drm/i915: Small display interrupt handlers tidy
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
0e93cdd4
CW
231/* Typical size of the average request (2 pipecontrols and a MI_BB) */
232#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
978f1e09
CW
234static int execlists_context_deferred_alloc(struct intel_context *ctx,
235 struct intel_engine_cs *engine);
e5292823
TU
236static int intel_lr_context_pin(struct intel_context *ctx,
237 struct intel_engine_cs *engine);
7ba717cf 238
73e4d07f
OM
239/**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev: DRM device.
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
27401d12 245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
127f1003
OM
249int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
250{
a0bd6c31
ZL
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
254 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
255 return 1;
256
70ee45e1
DL
257 if (INTEL_INFO(dev)->gen >= 9)
258 return 1;
259
127f1003
OM
260 if (enable_execlists == 0)
261 return 0;
262
14bf993e
OM
263 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
264 i915.use_mmio_flip >= 0)
127f1003
OM
265 return 1;
266
267 return 0;
268}
ede7d42b 269
ca82580c 270static void
0bc40be8 271logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 272{
0bc40be8 273 struct drm_device *dev = engine->dev;
ca82580c 274
c6a2ac71 275 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 276 engine->idle_lite_restore_wa = ~0;
c6a2ac71 277
0bc40be8 278 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 279 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 280 (engine->id == VCS || engine->id == VCS2);
ca82580c 281
0bc40be8
TU
282 engine->ctx_desc_template = GEN8_CTX_VALID;
283 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
284 GEN8_CTX_ADDRESSING_MODE_SHIFT;
285 if (IS_GEN8(dev))
0bc40be8
TU
286 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
287 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
288
289 /* TODO: WaDisableLiteRestore when we start using semaphore
290 * signalling between Command Streamers */
291 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
292
293 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
294 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
295 if (engine->disable_lite_restore_wa)
296 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
297}
298
73e4d07f 299/**
ca82580c
TU
300 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
301 * descriptor for a pinned context
73e4d07f 302 *
ca82580c
TU
303 * @ctx: Context to work on
304 * @ring: Engine the descriptor will be used with
73e4d07f 305 *
ca82580c
TU
306 * The context descriptor encodes various attributes of a context,
307 * including its GTT address and some flags. Because it's fairly
308 * expensive to calculate, we'll just do it once and cache the result,
309 * which remains valid until the context is unpinned.
310 *
311 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 312 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 313 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 314 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
315 * bits 53-54: mbz, reserved for use by hardware
316 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 317 */
ca82580c
TU
318static void
319intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 320 struct intel_engine_cs *engine)
84b790f8 321{
7069b144 322 u64 desc;
84b790f8 323
7069b144 324 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 325
7069b144
CW
326 desc = engine->ctx_desc_template; /* bits 0-11 */
327 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
328 LRC_PPHWSP_PN * PAGE_SIZE;
329 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 330
0bc40be8 331 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
332}
333
919f1f55 334uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 335 struct intel_engine_cs *engine)
84b790f8 336{
0bc40be8 337 return ctx->engine[engine->id].lrc_desc;
ca82580c 338}
203a571b 339
cc3c4253
MK
340static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
341 struct drm_i915_gem_request *rq1)
84b790f8 342{
cc3c4253 343
4a570db5 344 struct intel_engine_cs *engine = rq0->engine;
e2f80391 345 struct drm_device *dev = engine->dev;
6e7cc470 346 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 347 uint64_t desc[2];
84b790f8 348
1cff8cc3 349 if (rq1) {
4a570db5 350 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
351 rq1->elsp_submitted++;
352 } else {
353 desc[1] = 0;
354 }
84b790f8 355
4a570db5 356 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 357 rq0->elsp_submitted++;
84b790f8 358
1cff8cc3 359 /* You must always write both descriptors in the order below. */
e2f80391
TU
360 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
361 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 362
e2f80391 363 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 364 /* The context is automatically loaded after the following */
e2f80391 365 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 366
1cff8cc3 367 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 368 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
369}
370
c6a2ac71
TU
371static void
372execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
373{
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
377 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
378}
379
380static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 381{
4a570db5 382 struct intel_engine_cs *engine = rq->engine;
05d9824b 383 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 384 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 385
05d9824b 386 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 387
c6a2ac71
TU
388 /* True 32b PPGTT with dynamic page allocation: update PDP
389 * registers and point the unallocated PDPs to scratch page.
390 * PML4 is allocated during ppgtt init, so this is not needed
391 * in 48-bit mode.
392 */
393 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
394 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
395}
396
d8cb8875
MK
397static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
398 struct drm_i915_gem_request *rq1)
84b790f8 399{
26720ab9 400 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 401 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 402
05d9824b 403 execlists_update_context(rq0);
d8cb8875 404
cc3c4253 405 if (rq1)
05d9824b 406 execlists_update_context(rq1);
84b790f8 407
27af5eea 408 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 409 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 410
cc3c4253 411 execlists_elsp_write(rq0, rq1);
26720ab9 412
3756685a 413 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 414 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
415}
416
26720ab9 417static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 418{
6d3d8274 419 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 420 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 421
0bc40be8 422 assert_spin_locked(&engine->execlist_lock);
acdd884a 423
779949f4
PA
424 /*
425 * If irqs are not active generate a warning as batches that finish
426 * without the irqs may get lost and a GPU Hang may occur.
427 */
0bc40be8 428 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 429
acdd884a 430 /* Try to read in pairs */
0bc40be8 431 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
432 execlist_link) {
433 if (!req0) {
434 req0 = cursor;
6d3d8274 435 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
436 /* Same ctx: ignore first request, as second request
437 * will update tail past first request's workload */
e1fee72c 438 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
439 list_del(&req0->execlist_link);
440 i915_gem_request_unreference(req0);
acdd884a
MT
441 req0 = cursor;
442 } else {
443 req1 = cursor;
c6a2ac71 444 WARN_ON(req1->elsp_submitted);
acdd884a
MT
445 break;
446 }
447 }
448
c6a2ac71
TU
449 if (unlikely(!req0))
450 return;
451
0bc40be8 452 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 453 /*
c6a2ac71
TU
454 * WaIdleLiteRestore: make sure we never cause a lite restore
455 * with HEAD==TAIL.
456 *
457 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
458 * resubmit the request. See gen8_emit_request() for where we
459 * prepare the padding after the end of the request.
53292cdb 460 */
c6a2ac71 461 struct intel_ringbuffer *ringbuf;
53292cdb 462
0bc40be8 463 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
464 req0->tail += 8;
465 req0->tail &= ringbuf->size - 1;
53292cdb
MT
466 }
467
d8cb8875 468 execlists_submit_requests(req0, req1);
acdd884a
MT
469}
470
c6a2ac71 471static unsigned int
e39d42fa 472execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 473{
6d3d8274 474 struct drm_i915_gem_request *head_req;
e981e7b1 475
0bc40be8 476 assert_spin_locked(&engine->execlist_lock);
e981e7b1 477
0bc40be8 478 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 479 struct drm_i915_gem_request,
e981e7b1
TD
480 execlist_link);
481
e39d42fa
TU
482 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
483 return 0;
c6a2ac71
TU
484
485 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted > 0)
488 return 0;
489
e39d42fa
TU
490 list_del(&head_req->execlist_link);
491 i915_gem_request_unreference(head_req);
e981e7b1 492
c6a2ac71 493 return 1;
e981e7b1
TD
494}
495
c6a2ac71 496static u32
0bc40be8 497get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 498 u32 *context_id)
91a41032 499{
0bc40be8 500 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 501 u32 status;
91a41032 502
c6a2ac71
TU
503 read_pointer %= GEN8_CSB_ENTRIES;
504
0bc40be8 505 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
506
507 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
508 return 0;
91a41032 509
0bc40be8 510 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
511 read_pointer));
512
513 return status;
91a41032
BW
514}
515
73e4d07f 516/**
3f7531c3 517 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 518 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
519 *
520 * Check the unread Context Status Buffers and manage the submission of new
521 * contexts to the ELSP accordingly.
