drm/i915: Add missing ')' to SKL_PS_ECC_STAT define
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0
VS
193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = (reg); \
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
17ee950d 226#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 227
8ba319da 228static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
229static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
73e4d07f
OM
266/**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
84b790f8
BW
278u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279{
d1675198
AD
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286}
287
5af05fef
MT
288static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289{
290 struct drm_device *dev = ring->dev;
291
e87a005d 292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
5af05fef
MT
294 (ring->id == VCS || ring->id == VCS2);
295}
296
919f1f55
DG
297uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
84b790f8 299{
919f1f55 300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 301 uint64_t desc;
d1675198
AD
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
306
307 desc = GEN8_CTX_VALID;
2dba3239 308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
203a571b 319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
ec72d588 320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
5af05fef 321 if (disable_lite_restore_wa(ring))
203a571b
NH
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
84b790f8
BW
324 return desc;
325}
326
cc3c4253
MK
327static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
84b790f8 329{
cc3c4253
MK
330
331 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 334 uint64_t desc[2];
84b790f8 335
1cff8cc3 336 if (rq1) {
919f1f55 337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
84b790f8 342
919f1f55 343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 344 rq0->elsp_submitted++;
84b790f8 345
1cff8cc3 346 /* You must always write both descriptors in the order below. */
a6111f7b
CW
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 351
1cff8cc3 352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 353 /* The context is automatically loaded after the following */
1cff8cc3 354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 355
1cff8cc3 356 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
360}
361
05d9824b 362static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
05d9824b
MK
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
368 struct page *page;
369 uint32_t *reg_state;
370
05d9824b
MK
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
d1675198 375 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
376 reg_state = kmap_atomic(page);
377
05d9824b
MK
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 380
2dba3239
MT
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
d7b2633d
MT
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
ae1250b9
OM
393 kunmap_atomic(reg_state);
394
395 return 0;
396}
397
d8cb8875
MK
398static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
84b790f8 400{
05d9824b 401 execlists_update_context(rq0);
d8cb8875 402
cc3c4253 403 if (rq1)
05d9824b 404 execlists_update_context(rq1);
84b790f8 405
cc3c4253 406 execlists_elsp_write(rq0, rq1);
84b790f8
BW
407}
408
acdd884a
MT
409static void execlists_context_unqueue(struct intel_engine_cs *ring)
410{
6d3d8274
NH
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
413
414 assert_spin_locked(&ring->execlist_lock);
acdd884a 415
779949f4
PA
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
acdd884a
MT
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
6d3d8274 430 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
e1fee72c 433 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 434 list_del(&req0->execlist_link);
c86ee3a9
TD
435 list_add_tail(&req0->execlist_link,
436 &ring->execlist_retired_req_list);
acdd884a
MT
437 req0 = cursor;
438 } else {
439 req1 = cursor;
440 break;
441 }
442 }
443
53292cdb
MT
444 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445 /*
446 * WaIdleLiteRestore: make sure we never cause a lite
447 * restore with HEAD==TAIL
448 */
d63f820f 449 if (req0->elsp_submitted) {
53292cdb
MT
450 /*
451 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452 * as we resubmit the request. See gen8_emit_request()
453 * for where we prepare the padding after the end of the
454 * request.
455 */
456 struct intel_ringbuffer *ringbuf;
457
458 ringbuf = req0->ctx->engine[ring->id].ringbuf;
459 req0->tail += 8;
460 req0->tail &= ringbuf->size - 1;
461 }
462 }
463
e1fee72c
OM
464 WARN_ON(req1 && req1->elsp_submitted);
465
d8cb8875 466 execlists_submit_requests(req0, req1);
acdd884a
MT
467}
468
e981e7b1
TD
469static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470 u32 request_id)
471{
6d3d8274 472 struct drm_i915_gem_request *head_req;
e981e7b1
TD
473
474 assert_spin_locked(&ring->execlist_lock);
475
476 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 477 struct drm_i915_gem_request,
e981e7b1
TD
478 execlist_link);
479
480 if (head_req != NULL) {
481 struct drm_i915_gem_object *ctx_obj =
6d3d8274 482 head_req->ctx->engine[ring->id].state;
e981e7b1 483 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
484 WARN(head_req->elsp_submitted == 0,
485 "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted <= 0) {
488 list_del(&head_req->execlist_link);
c86ee3a9
TD
489 list_add_tail(&head_req->execlist_link,
490 &ring->execlist_retired_req_list);
e1fee72c
OM
491 return true;
492 }
e981e7b1
TD
493 }
494 }
495
496 return false;
497}
498
73e4d07f 499/**
3f7531c3 500 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
501 * @ring: Engine Command Streamer to handle.
502 *
503 * Check the unread Context Status Buffers and manage the submission of new
504 * contexts to the ELSP accordingly.
505 */
3f7531c3 506void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
507{
508 struct drm_i915_private *dev_priv = ring->dev->dev_private;
509 u32 status_pointer;
510 u8 read_pointer;
511 u8 write_pointer;
5af05fef 512 u32 status = 0;
e981e7b1
TD
513 u32 status_id;
514 u32 submit_contexts = 0;
515
516 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518 read_pointer = ring->next_context_status_buffer;
519 write_pointer = status_pointer & 0x07;
520 if (read_pointer > write_pointer)
521 write_pointer += 6;
522
523 spin_lock(&ring->execlist_lock);
524
525 while (read_pointer < write_pointer) {
526 read_pointer++;
83843d84
VS
527 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % 6));
528 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % 6));
e981e7b1 529
031a8936
MK
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 continue;
532
e1fee72c
OM
533 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535 if (execlists_check_remove_request(ring, status_id))
536 WARN(1, "Lite Restored request removed from queue\n");
537 } else
538 WARN(1, "Preemption without Lite Restore\n");
539 }
540
541 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
543 if (execlists_check_remove_request(ring, status_id))
544 submit_contexts++;
545 }
546 }
547
5af05fef
MT
548 if (disable_lite_restore_wa(ring)) {
549 /* Prevent a ctx to preempt itself */
550 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551 (submit_contexts != 0))
552 execlists_context_unqueue(ring);
553 } else if (submit_contexts != 0) {
e981e7b1 554 execlists_context_unqueue(ring);
5af05fef 555 }
e981e7b1
TD
556
557 spin_unlock(&ring->execlist_lock);
558
559 WARN(submit_contexts > 2, "More than two context complete events?\n");
560 ring->next_context_status_buffer = write_pointer % 6;
561
562 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
cc53699b 563 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
e981e7b1
TD
564}
565
ae70797d 566static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 567{
ae70797d 568 struct intel_engine_cs *ring = request->ring;
6d3d8274 569 struct drm_i915_gem_request *cursor;
f1ad5a1f 570 int num_elements = 0;
acdd884a 571
ae70797d 572 if (request->ctx != ring->default_context)
8ba319da 573 intel_lr_context_pin(request);
9bb1af44
JH
574
575 i915_gem_request_reference(request);
576
b5eba372 577 spin_lock_irq(&ring->execlist_lock);
acdd884a 578
f1ad5a1f
OM
579 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
580 if (++num_elements > 2)
581 break;
582
583 if (num_elements > 2) {
6d3d8274 584 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
585
586 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 587 struct drm_i915_gem_request,
f1ad5a1f
OM
588 execlist_link);
589
ae70797d 590 if (request->ctx == tail_req->ctx) {
f1ad5a1f 591 WARN(tail_req->elsp_submitted != 0,
7ba717cf 592 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 593 list_del(&tail_req->execlist_link);
c86ee3a9
TD
594 list_add_tail(&tail_req->execlist_link,
595 &ring->execlist_retired_req_list);
f1ad5a1f
OM
596 }
597 }
598
6d3d8274 599 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 600 if (num_elements == 0)
acdd884a
MT
601 execlists_context_unqueue(ring);
602
b5eba372 603 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
604
605 return 0;
606}
607
2f20055d 608static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 609{
2f20055d 610 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
611 uint32_t flush_domains;
612 int ret;
613
614 flush_domains = 0;
615 if (ring->gpu_caches_dirty)
616 flush_domains = I915_GEM_GPU_DOMAINS;
617
7deb4d39 618 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
619 if (ret)
620 return ret;
621
622 ring->gpu_caches_dirty = false;
623 return 0;
624}
625
535fbe82 626static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
627 struct list_head *vmas)
628{
535fbe82 629 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
630 struct i915_vma *vma;
631 uint32_t flush_domains = 0;
632 bool flush_chipset = false;
633 int ret;
634
635 list_for_each_entry(vma, vmas, exec_list) {
636 struct drm_i915_gem_object *obj = vma->obj;
637
03ade511 638 if (obj->active & other_rings) {
91af127f 639 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
640 if (ret)
641 return ret;
642 }
ba8b7ccb
OM
643
644 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
645 flush_chipset |= i915_gem_clflush_object(obj, false);
646
647 flush_domains |= obj->base.write_domain;
648 }
649
650 if (flush_domains & I915_GEM_DOMAIN_GTT)
651 wmb();
652
653 /* Unconditionally invalidate gpu caches and ensure that we do flush
654 * any residual writes from the previous batch.
