drm/i915: Also perform gpu reset under execlist mode.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
191
192#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d852c7bf 193 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
194 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
195 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
196}
197
84b790f8
BW
198enum {
199 ADVANCED_CONTEXT = 0,
200 LEGACY_CONTEXT,
201 ADVANCED_AD_CONTEXT,
202 LEGACY_64B_CONTEXT
203};
204#define GEN8_CTX_MODE_SHIFT 3
205enum {
206 FAULT_AND_HANG = 0,
207 FAULT_AND_HALT, /* Debug only */
208 FAULT_AND_STREAM,
209 FAULT_AND_CONTINUE /* Unsupported */
210};
211#define GEN8_CTX_ID_SHIFT 32
17ee950d 212#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 213
7ba717cf
TD
214static int intel_lr_context_pin(struct intel_engine_cs *ring,
215 struct intel_context *ctx);
216
73e4d07f
OM
217/**
218 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
219 * @dev: DRM device.
220 * @enable_execlists: value of i915.enable_execlists module parameter.
221 *
222 * Only certain platforms support Execlists (the prerequisites being
27401d12 223 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
224 *
225 * Return: 1 if Execlists is supported and has to be enabled.
226 */
127f1003
OM
227int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
228{
bd84b1e9
DV
229 WARN_ON(i915.enable_ppgtt == -1);
230
70ee45e1
DL
231 if (INTEL_INFO(dev)->gen >= 9)
232 return 1;
233
127f1003
OM
234 if (enable_execlists == 0)
235 return 0;
236
14bf993e
OM
237 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
238 i915.use_mmio_flip >= 0)
127f1003
OM
239 return 1;
240
241 return 0;
242}
ede7d42b 243
73e4d07f
OM
244/**
245 * intel_execlists_ctx_id() - get the Execlists Context ID
246 * @ctx_obj: Logical Ring Context backing object.
247 *
248 * Do not confuse with ctx->id! Unfortunately we have a name overload
249 * here: the old context ID we pass to userspace as a handler so that
250 * they can refer to a context, and the new context ID we pass to the
251 * ELSP so that the GPU can inform us of the context status via
252 * interrupts.
253 *
254 * Return: 20-bits globally unique context ID.
255 */
84b790f8
BW
256u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
257{
258 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
259
260 /* LRCA is required to be 4K aligned so the more significant 20 bits
261 * are globally unique */
262 return lrca >> 12;
263}
264
203a571b
NH
265static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
266 struct drm_i915_gem_object *ctx_obj)
84b790f8 267{
203a571b 268 struct drm_device *dev = ring->dev;
84b790f8
BW
269 uint64_t desc;
270 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
271
272 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
273
274 desc = GEN8_CTX_VALID;
275 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
51847fb9
AS
276 if (IS_GEN8(ctx_obj->base.dev))
277 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
278 desc |= GEN8_CTX_PRIVILEGE;
279 desc |= lrca;
280 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
281
282 /* TODO: WaDisableLiteRestore when we start using semaphore
283 * signalling between Command Streamers */
284 /* desc |= GEN8_CTX_FORCE_RESTORE; */
285
203a571b
NH
286 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
287 if (IS_GEN9(dev) &&
288 INTEL_REVID(dev) <= SKL_REVID_B0 &&
289 (ring->id == BCS || ring->id == VCS ||
290 ring->id == VECS || ring->id == VCS2))
291 desc |= GEN8_CTX_FORCE_RESTORE;
292
84b790f8
BW
293 return desc;
294}
295
296static void execlists_elsp_write(struct intel_engine_cs *ring,
297 struct drm_i915_gem_object *ctx_obj0,
298 struct drm_i915_gem_object *ctx_obj1)
299{
6e7cc470
TU
300 struct drm_device *dev = ring->dev;
301 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
302 uint64_t temp = 0;
303 uint32_t desc[4];
304
305 /* XXX: You must always write both descriptors in the order below. */
306 if (ctx_obj1)
203a571b 307 temp = execlists_ctx_descriptor(ring, ctx_obj1);
84b790f8
BW
308 else
309 temp = 0;
310 desc[1] = (u32)(temp >> 32);
311 desc[0] = (u32)temp;
312
203a571b 313 temp = execlists_ctx_descriptor(ring, ctx_obj0);
84b790f8
BW
314 desc[3] = (u32)(temp >> 32);
315 desc[2] = (u32)temp;
316
a6111f7b
CW
317 spin_lock(&dev_priv->uncore.lock);
318 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
319 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
320 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
321 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
6daccb0b 322
84b790f8 323 /* The context is automatically loaded after the following */
a6111f7b 324 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
84b790f8
BW
325
326 /* ELSP is a wo register, so use another nearby reg for posting instead */
a6111f7b