522 */
27af5eea 523static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 524{
27af5eea 525 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 526 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 527 u32 status_pointer;
c6a2ac71 528 unsigned int read_pointer, write_pointer;
26720ab9
TU
529 u32 csb[GEN8_CSB_ENTRIES][2];
530 unsigned int csb_read = 0, i;
c6a2ac71
TU
531 unsigned int submit_contexts = 0;
532
3756685a 533 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 534
0bc40be8 535 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 536
0bc40be8 537 read_pointer = engine->next_context_status_buffer;
5590a5f0 538 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 539 if (read_pointer > write_pointer)
dfc53c5e 540 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 541
e981e7b1 542 while (read_pointer < write_pointer) {
26720ab9
TU
543 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
544 break;
545 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
546 &csb[csb_read][1]);
547 csb_read++;
548 }
91a41032 549
26720ab9
TU
550 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
551
552 /* Update the read pointer to the old write pointer. Manual ringbuffer
553 * management ftw </sarcasm> */
554 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
555 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
556 engine->next_context_status_buffer << 8));
557
3756685a 558 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
559
560 spin_lock(&engine->execlist_lock);
561
562 for (i = 0; i < csb_read; i++) {
563 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
564 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
565 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
566 WARN(1, "Lite Restored request removed from queue\n");
567 } else
568 WARN(1, "Preemption without Lite Restore\n");
569 }
570
26720ab9 571 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
572 GEN8_CTX_STATUS_ELEMENT_SWITCH))
573 submit_contexts +=
26720ab9 574 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
575 }
576
c6a2ac71 577 if (submit_contexts) {
0bc40be8 578 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
579 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
580 execlists_context_unqueue(engine);
5af05fef 581 }
e981e7b1 582
0bc40be8 583 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
584
585 if (unlikely(submit_contexts > 2))
586 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
587}
588
c6a2ac71 589static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 590{
4a570db5 591 struct intel_engine_cs *engine = request->engine;
6d3d8274 592 struct drm_i915_gem_request *cursor;
f1ad5a1f 593 int num_elements = 0;
acdd884a 594
27af5eea 595 spin_lock_bh(&engine->execlist_lock);
acdd884a 596
e2f80391 597 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
598 if (++num_elements > 2)
599 break;
600
601 if (num_elements > 2) {
6d3d8274 602 struct drm_i915_gem_request *tail_req;
f1ad5a1f 603
e2f80391 604 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 605 struct drm_i915_gem_request,
f1ad5a1f
OM
606 execlist_link);
607
ae70797d 608 if (request->ctx == tail_req->ctx) {
f1ad5a1f 609 WARN(tail_req->elsp_submitted != 0,
7ba717cf 610 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
611 list_del(&tail_req->execlist_link);
612 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
613 }
614 }
615
e39d42fa 616 i915_gem_request_reference(request);
e2f80391 617 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 618 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 619 if (num_elements == 0)
e2f80391 620 execlists_context_unqueue(engine);
acdd884a 621
27af5eea 622 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
623}
624
2f20055d 625static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 626{
4a570db5 627 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
628 uint32_t flush_domains;
629 int ret;
630
631 flush_domains = 0;
e2f80391 632 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
633 flush_domains = I915_GEM_GPU_DOMAINS;
634
e2f80391 635 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
636 if (ret)
637 return ret;
638
e2f80391 639 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
640 return 0;
641}
642
535fbe82 643static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
644 struct list_head *vmas)
645{
666796da 646 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
647 struct i915_vma *vma;
648 uint32_t flush_domains = 0;
649 bool flush_chipset = false;
650 int ret;
651
652 list_for_each_entry(vma, vmas, exec_list) {
653 struct drm_i915_gem_object *obj = vma->obj;
654
03ade511 655 if (obj->active & other_rings) {
4a570db5 656 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
657 if (ret)
658 return ret;
659 }
ba8b7ccb
OM
660
661 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
662 flush_chipset |= i915_gem_clflush_object(obj, false);
663
664 flush_domains |= obj->base.write_domain;
665 }
666
667 if (flush_domains & I915_GEM_DOMAIN_GTT)
668 wmb();
669
670 /* Unconditionally invalidate gpu caches and ensure that we do flush
671 * any residual writes from the previous batch.
672 */
2f20055d 673 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
674}
675
40e895ce 676int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 677{
24f1d3cc 678 struct intel_engine_cs *engine = request->engine;
bfa01200 679 int ret;
bc0dce3f 680
6310346e
CW
681 /* Flush enough space to reduce the likelihood of waiting after
682 * we start building the request - in which case we will just
683 * have to repeat work.
684 */
0e93cdd4 685 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 686
978f1e09
CW
687 if (request->ctx->engine[engine->id].state == NULL) {
688 ret = execlists_context_deferred_alloc(request->ctx, engine);
689 if (ret)
690 return ret;
691 }
692
24f1d3cc 693 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
f3cc01f0 694
a7e02199
AD
695 if (i915.enable_guc_submission) {
696 /*
697 * Check that the GuC has space for the request before
698 * going any further, as the i915_add_request() call
699 * later on mustn't fail ...
700 */
701 struct intel_guc *guc = &request->i915->guc;
702
703 ret = i915_guc_wq_check_space(guc->execbuf_client);
704 if (ret)
705 return ret;
706 }
707
24f1d3cc
CW
708 ret = intel_lr_context_pin(request->ctx, engine);
709 if (ret)
710 return ret;
e28e404c 711
bfa01200
CW
712 ret = intel_ring_begin(request, 0);
713 if (ret)
714 goto err_unpin;
715
24f1d3cc
CW
716 if (!request->ctx->engine[engine->id].initialised) {
717 ret = engine->init_context(request);
718 if (ret)
719 goto err_unpin;
720
721 request->ctx->engine[engine->id].initialised = true;
722 }
723
724 /* Note that after this point, we have committed to using
725 * this request as it is being used to both track the
726 * state of engine initialisation and liveness of the
727 * golden renderstate above. Think twice before you try
728 * to cancel/unwind this request now.
729 */
730
0e93cdd4 731 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
732 return 0;
733
734err_unpin:
24f1d3cc 735 intel_lr_context_unpin(request->ctx, engine);
e28e404c 736 return ret;
bc0dce3f
JH
737}
738
bc0dce3f
JH
739/*
740 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 741 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
742 *
743 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
744 * really happens during submission is that the context and current tail will be placed
745 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
746 * point, the tail *inside* the context is updated and the ELSP written to.
747 */
7c17d377 748static int
ae70797d 749intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 750{
7c17d377 751 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 752 struct drm_i915_private *dev_priv = request->i915;
4a570db5 753 struct intel_engine_cs *engine = request->engine;
bc0dce3f 754
7c17d377
CW
755 intel_logical_ring_advance(ringbuf);
756 request->tail = ringbuf->tail;
bc0dce3f 757
7c17d377
CW
758 /*
759 * Here we add two extra NOOPs as padding to avoid
760 * lite restore of a context with HEAD==TAIL.
761 *
762 * Caller must reserve WA_TAIL_DWORDS for us!
763 */
764 intel_logical_ring_emit(ringbuf, MI_NOOP);
765 intel_logical_ring_emit(ringbuf, MI_NOOP);
766 intel_logical_ring_advance(ringbuf);
d1675198 767
117897f4 768 if (intel_engine_stopped(engine))
7c17d377 769 return 0;
bc0dce3f 770
a16a4052
CW
771 /* We keep the previous context alive until we retire the following
772 * request. This ensures that any the context object is still pinned
773 * for any residual writes the HW makes into it on the context switch
774 * into the next object following the breadcrumb. Otherwise, we may
775 * retire the context too early.
776 */
777 request->previous_context = engine->last_context;
778 engine->last_context = request->ctx;
f4e2dece 779
d1675198
AD
780 if (dev_priv->guc.execbuf_client)
781 i915_guc_submit(dev_priv->guc.execbuf_client, request);
782 else
783 execlists_context_queue(request);
7c17d377
CW
784
785 return 0;
bc0dce3f
JH
786}
787
73e4d07f
OM
788/**
789 * execlists_submission() - submit a batchbuffer for execution, Execlists style
790 * @dev: DRM device.
791 * @file: DRM file.
792 * @ring: Engine Command Streamer to submit to.
793 * @ctx: Context to employ for this submission.
794 * @args: execbuffer call arguments.
795 * @vmas: list of vmas.
796 * @batch_obj: the batchbuffer to submit.
797 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 798 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
799 *
800 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
801 * away the submission details of the execbuffer ioctl call.
802 *
803 * Return: non-zero if the submission fails.
