342
0504cffc
AS
1343static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1344 struct i915_wa_ctx_bb *wa_ctx,
1345 uint32_t *const batch,
1346 uint32_t *offset)
1347{
a4106a78 1348 int ret;
0907c8f7 1349 struct drm_device *dev = ring->dev;
0504cffc
AS
1350 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1351
0907c8f7 1352 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1353 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1354 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1355 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1356
a4106a78
AS
1357 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1358 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1359 if (ret < 0)
1360 return ret;
1361 index = ret;
1362
0504cffc
AS
1363 /* Pad to end of cacheline */
1364 while (index % CACHELINE_DWORDS)
1365 wa_ctx_emit(batch, index, MI_NOOP);
1366
1367 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1368}
1369
1370static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1371 struct i915_wa_ctx_bb *wa_ctx,
1372 uint32_t *const batch,
1373 uint32_t *offset)
1374{
0907c8f7 1375 struct drm_device *dev = ring->dev;
0504cffc
AS
1376 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1377
9b01435d 1378 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1379 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1380 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1381 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1382 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1383 wa_ctx_emit(batch, index,
1384 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1385 wa_ctx_emit(batch, index, MI_NOOP);
1386 }
1387
0907c8f7 1388 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1389 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1390 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1391 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1392
0504cffc
AS
1393 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1394
1395 return wa_ctx_end(wa_ctx, *offset = index, 1);
1396}
1397
17ee950d
AS
1398static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1399{
1400 int ret;
1401
1402 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1403 if (!ring->wa_ctx.obj) {
1404 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1405 return -ENOMEM;
1406 }
1407
1408 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1409 if (ret) {
1410 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1411 ret);
1412 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1413 return ret;
1414 }
1415
1416 return 0;
1417}
1418
1419static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1420{
1421 if (ring->wa_ctx.obj) {
1422 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1423 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1424 ring->wa_ctx.obj = NULL;
1425 }
1426}
1427
1428static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1429{
1430 int ret;
1431 uint32_t *batch;
1432 uint32_t offset;
1433 struct page *page;
1434 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1435
1436 WARN_ON(ring->id != RCS);
1437
5e60d790 1438 /* update this when WA for higher Gen are added */
0504cffc
AS
1439 if (INTEL_INFO(ring->dev)->gen > 9) {
1440 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1441 INTEL_INFO(ring->dev)->gen);
5e60d790 1442 return 0;
0504cffc 1443 }
5e60d790 1444
c4db7599
AS
1445 /* some WA perform writes to scratch page, ensure it is valid */
1446 if (ring->scratch.obj == NULL) {
1447 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1448 return -EINVAL;
1449 }
1450
17ee950d
AS
1451 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1452 if (ret) {
1453 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1454 return ret;
1455 }
1456
033908ae 1457 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1458 batch = kmap_atomic(page);
1459 offset = 0;
1460
1461 if (INTEL_INFO(ring->dev)->gen == 8) {
1462 ret = gen8_init_indirectctx_bb(ring,
1463 &wa_ctx->indirect_ctx,
1464 batch,
1465 &offset);
1466 if (ret)
1467 goto out;
1468
1469 ret = gen8_init_perctx_bb(ring,
1470 &wa_ctx->per_ctx,
1471 batch,
1472 &offset);
1473 if (ret)
1474 goto out;
0504cffc
AS
1475 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1476 ret = gen9_init_indirectctx_bb(ring,
1477 &wa_ctx->indirect_ctx,
1478 batch,
1479 &offset);
1480 if (ret)
1481 goto out;
1482
1483 ret = gen9_init_perctx_bb(ring,
1484 &wa_ctx->per_ctx,
1485 batch,
1486 &offset);
1487 if (ret)
1488 goto out;
17ee950d
AS
1489 }
1490
1491out:
1492 kunmap_atomic(batch);
1493 if (ret)
1494 lrc_destroy_wa_ctx_obj(ring);
1495
1496 return ret;
1497}
1498
9b1136d5
OM
1499static int gen8_init_common_ring(struct intel_engine_cs *ring)
1500{
1501 struct drm_device *dev = ring->dev;
1502 struct drm_i915_private *dev_priv = dev->dev_private;
dfc53c5e 1503 u8 next_context_status_buffer_hw;
9b1136d5 1504
e84fe803
NH
1505 lrc_setup_hardware_status_page(ring,
1506 ring->default_context->engine[ring->id].state);
1507
73d477f6
OM
1508 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1509 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1510
9b1136d5
OM
1511 I915_WRITE(RING_MODE_GEN7(ring),
1512 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1513 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1514 POSTING_READ(RING_MODE_GEN7(ring));
dfc53c5e
MT
1515
1516 /*
1517 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1518 * zero, we need to read the write pointer from hardware and use its
1519 * value because "this register is power context save restored".