655 */
2f20055d 656 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
657}
658
40e895ce 659int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 660{
bc0dce3f
JH
661 int ret;
662
f3cc01f0
MK
663 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
664
40e895ce 665 if (request->ctx != request->ring->default_context) {
8ba319da 666 ret = intel_lr_context_pin(request);
6689cb2b 667 if (ret)
bc0dce3f 668 return ret;
bc0dce3f
JH
669 }
670
bc0dce3f
JH
671 return 0;
672}
673
ae70797d 674static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 675 int bytes)
bc0dce3f 676{
ae70797d
JH
677 struct intel_ringbuffer *ringbuf = req->ringbuf;
678 struct intel_engine_cs *ring = req->ring;
679 struct drm_i915_gem_request *target;
b4716185
CW
680 unsigned space;
681 int ret;
bc0dce3f
JH
682
683 if (intel_ring_space(ringbuf) >= bytes)
684 return 0;
685
79bbcc29
JH
686 /* The whole point of reserving space is to not wait! */
687 WARN_ON(ringbuf->reserved_in_use);
688
ae70797d 689 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
690 /*
691 * The request queue is per-engine, so can contain requests
692 * from multiple ringbuffers. Here, we must ignore any that
693 * aren't from the ringbuffer we're considering.
694 */
ae70797d 695 if (target->ringbuf != ringbuf)
bc0dce3f
JH
696 continue;
697
698 /* Would completion of this request free enough space? */
ae70797d 699 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
700 ringbuf->size);
701 if (space >= bytes)
bc0dce3f 702 break;
bc0dce3f
JH
703 }
704
ae70797d 705 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
706 return -ENOSPC;
707
ae70797d 708 ret = i915_wait_request(target);
bc0dce3f
JH
709 if (ret)
710 return ret;
711
b4716185
CW
712 ringbuf->space = space;
713 return 0;
bc0dce3f
JH
714}
715
716/*
717 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 718 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
719 *
720 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
721 * really happens during submission is that the context and current tail will be placed
722 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
723 * point, the tail *inside* the context is updated and the ELSP written to.
724 */
725static void
ae70797d 726intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 727{
ae70797d 728 struct intel_engine_cs *ring = request->ring;
d1675198 729 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 730
ae70797d 731 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 732
d1675198
AD
733 request->tail = request->ringbuf->tail;
734
bc0dce3f
JH
735 if (intel_ring_stopped(ring))
736 return;
737
d1675198
AD
738 if (dev_priv->guc.execbuf_client)
739 i915_guc_submit(dev_priv->guc.execbuf_client, request);
740 else
741 execlists_context_queue(request);
bc0dce3f
JH
742}
743
79bbcc29 744static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
745{
746 uint32_t __iomem *virt;
747 int rem = ringbuf->size - ringbuf->tail;
748
bc0dce3f
JH
749 virt = ringbuf->virtual_start + ringbuf->tail;
750 rem /= 4;
751 while (rem--)
752 iowrite32(MI_NOOP, virt++);
753
754 ringbuf->tail = 0;
755 intel_ring_update_space(ringbuf);
bc0dce3f
JH
756}
757
ae70797d 758static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 759{
ae70797d 760 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
761 int remain_usable = ringbuf->effective_size - ringbuf->tail;
762 int remain_actual = ringbuf->size - ringbuf->tail;
763 int ret, total_bytes, wait_bytes = 0;
764 bool need_wrap = false;
29b1b415 765
79bbcc29
JH
766 if (ringbuf->reserved_in_use)
767 total_bytes = bytes;
768 else
769 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 770
79bbcc29
JH
771 if (unlikely(bytes > remain_usable)) {
772 /*
773 * Not enough space for the basic request. So need to flush
774 * out the remainder and then wait for base + reserved.
775 */
776 wait_bytes = remain_actual + total_bytes;
777 need_wrap = true;
778 } else {
779 if (unlikely(total_bytes > remain_usable)) {
780 /*
781 * The base request will fit but the reserved space
782 * falls off the end. So only need to to wait for the
783 * reserved size after flushing out the remainder.
784 */
785 wait_bytes = remain_actual + ringbuf->reserved_size;
786 need_wrap = true;
787 } else if (total_bytes > ringbuf->space) {
788 /* No wrapping required, just waiting. */
789 wait_bytes = total_bytes;
29b1b415 790 }
bc0dce3f
JH
791 }
792
79bbcc29
JH
793 if (wait_bytes) {
794 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
795 if (unlikely(ret))
796 return ret;
79bbcc29
JH
797
798 if (need_wrap)
799 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
800 }
801
802 return 0;
803}
804
805/**
806 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
807 *
374887ba 808 * @req: The request to start some new work for
bc0dce3f
JH
809 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
810 *
811 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
812 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
813 * and also preallocates a request (every workload submission is still mediated through
814 * requests, same as it did with legacy ringbuffer submission).
815 *
816 * Return: non-zero if the ringbuffer is not ready to be written to.
817 */
3bbaba0c 818int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 819{
4d616a29 820 struct drm_i915_private *dev_priv;
bc0dce3f
JH
821 int ret;
822
4d616a29
JH
823 WARN_ON(req == NULL);
824 dev_priv = req->ring->dev->dev_private;
825
bc0dce3f
JH
826 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
827 dev_priv->mm.interruptible);
828 if (ret)
829 return ret;
830
ae70797d 831 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
832 if (ret)
833 return ret;
834
4d616a29 835 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
836 return 0;
837}
838
ccd98fe4
JH
839int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
840{
841 /*
842 * The first call merely notes the reserve request and is common for
843 * all back ends. The subsequent localised _begin() call actually
844 * ensures that the reservation is available. Without the begin, if
845 * the request creator immediately submitted the request without
846 * adding any commands to it then there might not actually be
847 * sufficient room for the submission commands.
848 */
849 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
850
851 return intel_logical_ring_begin(request, 0);
852}
853
73e4d07f
OM
854/**
855 * execlists_submission() - submit a batchbuffer for execution, Execlists style
856 * @dev: DRM device.
857 * @file: DRM file.
858 * @ring: Engine Command Streamer to submit to.
859 * @ctx: Context to employ for this submission.
860 * @args: execbuffer call arguments.
861 * @vmas: list of vmas.
862 * @batch_obj: the batchbuffer to submit.
863 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 864 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
865 *
866 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
867 * away the submission details of the execbuffer ioctl call.
868 *
869 * Return: non-zero if the submission fails.