804 */
5f19e2bf 805int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 806 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 807 struct list_head *vmas)
454afebd 808{
5f19e2bf 809 struct drm_device *dev = params->dev;
4a570db5 810 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 811 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 812 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 813 u64 exec_start;
ba8b7ccb
OM
814 int instp_mode;
815 u32 instp_mask;
816 int ret;
817
818 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
819 instp_mask = I915_EXEC_CONSTANTS_MASK;
820 switch (instp_mode) {
821 case I915_EXEC_CONSTANTS_REL_GENERAL:
822 case I915_EXEC_CONSTANTS_ABSOLUTE:
823 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 824 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
825 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
826 return -EINVAL;
827 }
828
829 if (instp_mode != dev_priv->relative_constants_mode) {
830 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
831 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
832 return -EINVAL;
833 }
834
835 /* The HW changed the meaning on this bit on gen6 */
836 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
837 }
838 break;
839 default:
840 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
841 return -EINVAL;
842 }
843
ba8b7ccb
OM
844 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
845 DRM_DEBUG("sol reset is gen7 only\n");
846 return -EINVAL;
847 }
848
535fbe82 849 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
850 if (ret)
851 return ret;
852
4a570db5 853 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 854 instp_mode != dev_priv->relative_constants_mode) {
987046ad 855 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
856 if (ret)
857 return ret;
858
859 intel_logical_ring_emit(ringbuf, MI_NOOP);
860 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 861 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
862 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
863 intel_logical_ring_advance(ringbuf);
864
865 dev_priv->relative_constants_mode = instp_mode;
866 }
867
5f19e2bf
JH
868 exec_start = params->batch_obj_vm_offset +
869 args->batch_start_offset;
870
e2f80391 871 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
872 if (ret)
873 return ret;
874
95c24161 875 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 876
8a8edb59 877 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 878
454afebd
OM
879 return 0;
880}
881
e39d42fa 882void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 883{
6d3d8274 884 struct drm_i915_gem_request *req, *tmp;
e39d42fa 885 LIST_HEAD(cancel_list);
c86ee3a9 886
0bc40be8 887 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
c86ee3a9 888
27af5eea 889 spin_lock_bh(&engine->execlist_lock);
e39d42fa 890 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 891 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 892
e39d42fa 893 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 894 list_del(&req->execlist_link);
f8210795 895 i915_gem_request_unreference(req);
c86ee3a9
TD
896 }
897}
898
0bc40be8 899void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 900{
0bc40be8 901 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
902 int ret;
903
117897f4 904 if (!intel_engine_initialized(engine))
9832b9da
OM
905 return;
906
666796da 907 ret = intel_engine_idle(engine);
f4457ae7 908 if (ret)
9832b9da 909 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 910 engine->name, ret);
9832b9da
OM
911
912 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
913 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
914 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
915 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
916 return;
917 }
0bc40be8 918 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
919}
920
4866d729 921int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 922{
4a570db5 923 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
924 int ret;
925
e2f80391 926 if (!engine->gpu_caches_dirty)
48e29f55
OM
927 return 0;
928
e2f80391 929 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
930 if (ret)
931 return ret;
932
e2f80391 933 engine->gpu_caches_dirty = false;
48e29f55
OM
934 return 0;
935}
936
24f1d3cc
CW
937static int intel_lr_context_pin(struct intel_context *ctx,
938 struct intel_engine_cs *engine)
dcb4c12a 939{
24f1d3cc
CW
940 struct drm_i915_private *dev_priv = ctx->i915;
941 struct drm_i915_gem_object *ctx_obj;
942 struct intel_ringbuffer *ringbuf;
7d774cac
TU
943 void *vaddr;
944 u32 *lrc_reg_state;
ca82580c 945 int ret;
dcb4c12a 946
24f1d3cc 947 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 948
24f1d3cc
CW
949 if (ctx->engine[engine->id].pin_count++)
950 return 0;
951
952 ctx_obj = ctx->engine[engine->id].state;
e84fe803
NH
953 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
954 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
955 if (ret)
24f1d3cc 956 goto err;
7ba717cf 957
7d774cac
TU
958 vaddr = i915_gem_object_pin_map(ctx_obj);
959 if (IS_ERR(vaddr)) {
960 ret = PTR_ERR(vaddr);
82352e90
TU
961 goto unpin_ctx_obj;
962 }
963
7d774cac
TU
964 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
965
24f1d3cc 966 ringbuf = ctx->engine[engine->id].ringbuf;
0bc40be8 967 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 968 if (ret)
7d774cac 969 goto unpin_map;
d1675198 970
24f1d3cc 971 i915_gem_context_reference(ctx);
0bc40be8
TU
972 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
973 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 974 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 975 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 976 ctx_obj->dirty = true;
e93c28f3 977
e84fe803
NH
978 /* Invalidate GuC TLB. */
979 if (i915.enable_guc_submission)
980 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 981
24f1d3cc 982 return 0;
7ba717cf 983
7d774cac
TU
984unpin_map:
985 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
986unpin_ctx_obj:
987 i915_gem_object_ggtt_unpin(ctx_obj);
24f1d3cc
CW
988err:
989 ctx->engine[engine->id].pin_count = 0;
e84fe803
NH
990 return ret;
991}
992
24f1d3cc
CW
993void intel_lr_context_unpin(struct intel_context *ctx,
994 struct intel_engine_cs *engine)
e84fe803 995{
24f1d3cc 996 struct drm_i915_gem_object *ctx_obj;
e84fe803 997
24f1d3cc
CW
998 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
999 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
321fe304 1000
24f1d3cc
CW
1001 if (--ctx->engine[engine->id].pin_count)
1002 return;
e84fe803 1003
24f1d3cc 1004 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
dcb4c12a 1005
24f1d3cc
CW
1006 ctx_obj = ctx->engine[engine->id].state;
1007 i915_gem_object_unpin_map(ctx_obj);
1008 i915_gem_object_ggtt_unpin(ctx_obj);
af3302b9 1009
24f1d3cc
CW
1010 ctx->engine[engine->id].lrc_vma = NULL;
1011 ctx->engine[engine->id].lrc_desc = 0;
1012 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304 1013
24f1d3cc 1014 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1015}
1016
e2be4faf 1017static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1018{
1019 int ret, i;
4a570db5 1020 struct intel_engine_cs *engine = req->engine;
e2be4faf 1021 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1022 struct drm_device *dev = engine->dev;
771b9a53
MT
1023 struct drm_i915_private *dev_priv = dev->dev_private;
1024 struct i915_workarounds *w = &dev_priv->workarounds;
1025
cd7feaaa 1026 if (w->count == 0)
771b9a53
MT
1027 return 0;
1028
e2f80391 1029 engine->gpu_caches_dirty = true;
4866d729 1030 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1031 if (ret)
1032 return ret;
1033
987046ad 1034 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1035 if (ret)
1036 return ret;
1037
1038 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1039 for (i = 0; i < w->count; i++) {
f92a9162 1040 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1041 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1042 }
1043 intel_logical_ring_emit(ringbuf, MI_NOOP);
1044
1045 intel_logical_ring_advance(ringbuf);
1046
e2f80391 1047 engine->gpu_caches_dirty = true;
4866d729 1048 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1049 if (ret)
1050 return ret;
1051
1052 return 0;
1053}
1054
83b8a982 1055#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1056 do { \
83b8a982
AS
1057 int __index = (index)++; \
1058 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1059 return -ENOSPC; \
1060 } \
83b8a982 1061 batch[__index] = (cmd); \
17ee950d
AS
1062 } while (0)
1063
8f40db77 1064#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1065 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1066
1067/*
1068 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1069 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1070 * but there is a slight complication as this is applied in WA batch where the
1071 * values are only initialized once so we cannot take register value at the
1072 * beginning and reuse it further; hence we save its value to memory, upload a
1073 * constant value with bit21 set and then we restore it back with the saved value.
1074 * To simplify the WA, a constant value is formed by using the default value
1075 * of this register. This shouldn't be a problem because we are only modifying
1076 * it for a short period and this batch in non-premptible. We can ofcourse
1077 * use additional instructions that read the actual value of the register
1078 * at that time and set our bit of interest but it makes the WA complicated.
1079 *
1080 * This WA is also required for Gen9 so extracting as a function avoids
1081 * code duplication.
1082 */
0bc40be8 1083static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1084 uint32_t *const batch,
1085 uint32_t index)
1086{
1087 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1088
a4106a78
AS
1089 /*
1090 * WaDisableLSQCROPERFforOCL:skl
1091 * This WA is implemented in skl_init_clock_gating() but since
1092 * this batch updates GEN8_L3SQCREG4 with default value we need to
1093 * set this bit here to retain the WA during flush.