1520 * Effectively, these states have been observed:
1521 *
1522 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1523 * BDW | CSB regs not reset | CSB regs reset |
1524 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1525 * SKL | ? | ? |
1526 * BXT | ? | ? |
dfc53c5e 1527 */
5590a5f0
BW
1528 next_context_status_buffer_hw =
1529 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
dfc53c5e
MT
1530
1531 /*
1532 * When the CSB registers are reset (also after power-up / gpu reset),
1533 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1534 * this special case, so the first element read is CSB[0].
1535 */
1536 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1537 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1538
1539 ring->next_context_status_buffer = next_context_status_buffer_hw;
9b1136d5
OM
1540 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1541
1542 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1543
1544 return 0;
1545}
1546
1547static int gen8_init_render_ring(struct intel_engine_cs *ring)
1548{
1549 struct drm_device *dev = ring->dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int ret;
1552
1553 ret = gen8_init_common_ring(ring);
1554 if (ret)
1555 return ret;
1556
1557 /* We need to disable the AsyncFlip performance optimisations in order
1558 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1559 * programmed to '1' on all products.
1560 *
1561 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1562 */
1563 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1564
9b1136d5
OM
1565 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1566
771b9a53 1567 return init_workarounds_ring(ring);
9b1136d5
OM
1568}
1569
82ef822e
DL
1570static int gen9_init_render_ring(struct intel_engine_cs *ring)
1571{
1572 int ret;
1573
1574 ret = gen8_init_common_ring(ring);
1575 if (ret)
1576 return ret;
1577
1578 return init_workarounds_ring(ring);
1579}
1580
7a01a0a2
MT
1581static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1582{
1583 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1584 struct intel_engine_cs *ring = req->ring;
1585 struct intel_ringbuffer *ringbuf = req->ringbuf;
1586 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1587 int i, ret;
1588
1589 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1590 if (ret)
1591 return ret;
1592
1593 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1594 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1595 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1596
f92a9162 1597 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
7a01a0a2 1598 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
f92a9162 1599 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
7a01a0a2
MT
1600 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1601 }
1602
1603 intel_logical_ring_emit(ringbuf, MI_NOOP);
1604 intel_logical_ring_advance(ringbuf);
1605
1606 return 0;
1607}
1608
be795fc1 1609static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1610 u64 offset, unsigned dispatch_flags)
15648585 1611{
be795fc1 1612 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1613 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1614 int ret;
1615
7a01a0a2
MT
1616 /* Don't rely in hw updating PDPs, specially in lite-restore.
1617 * Ideally, we should set Force PD Restore in ctx descriptor,
1618 * but we can't. Force Restore would be a second option, but
1619 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1620 * not idle). PML4 is allocated during ppgtt init so this is
1621 * not needed in 48-bit.*/
7a01a0a2
MT
1622 if (req->ctx->ppgtt &&
1623 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1624 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1625 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1626 ret = intel_logical_ring_emit_pdps(req);
1627 if (ret)
1628 return ret;
1629 }
7a01a0a2
MT
1630
1631 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1632 }
1633
4d616a29 1634 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1635 if (ret)
1636 return ret;
1637
1638 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1639 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1640 (ppgtt<<8) |
1641 (dispatch_flags & I915_DISPATCH_RS ?
1642 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1643 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1644 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1645 intel_logical_ring_emit(ringbuf, MI_NOOP);
1646 intel_logical_ring_advance(ringbuf);
1647
1648 return 0;
1649}
1650
73d477f6
OM
1651static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1652{
1653 struct drm_device *dev = ring->dev;
1654 struct drm_i915_private *dev_priv = dev->dev_private;
1655 unsigned long flags;
1656
7cd512f1 1657 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1658 return false;
1659
1660 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1661 if (ring->irq_refcount++ == 0) {
1662 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1663 POSTING_READ(RING_IMR(ring->mmio_base));
1664 }
1665 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1666
1667 return true;
1668}
1669
1670static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1671{
1672 struct drm_device *dev = ring->dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 unsigned long flags;
1675
1676 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1677 if (--ring->irq_refcount == 0) {
1678 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1679 POSTING_READ(RING_IMR(ring->mmio_base));
1680 }
1681 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1682}
1683
7deb4d39 1684static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1685 u32 invalidate_domains,
1686 u32 unused)
1687{
7deb4d39 1688 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1689 struct intel_engine_cs *ring = ringbuf->ring;
1690 struct drm_device *dev = ring->dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 uint32_t cmd;
1693 int ret;
1694
4d616a29 1695 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1696 if (ret)
1697 return ret;
1698
1699 cmd = MI_FLUSH_DW + 1;
1700
f0a1fb10
CW
1701 /* We always require a command barrier so that subsequent
1702 * commands, such as breadcrumb interrupts, are strictly ordered
1703 * wrt the contents of the write cache being flushed to memory
1704 * (and thus being coherent from the CPU).