870 */
5f19e2bf 871int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 872 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 873 struct list_head *vmas)
454afebd 874{
5f19e2bf
JH
875 struct drm_device *dev = params->dev;
876 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 877 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
878 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
879 u64 exec_start;
ba8b7ccb
OM
880 int instp_mode;
881 u32 instp_mask;
882 int ret;
883
884 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
885 instp_mask = I915_EXEC_CONSTANTS_MASK;
886 switch (instp_mode) {
887 case I915_EXEC_CONSTANTS_REL_GENERAL:
888 case I915_EXEC_CONSTANTS_ABSOLUTE:
889 case I915_EXEC_CONSTANTS_REL_SURFACE:
890 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
891 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
892 return -EINVAL;
893 }
894
895 if (instp_mode != dev_priv->relative_constants_mode) {
896 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
897 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
898 return -EINVAL;
899 }
900
901 /* The HW changed the meaning on this bit on gen6 */
902 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
903 }
904 break;
905 default:
906 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
907 return -EINVAL;
908 }
909
ba8b7ccb
OM
910 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
911 DRM_DEBUG("sol reset is gen7 only\n");
912 return -EINVAL;
913 }
914
535fbe82 915 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
916 if (ret)
917 return ret;
918
919 if (ring == &dev_priv->ring[RCS] &&
920 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 921 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
922 if (ret)
923 return ret;
924
925 intel_logical_ring_emit(ringbuf, MI_NOOP);
926 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 927 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
928 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
929 intel_logical_ring_advance(ringbuf);
930
931 dev_priv->relative_constants_mode = instp_mode;
932 }
933
5f19e2bf
JH
934 exec_start = params->batch_obj_vm_offset +
935 args->batch_start_offset;
936
be795fc1 937 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
938 if (ret)
939 return ret;
940
95c24161 941 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 942
8a8edb59 943 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 944 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 945
454afebd
OM
946 return 0;
947}
948
c86ee3a9
TD
949void intel_execlists_retire_requests(struct intel_engine_cs *ring)
950{
6d3d8274 951 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
952 struct list_head retired_list;
953
954 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
955 if (list_empty(&ring->execlist_retired_req_list))
956 return;
957
958 INIT_LIST_HEAD(&retired_list);
b5eba372 959 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 960 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 961 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
962
963 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 964 struct intel_context *ctx = req->ctx;
7ba717cf
TD
965 struct drm_i915_gem_object *ctx_obj =
966 ctx->engine[ring->id].state;
967
968 if (ctx_obj && (ctx != ring->default_context))
8ba319da 969 intel_lr_context_unpin(req);
c86ee3a9 970 list_del(&req->execlist_link);
f8210795 971 i915_gem_request_unreference(req);
c86ee3a9
TD
972 }
973}
974
454afebd
OM
975void intel_logical_ring_stop(struct intel_engine_cs *ring)
976{
9832b9da
OM
977 struct drm_i915_private *dev_priv = ring->dev->dev_private;
978 int ret;
979
980 if (!intel_ring_initialized(ring))
981 return;
982
983 ret = intel_ring_idle(ring);
984 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
985 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
986 ring->name, ret);
987
988 /* TODO: Is this correct with Execlists enabled? */
989 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
990 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
991 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
992 return;
993 }
994 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
995}
996
4866d729 997int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 998{
4866d729 999 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1000 int ret;
1001
1002 if (!ring->gpu_caches_dirty)
1003 return 0;
1004
7deb4d39 1005 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1006 if (ret)
1007 return ret;
1008
1009 ring->gpu_caches_dirty = false;
1010 return 0;
1011}
1012
e84fe803
NH
1013static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1014 struct drm_i915_gem_object *ctx_obj,
1015 struct intel_ringbuffer *ringbuf)
dcb4c12a 1016{
e84fe803
NH
1017 struct drm_device *dev = ring->dev;
1018 struct drm_i915_private *dev_priv = dev->dev_private;
dcb4c12a
OM
1019 int ret = 0;
1020
1021 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
e84fe803
NH
1022 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1023 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1024 if (ret)
1025 return ret;
7ba717cf 1026
e84fe803
NH
1027 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1028 if (ret)
1029 goto unpin_ctx_obj;
d1675198 1030
e84fe803 1031 ctx_obj->dirty = true;
e93c28f3 1032
e84fe803
NH
1033 /* Invalidate GuC TLB. */
1034 if (i915.enable_guc_submission)
1035 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1036
7ba717cf
TD
1037 return ret;
1038
1039unpin_ctx_obj:
1040 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1041
1042 return ret;
1043}
1044
1045static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1046{
1047 int ret = 0;
1048 struct intel_engine_cs *ring = rq->ring;
1049 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1050 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1051
1052 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1053 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1054 if (ret)
1055 goto reset_pin_count;
1056 }
1057 return ret;
1058
a7cbedec 1059reset_pin_count:
8ba319da 1060 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1061 return ret;
1062}
1063
8ba319da 1064void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1065{
8ba319da
MK
1066 struct intel_engine_cs *ring = rq->ring;
1067 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1068 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1069
1070 if (ctx_obj) {
1071 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1072 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1073 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1074 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1075 }
dcb4c12a
OM
1076 }
1077}
1078
e2be4faf 1079static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1080{
1081 int ret, i;
e2be4faf
JH
1082 struct intel_engine_cs *ring = req->ring;
1083 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1084 struct drm_device *dev = ring->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 struct i915_workarounds *w = &dev_priv->workarounds;
1087
e6c1abb7 1088 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1089 return 0;
1090
1091 ring->gpu_caches_dirty = true;
4866d729 1092 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1093 if (ret)
1094 return ret;
1095
4d616a29 1096 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1097 if (ret)
1098 return ret;
1099
1100 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1101 for (i = 0; i < w->count; i++) {
f92a9162 1102 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1103 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1104 }
1105 intel_logical_ring_emit(ringbuf, MI_NOOP);
1106
1107 intel_logical_ring_advance(ringbuf);
1108
1109 ring->gpu_caches_dirty = true;
4866d729 1110 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1111 if (ret)
1112 return ret;
1113
1114 return 0;
1115}
1116
83b8a982 1117#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1118 do { \
83b8a982
AS
1119 int __index = (index)++; \
1120 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1121 return -ENOSPC; \
1122 } \
83b8a982 1123 batch[__index] = (cmd); \
17ee950d
AS
1124 } while (0)
1125
8f40db77
VS
1126#define wa_ctx_emit_reg(batch, index, reg) \
1127 wa_ctx_emit((batch), (index), (reg))
9e000847
AS
1128
1129/*
1130 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1131 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1132 * but there is a slight complication as this is applied in WA batch where the
1133 * values are only initialized once so we cannot take register value at the
1134 * beginning and reuse it further; hence we save its value to memory, upload a
1135 * constant value with bit21 set and then we restore it back with the saved value.
1136 * To simplify the WA, a constant value is formed by using the default value
1137 * of this register. This shouldn't be a problem because we are only modifying
1138 * it for a short period and this batch in non-premptible. We can ofcourse
1139 * use additional instructions that read the actual value of the register
1140 * at that time and set our bit of interest but it makes the WA complicated.
1141 *
1142 * This WA is also required for Gen9 so extracting as a function avoids
1143 * code duplication.
1144 */
1145static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1146 uint32_t *const batch,
1147 uint32_t index)
1148{
1149 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1150
a4106a78
AS
1151 /*
1152 * WaDisableLSQCROPERFforOCL:skl
1153 * This WA is implemented in skl_init_clock_gating() but since
1154 * this batch updates GEN8_L3SQCREG4 with default value we need to
1155 * set this bit here to retain the WA during flush.