1094 */
0bc40be8 1095 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1096 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1097
f1afe24f 1098 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1099 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1100 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1101 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1102 wa_ctx_emit(batch, index, 0);
1103
1104 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1105 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1106 wa_ctx_emit(batch, index, l3sqc4_flush);
1107
1108 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1109 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1110 PIPE_CONTROL_DC_FLUSH_ENABLE));
1111 wa_ctx_emit(batch, index, 0);
1112 wa_ctx_emit(batch, index, 0);
1113 wa_ctx_emit(batch, index, 0);
1114 wa_ctx_emit(batch, index, 0);
1115
f1afe24f 1116 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1117 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1118 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1119 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1120 wa_ctx_emit(batch, index, 0);
9e000847
AS
1121
1122 return index;
1123}
1124
17ee950d
AS
1125static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1126 uint32_t offset,
1127 uint32_t start_alignment)
1128{
1129 return wa_ctx->offset = ALIGN(offset, start_alignment);
1130}
1131
1132static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1133 uint32_t offset,
1134 uint32_t size_alignment)
1135{
1136 wa_ctx->size = offset - wa_ctx->offset;
1137
1138 WARN(wa_ctx->size % size_alignment,
1139 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1140 wa_ctx->size, size_alignment);
1141 return 0;
1142}
1143
1144/**
1145 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1146 *
1147 * @ring: only applicable for RCS
1148 * @wa_ctx: structure representing wa_ctx
1149 * offset: specifies start of the batch, should be cache-aligned. This is updated
1150 * with the offset value received as input.
1151 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1152 * @batch: page in which WA are loaded
1153 * @offset: This field specifies the start of the batch, it should be
1154 * cache-aligned otherwise it is adjusted accordingly.
1155 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1156 * initialized at the beginning and shared across all contexts but this field
1157 * helps us to have multiple batches at different offsets and select them based
1158 * on a criteria. At the moment this batch always start at the beginning of the page
1159 * and at this point we don't have multiple wa_ctx batch buffers.
1160 *
1161 * The number of WA applied are not known at the beginning; we use this field
1162 * to return the no of DWORDS written.
4d78c8dc 1163 *
17ee950d
AS
1164 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1165 * so it adds NOOPs as padding to make it cacheline aligned.
1166 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1167 * makes a complete batch buffer.
1168 *
1169 * Return: non-zero if we exceed the PAGE_SIZE limit.
1170 */
1171
0bc40be8 1172static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1173 struct i915_wa_ctx_bb *wa_ctx,
1174 uint32_t *const batch,
1175 uint32_t *offset)
1176{
0160f055 1177 uint32_t scratch_addr;
17ee950d
AS
1178 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1179
7ad00d1a 1180 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1181 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1182
c82435bb 1183 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1184 if (IS_BROADWELL(engine->dev)) {
1185 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1186 if (rc < 0)
1187 return rc;
1188 index = rc;
c82435bb
AS
1189 }
1190
0160f055
AS
1191 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1192 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1193 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1194
83b8a982
AS
1195 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1196 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1197 PIPE_CONTROL_GLOBAL_GTT_IVB |
1198 PIPE_CONTROL_CS_STALL |
1199 PIPE_CONTROL_QW_WRITE));
1200 wa_ctx_emit(batch, index, scratch_addr);
1201 wa_ctx_emit(batch, index, 0);
1202 wa_ctx_emit(batch, index, 0);
1203 wa_ctx_emit(batch, index, 0);
0160f055 1204
17ee950d
AS
1205 /* Pad to end of cacheline */
1206 while (index % CACHELINE_DWORDS)
83b8a982 1207 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1208
1209 /*
1210 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1211 * execution depends on the length specified in terms of cache lines
1212 * in the register CTX_RCS_INDIRECT_CTX
1213 */
1214
1215 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1216}
1217
1218/**
1219 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1220 *
1221 * @ring: only applicable for RCS
1222 * @wa_ctx: structure representing wa_ctx
1223 * offset: specifies start of the batch, should be cache-aligned.
1224 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1225 * @batch: page in which WA are loaded
17ee950d
AS
1226 * @offset: This field specifies the start of this batch.
1227 * This batch is started immediately after indirect_ctx batch. Since we ensure
1228 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1229 *
1230 * The number of DWORDS written are returned using this field.
1231 *
1232 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1233 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1234 */
0bc40be8 1235static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1236 struct i915_wa_ctx_bb *wa_ctx,
1237 uint32_t *const batch,
1238 uint32_t *offset)
1239{
1240 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1241
7ad00d1a 1242 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1243 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1244
83b8a982 1245 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1246
1247 return wa_ctx_end(wa_ctx, *offset = index, 1);
1248}
1249
0bc40be8 1250static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1251 struct i915_wa_ctx_bb *wa_ctx,
1252 uint32_t *const batch,
1253 uint32_t *offset)
1254{
a4106a78 1255 int ret;
0bc40be8 1256 struct drm_device *dev = engine->dev;
0504cffc
AS
1257 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1258
0907c8f7 1259 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1260 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1261 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1262 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1263
a4106a78 1264 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1265 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1266 if (ret < 0)
1267 return ret;
1268 index = ret;
1269
0504cffc
AS
1270 /* Pad to end of cacheline */
1271 while (index % CACHELINE_DWORDS)
1272 wa_ctx_emit(batch, index, MI_NOOP);
1273
1274 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1275}
1276
0bc40be8 1277static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1278 struct i915_wa_ctx_bb *wa_ctx,
1279 uint32_t *const batch,
1280 uint32_t *offset)
1281{
0bc40be8 1282 struct drm_device *dev = engine->dev;
0504cffc
AS
1283 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1284
9b01435d 1285 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1286 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1287 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1288 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1289 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1290 wa_ctx_emit(batch, index,
1291 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1292 wa_ctx_emit(batch, index, MI_NOOP);
1293 }
1294
b1e429fe
TG
1295 /* WaClearTdlStateAckDirtyBits:bxt */
1296 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1297 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1298
1299 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1300 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1301
1302 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1303 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1304
1305 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1306 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1307
1308 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1309 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1310 wa_ctx_emit(batch, index, 0x0);
1311 wa_ctx_emit(batch, index, MI_NOOP);
1312 }
1313
0907c8f7 1314 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1315 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1316 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1317 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1318
0504cffc
AS
1319 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1320
1321 return wa_ctx_end(wa_ctx, *offset = index, 1);
1322}
1323
0bc40be8 1324static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1325{
1326 int ret;
1327
d37cd8a8 1328 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
0bc40be8 1329 PAGE_ALIGN(size));
fe3db79b 1330 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1331 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1332 ret = PTR_ERR(engine->wa_ctx.obj);
1333 engine->wa_ctx.obj = NULL;
1334 return ret;
17ee950d
AS
1335 }
1336
0bc40be8 1337 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1338 if (ret) {
1339 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1340 ret);
0bc40be8 1341 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1342 return ret;
1343 }
1344
1345 return 0;
1346}
1347
0bc40be8 1348static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1349{
0bc40be8
TU
1350 if (engine->wa_ctx.obj) {
1351 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1352 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1353 engine->wa_ctx.obj = NULL;
17ee950d
AS
1354 }
1355}
1356
0bc40be8 1357static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1358{
1359 int ret;
1360 uint32_t *batch;
1361 uint32_t offset;
1362 struct page *page;
0bc40be8 1363 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1364
0bc40be8 1365 WARN_ON(engine->id != RCS);
17ee950d 1366
5e60d790 1367 /* update this when WA for higher Gen are added */
0bc40be8 1368 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1369 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1370 INTEL_INFO(engine->dev)->gen);
5e60d790 1371 return 0;
0504cffc 1372 }
5e60d790 1373
c4db7599 1374 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1375 if (engine->scratch.obj == NULL) {
1376 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1377 return -EINVAL;
1378 }
1379
0bc40be8 1380 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1381 if (ret) {
1382 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1383 return ret;
1384 }
1385
033908ae 1386 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1387 batch = kmap_atomic(page);
1388 offset = 0;
1389
0bc40be8
TU
1390 if (INTEL_INFO(engine->dev)->gen == 8) {
1391 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1392 &wa_ctx->indirect_ctx,
1393 batch,
1394 &offset);
1395 if (ret)
1396 goto out;
1397
0bc40be8 1398 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1399 &wa_ctx->per_ctx,
1400 batch,
1401 &offset);
1402 if (ret)
1403 goto out;
0bc40be8
TU
1404 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1405 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1406 &wa_ctx->indirect_ctx,
1407 batch,
1408 &offset);
1409 if (ret)
1410 goto out;
1411
0bc40be8 1412 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1413 &wa_ctx->per_ctx,
1414 batch,
1415 &offset);
1416 if (ret)
1417 goto out;
17ee950d
AS
1418 }
1419
1420out:
1421 kunmap_atomic(batch);
1422 if (ret)
0bc40be8 1423 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1424
1425 return ret;
1426}
1427
04794adb
TU
1428static void lrc_init_hws(struct intel_engine_cs *engine)
1429{
1430 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1431
1432 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1433 (u32)engine->status_page.gfx_addr);
1434 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1435}
1436
0bc40be8 1437static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1438{
0bc40be8 1439 struct drm_device *dev = engine->dev;
9b1136d5 1440 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1441 unsigned int next_context_status_buffer_hw;
9b1136d5 1442
04794adb 1443 lrc_init_hws(engine);
e84fe803 1444
0bc40be8
TU
1445 I915_WRITE_IMR(engine,
1446 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1447 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1448
0bc40be8 1449 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1450 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1451 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1452 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1453
1454 /*
1455 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1456 * zero, we need to read the write pointer from hardware and use its
1457 * value because "this register is power context save restored".