1705 */
1706 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1707
1708 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1709 cmd |= MI_INVALIDATE_TLB;
1710 if (ring == &dev_priv->ring[VCS])
1711 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1712 }
1713
1714 intel_logical_ring_emit(ringbuf, cmd);
1715 intel_logical_ring_emit(ringbuf,
1716 I915_GEM_HWS_SCRATCH_ADDR |
1717 MI_FLUSH_DW_USE_GTT);
1718 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1719 intel_logical_ring_emit(ringbuf, 0); /* value */
1720 intel_logical_ring_advance(ringbuf);
1721
1722 return 0;
1723}
1724
7deb4d39 1725static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1726 u32 invalidate_domains,
1727 u32 flush_domains)
1728{
7deb4d39 1729 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1730 struct intel_engine_cs *ring = ringbuf->ring;
1731 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1732 bool vf_flush_wa = false;
4712274c
OM
1733 u32 flags = 0;
1734 int ret;
1735
1736 flags |= PIPE_CONTROL_CS_STALL;
1737
1738 if (flush_domains) {
1739 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1740 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
40a24488 1741 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1742 }
1743
1744 if (invalidate_domains) {
1745 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1746 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1747 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1748 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1749 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1750 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1751 flags |= PIPE_CONTROL_QW_WRITE;
1752 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1753
1a5a9ce7
BW
1754 /*
1755 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1756 * pipe control.
1757 */
1758 if (IS_GEN9(ring->dev))
1759 vf_flush_wa = true;
1760 }
9647ff36 1761
4d616a29 1762 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1763 if (ret)
1764 return ret;
1765
9647ff36
ID
1766 if (vf_flush_wa) {
1767 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1768 intel_logical_ring_emit(ringbuf, 0);
1769 intel_logical_ring_emit(ringbuf, 0);
1770 intel_logical_ring_emit(ringbuf, 0);
1771 intel_logical_ring_emit(ringbuf, 0);
1772 intel_logical_ring_emit(ringbuf, 0);
1773 }
1774
4712274c
OM
1775 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1776 intel_logical_ring_emit(ringbuf, flags);
1777 intel_logical_ring_emit(ringbuf, scratch_addr);
1778 intel_logical_ring_emit(ringbuf, 0);
1779 intel_logical_ring_emit(ringbuf, 0);
1780 intel_logical_ring_emit(ringbuf, 0);
1781 intel_logical_ring_advance(ringbuf);
1782
1783 return 0;
1784}
1785
e94e37ad
OM
1786static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1787{
1788 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1789}
1790
1791static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1792{
1793 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1794}
1795
319404df
ID
1796static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1797{
1798
1799 /*
1800 * On BXT A steppings there is a HW coherency issue whereby the
1801 * MI_STORE_DATA_IMM storing the completed request's seqno
1802 * occasionally doesn't invalidate the CPU cache. Work around this by
1803 * clflushing the corresponding cacheline whenever the caller wants
1804 * the coherency to be guaranteed. Note that this cacheline is known
1805 * to be clean at this point, since we only write it in
1806 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1807 * this clflush in practice becomes an invalidate operation.
1808 */
1809
1810 if (!lazy_coherency)
1811 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1812
1813 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1814}
1815
1816static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1817{
1818 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1819
1820 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1821 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1822}
1823
c4e76638 1824static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1825{
c4e76638 1826 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1827 struct intel_engine_cs *ring = ringbuf->ring;
1828 u32 cmd;
1829 int ret;
1830
53292cdb
MT
1831 /*
1832 * Reserve space for 2 NOOPs at the end of each request to be
1833 * used as a workaround for not being allowed to do lite
1834 * restore with HEAD==TAIL (WaIdleLiteRestore).
1835 */
4d616a29 1836 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1837 if (ret)
1838 return ret;
1839
8edfbb8b 1840 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1841 cmd |= MI_GLOBAL_GTT;
1842
1843 intel_logical_ring_emit(ringbuf, cmd);
1844 intel_logical_ring_emit(ringbuf,
1845 (ring->status_page.gfx_addr +
1846 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1847 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1848 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1849 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1850 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1851 intel_logical_ring_advance_and_submit(request);
4da46e1e 1852
53292cdb
MT
1853 /*
1854 * Here we add two extra NOOPs as padding to avoid
1855 * lite restore of a context with HEAD==TAIL.