1156 */
e87a005d 1157 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1158 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1159
f1afe24f 1160 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1161 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1162 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1163 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1164 wa_ctx_emit(batch, index, 0);
1165
1166 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1167 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1168 wa_ctx_emit(batch, index, l3sqc4_flush);
1169
1170 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1171 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1172 PIPE_CONTROL_DC_FLUSH_ENABLE));
1173 wa_ctx_emit(batch, index, 0);
1174 wa_ctx_emit(batch, index, 0);
1175 wa_ctx_emit(batch, index, 0);
1176 wa_ctx_emit(batch, index, 0);
1177
f1afe24f 1178 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1179 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1180 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1181 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1182 wa_ctx_emit(batch, index, 0);
9e000847
AS
1183
1184 return index;
1185}
1186
17ee950d
AS
1187static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1188 uint32_t offset,
1189 uint32_t start_alignment)
1190{
1191 return wa_ctx->offset = ALIGN(offset, start_alignment);
1192}
1193
1194static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1195 uint32_t offset,
1196 uint32_t size_alignment)
1197{
1198 wa_ctx->size = offset - wa_ctx->offset;
1199
1200 WARN(wa_ctx->size % size_alignment,
1201 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1202 wa_ctx->size, size_alignment);
1203 return 0;
1204}
1205
1206/**
1207 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1208 *
1209 * @ring: only applicable for RCS
1210 * @wa_ctx: structure representing wa_ctx
1211 * offset: specifies start of the batch, should be cache-aligned. This is updated
1212 * with the offset value received as input.
1213 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1214 * @batch: page in which WA are loaded
1215 * @offset: This field specifies the start of the batch, it should be
1216 * cache-aligned otherwise it is adjusted accordingly.
1217 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1218 * initialized at the beginning and shared across all contexts but this field
1219 * helps us to have multiple batches at different offsets and select them based
1220 * on a criteria. At the moment this batch always start at the beginning of the page
1221 * and at this point we don't have multiple wa_ctx batch buffers.
1222 *
1223 * The number of WA applied are not known at the beginning; we use this field
1224 * to return the no of DWORDS written.
4d78c8dc 1225 *
17ee950d
AS
1226 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1227 * so it adds NOOPs as padding to make it cacheline aligned.
1228 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1229 * makes a complete batch buffer.
1230 *
1231 * Return: non-zero if we exceed the PAGE_SIZE limit.
1232 */
1233
1234static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1235 struct i915_wa_ctx_bb *wa_ctx,
1236 uint32_t *const batch,
1237 uint32_t *offset)
1238{
0160f055 1239 uint32_t scratch_addr;
17ee950d
AS
1240 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1241
7ad00d1a 1242 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1243 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1244
c82435bb
AS
1245 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1246 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1247 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1248 if (rc < 0)
1249 return rc;
1250 index = rc;
c82435bb
AS
1251 }
1252
0160f055
AS
1253 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1254 /* Actual scratch location is at 128 bytes offset */
1255 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1256
83b8a982
AS
1257 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1258 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1259 PIPE_CONTROL_GLOBAL_GTT_IVB |
1260 PIPE_CONTROL_CS_STALL |
1261 PIPE_CONTROL_QW_WRITE));
1262 wa_ctx_emit(batch, index, scratch_addr);
1263 wa_ctx_emit(batch, index, 0);
1264 wa_ctx_emit(batch, index, 0);
1265 wa_ctx_emit(batch, index, 0);
0160f055 1266
17ee950d
AS
1267 /* Pad to end of cacheline */
1268 while (index % CACHELINE_DWORDS)
83b8a982 1269 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1270
1271 /*
1272 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1273 * execution depends on the length specified in terms of cache lines
1274 * in the register CTX_RCS_INDIRECT_CTX
1275 */
1276
1277 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1278}
1279
1280/**
1281 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1282 *
1283 * @ring: only applicable for RCS
1284 * @wa_ctx: structure representing wa_ctx
1285 * offset: specifies start of the batch, should be cache-aligned.
1286 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1287 * @batch: page in which WA are loaded
17ee950d
AS
1288 * @offset: This field specifies the start of this batch.
1289 * This batch is started immediately after indirect_ctx batch. Since we ensure
1290 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1291 *
1292 * The number of DWORDS written are returned using this field.
1293 *
1294 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1295 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1296 */
1297static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1298 struct i915_wa_ctx_bb *wa_ctx,
1299 uint32_t *const batch,
1300 uint32_t *offset)
1301{
1302 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1303
7ad00d1a 1304 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1305 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1306
83b8a982 1307 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1308
1309 return wa_ctx_end(wa_ctx, *offset = index, 1);
1310}
1311
0504cffc
AS
1312static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1313 struct i915_wa_ctx_bb *wa_ctx,
1314 uint32_t *const batch,
1315 uint32_t *offset)
1316{
a4106a78 1317 int ret;
0907c8f7 1318 struct drm_device *dev = ring->dev;
0504cffc
AS
1319 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1320
0907c8f7 1321 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1322 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1323 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1324 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1325
a4106a78
AS
1326 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1327 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1328 if (ret < 0)
1329 return ret;
1330 index = ret;
1331
0504cffc
AS
1332 /* Pad to end of cacheline */
1333 while (index % CACHELINE_DWORDS)
1334 wa_ctx_emit(batch, index, MI_NOOP);
1335
1336 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1337}
1338
1339static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1340 struct i915_wa_ctx_bb *wa_ctx,
1341 uint32_t *const batch,
1342 uint32_t *offset)
1343{
0907c8f7 1344 struct drm_device *dev = ring->dev;
0504cffc
AS
1345 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1346
9b01435d 1347 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1348 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1349 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1350 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1351 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1352 wa_ctx_emit(batch, index,
1353 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1354 wa_ctx_emit(batch, index, MI_NOOP);
1355 }
1356
0907c8f7 1357 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1358 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1359 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1360 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1361
0504cffc
AS
1362 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1363
1364 return wa_ctx_end(wa_ctx, *offset = index, 1);
1365}
1366
17ee950d
AS
1367static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1368{
1369 int ret;
1370
1371 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1372 if (!ring->wa_ctx.obj) {
1373 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1374 return -ENOMEM;
1375 }
1376
1377 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1378 if (ret) {
1379 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1380 ret);
1381 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1382 return ret;
1383 }
1384
1385 return 0;
1386}
1387
1388static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1389{
1390 if (ring->wa_ctx.obj) {
1391 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1392 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1393 ring->wa_ctx.obj = NULL;
1394 }
1395}
1396
1397static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1398{
1399 int ret;
1400 uint32_t *batch;
1401 uint32_t offset;
1402 struct page *page;
1403 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1404
1405 WARN_ON(ring->id != RCS);
1406
5e60d790 1407 /* update this when WA for higher Gen are added */
0504cffc
AS
1408 if (INTEL_INFO(ring->dev)->gen > 9) {
1409 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1410 INTEL_INFO(ring->dev)->gen);
5e60d790 1411 return 0;
0504cffc 1412 }
5e60d790 1413
c4db7599
AS
1414 /* some WA perform writes to scratch page, ensure it is valid */
1415 if (ring->scratch.obj == NULL) {
1416 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1417 return -EINVAL;
1418 }
1419
17ee950d
AS
1420 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1421 if (ret) {
1422 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1423 return ret;
1424 }
1425
1426 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1427 batch = kmap_atomic(page);
1428 offset = 0;
1429
1430 if (INTEL_INFO(ring->dev)->gen == 8) {
1431 ret = gen8_init_indirectctx_bb(ring,
1432 &wa_ctx->indirect_ctx,
1433 batch,
1434 &offset);
1435 if (ret)
1436 goto out;
1437
1438 ret = gen8_init_perctx_bb(ring,
1439 &wa_ctx->per_ctx,
1440 batch,
1441 &offset);
1442 if (ret)
1443 goto out;
0504cffc
AS
1444 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1445 ret = gen9_init_indirectctx_bb(ring,
1446 &wa_ctx->indirect_ctx,
1447 batch,
1448 &offset);
1449 if (ret)
1450 goto out;
1451
1452 ret = gen9_init_perctx_bb(ring,
1453 &wa_ctx->per_ctx,
1454 batch,
1455 &offset);
1456 if (ret)
1457 goto out;
17ee950d
AS
1458 }
1459
1460out:
1461 kunmap_atomic(batch);
1462 if (ret)
1463 lrc_destroy_wa_ctx_obj(ring);
1464
1465 return ret;
1466}
1467
9b1136d5
OM
1468static int gen8_init_common_ring(struct intel_engine_cs *ring)
1469{
1470 struct drm_device *dev = ring->dev;
1471 struct drm_i915_private *dev_priv = dev->dev_private;
1472
e84fe803
NH
1473 lrc_setup_hardware_status_page(ring,
1474 ring->default_context->engine[ring->id].state);
1475
73d477f6
OM
1476 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1477 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1478
2e5356da
AS
1479 if (ring->status_page.obj) {
1480 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1481 (u32)ring->status_page.gfx_addr);
1482 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1483 }
1484
9b1136d5
OM
1485 I915_WRITE(RING_MODE_GEN7(ring),
1486 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1487 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1488 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1489 ring->next_context_status_buffer = 0;
9b1136d5
OM
1490 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1491
1492 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1493
1494 return 0;
1495}
1496
1497static int gen8_init_render_ring(struct intel_engine_cs *ring)
1498{
1499 struct drm_device *dev = ring->dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 int ret;
1502
1503 ret = gen8_init_common_ring(ring);
1504 if (ret)
1505 return ret;
1506
1507 /* We need to disable the AsyncFlip performance optimisations in order
1508 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1509 * programmed to '1' on all products.