1458 * Effectively, these states have been observed:
1459 *
1460 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1461 * BDW | CSB regs not reset | CSB regs reset |
1462 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1463 * SKL | ? | ? |
1464 * BXT | ? | ? |
dfc53c5e 1465 */
5590a5f0 1466 next_context_status_buffer_hw =
0bc40be8 1467 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1468
1469 /*
1470 * When the CSB registers are reset (also after power-up / gpu reset),
1471 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1472 * this special case, so the first element read is CSB[0].
1473 */
1474 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1475 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1476
0bc40be8
TU
1477 engine->next_context_status_buffer = next_context_status_buffer_hw;
1478 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1479
fc0768ce 1480 intel_engine_init_hangcheck(engine);
9b1136d5 1481
0ccdacf6 1482 return intel_mocs_init_engine(engine);
9b1136d5
OM
1483}
1484
0bc40be8 1485static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1486{
0bc40be8 1487 struct drm_device *dev = engine->dev;
9b1136d5
OM
1488 struct drm_i915_private *dev_priv = dev->dev_private;
1489 int ret;
1490
0bc40be8 1491 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1492 if (ret)
1493 return ret;
1494
1495 /* We need to disable the AsyncFlip performance optimisations in order
1496 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1497 * programmed to '1' on all products.
1498 *
1499 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1500 */
1501 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1502
9b1136d5
OM
1503 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1504
0bc40be8 1505 return init_workarounds_ring(engine);
9b1136d5
OM
1506}
1507
0bc40be8 1508static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1509{
1510 int ret;
1511
0bc40be8 1512 ret = gen8_init_common_ring(engine);
82ef822e
DL
1513 if (ret)
1514 return ret;
1515
0bc40be8 1516 return init_workarounds_ring(engine);
82ef822e
DL
1517}
1518
7a01a0a2
MT
1519static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1520{
1521 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1522 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1523 struct intel_ringbuffer *ringbuf = req->ringbuf;
1524 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1525 int i, ret;
1526
987046ad 1527 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1528 if (ret)
1529 return ret;
1530
1531 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1532 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1533 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1534
e2f80391
TU
1535 intel_logical_ring_emit_reg(ringbuf,
1536 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1537 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1538 intel_logical_ring_emit_reg(ringbuf,
1539 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1540 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1541 }
1542
1543 intel_logical_ring_emit(ringbuf, MI_NOOP);
1544 intel_logical_ring_advance(ringbuf);
1545
1546 return 0;
1547}
1548
be795fc1 1549static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1550 u64 offset, unsigned dispatch_flags)
15648585 1551{
be795fc1 1552 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1553 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1554 int ret;
1555
7a01a0a2
MT
1556 /* Don't rely in hw updating PDPs, specially in lite-restore.
1557 * Ideally, we should set Force PD Restore in ctx descriptor,
1558 * but we can't. Force Restore would be a second option, but
1559 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1560 * not idle). PML4 is allocated during ppgtt init so this is
1561 * not needed in 48-bit.*/
7a01a0a2 1562 if (req->ctx->ppgtt &&
666796da 1563 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1564 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1565 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1566 ret = intel_logical_ring_emit_pdps(req);
1567 if (ret)
1568 return ret;
1569 }
7a01a0a2 1570
666796da 1571 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1572 }
1573
987046ad 1574 ret = intel_ring_begin(req, 4);
15648585
OM
1575 if (ret)
1576 return ret;
1577
1578 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1579 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1580 (ppgtt<<8) |
1581 (dispatch_flags & I915_DISPATCH_RS ?
1582 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1583 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1584 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1585 intel_logical_ring_emit(ringbuf, MI_NOOP);
1586 intel_logical_ring_advance(ringbuf);
1587
1588 return 0;
1589}
1590
0bc40be8 1591static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1592{
0bc40be8 1593 struct drm_device *dev = engine->dev;
73d477f6
OM
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595 unsigned long flags;
1596
7cd512f1 1597 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1598 return false;
1599
1600 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1601 if (engine->irq_refcount++ == 0) {
1602 I915_WRITE_IMR(engine,
1603 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1604 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1605 }
1606 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1607
1608 return true;
1609}
1610
0bc40be8 1611static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1612{
0bc40be8 1613 struct drm_device *dev = engine->dev;
73d477f6
OM
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 unsigned long flags;
1616
1617 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1618 if (--engine->irq_refcount == 0) {
1619 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1620 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1621 }
1622 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1623}
1624
7deb4d39 1625static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1626 u32 invalidate_domains,
1627 u32 unused)
1628{
7deb4d39 1629 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1630 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1631 struct drm_device *dev = engine->dev;
4712274c
OM
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 uint32_t cmd;
1634 int ret;
1635
987046ad 1636 ret = intel_ring_begin(request, 4);
4712274c
OM
1637 if (ret)
1638 return ret;
1639
1640 cmd = MI_FLUSH_DW + 1;
1641
f0a1fb10
CW
1642 /* We always require a command barrier so that subsequent
1643 * commands, such as breadcrumb interrupts, are strictly ordered
1644 * wrt the contents of the write cache being flushed to memory
1645 * (and thus being coherent from the CPU).
1646 */
1647 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1648
1649 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1650 cmd |= MI_INVALIDATE_TLB;
4a570db5 1651 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1652 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1653 }
1654
1655 intel_logical_ring_emit(ringbuf, cmd);
1656 intel_logical_ring_emit(ringbuf,
1657 I915_GEM_HWS_SCRATCH_ADDR |
1658 MI_FLUSH_DW_USE_GTT);
1659 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1660 intel_logical_ring_emit(ringbuf, 0); /* value */
1661 intel_logical_ring_advance(ringbuf);
1662
1663 return 0;
1664}
1665
7deb4d39 1666static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1667 u32 invalidate_domains,
1668 u32 flush_domains)
1669{
7deb4d39 1670 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1671 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1672 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1673 bool vf_flush_wa = false;
4712274c
OM
1674 u32 flags = 0;
1675 int ret;
1676
1677 flags |= PIPE_CONTROL_CS_STALL;
1678
1679 if (flush_domains) {
1680 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1681 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1682 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1683 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1684 }
1685
1686 if (invalidate_domains) {
1687 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1688 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1689 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1690 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1691 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1693 flags |= PIPE_CONTROL_QW_WRITE;
1694 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1695
1a5a9ce7
BW
1696 /*
1697 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1698 * pipe control.
1699 */
e2f80391 1700 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1701 vf_flush_wa = true;
1702 }
9647ff36 1703
987046ad 1704 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1705 if (ret)
1706 return ret;
1707
9647ff36
ID
1708 if (vf_flush_wa) {
1709 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1710 intel_logical_ring_emit(ringbuf, 0);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_emit(ringbuf, 0);
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_emit(ringbuf, 0);
1715 }
1716
4712274c
OM
1717 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1718 intel_logical_ring_emit(ringbuf, flags);
1719 intel_logical_ring_emit(ringbuf, scratch_addr);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 intel_logical_ring_emit(ringbuf, 0);
1722 intel_logical_ring_emit(ringbuf, 0);
1723 intel_logical_ring_advance(ringbuf);
1724
1725 return 0;
1726}
1727
c04e0f3b 1728static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1729{
0bc40be8 1730 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1731}
1732
0bc40be8 1733static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1734{
0bc40be8 1735 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1736}
1737
c04e0f3b 1738static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1739{
319404df
ID
1740 /*
1741 * On BXT A steppings there is a HW coherency issue whereby the
1742 * MI_STORE_DATA_IMM storing the completed request's seqno
1743 * occasionally doesn't invalidate the CPU cache. Work around this by
1744 * clflushing the corresponding cacheline whenever the caller wants
1745 * the coherency to be guaranteed. Note that this cacheline is known
1746 * to be clean at this point, since we only write it in
1747 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1748 * this clflush in practice becomes an invalidate operation.