1856 */
1857 intel_logical_ring_emit(ringbuf, MI_NOOP);
1858 intel_logical_ring_emit(ringbuf, MI_NOOP);
1859 intel_logical_ring_advance(ringbuf);
1860
4da46e1e
OM
1861 return 0;
1862}
1863
be01363f 1864static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1865{
cef437ad 1866 struct render_state so;
cef437ad
DL
1867 int ret;
1868
be01363f 1869 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1870 if (ret)
1871 return ret;
1872
1873 if (so.rodata == NULL)
1874 return 0;
1875
be795fc1 1876 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1877 I915_DISPATCH_SECURE);
cef437ad
DL
1878 if (ret)
1879 goto out;
1880
84e81020
AS
1881 ret = req->ring->emit_bb_start(req,
1882 (so.ggtt_offset + so.aux_batch_offset),
1883 I915_DISPATCH_SECURE);
1884 if (ret)
1885 goto out;
1886
b2af0376 1887 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1888
cef437ad
DL
1889out:
1890 i915_gem_render_state_fini(&so);
1891 return ret;
1892}
1893
8753181e 1894static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1895{
1896 int ret;
1897
e2be4faf 1898 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1899 if (ret)
1900 return ret;
1901
3bbaba0c
PA
1902 ret = intel_rcs_context_init_mocs(req);
1903 /*
1904 * Failing to program the MOCS is non-fatal.The system will not
1905 * run at peak performance. So generate an error and carry on.
1906 */
1907 if (ret)
1908 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1909
be01363f 1910 return intel_lr_context_render_state_init(req);
e7778be1
TD
1911}
1912
73e4d07f
OM
1913/**
1914 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1915 *
1916 * @ring: Engine Command Streamer.
1917 *
1918 */
454afebd
OM
1919void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1920{
6402c330 1921 struct drm_i915_private *dev_priv;
9832b9da 1922
48d82387
OM
1923 if (!intel_ring_initialized(ring))
1924 return;
1925
6402c330
JH
1926 dev_priv = ring->dev->dev_private;
1927
b0366a54
DG
1928 if (ring->buffer) {
1929 intel_logical_ring_stop(ring);
1930 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1931 }
48d82387
OM
1932
1933 if (ring->cleanup)
1934 ring->cleanup(ring);
1935
1936 i915_cmd_parser_fini_ring(ring);
06fbca71 1937 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1938
1939 if (ring->status_page.obj) {
1940 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1941 ring->status_page.obj = NULL;
1942 }
17ee950d
AS
1943
1944 lrc_destroy_wa_ctx_obj(ring);
b0366a54 1945 ring->dev = NULL;
454afebd
OM
1946}
1947
1948static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1949{
48d82387 1950 int ret;
48d82387
OM
1951
1952 /* Intentionally left blank. */
1953 ring->buffer = NULL;
1954
1955 ring->dev = dev;
1956 INIT_LIST_HEAD(&ring->active_list);
1957 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1958 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1959 init_waitqueue_head(&ring->irq_queue);
1960
608c1a52 1961 INIT_LIST_HEAD(&ring->buffers);
acdd884a 1962 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1963 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1964 spin_lock_init(&ring->execlist_lock);
1965
48d82387
OM
1966 ret = i915_cmd_parser_init_ring(ring);
1967 if (ret)
b0366a54 1968 goto error;
48d82387 1969
e84fe803
NH
1970 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1971 if (ret)
b0366a54 1972 goto error;
e84fe803
NH
1973
1974 /* As this is the default context, always pin it */
1975 ret = intel_lr_context_do_pin(
1976 ring,
1977 ring->default_context->engine[ring->id].state,
1978 ring->default_context->engine[ring->id].ringbuf);
1979 if (ret) {
1980 DRM_ERROR(
1981 "Failed to pin and map ringbuffer %s: %d\n",
1982 ring->name, ret);
b0366a54 1983 goto error;
e84fe803 1984 }
564ddb2f 1985
b0366a54
DG
1986 return 0;
1987
1988error:
1989 intel_logical_ring_cleanup(ring);
564ddb2f 1990 return ret;
454afebd
OM
1991}
1992
1993static int logical_render_ring_init(struct drm_device *dev)
1994{
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1997 int ret;
454afebd
OM
1998
1999 ring->name = "render ring";
2000 ring->id = RCS;
2001 ring->mmio_base = RENDER_RING_BASE;
2002 ring->irq_enable_mask =
2003 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
2004 ring->irq_keep_mask =
2005 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
2006 if (HAS_L3_DPF(dev))
2007 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2008
82ef822e
DL
2009 if (INTEL_INFO(dev)->gen >= 9)
2010 ring->init_hw = gen9_init_render_ring;
2011 else
2012 ring->init_hw = gen8_init_render_ring;
e7778be1 2013 ring->init_context = gen8_init_rcs_context;
9b1136d5 2014 ring->cleanup = intel_fini_pipe_control;
e87a005d 2015 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2016 ring->get_seqno = bxt_a_get_seqno;
2017 ring->set_seqno = bxt_a_set_seqno;
2018 } else {
2019 ring->get_seqno = gen8_get_seqno;
2020 ring->set_seqno = gen8_set_seqno;
2021 }
4da46e1e 2022 ring->emit_request = gen8_emit_request;
4712274c 2023 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
2024 ring->irq_get = gen8_logical_ring_get_irq;