1510 *
1511 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1512 */
1513 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1514
9b1136d5
OM
1515 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1516
771b9a53 1517 return init_workarounds_ring(ring);
9b1136d5
OM
1518}
1519
82ef822e
DL
1520static int gen9_init_render_ring(struct intel_engine_cs *ring)
1521{
1522 int ret;
1523
1524 ret = gen8_init_common_ring(ring);
1525 if (ret)
1526 return ret;
1527
1528 return init_workarounds_ring(ring);
1529}
1530
7a01a0a2
MT
1531static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1532{
1533 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1534 struct intel_engine_cs *ring = req->ring;
1535 struct intel_ringbuffer *ringbuf = req->ringbuf;
1536 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1537 int i, ret;
1538
1539 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1540 if (ret)
1541 return ret;
1542
1543 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1544 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1545 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1546
f92a9162 1547 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
7a01a0a2 1548 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
f92a9162 1549 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
7a01a0a2
MT
1550 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1551 }
1552
1553 intel_logical_ring_emit(ringbuf, MI_NOOP);
1554 intel_logical_ring_advance(ringbuf);
1555
1556 return 0;
1557}
1558
be795fc1 1559static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1560 u64 offset, unsigned dispatch_flags)
15648585 1561{
be795fc1 1562 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1563 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1564 int ret;
1565
7a01a0a2
MT
1566 /* Don't rely in hw updating PDPs, specially in lite-restore.
1567 * Ideally, we should set Force PD Restore in ctx descriptor,
1568 * but we can't. Force Restore would be a second option, but
1569 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1570 * not idle). PML4 is allocated during ppgtt init so this is
1571 * not needed in 48-bit.*/
7a01a0a2
MT
1572 if (req->ctx->ppgtt &&
1573 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1574 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1575 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1576 ret = intel_logical_ring_emit_pdps(req);
1577 if (ret)
1578 return ret;
1579 }
7a01a0a2
MT
1580
1581 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1582 }
1583
4d616a29 1584 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1585 if (ret)
1586 return ret;
1587
1588 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1589 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1590 (ppgtt<<8) |
1591 (dispatch_flags & I915_DISPATCH_RS ?
1592 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1593 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1594 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1595 intel_logical_ring_emit(ringbuf, MI_NOOP);
1596 intel_logical_ring_advance(ringbuf);
1597
1598 return 0;
1599}
1600
73d477f6
OM
1601static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1602{
1603 struct drm_device *dev = ring->dev;
1604 struct drm_i915_private *dev_priv = dev->dev_private;
1605 unsigned long flags;
1606
7cd512f1 1607 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1608 return false;
1609
1610 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1611 if (ring->irq_refcount++ == 0) {
1612 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1613 POSTING_READ(RING_IMR(ring->mmio_base));
1614 }
1615 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1616
1617 return true;
1618}
1619
1620static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1621{
1622 struct drm_device *dev = ring->dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 unsigned long flags;
1625
1626 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1627 if (--ring->irq_refcount == 0) {
1628 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1629 POSTING_READ(RING_IMR(ring->mmio_base));
1630 }
1631 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632}
1633
7deb4d39 1634static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1635 u32 invalidate_domains,
1636 u32 unused)
1637{
7deb4d39 1638 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1639 struct intel_engine_cs *ring = ringbuf->ring;
1640 struct drm_device *dev = ring->dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 uint32_t cmd;
1643 int ret;
1644
4d616a29 1645 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1646 if (ret)
1647 return ret;
1648
1649 cmd = MI_FLUSH_DW + 1;
1650
f0a1fb10
CW
1651 /* We always require a command barrier so that subsequent
1652 * commands, such as breadcrumb interrupts, are strictly ordered
1653 * wrt the contents of the write cache being flushed to memory
1654 * (and thus being coherent from the CPU).
1655 */
1656 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1657
1658 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1659 cmd |= MI_INVALIDATE_TLB;
1660 if (ring == &dev_priv->ring[VCS])
1661 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1662 }
1663
1664 intel_logical_ring_emit(ringbuf, cmd);
1665 intel_logical_ring_emit(ringbuf,
1666 I915_GEM_HWS_SCRATCH_ADDR |
1667 MI_FLUSH_DW_USE_GTT);
1668 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1669 intel_logical_ring_emit(ringbuf, 0); /* value */
1670 intel_logical_ring_advance(ringbuf);
1671
1672 return 0;
1673}
1674
7deb4d39 1675static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1676 u32 invalidate_domains,
1677 u32 flush_domains)
1678{
7deb4d39 1679 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1680 struct intel_engine_cs *ring = ringbuf->ring;
1681 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1682 bool vf_flush_wa;
4712274c
OM
1683 u32 flags = 0;
1684 int ret;
1685
1686 flags |= PIPE_CONTROL_CS_STALL;
1687
1688 if (flush_domains) {
1689 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1690 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1691 }
1692
1693 if (invalidate_domains) {
1694 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1695 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1697 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1698 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1699 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1700 flags |= PIPE_CONTROL_QW_WRITE;
1701 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1702 }
1703
9647ff36
ID
1704 /*
1705 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1706 * control.
1707 */
1708 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1709 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1710
4d616a29 1711 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1712 if (ret)
1713 return ret;
1714
9647ff36
ID
1715 if (vf_flush_wa) {
1716 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1717 intel_logical_ring_emit(ringbuf, 0);
1718 intel_logical_ring_emit(ringbuf, 0);
1719 intel_logical_ring_emit(ringbuf, 0);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 intel_logical_ring_emit(ringbuf, 0);
1722 }
1723
4712274c
OM
1724 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1725 intel_logical_ring_emit(ringbuf, flags);
1726 intel_logical_ring_emit(ringbuf, scratch_addr);
1727 intel_logical_ring_emit(ringbuf, 0);
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_advance(ringbuf);
1731
1732 return 0;
1733}
1734
e94e37ad
OM
1735static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1736{
1737 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1738}
1739
1740static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1741{
1742 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1743}
1744
319404df
ID
1745static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1746{
1747
1748 /*
1749 * On BXT A steppings there is a HW coherency issue whereby the
1750 * MI_STORE_DATA_IMM storing the completed request's seqno
1751 * occasionally doesn't invalidate the CPU cache. Work around this by
1752 * clflushing the corresponding cacheline whenever the caller wants
1753 * the coherency to be guaranteed. Note that this cacheline is known
1754 * to be clean at this point, since we only write it in
1755 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1756 * this clflush in practice becomes an invalidate operation.