1749 */
c04e0f3b 1750 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1751}
1752
0bc40be8 1753static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1754{
0bc40be8 1755 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1756
1757 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1758 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1759}
1760
7c17d377
CW
1761/*
1762 * Reserve space for 2 NOOPs at the end of each request to be
1763 * used as a workaround for not being allowed to do lite
1764 * restore with HEAD==TAIL (WaIdleLiteRestore).
1765 */
1766#define WA_TAIL_DWORDS 2
1767
c4e76638 1768static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1769{
c4e76638 1770 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1771 int ret;
1772
987046ad 1773 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1774 if (ret)
1775 return ret;
1776
7c17d377
CW
1777 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1778 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1779
4da46e1e 1780 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1781 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1782 intel_logical_ring_emit(ringbuf,
a58c01aa 1783 intel_hws_seqno_address(request->engine) |
7c17d377 1784 MI_FLUSH_DW_USE_GTT);
4da46e1e 1785 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1786 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1787 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1788 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1789 return intel_logical_ring_advance_and_submit(request);
1790}
4da46e1e 1791
7c17d377
CW
1792static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1793{
1794 struct intel_ringbuffer *ringbuf = request->ringbuf;
1795 int ret;
53292cdb 1796
987046ad 1797 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1798 if (ret)
1799 return ret;
1800
ce81a65c
MW
1801 /* We're using qword write, seqno should be aligned to 8 bytes. */
1802 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1803
7c17d377
CW
1804 /* w/a for post sync ops following a GPGPU operation we
1805 * need a prior CS_STALL, which is emitted by the flush
1806 * following the batch.
1807 */
ce81a65c 1808 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1809 intel_logical_ring_emit(ringbuf,
1810 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1811 PIPE_CONTROL_CS_STALL |
1812 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1813 intel_logical_ring_emit(ringbuf,
1814 intel_hws_seqno_address(request->engine));
7c17d377
CW
1815 intel_logical_ring_emit(ringbuf, 0);
1816 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1817 /* We're thrashing one dword of HWS. */
1818 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1819 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1820 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1821 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1822}
1823
be01363f 1824static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1825{
cef437ad 1826 struct render_state so;
cef437ad
DL
1827 int ret;
1828
4a570db5 1829 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1830 if (ret)
1831 return ret;
1832
1833 if (so.rodata == NULL)
1834 return 0;
1835
4a570db5 1836 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1837 I915_DISPATCH_SECURE);
cef437ad
DL
1838 if (ret)
1839 goto out;
1840
4a570db5 1841 ret = req->engine->emit_bb_start(req,
84e81020
AS
1842 (so.ggtt_offset + so.aux_batch_offset),
1843 I915_DISPATCH_SECURE);
1844 if (ret)
1845 goto out;
1846
b2af0376 1847 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1848
cef437ad
DL
1849out:
1850 i915_gem_render_state_fini(&so);
1851 return ret;
1852}
1853
8753181e 1854static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1855{
1856 int ret;
1857
e2be4faf 1858 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1859 if (ret)
1860 return ret;
1861
3bbaba0c
PA
1862 ret = intel_rcs_context_init_mocs(req);
1863 /*
1864 * Failing to program the MOCS is non-fatal.The system will not
1865 * run at peak performance. So generate an error and carry on.
1866 */
1867 if (ret)
1868 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1869
be01363f 1870 return intel_lr_context_render_state_init(req);
e7778be1
TD
1871}
1872
73e4d07f
OM
1873/**
1874 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1875 *
1876 * @ring: Engine Command Streamer.
1877 *
1878 */
0bc40be8 1879void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1880{
6402c330 1881 struct drm_i915_private *dev_priv;
9832b9da 1882
117897f4 1883 if (!intel_engine_initialized(engine))
48d82387
OM
1884 return;
1885
27af5eea
TU
1886 /*
1887 * Tasklet cannot be active at this point due intel_mark_active/idle
1888 * so this is just for documentation.
1889 */
1890 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1891 tasklet_kill(&engine->irq_tasklet);
1892
0bc40be8 1893 dev_priv = engine->dev->dev_private;
6402c330 1894
0bc40be8
TU
1895 if (engine->buffer) {
1896 intel_logical_ring_stop(engine);
1897 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1898 }
48d82387 1899
0bc40be8
TU
1900 if (engine->cleanup)
1901 engine->cleanup(engine);
48d82387 1902
0bc40be8
TU
1903 i915_cmd_parser_fini_ring(engine);
1904 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1905
0bc40be8 1906 if (engine->status_page.obj) {
7d774cac 1907 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1908 engine->status_page.obj = NULL;
48d82387 1909 }
24f1d3cc 1910 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1911
0bc40be8
TU
1912 engine->idle_lite_restore_wa = 0;
1913 engine->disable_lite_restore_wa = false;
1914 engine->ctx_desc_template = 0;
ca82580c 1915
0bc40be8
TU
1916 lrc_destroy_wa_ctx_obj(engine);
1917 engine->dev = NULL;
454afebd
OM
1918}
1919
c9cacf93
TU
1920static void
1921logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1922 struct intel_engine_cs *engine)
c9cacf93
TU
1923{
1924 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1925 engine->init_hw = gen8_init_common_ring;
1926 engine->emit_request = gen8_emit_request;
1927 engine->emit_flush = gen8_emit_flush;
1928 engine->irq_get = gen8_logical_ring_get_irq;
1929 engine->irq_put = gen8_logical_ring_put_irq;
1930 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1931 engine->get_seqno = gen8_get_seqno;
1932 engine->set_seqno = gen8_set_seqno;
c9cacf93 1933 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1934 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1935 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1936 }
1937}
1938
d9f3af96 1939static inline void
0bc40be8 1940logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1941{
0bc40be8
TU
1942 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1943 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1944}
1945
7d774cac 1946static int
04794adb
TU
1947lrc_setup_hws(struct intel_engine_cs *engine,
1948 struct drm_i915_gem_object *dctx_obj)
1949{
7d774cac 1950 void *hws;
04794adb
TU
1951
1952 /* The HWSP is part of the default context object in LRC mode. */
1953 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1954 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1955 hws = i915_gem_object_pin_map(dctx_obj);
1956 if (IS_ERR(hws))
1957 return PTR_ERR(hws);
1958 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1959 engine->status_page.obj = dctx_obj;
7d774cac
TU
1960
1961 return 0;
04794adb
TU
1962}
1963
c9cacf93 1964static int
0bc40be8 1965logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1966{
3756685a
TU
1967 struct drm_i915_private *dev_priv = to_i915(dev);
1968 struct intel_context *dctx = dev_priv->kernel_context;
1969 enum forcewake_domains fw_domains;
48d82387 1970 int ret;
48d82387
OM
1971
1972 /* Intentionally left blank. */
0bc40be8 1973 engine->buffer = NULL;
48d82387 1974
0bc40be8
TU
1975 engine->dev = dev;
1976 INIT_LIST_HEAD(&engine->active_list);
1977 INIT_LIST_HEAD(&engine->request_list);
1978 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1979 init_waitqueue_head(&engine->irq_queue);
48d82387 1980
0bc40be8
TU
1981 INIT_LIST_HEAD(&engine->buffers);
1982 INIT_LIST_HEAD(&engine->execlist_queue);
0bc40be8 1983 spin_lock_init(&engine->execlist_lock);
acdd884a 1984
27af5eea
TU
1985 tasklet_init(&engine->irq_tasklet,
1986 intel_lrc_irq_handler, (unsigned long)engine);
1987
0bc40be8 1988 logical_ring_init_platform_invariants(engine);
ca82580c 1989
3756685a
TU
1990 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1991 RING_ELSP(engine),
1992 FW_REG_WRITE);
1993
1994 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1995 RING_CONTEXT_STATUS_PTR(engine),
1996 FW_REG_READ | FW_REG_WRITE);
1997
1998 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1999 RING_CONTEXT_STATUS_BUF_BASE(engine),
2000 FW_REG_READ);
2001
2002 engine->fw_domains = fw_domains;
2003
0bc40be8 2004 ret = i915_cmd_parser_init_ring(engine);
48d82387 2005 if (ret)
b0366a54 2006 goto error;
48d82387 2007
978f1e09 2008 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2009 if (ret)
b0366a54 2010 goto error;
e84fe803
NH
2011
2012 /* As this is the default context, always pin it */
24f1d3cc 2013 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2014 if (ret) {
24f1d3cc
CW
2015 DRM_ERROR("Failed to pin context for %s: %d\n",
2016 engine->name, ret);
b0366a54 2017 goto error;
e84fe803 2018 }
564ddb2f 2019
04794adb 2020 /* And setup the hardware status page. */
7d774cac
TU
2021 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2022 if (ret) {
2023 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2024 goto error;
2025 }
04794adb 2026
b0366a54
DG