2025 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2026 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2027
99be1dfe 2028 ring->dev = dev;
c4db7599
AS
2029
2030 ret = intel_init_pipe_control(ring);
99be1dfe
DV
2031 if (ret)
2032 return ret;
2033
17ee950d
AS
2034 ret = intel_init_workaround_bb(ring);
2035 if (ret) {
2036 /*
2037 * We continue even if we fail to initialize WA batch
2038 * because we only expect rare glitches but nothing
2039 * critical to prevent us from using GPU
2040 */
2041 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2042 ret);
2043 }
2044
c4db7599
AS
2045 ret = logical_ring_init(dev, ring);
2046 if (ret) {
17ee950d 2047 lrc_destroy_wa_ctx_obj(ring);
c4db7599 2048 }
17ee950d
AS
2049
2050 return ret;
454afebd
OM
2051}
2052
2053static int logical_bsd_ring_init(struct drm_device *dev)
2054{
2055 struct drm_i915_private *dev_priv = dev->dev_private;
2056 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2057
2058 ring->name = "bsd ring";
2059 ring->id = VCS;
2060 ring->mmio_base = GEN6_BSD_RING_BASE;
2061 ring->irq_enable_mask =
2062 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
2063 ring->irq_keep_mask =
2064 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 2065
ecfe00d8 2066 ring->init_hw = gen8_init_common_ring;
e87a005d 2067 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2068 ring->get_seqno = bxt_a_get_seqno;
2069 ring->set_seqno = bxt_a_set_seqno;
2070 } else {
2071 ring->get_seqno = gen8_get_seqno;
2072 ring->set_seqno = gen8_set_seqno;
2073 }
4da46e1e 2074 ring->emit_request = gen8_emit_request;
4712274c 2075 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2076 ring->irq_get = gen8_logical_ring_get_irq;
2077 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2078 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2079
454afebd
OM
2080 return logical_ring_init(dev, ring);
2081}
2082
2083static int logical_bsd2_ring_init(struct drm_device *dev)
2084{
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2087
2088 ring->name = "bds2 ring";
2089 ring->id = VCS2;
2090 ring->mmio_base = GEN8_BSD2_RING_BASE;
2091 ring->irq_enable_mask =
2092 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
2093 ring->irq_keep_mask =
2094 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 2095
ecfe00d8 2096 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
2097 ring->get_seqno = gen8_get_seqno;
2098 ring->set_seqno = gen8_set_seqno;
4da46e1e 2099 ring->emit_request = gen8_emit_request;
4712274c 2100 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2101 ring->irq_get = gen8_logical_ring_get_irq;
2102 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2103 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2104
454afebd
OM
2105 return logical_ring_init(dev, ring);
2106}
2107
2108static int logical_blt_ring_init(struct drm_device *dev)
2109{
2110 struct drm_i915_private *dev_priv = dev->dev_private;
2111 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2112
2113 ring->name = "blitter ring";
2114 ring->id = BCS;
2115 ring->mmio_base = BLT_RING_BASE;
2116 ring->irq_enable_mask =
2117 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2118 ring->irq_keep_mask =
2119 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2120
ecfe00d8 2121 ring->init_hw = gen8_init_common_ring;
e87a005d 2122 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2123 ring->get_seqno = bxt_a_get_seqno;
2124 ring->set_seqno = bxt_a_set_seqno;
2125 } else {
2126 ring->get_seqno = gen8_get_seqno;
2127 ring->set_seqno = gen8_set_seqno;
2128 }
4da46e1e 2129 ring->emit_request = gen8_emit_request;
4712274c 2130 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2131 ring->irq_get = gen8_logical_ring_get_irq;
2132 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2133 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2134
454afebd
OM
2135 return logical_ring_init(dev, ring);
2136}
2137
2138static int logical_vebox_ring_init(struct drm_device *dev)
2139{
2140 struct drm_i915_private *dev_priv = dev->dev_private;
2141 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2142
2143 ring->name = "video enhancement ring";
2144 ring->id = VECS;
2145 ring->mmio_base = VEBOX_RING_BASE;
2146 ring->irq_enable_mask =
2147 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2148 ring->irq_keep_mask =
2149 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2150
ecfe00d8 2151 ring->init_hw = gen8_init_common_ring;
e87a005d 2152 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2153 ring->get_seqno = bxt_a_get_seqno;
2154 ring->set_seqno = bxt_a_set_seqno;
2155 } else {
2156 ring->get_seqno = gen8_get_seqno;
2157 ring->set_seqno = gen8_set_seqno;
2158 }
4da46e1e 2159 ring->emit_request = gen8_emit_request;
4712274c 2160 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2161 ring->irq_get = gen8_logical_ring_get_irq;
2162 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2163 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2164
454afebd
OM
2165 return logical_ring_init(dev, ring);
2166}
2167
73e4d07f
OM
2168/**
2169 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2170 * @dev: DRM device.