1757 */
1758
1759 if (!lazy_coherency)
1760 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1761
1762 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1763}
1764
1765static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1766{
1767 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1768
1769 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1770 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1771}
1772
c4e76638 1773static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1774{
c4e76638 1775 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1776 struct intel_engine_cs *ring = ringbuf->ring;
1777 u32 cmd;
1778 int ret;
1779
53292cdb
MT
1780 /*
1781 * Reserve space for 2 NOOPs at the end of each request to be
1782 * used as a workaround for not being allowed to do lite
1783 * restore with HEAD==TAIL (WaIdleLiteRestore).
1784 */
4d616a29 1785 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1786 if (ret)
1787 return ret;
1788
8edfbb8b 1789 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1790 cmd |= MI_GLOBAL_GTT;
1791
1792 intel_logical_ring_emit(ringbuf, cmd);
1793 intel_logical_ring_emit(ringbuf,
1794 (ring->status_page.gfx_addr +
1795 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1796 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1797 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1798 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1799 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1800 intel_logical_ring_advance_and_submit(request);
4da46e1e 1801
53292cdb
MT
1802 /*
1803 * Here we add two extra NOOPs as padding to avoid
1804 * lite restore of a context with HEAD==TAIL.
1805 */
1806 intel_logical_ring_emit(ringbuf, MI_NOOP);
1807 intel_logical_ring_emit(ringbuf, MI_NOOP);
1808 intel_logical_ring_advance(ringbuf);
1809
4da46e1e
OM
1810 return 0;
1811}
1812
be01363f 1813static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1814{
cef437ad 1815 struct render_state so;
cef437ad
DL
1816 int ret;
1817
be01363f 1818 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1819 if (ret)
1820 return ret;
1821
1822 if (so.rodata == NULL)
1823 return 0;
1824
be795fc1 1825 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1826 I915_DISPATCH_SECURE);
cef437ad
DL
1827 if (ret)
1828 goto out;
1829
84e81020
AS
1830 ret = req->ring->emit_bb_start(req,
1831 (so.ggtt_offset + so.aux_batch_offset),
1832 I915_DISPATCH_SECURE);
1833 if (ret)
1834 goto out;
1835
b2af0376 1836 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1837
cef437ad
DL
1838out:
1839 i915_gem_render_state_fini(&so);
1840 return ret;
1841}
1842
8753181e 1843static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1844{
1845 int ret;
1846
e2be4faf 1847 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1848 if (ret)
1849 return ret;
1850
3bbaba0c
PA
1851 ret = intel_rcs_context_init_mocs(req);
1852 /*
1853 * Failing to program the MOCS is non-fatal.The system will not
1854 * run at peak performance. So generate an error and carry on.
1855 */
1856 if (ret)
1857 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1858
be01363f 1859 return intel_lr_context_render_state_init(req);
e7778be1
TD
1860}
1861
73e4d07f
OM
1862/**
1863 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1864 *
1865 * @ring: Engine Command Streamer.
1866 *
1867 */
454afebd
OM
1868void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1869{
6402c330 1870 struct drm_i915_private *dev_priv;
9832b9da 1871
48d82387
OM
1872 if (!intel_ring_initialized(ring))
1873 return;
1874
6402c330
JH
1875 dev_priv = ring->dev->dev_private;
1876
9832b9da
OM
1877 intel_logical_ring_stop(ring);
1878 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1879
1880 if (ring->cleanup)
1881 ring->cleanup(ring);
1882
1883 i915_cmd_parser_fini_ring(ring);
06fbca71 1884 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1885
1886 if (ring->status_page.obj) {
1887 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1888 ring->status_page.obj = NULL;
1889 }
17ee950d
AS
1890
1891 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1892}
1893
1894static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1895{
48d82387 1896 int ret;
48d82387
OM
1897
1898 /* Intentionally left blank. */
1899 ring->buffer = NULL;
1900
1901 ring->dev = dev;
1902 INIT_LIST_HEAD(&ring->active_list);
1903 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1904 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1905 init_waitqueue_head(&ring->irq_queue);
1906
608c1a52 1907 INIT_LIST_HEAD(&ring->buffers);
acdd884a 1908 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1909 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1910 spin_lock_init(&ring->execlist_lock);
1911
48d82387
OM
1912 ret = i915_cmd_parser_init_ring(ring);
1913 if (ret)
1914 return ret;
1915
e84fe803
NH
1916 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1917 if (ret)
1918 return ret;
1919
1920 /* As this is the default context, always pin it */
1921 ret = intel_lr_context_do_pin(
1922 ring,
1923 ring->default_context->engine[ring->id].state,
1924 ring->default_context->engine[ring->id].ringbuf);
1925 if (ret) {
1926 DRM_ERROR(
1927 "Failed to pin and map ringbuffer %s: %d\n",
1928 ring->name, ret);
1929 return ret;
1930 }
564ddb2f
OM
1931
1932 return ret;
454afebd
OM
1933}
1934
1935static int logical_render_ring_init(struct drm_device *dev)
1936{
1937 struct drm_i915_private *dev_priv = dev->dev_private;
1938 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1939 int ret;
454afebd
OM
1940
1941 ring->name = "render ring";
1942 ring->id = RCS;
1943 ring->mmio_base = RENDER_RING_BASE;
1944 ring->irq_enable_mask =
1945 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1946 ring->irq_keep_mask =
1947 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1948 if (HAS_L3_DPF(dev))
1949 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1950
82ef822e
DL
1951 if (INTEL_INFO(dev)->gen >= 9)
1952 ring->init_hw = gen9_init_render_ring;
1953 else
1954 ring->init_hw = gen8_init_render_ring;
e7778be1 1955 ring->init_context = gen8_init_rcs_context;
9b1136d5 1956 ring->cleanup = intel_fini_pipe_control;
e87a005d 1957 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
1958 ring->get_seqno = bxt_a_get_seqno;
1959 ring->set_seqno = bxt_a_set_seqno;
1960 } else {
1961 ring->get_seqno = gen8_get_seqno;
1962 ring->set_seqno = gen8_set_seqno;
1963 }
4da46e1e 1964 ring->emit_request = gen8_emit_request;
4712274c 1965 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1966 ring->irq_get = gen8_logical_ring_get_irq;
1967 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1968 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1969
99be1dfe 1970 ring->dev = dev;
c4db7599
AS
1971
1972 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1973 if (ret)
1974 return ret;
1975
17ee950d
AS
1976 ret = intel_init_workaround_bb(ring);
1977 if (ret) {
1978 /*
1979 * We continue even if we fail to initialize WA batch
1980 * because we only expect rare glitches but nothing
1981 * critical to prevent us from using GPU
1982 */
1983 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1984 ret);
1985 }
1986
c4db7599
AS
1987 ret = logical_ring_init(dev, ring);
1988 if (ret) {
17ee950d 1989 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1990 }
17ee950d
AS
1991
1992 return ret;
454afebd
OM
1993}
1994
1995static int logical_bsd_ring_init(struct drm_device *dev)
1996{
1997 struct drm_i915_private *dev_priv = dev->dev_private;
1998 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1999
2000 ring->name = "bsd ring";
2001 ring->id = VCS;
2002 ring->mmio_base = GEN6_BSD_RING_BASE;
2003 ring->irq_enable_mask =
2004 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
2005 ring->irq_keep_mask =
2006 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 2007
ecfe00d8 2008 ring->init_hw = gen8_init_common_ring;
e87a005d 2009 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2010 ring->get_seqno = bxt_a_get_seqno;
2011 ring->set_seqno = bxt_a_set_seqno;
2012 } else {
2013 ring->get_seqno = gen8_get_seqno;
2014 ring->set_seqno = gen8_set_seqno;
2015 }
4da46e1e 2016 ring->emit_request = gen8_emit_request;