2027 return 0;
2028
2029error:
0bc40be8 2030 intel_logical_ring_cleanup(engine);
564ddb2f 2031 return ret;
454afebd
OM
2032}
2033
2034static int logical_render_ring_init(struct drm_device *dev)
2035{
2036 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2037 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2038 int ret;
454afebd 2039
e2f80391
TU
2040 engine->name = "render ring";
2041 engine->id = RCS;
2042 engine->exec_id = I915_EXEC_RENDER;
2043 engine->guc_id = GUC_RENDER_ENGINE;
2044 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2045
e2f80391 2046 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2047 if (HAS_L3_DPF(dev))
e2f80391 2048 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2049
e2f80391 2050 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2051
2052 /* Override some for render ring. */
82ef822e 2053 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2054 engine->init_hw = gen9_init_render_ring;
82ef822e 2055 else
e2f80391
TU
2056 engine->init_hw = gen8_init_render_ring;
2057 engine->init_context = gen8_init_rcs_context;
2058 engine->cleanup = intel_fini_pipe_control;
2059 engine->emit_flush = gen8_emit_flush_render;
2060 engine->emit_request = gen8_emit_request_render;
9b1136d5 2061
e2f80391 2062 engine->dev = dev;
c4db7599 2063
e2f80391 2064 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2065 if (ret)
2066 return ret;
2067
e2f80391 2068 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2069 if (ret) {
2070 /*
2071 * We continue even if we fail to initialize WA batch
2072 * because we only expect rare glitches but nothing
2073 * critical to prevent us from using GPU
2074 */
2075 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2076 ret);
2077 }
2078
e2f80391 2079 ret = logical_ring_init(dev, engine);
c4db7599 2080 if (ret) {
e2f80391 2081 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2082 }
17ee950d
AS
2083
2084 return ret;
454afebd
OM
2085}
2086
2087static int logical_bsd_ring_init(struct drm_device *dev)
2088{
2089 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2090 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2091
e2f80391
TU
2092 engine->name = "bsd ring";
2093 engine->id = VCS;
2094 engine->exec_id = I915_EXEC_BSD;
2095 engine->guc_id = GUC_VIDEO_ENGINE;
2096 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2097
e2f80391
TU
2098 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2099 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2100
e2f80391 2101 return logical_ring_init(dev, engine);
454afebd
OM
2102}
2103
2104static int logical_bsd2_ring_init(struct drm_device *dev)
2105{
2106 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2107 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2108
e2f80391
TU
2109 engine->name = "bsd2 ring";
2110 engine->id = VCS2;
2111 engine->exec_id = I915_EXEC_BSD;
2112 engine->guc_id = GUC_VIDEO_ENGINE2;
2113 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2114
e2f80391
TU
2115 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2116 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2117
e2f80391 2118 return logical_ring_init(dev, engine);
454afebd
OM
2119}
2120
2121static int logical_blt_ring_init(struct drm_device *dev)
2122{
2123 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2124 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2125
e2f80391
TU
2126 engine->name = "blitter ring";
2127 engine->id = BCS;
2128 engine->exec_id = I915_EXEC_BLT;
2129 engine->guc_id = GUC_BLITTER_ENGINE;
2130 engine->mmio_base = BLT_RING_BASE;
454afebd 2131
e2f80391
TU
2132 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2133 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2134
e2f80391 2135 return logical_ring_init(dev, engine);
454afebd
OM
2136}
2137
2138static int logical_vebox_ring_init(struct drm_device *dev)
2139{
2140 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2141 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2142
e2f80391
TU
2143 engine->name = "video enhancement ring";
2144 engine->id = VECS;
2145 engine->exec_id = I915_EXEC_VEBOX;
2146 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2147 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2148
e2f80391
TU
2149 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2150 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2151
e2f80391 2152 return logical_ring_init(dev, engine);
454afebd
OM
2153}
2154
73e4d07f
OM
2155/**
2156 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2157 * @dev: DRM device.
2158 *
2159 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2160 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2161 * those engines that are present in the hardware.
2162 *
2163 * Return: non-zero if the initialization failed.
2164 */
454afebd
OM
2165int intel_logical_rings_init(struct drm_device *dev)
2166{
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 int ret;
2169
2170 ret = logical_render_ring_init(dev);
2171 if (ret)
2172 return ret;
2173
2174 if (HAS_BSD(dev)) {
2175 ret = logical_bsd_ring_init(dev);
2176 if (ret)
2177 goto cleanup_render_ring;
2178 }
2179
2180 if (HAS_BLT(dev)) {
2181 ret = logical_blt_ring_init(dev);
2182 if (ret)
2183 goto cleanup_bsd_ring;
2184 }
2185
2186 if (HAS_VEBOX(dev)) {
2187 ret = logical_vebox_ring_init(dev);
2188 if (ret)
2189 goto cleanup_blt_ring;
2190 }
2191
2192 if (HAS_BSD2(dev)) {
2193 ret = logical_bsd2_ring_init(dev);
2194 if (ret)
2195 goto cleanup_vebox_ring;
2196 }
2197
454afebd
OM
2198 return 0;
2199
454afebd 2200cleanup_vebox_ring:
4a570db5 2201 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2202cleanup_blt_ring:
4a570db5 2203 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2204cleanup_bsd_ring:
4a570db5 2205 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2206cleanup_render_ring:
4a570db5 2207 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2208
2209 return ret;
2210}
2211
0cea6502
JM
2212static u32
2213make_rpcs(struct drm_device *dev)
2214{
2215 u32 rpcs = 0;
2216
2217 /*
2218 * No explicit RPCS request is needed to ensure full
2219 * slice/subslice/EU enablement prior to Gen9.
2220 */
2221 if (INTEL_INFO(dev)->gen < 9)
2222 return 0;
2223
2224 /*
2225 * Starting in Gen9, render power gating can leave
2226 * slice/subslice/EU in a partially enabled state. We
2227 * must make an explicit request through RPCS for full
2228 * enablement.
2229 */
2230 if (INTEL_INFO(dev)->has_slice_pg) {
2231 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2232 rpcs |= INTEL_INFO(dev)->slice_total <<
2233 GEN8_RPCS_S_CNT_SHIFT;
2234 rpcs |= GEN8_RPCS_ENABLE;
2235 }
2236
2237 if (INTEL_INFO(dev)->has_subslice_pg) {
2238 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2239 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2240 GEN8_RPCS_SS_CNT_SHIFT;
2241 rpcs |= GEN8_RPCS_ENABLE;
2242 }
2243
2244 if (INTEL_INFO(dev)->has_eu_pg) {
2245 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2246 GEN8_RPCS_EU_MIN_SHIFT;
2247 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2248 GEN8_RPCS_EU_MAX_SHIFT;
2249 rpcs |= GEN8_RPCS_ENABLE;
2250 }
2251
2252 return rpcs;
2253}
2254
0bc40be8 2255static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2256{
2257 u32 indirect_ctx_offset;
2258
0bc40be8 2259 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2260 default:
0bc40be8 2261 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2262 /* fall through */
2263 case 9:
2264 indirect_ctx_offset =
2265 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2266 break;
2267 case 8:
2268 indirect_ctx_offset =
2269 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2270 break;
2271 }
2272
2273 return indirect_ctx_offset;
2274}
2275
8670d6f9 2276static int
7d774cac
TU
2277populate_lr_context(struct intel_context *ctx,
2278 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2279 struct intel_engine_cs *engine,
2280 struct intel_ringbuffer *ringbuf)
8670d6f9 2281{
0bc40be8 2282 struct drm_device *dev = engine->dev;
2d965536 2283 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2284 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2285 void *vaddr;
2286 u32 *reg_state;
8670d6f9
OM
2287 int ret;
2288
2d965536
TD
2289 if (!ppgtt)
2290 ppgtt = dev_priv->mm.aliasing_ppgtt;
2291
8670d6f9
OM
2292 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2293 if (ret) {
2294 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2295 return ret;
2296 }
2297
7d774cac
TU
2298 vaddr = i915_gem_object_pin_map(ctx_obj);
2299 if (IS_ERR(vaddr)) {
2300 ret = PTR_ERR(vaddr);
2301 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2302 return ret;
2303 }
7d774cac 2304 ctx_obj->dirty = true;
8670d6f9
OM
2305
2306 /* The second page of the context object contains some fields which must
2307 * be set up prior to the first execution. */
7d774cac 2308 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2309
2310 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2311 * commands followed by (reg, value) pairs. The values we are setting here are
2312 * only for the first context restore: on a subsequent save, the GPU will
2313 * recreate this batchbuffer with new values (including all the missing
2314 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2315 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2316 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2317 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2318 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2319 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2320 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2321 (HAS_RESOURCE_STREAMER(dev) ?