2171 *
2172 * This function inits the engines for an Execlists submission style (the equivalent in the
2173 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2174 * those engines that are present in the hardware.
2175 *
2176 * Return: non-zero if the initialization failed.
2177 */
454afebd
OM
2178int intel_logical_rings_init(struct drm_device *dev)
2179{
2180 struct drm_i915_private *dev_priv = dev->dev_private;
2181 int ret;
2182
2183 ret = logical_render_ring_init(dev);
2184 if (ret)
2185 return ret;
2186
2187 if (HAS_BSD(dev)) {
2188 ret = logical_bsd_ring_init(dev);
2189 if (ret)
2190 goto cleanup_render_ring;
2191 }
2192
2193 if (HAS_BLT(dev)) {
2194 ret = logical_blt_ring_init(dev);
2195 if (ret)
2196 goto cleanup_bsd_ring;
2197 }
2198
2199 if (HAS_VEBOX(dev)) {
2200 ret = logical_vebox_ring_init(dev);
2201 if (ret)
2202 goto cleanup_blt_ring;
2203 }
2204
2205 if (HAS_BSD2(dev)) {
2206 ret = logical_bsd2_ring_init(dev);
2207 if (ret)
2208 goto cleanup_vebox_ring;
2209 }
2210
454afebd
OM
2211 return 0;
2212
454afebd
OM
2213cleanup_vebox_ring:
2214 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2215cleanup_blt_ring:
2216 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2217cleanup_bsd_ring:
2218 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2219cleanup_render_ring:
2220 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2221
2222 return ret;
2223}
2224
0cea6502
JM
2225static u32
2226make_rpcs(struct drm_device *dev)
2227{
2228 u32 rpcs = 0;
2229
2230 /*
2231 * No explicit RPCS request is needed to ensure full
2232 * slice/subslice/EU enablement prior to Gen9.
2233 */
2234 if (INTEL_INFO(dev)->gen < 9)
2235 return 0;
2236
2237 /*
2238 * Starting in Gen9, render power gating can leave
2239 * slice/subslice/EU in a partially enabled state. We
2240 * must make an explicit request through RPCS for full
2241 * enablement.
2242 */
2243 if (INTEL_INFO(dev)->has_slice_pg) {
2244 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2245 rpcs |= INTEL_INFO(dev)->slice_total <<
2246 GEN8_RPCS_S_CNT_SHIFT;
2247 rpcs |= GEN8_RPCS_ENABLE;
2248 }
2249
2250 if (INTEL_INFO(dev)->has_subslice_pg) {
2251 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2252 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2253 GEN8_RPCS_SS_CNT_SHIFT;
2254 rpcs |= GEN8_RPCS_ENABLE;
2255 }
2256
2257 if (INTEL_INFO(dev)->has_eu_pg) {
2258 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2259 GEN8_RPCS_EU_MIN_SHIFT;
2260 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2261 GEN8_RPCS_EU_MAX_SHIFT;
2262 rpcs |= GEN8_RPCS_ENABLE;
2263 }
2264
2265 return rpcs;
2266}
2267
8670d6f9
OM
2268static int
2269populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2270 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2271{
2d965536
TD
2272 struct drm_device *dev = ring->dev;
2273 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2274 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2275 struct page *page;
2276 uint32_t *reg_state;
2277 int ret;
2278
2d965536
TD
2279 if (!ppgtt)
2280 ppgtt = dev_priv->mm.aliasing_ppgtt;
2281
8670d6f9
OM
2282 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2283 if (ret) {
2284 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2285 return ret;
2286 }
2287
2288 ret = i915_gem_object_get_pages(ctx_obj);
2289 if (ret) {
2290 DRM_DEBUG_DRIVER("Could not get object pages\n");
2291 return ret;
2292 }
2293
2294 i915_gem_object_pin_pages(ctx_obj);
2295
2296 /* The second page of the context object contains some fields which must
2297 * be set up prior to the first execution. */
033908ae 2298 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2299 reg_state = kmap_atomic(page);
2300
2301 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2302 * commands followed by (reg, value) pairs. The values we are setting here are
2303 * only for the first context restore: on a subsequent save, the GPU will
2304 * recreate this batchbuffer with new values (including all the missing
2305 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2306 reg_state[CTX_LRI_HEADER_0] =
2307 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2308 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2309 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2310 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2311 CTX_CTRL_RS_CTX_ENABLE));
2312 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2313 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2314 /* Ring buffer start address is not known until the buffer is pinned.