4712274c 2017 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2018 ring->irq_get = gen8_logical_ring_get_irq;
2019 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2020 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2021
454afebd
OM
2022 return logical_ring_init(dev, ring);
2023}
2024
2025static int logical_bsd2_ring_init(struct drm_device *dev)
2026{
2027 struct drm_i915_private *dev_priv = dev->dev_private;
2028 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2029
2030 ring->name = "bds2 ring";
2031 ring->id = VCS2;
2032 ring->mmio_base = GEN8_BSD2_RING_BASE;
2033 ring->irq_enable_mask =
2034 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
2035 ring->irq_keep_mask =
2036 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 2037
ecfe00d8 2038 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
2039 ring->get_seqno = gen8_get_seqno;
2040 ring->set_seqno = gen8_set_seqno;
4da46e1e 2041 ring->emit_request = gen8_emit_request;
4712274c 2042 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2043 ring->irq_get = gen8_logical_ring_get_irq;
2044 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2045 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2046
454afebd
OM
2047 return logical_ring_init(dev, ring);
2048}
2049
2050static int logical_blt_ring_init(struct drm_device *dev)
2051{
2052 struct drm_i915_private *dev_priv = dev->dev_private;
2053 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2054
2055 ring->name = "blitter ring";
2056 ring->id = BCS;
2057 ring->mmio_base = BLT_RING_BASE;
2058 ring->irq_enable_mask =
2059 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2060 ring->irq_keep_mask =
2061 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2062
ecfe00d8 2063 ring->init_hw = gen8_init_common_ring;
e87a005d 2064 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2065 ring->get_seqno = bxt_a_get_seqno;
2066 ring->set_seqno = bxt_a_set_seqno;
2067 } else {
2068 ring->get_seqno = gen8_get_seqno;
2069 ring->set_seqno = gen8_set_seqno;
2070 }
4da46e1e 2071 ring->emit_request = gen8_emit_request;
4712274c 2072 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2073 ring->irq_get = gen8_logical_ring_get_irq;
2074 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2075 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2076
454afebd
OM
2077 return logical_ring_init(dev, ring);
2078}
2079
2080static int logical_vebox_ring_init(struct drm_device *dev)
2081{
2082 struct drm_i915_private *dev_priv = dev->dev_private;
2083 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2084
2085 ring->name = "video enhancement ring";
2086 ring->id = VECS;
2087 ring->mmio_base = VEBOX_RING_BASE;
2088 ring->irq_enable_mask =
2089 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2090 ring->irq_keep_mask =
2091 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2092
ecfe00d8 2093 ring->init_hw = gen8_init_common_ring;
e87a005d 2094 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2095 ring->get_seqno = bxt_a_get_seqno;
2096 ring->set_seqno = bxt_a_set_seqno;
2097 } else {
2098 ring->get_seqno = gen8_get_seqno;
2099 ring->set_seqno = gen8_set_seqno;
2100 }
4da46e1e 2101 ring->emit_request = gen8_emit_request;
4712274c 2102 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2103 ring->irq_get = gen8_logical_ring_get_irq;
2104 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2105 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2106
454afebd
OM
2107 return logical_ring_init(dev, ring);
2108}
2109
73e4d07f
OM
2110/**
2111 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2112 * @dev: DRM device.
2113 *
2114 * This function inits the engines for an Execlists submission style (the equivalent in the
2115 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2116 * those engines that are present in the hardware.
2117 *
2118 * Return: non-zero if the initialization failed.
2119 */
454afebd
OM
2120int intel_logical_rings_init(struct drm_device *dev)
2121{
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 int ret;
2124
2125 ret = logical_render_ring_init(dev);
2126 if (ret)
2127 return ret;
2128
2129 if (HAS_BSD(dev)) {
2130 ret = logical_bsd_ring_init(dev);
2131 if (ret)
2132 goto cleanup_render_ring;
2133 }
2134
2135 if (HAS_BLT(dev)) {
2136 ret = logical_blt_ring_init(dev);
2137 if (ret)
2138 goto cleanup_bsd_ring;
2139 }
2140
2141 if (HAS_VEBOX(dev)) {
2142 ret = logical_vebox_ring_init(dev);
2143 if (ret)
2144 goto cleanup_blt_ring;
2145 }
2146
2147 if (HAS_BSD2(dev)) {
2148 ret = logical_bsd2_ring_init(dev);
2149 if (ret)
2150 goto cleanup_vebox_ring;
2151 }
2152
454afebd
OM
2153 return 0;
2154
454afebd
OM
2155cleanup_vebox_ring:
2156 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2157cleanup_blt_ring:
2158 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2159cleanup_bsd_ring:
2160 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2161cleanup_render_ring:
2162 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2163
2164 return ret;
2165}
2166
0cea6502
JM
2167static u32
2168make_rpcs(struct drm_device *dev)
2169{
2170 u32 rpcs = 0;
2171
2172 /*
2173 * No explicit RPCS request is needed to ensure full
2174 * slice/subslice/EU enablement prior to Gen9.
2175 */
2176 if (INTEL_INFO(dev)->gen < 9)
2177 return 0;
2178
2179 /*
2180 * Starting in Gen9, render power gating can leave
2181 * slice/subslice/EU in a partially enabled state. We
2182 * must make an explicit request through RPCS for full
2183 * enablement.
2184 */
2185 if (INTEL_INFO(dev)->has_slice_pg) {
2186 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2187 rpcs |= INTEL_INFO(dev)->slice_total <<
2188 GEN8_RPCS_S_CNT_SHIFT;
2189 rpcs |= GEN8_RPCS_ENABLE;
2190 }
2191
2192 if (INTEL_INFO(dev)->has_subslice_pg) {
2193 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2194 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2195 GEN8_RPCS_SS_CNT_SHIFT;
2196 rpcs |= GEN8_RPCS_ENABLE;
2197 }
2198
2199 if (INTEL_INFO(dev)->has_eu_pg) {
2200 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2201 GEN8_RPCS_EU_MIN_SHIFT;
2202 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2203 GEN8_RPCS_EU_MAX_SHIFT;
2204 rpcs |= GEN8_RPCS_ENABLE;
2205 }
2206
2207 return rpcs;
2208}
2209
8670d6f9
OM
2210static int
2211populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2212 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2213{
2d965536
TD
2214 struct drm_device *dev = ring->dev;
2215 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2216 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2217 struct page *page;
2218 uint32_t *reg_state;
2219 int ret;
2220
2d965536
TD
2221 if (!ppgtt)
2222 ppgtt = dev_priv->mm.aliasing_ppgtt;
2223
8670d6f9
OM
2224 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2225 if (ret) {
2226 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2227 return ret;
2228 }
2229
2230 ret = i915_gem_object_get_pages(ctx_obj);
2231 if (ret) {
2232 DRM_DEBUG_DRIVER("Could not get object pages\n");
2233 return ret;
2234 }
2235
2236 i915_gem_object_pin_pages(ctx_obj);
2237
2238 /* The second page of the context object contains some fields which must
2239 * be set up prior to the first execution. */
d1675198 2240 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2241 reg_state = kmap_atomic(page);
2242
2243 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2244 * commands followed by (reg, value) pairs. The values we are setting here are
2245 * only for the first context restore: on a subsequent save, the GPU will
2246 * recreate this batchbuffer with new values (including all the missing
2247 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2248 reg_state[CTX_LRI_HEADER_0] =
2249 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2250 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2251 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2252 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2253 CTX_CTRL_RS_CTX_ENABLE));
2254 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2255 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2256 /* Ring buffer start address is not known until the buffer is pinned.