2322 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2323 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2324 0);
2325 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2326 0);
7ba717cf
TD
2327 /* Ring buffer start address is not known until the buffer is pinned.
2328 * It is written to the context image in execlists_update_context()
2329 */
0bc40be8
TU
2330 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2331 RING_START(engine->mmio_base), 0);
2332 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2333 RING_CTL(engine->mmio_base),
0d925ea0 2334 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2335 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2336 RING_BBADDR_UDW(engine->mmio_base), 0);
2337 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2338 RING_BBADDR(engine->mmio_base), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2340 RING_BBSTATE(engine->mmio_base),
0d925ea0 2341 RING_BB_PPGTT);
0bc40be8
TU
2342 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2343 RING_SBBADDR_UDW(engine->mmio_base), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2345 RING_SBBADDR(engine->mmio_base), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2347 RING_SBBSTATE(engine->mmio_base), 0);
2348 if (engine->id == RCS) {
2349 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2350 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2351 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2352 RING_INDIRECT_CTX(engine->mmio_base), 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2354 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2355 if (engine->wa_ctx.obj) {
2356 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2357 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2358
2359 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2360 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2361 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2362
2363 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2364 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2365
2366 reg_state[CTX_BB_PER_CTX_PTR+1] =
2367 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2368 0x01;
2369 }
8670d6f9 2370 }
0d925ea0 2371 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2372 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2373 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2374 /* PDP values well be assigned later if needed */
0bc40be8
TU
2375 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2376 0);
2377 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2378 0);
2379 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2380 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2382 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2388 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2390 0);
d7b2633d 2391
2dba3239
MT
2392 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2393 /* 64b PPGTT (48bit canonical)
2394 * PDP0_DESCRIPTOR contains the base address to PML4 and
2395 * other PDP Descriptors are ignored.
2396 */
2397 ASSIGN_CTX_PML4(ppgtt, reg_state);
2398 } else {
2399 /* 32b PPGTT
2400 * PDP*_DESCRIPTOR contains the base address of space supported.
2401 * With dynamic page allocation, PDPs may not be allocated at
2402 * this point. Point the unallocated PDPs to the scratch page
2403 */
c6a2ac71 2404 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2405 }
2406
0bc40be8 2407 if (engine->id == RCS) {
8670d6f9 2408 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2409 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2410 make_rpcs(dev));
8670d6f9
OM
2411 }
2412
7d774cac 2413 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2414
2415 return 0;
2416}
2417
73e4d07f
OM
2418/**
2419 * intel_lr_context_free() - free the LRC specific bits of a context
2420 * @ctx: the LR context to free.
2421 *
2422 * The real context freeing is done in i915_gem_context_free: this only
2423 * takes care of the bits that are LRC related: the per-engine backing
2424 * objects and the logical ringbuffer.
2425 */
ede7d42b
OM
2426void intel_lr_context_free(struct intel_context *ctx)
2427{
8c857917
OM
2428 int i;
2429
666796da 2430 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2431 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2432 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2433
e28e404c
DG
2434 if (!ctx_obj)
2435 continue;
dcb4c12a 2436
e28e404c
DG
2437 WARN_ON(ctx->engine[i].pin_count);
2438 intel_ringbuffer_free(ringbuf);
2439 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2440 }
2441}
2442
c5d46ee2
DG
2443/**
2444 * intel_lr_context_size() - return the size of the context for an engine
2445 * @ring: which engine to find the context size for
2446 *
2447 * Each engine may require a different amount of space for a context image,
2448 * so when allocating (or copying) an image, this function can be used to
2449 * find the right size for the specific engine.
2450 *
2451 * Return: size (in bytes) of an engine-specific context image
2452 *
2453 * Note: this size includes the HWSP, which is part of the context image
2454 * in LRC mode, but does not include the "shared data page" used with
2455 * GuC submission. The caller should account for this if using the GuC.
2456 */
0bc40be8 2457uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2458{
2459 int ret = 0;
2460
0bc40be8 2461 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2462
0bc40be8 2463 switch (engine->id) {
8c857917 2464 case RCS:
0bc40be8 2465 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2466 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2467 else
2468 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2469 break;
2470 case VCS:
2471 case BCS:
2472 case VECS:
2473 case VCS2:
2474 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2475 break;
2476 }
2477
2478 return ret;
ede7d42b
OM
2479}
2480
73e4d07f 2481/**
978f1e09 2482 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2483 * @ctx: LR context to create.
978f1e09 2484 * @engine: engine to be used with the context.
73e4d07f
OM
2485 *
2486 * This function can be called more than once, with different engines, if we plan
2487 * to use the context with them. The context backing objects and the ringbuffers
2488 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2489 * the creation is a deferred call: it's better to make sure first that we need to use
2490 * a given ring with the context.
2491 *
32197aab 2492 * Return: non-zero on error.
73e4d07f 2493 */
978f1e09
CW
2494static int execlists_context_deferred_alloc(struct intel_context *ctx,
2495 struct intel_engine_cs *engine)
ede7d42b 2496{
0bc40be8 2497 struct drm_device *dev = engine->dev;
8c857917
OM
2498 struct drm_i915_gem_object *ctx_obj;
2499 uint32_t context_size;
84c2377f 2500 struct intel_ringbuffer *ringbuf;
8c857917
OM
2501 int ret;
2502
ede7d42b 2503 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2504 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2505
0bc40be8 2506 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2507
d1675198
AD
2508 /* One extra page as the sharing data between driver and GuC */
2509 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2510
d37cd8a8 2511 ctx_obj = i915_gem_object_create(dev, context_size);
fe3db79b 2512 if (IS_ERR(ctx_obj)) {
3126a660 2513 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2514 return PTR_ERR(ctx_obj);
8c857917
OM
2515 }
2516
0bc40be8 2517 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2518 if (IS_ERR(ringbuf)) {
2519 ret = PTR_ERR(ringbuf);
e84fe803 2520 goto error_deref_obj;
8670d6f9
OM
2521 }
2522
0bc40be8 2523 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2524 if (ret) {
2525 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2526 goto error_ringbuf;
84c2377f
OM
2527 }
2528
0bc40be8
TU
2529 ctx->engine[engine->id].ringbuf = ringbuf;
2530 ctx->engine[engine->id].state = ctx_obj;
24f1d3cc 2531 ctx->engine[engine->id].initialised = engine->init_context == NULL;
ede7d42b
OM
2532
2533 return 0;
8670d6f9 2534
01101fa7
CW
2535error_ringbuf:
2536 intel_ringbuffer_free(ringbuf);
e84fe803 2537error_deref_obj:
8670d6f9 2538 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2539 ctx->engine[engine->id].ringbuf = NULL;
2540 ctx->engine[engine->id].state = NULL;
8670d6f9 2541 return ret;
ede7d42b 2542}
3e5b6f05 2543
7d774cac
TU
2544void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2545 struct intel_context *ctx)
3e5b6f05 2546{
e2f80391 2547 struct intel_engine_cs *engine;
3e5b6f05 2548
b4ac5afc 2549 for_each_engine(engine, dev_priv) {
3e5b6f05 2550 struct drm_i915_gem_object *ctx_obj =
e2f80391 2551 ctx->engine[engine->id].state;
3e5b6f05 2552 struct intel_ringbuffer *ringbuf =
e2f80391 2553 ctx->engine[engine->id].ringbuf;
7d774cac 2554 void *vaddr;
3e5b6f05 2555 uint32_t *reg_state;
3e5b6f05
TD
2556
2557 if (!ctx_obj)
2558 continue;
2559
7d774cac
TU
2560 vaddr = i915_gem_object_pin_map(ctx_obj);
2561 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2562 continue;
7d774cac
TU
2563
2564 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2565 ctx_obj->dirty = true;
3e5b6f05
TD
2566
2567 reg_state[CTX_RING_HEAD+1] = 0;
2568 reg_state[CTX_RING_TAIL+1] = 0;
2569
7d774cac 2570 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2571
2572 ringbuf->head = 0;
2573 ringbuf->tail = 0;
2574 }
2575}
This page took 0.374037 seconds and 5 git commands to generate.