2315 * It is written to the context image in execlists_update_context()
2316 */
0d925ea0
VS
2317 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2318 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2319 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2320 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2321 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2322 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2323 RING_BB_PPGTT);
2324 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2325 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2326 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2327 if (ring->id == RCS) {
0d925ea0
VS
2328 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2329 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2330 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2331 if (ring->wa_ctx.obj) {
2332 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2333 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2334
2335 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2336 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2337 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2338
2339 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2340 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2341
2342 reg_state[CTX_BB_PER_CTX_PTR+1] =
2343 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2344 0x01;
2345 }
8670d6f9 2346 }
0d925ea0
VS
2347 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2348 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2349 /* PDP values well be assigned later if needed */
2350 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2351 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2352 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2355 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2356 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2357 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2358
2dba3239
MT
2359 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2360 /* 64b PPGTT (48bit canonical)
2361 * PDP0_DESCRIPTOR contains the base address to PML4 and
2362 * other PDP Descriptors are ignored.
2363 */
2364 ASSIGN_CTX_PML4(ppgtt, reg_state);
2365 } else {
2366 /* 32b PPGTT
2367 * PDP*_DESCRIPTOR contains the base address of space supported.
2368 * With dynamic page allocation, PDPs may not be allocated at
2369 * this point. Point the unallocated PDPs to the scratch page
2370 */
2371 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2372 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2373 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2374 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2375 }
2376
8670d6f9
OM
2377 if (ring->id == RCS) {
2378 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2379 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2380 make_rpcs(dev));
8670d6f9
OM
2381 }
2382
2383 kunmap_atomic(reg_state);
8670d6f9
OM
2384 i915_gem_object_unpin_pages(ctx_obj);
2385
2386 return 0;
2387}
2388
73e4d07f
OM
2389/**
2390 * intel_lr_context_free() - free the LRC specific bits of a context
2391 * @ctx: the LR context to free.
2392 *
2393 * The real context freeing is done in i915_gem_context_free: this only
2394 * takes care of the bits that are LRC related: the per-engine backing
2395 * objects and the logical ringbuffer.
2396 */
ede7d42b
OM
2397void intel_lr_context_free(struct intel_context *ctx)
2398{
8c857917
OM
2399 int i;
2400
af3302b9 2401 for (i = 0; i < I915_NUM_RINGS; i++) {
8c857917 2402 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2403
8c857917 2404 if (ctx_obj) {
dcb4c12a
OM
2405 struct intel_ringbuffer *ringbuf =
2406 ctx->engine[i].ringbuf;
2407 struct intel_engine_cs *ring = ringbuf->ring;
2408
af3302b9
DV
2409 if (ctx == ring->default_context) {
2410 intel_unpin_ringbuffer_obj(ringbuf);
2411 i915_gem_object_ggtt_unpin(ctx_obj);
2412 }
2413 WARN_ON(ctx->engine[ring->id].pin_count);
2414 intel_ringbuffer_free(ringbuf);
2415 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2416 }
2417 }
2418}
2419
c5d46ee2
DG
2420/**
2421 * intel_lr_context_size() - return the size of the context for an engine
2422 * @ring: which engine to find the context size for
2423 *
2424 * Each engine may require a different amount of space for a context image,
2425 * so when allocating (or copying) an image, this function can be used to
2426 * find the right size for the specific engine.
2427 *
2428 * Return: size (in bytes) of an engine-specific context image
2429 *
2430 * Note: this size includes the HWSP, which is part of the context image
2431 * in LRC mode, but does not include the "shared data page" used with
2432 * GuC submission. The caller should account for this if using the GuC.