2257 * It is written to the context image in execlists_update_context()
2258 */
0d925ea0
VS
2259 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2260 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2261 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2262 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2263 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2264 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2265 RING_BB_PPGTT);
2266 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2267 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2268 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2269 if (ring->id == RCS) {
0d925ea0
VS
2270 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2271 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2272 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2273 if (ring->wa_ctx.obj) {
2274 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2275 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2276
2277 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2278 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2279 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2280
2281 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2282 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2283
2284 reg_state[CTX_BB_PER_CTX_PTR+1] =
2285 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2286 0x01;
2287 }
8670d6f9 2288 }
0d925ea0
VS
2289 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2290 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2291 /* PDP values well be assigned later if needed */
2292 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2293 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2294 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2295 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2296 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2297 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2298 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2299 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2300
2dba3239
MT
2301 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2302 /* 64b PPGTT (48bit canonical)
2303 * PDP0_DESCRIPTOR contains the base address to PML4 and
2304 * other PDP Descriptors are ignored.
2305 */
2306 ASSIGN_CTX_PML4(ppgtt, reg_state);
2307 } else {
2308 /* 32b PPGTT
2309 * PDP*_DESCRIPTOR contains the base address of space supported.
2310 * With dynamic page allocation, PDPs may not be allocated at
2311 * this point. Point the unallocated PDPs to the scratch page
2312 */
2313 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2314 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2315 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2316 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2317 }
2318
8670d6f9
OM
2319 if (ring->id == RCS) {
2320 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2321 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2322 make_rpcs(dev));
8670d6f9
OM
2323 }
2324
2325 kunmap_atomic(reg_state);
2326
2327 ctx_obj->dirty = 1;
2328 set_page_dirty(page);
2329 i915_gem_object_unpin_pages(ctx_obj);
2330
2331 return 0;
2332}
2333
73e4d07f
OM
2334/**
2335 * intel_lr_context_free() - free the LRC specific bits of a context
2336 * @ctx: the LR context to free.
2337 *
2338 * The real context freeing is done in i915_gem_context_free: this only
2339 * takes care of the bits that are LRC related: the per-engine backing
2340 * objects and the logical ringbuffer.
2341 */
ede7d42b
OM
2342void intel_lr_context_free(struct intel_context *ctx)
2343{
8c857917
OM
2344 int i;
2345
2346 for (i = 0; i < I915_NUM_RINGS; i++) {
2347 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2348
8c857917 2349 if (ctx_obj) {
dcb4c12a
OM
2350 struct intel_ringbuffer *ringbuf =
2351 ctx->engine[i].ringbuf;
2352 struct intel_engine_cs *ring = ringbuf->ring;
2353
7ba717cf
TD
2354 if (ctx == ring->default_context) {
2355 intel_unpin_ringbuffer_obj(ringbuf);
2356 i915_gem_object_ggtt_unpin(ctx_obj);
2357 }
a7cbedec 2358 WARN_ON(ctx->engine[ring->id].pin_count);
01101fa7 2359 intel_ringbuffer_free(ringbuf);
8c857917
OM
2360 drm_gem_object_unreference(&ctx_obj->base);
2361 }
2362 }
2363}
2364
2365static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2366{
2367 int ret = 0;
2368
468c6816 2369 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2370
2371 switch (ring->id) {
2372 case RCS:
468c6816
MN
2373 if (INTEL_INFO(ring->dev)->gen >= 9)
2374 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2375 else
2376 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2377 break;
2378 case VCS:
2379 case BCS:
2380 case VECS:
2381 case VCS2:
2382 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2383 break;
2384 }
2385
2386 return ret;
ede7d42b
OM
2387}
2388
70b0ea86 2389static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2390 struct drm_i915_gem_object *default_ctx_obj)
2391{
2392 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2393 struct page *page;
1df06b75 2394
d1675198
AD
2395 /* The HWSP is part of the default context object in LRC mode. */
2396 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2397 + LRC_PPHWSP_PN * PAGE_SIZE;
2398 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2399 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2400 ring->status_page.obj = default_ctx_obj;
2401
2402 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2403 (u32)ring->status_page.gfx_addr);
2404 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2405}
2406
73e4d07f 2407/**
e84fe803 2408 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2409 * @ctx: LR context to create.
2410 * @ring: engine to be used with the context.
2411 *
2412 * This function can be called more than once, with different engines, if we plan
2413 * to use the context with them. The context backing objects and the ringbuffers
2414 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2415 * the creation is a deferred call: it's better to make sure first that we need to use
2416 * a given ring with the context.
2417 *
32197aab 2418 * Return: non-zero on error.
73e4d07f 2419 */
e84fe803
NH
2420
2421int intel_lr_context_deferred_alloc(struct intel_context *ctx,
ede7d42b
OM
2422 struct intel_engine_cs *ring)
2423{
8c857917
OM
2424 struct drm_device *dev = ring->dev;
2425 struct drm_i915_gem_object *ctx_obj;
2426 uint32_t context_size;
84c2377f 2427 struct intel_ringbuffer *ringbuf;
8c857917
OM
2428 int ret;
2429
ede7d42b 2430 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2431 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2432
8c857917
OM
2433 context_size = round_up(get_lr_context_size(ring), 4096);
2434
d1675198
AD
2435 /* One extra page as the sharing data between driver and GuC */
2436 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2437
149c86e7 2438 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2439 if (!ctx_obj) {
2440 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2441 return -ENOMEM;
8c857917
OM
2442 }
2443
01101fa7
CW
2444 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2445 if (IS_ERR(ringbuf)) {
2446 ret = PTR_ERR(ringbuf);
e84fe803 2447 goto error_deref_obj;
8670d6f9
OM
2448 }
2449
2450 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2451 if (ret) {
2452 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2453 goto error_ringbuf;
84c2377f
OM
2454 }
2455
2456 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2457 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2458
e84fe803
NH
2459 if (ctx != ring->default_context && ring->init_context) {
2460 struct drm_i915_gem_request *req;
76c39168 2461
e84fe803
NH
2462 ret = i915_gem_request_alloc(ring,
2463 ctx, &req);
2464 if (ret) {
2465 DRM_ERROR("ring create req: %d\n",
2466 ret);
e84fe803 2467 goto error_ringbuf;
771b9a53
MT
2468 }
2469
e84fe803
NH
2470 ret = ring->init_context(req);
2471 if (ret) {
2472 DRM_ERROR("ring init context: %d\n",
2473 ret);
2474 i915_gem_request_cancel(req);
2475 goto error_ringbuf;
2476 }
2477 i915_add_request_no_flush(req);
564ddb2f 2478 }
ede7d42b 2479 return 0;
8670d6f9 2480
01101fa7
CW
2481error_ringbuf:
2482 intel_ringbuffer_free(ringbuf);
e84fe803 2483error_deref_obj:
8670d6f9 2484 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2485 ctx->engine[ring->id].ringbuf = NULL;
2486 ctx->engine[ring->id].state = NULL;
8670d6f9 2487 return ret;
ede7d42b 2488}
3e5b6f05
TD
2489
2490void intel_lr_context_reset(struct drm_device *dev,
2491 struct intel_context *ctx)
2492{
2493 struct drm_i915_private *dev_priv = dev->dev_private;
2494 struct intel_engine_cs *ring;
2495 int i;
2496
2497 for_each_ring(ring, dev_priv, i) {
2498 struct drm_i915_gem_object *ctx_obj =
2499 ctx->engine[ring->id].state;
2500 struct intel_ringbuffer *ringbuf =
2501 ctx->engine[ring->id].ringbuf;
2502 uint32_t *reg_state;
2503 struct page *page;
2504
2505 if (!ctx_obj)
2506 continue;
2507
2508 if (i915_gem_object_get_pages(ctx_obj)) {
2509 WARN(1, "Failed get_pages for context obj\n");
2510 continue;
2511 }
d1675198 2512 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2513 reg_state = kmap_atomic(page);
2514
2515 reg_state[CTX_RING_HEAD+1] = 0;
2516 reg_state[CTX_RING_TAIL+1] = 0;
2517
2518 kunmap_atomic(reg_state);
2519
2520 ringbuf->head = 0;
2521 ringbuf->tail = 0;
2522 }
2523}
This page took 0.28802 seconds and 5 git commands to generate.