2433 */
95a66f7e 2434uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
8c857917
OM
2435{
2436 int ret = 0;
2437
468c6816 2438 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2439
2440 switch (ring->id) {
2441 case RCS:
468c6816
MN
2442 if (INTEL_INFO(ring->dev)->gen >= 9)
2443 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2444 else
2445 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2446 break;
2447 case VCS:
2448 case BCS:
2449 case VECS:
2450 case VCS2:
2451 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2452 break;
2453 }
2454
2455 return ret;
ede7d42b
OM
2456}
2457
70b0ea86 2458static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2459 struct drm_i915_gem_object *default_ctx_obj)
2460{
2461 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2462 struct page *page;
1df06b75 2463
d1675198
AD
2464 /* The HWSP is part of the default context object in LRC mode. */
2465 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2466 + LRC_PPHWSP_PN * PAGE_SIZE;
2467 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2468 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2469 ring->status_page.obj = default_ctx_obj;
2470
2471 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2472 (u32)ring->status_page.gfx_addr);
2473 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2474}
2475
73e4d07f 2476/**
e84fe803 2477 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2478 * @ctx: LR context to create.
2479 * @ring: engine to be used with the context.
2480 *
2481 * This function can be called more than once, with different engines, if we plan
2482 * to use the context with them. The context backing objects and the ringbuffers
2483 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2484 * the creation is a deferred call: it's better to make sure first that we need to use
2485 * a given ring with the context.
2486 *
32197aab 2487 * Return: non-zero on error.
73e4d07f 2488 */
e84fe803
NH
2489
2490int intel_lr_context_deferred_alloc(struct intel_context *ctx,
ede7d42b
OM
2491 struct intel_engine_cs *ring)
2492{
8c857917
OM
2493 struct drm_device *dev = ring->dev;
2494 struct drm_i915_gem_object *ctx_obj;
2495 uint32_t context_size;
84c2377f 2496 struct intel_ringbuffer *ringbuf;
8c857917
OM
2497 int ret;
2498
ede7d42b 2499 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2500 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2501
95a66f7e 2502 context_size = round_up(intel_lr_context_size(ring), 4096);
8c857917 2503
d1675198
AD
2504 /* One extra page as the sharing data between driver and GuC */
2505 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2506
149c86e7 2507 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2508 if (!ctx_obj) {
2509 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2510 return -ENOMEM;
8c857917
OM
2511 }
2512
01101fa7
CW
2513 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2514 if (IS_ERR(ringbuf)) {
2515 ret = PTR_ERR(ringbuf);
e84fe803 2516 goto error_deref_obj;
8670d6f9
OM
2517 }
2518
2519 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2520 if (ret) {
2521 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2522 goto error_ringbuf;
84c2377f
OM
2523 }
2524
2525 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2526 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2527
e84fe803
NH
2528 if (ctx != ring->default_context && ring->init_context) {
2529 struct drm_i915_gem_request *req;
76c39168 2530
e84fe803
NH
2531 ret = i915_gem_request_alloc(ring,
2532 ctx, &req);
2533 if (ret) {
2534 DRM_ERROR("ring create req: %d\n",
2535 ret);
e84fe803 2536 goto error_ringbuf;
771b9a53
MT
2537 }
2538
e84fe803
NH
2539 ret = ring->init_context(req);
2540 if (ret) {
2541 DRM_ERROR("ring init context: %d\n",
2542 ret);
2543 i915_gem_request_cancel(req);
2544 goto error_ringbuf;
2545 }
2546 i915_add_request_no_flush(req);
564ddb2f 2547 }
ede7d42b 2548 return 0;
8670d6f9 2549
01101fa7
CW
2550error_ringbuf:
2551 intel_ringbuffer_free(ringbuf);
e84fe803 2552error_deref_obj:
8670d6f9 2553 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2554 ctx->engine[ring->id].ringbuf = NULL;
2555 ctx->engine[ring->id].state = NULL;
8670d6f9 2556 return ret;
ede7d42b 2557}
3e5b6f05
TD
2558
2559void intel_lr_context_reset(struct drm_device *dev,
2560 struct intel_context *ctx)
2561{
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct intel_engine_cs *ring;
2564 int i;
2565
2566 for_each_ring(ring, dev_priv, i) {
2567 struct drm_i915_gem_object *ctx_obj =
2568 ctx->engine[ring->id].state;
2569 struct intel_ringbuffer *ringbuf =
2570 ctx->engine[ring->id].ringbuf;
2571 uint32_t *reg_state;
2572 struct page *page;
2573
2574 if (!ctx_obj)
2575 continue;
2576
2577 if (i915_gem_object_get_pages(ctx_obj)) {
2578 WARN(1, "Failed get_pages for context obj\n");
2579 continue;
2580 }
033908ae 2581 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2582 reg_state = kmap_atomic(page);
2583
2584 reg_state[CTX_RING_HEAD+1] = 0;
2585 reg_state[CTX_RING_TAIL+1] = 0;
2586
2587 kunmap_atomic(reg_state);
2588
2589 ringbuf->head = 0;
2590 ringbuf->tail = 0;
2591 }
2592}
This page took 0.275047 seconds and 5 git commands to generate.