CW
327 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
328 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
329 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
330}
331
7ba717cf
TD
332static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
333 struct drm_i915_gem_object *ring_obj,
d7b2633d 334 struct i915_hw_ppgtt *ppgtt,
7ba717cf 335 u32 tail)
ae1250b9
OM
336{
337 struct page *page;
338 uint32_t *reg_state;
339
340 page = i915_gem_object_get_page(ctx_obj, 1);
341 reg_state = kmap_atomic(page);
342
343 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 344 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9 345
d7b2633d
MT
346 /* True PPGTT with dynamic page allocation: update PDP registers and
347 * point the unallocated PDPs to the scratch page
348 */
349 if (ppgtt) {
350 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
354 }
355
ae1250b9
OM
356 kunmap_atomic(reg_state);
357
358 return 0;
359}
360
cd0707cb
DG
361static void execlists_submit_contexts(struct intel_engine_cs *ring,
362 struct intel_context *to0, u32 tail0,
363 struct intel_context *to1, u32 tail1)
84b790f8 364{
7ba717cf
TD
365 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
366 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 367 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 368 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 369
84b790f8 370 BUG_ON(!ctx_obj0);
acdd884a 371 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 372 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 373
d7b2633d 374 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
ae1250b9 375
84b790f8 376 if (to1) {
7ba717cf 377 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
378 ctx_obj1 = to1->engine[ring->id].state;
379 BUG_ON(!ctx_obj1);
acdd884a 380 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 381 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 382
d7b2633d 383 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
84b790f8
BW
384 }
385
386 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
387}
388
acdd884a
MT
389static void execlists_context_unqueue(struct intel_engine_cs *ring)
390{
6d3d8274
NH
391 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
392 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
393
394 assert_spin_locked(&ring->execlist_lock);
acdd884a 395
779949f4
PA
396 /*
397 * If irqs are not active generate a warning as batches that finish
398 * without the irqs may get lost and a GPU Hang may occur.
399 */
400 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
401
acdd884a
MT
402 if (list_empty(&ring->execlist_queue))
403 return;
404
405 /* Try to read in pairs */
406 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
407 execlist_link) {
408 if (!req0) {
409 req0 = cursor;
6d3d8274 410 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
411 /* Same ctx: ignore first request, as second request
412 * will update tail past first request's workload */
e1fee72c 413 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 414 list_del(&req0->execlist_link);
c86ee3a9
TD
415 list_add_tail(&req0->execlist_link,
416 &ring->execlist_retired_req_list);
acdd884a
MT
417 req0 = cursor;
418 } else {
419 req1 = cursor;
420 break;
421 }
422 }
423
53292cdb
MT
424 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
425 /*
426 * WaIdleLiteRestore: make sure we never cause a lite
427 * restore with HEAD==TAIL
428 */
d63f820f 429 if (req0->elsp_submitted) {
53292cdb
MT
430 /*
431 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
432 * as we resubmit the request. See gen8_emit_request()
433 * for where we prepare the padding after the end of the
434 * request.
435 */
436 struct intel_ringbuffer *ringbuf;
437
438 ringbuf = req0->ctx->engine[ring->id].ringbuf;
439 req0->tail += 8;
440 req0->tail &= ringbuf->size - 1;
441 }
442 }
443
e1fee72c
OM
444 WARN_ON(req1 && req1->elsp_submitted);
445
6d3d8274
NH
446 execlists_submit_contexts(ring, req0->ctx, req0->tail,
447 req1 ? req1->ctx : NULL,
448 req1 ? req1->tail : 0);
e1fee72c
OM
449
450 req0->elsp_submitted++;
451 if (req1)
452 req1->elsp_submitted++;
acdd884a
MT
453}
454
e981e7b1
TD
455static bool execlists_check_remove_request(struct intel_engine_cs *ring,
456 u32 request_id)
457{
6d3d8274 458 struct drm_i915_gem_request *head_req;
e981e7b1
TD
459
460 assert_spin_locked(&ring->execlist_lock);
461
462 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 463 struct drm_i915_gem_request,
e981e7b1
TD
464 execlist_link);
465
466 if (head_req != NULL) {
467 struct drm_i915_gem_object *ctx_obj =
6d3d8274 468 head_req->ctx->engine[ring->id].state;
e981e7b1 469 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
470 WARN(head_req->elsp_submitted == 0,
471 "Never submitted head request\n");
472
473 if (--head_req->elsp_submitted <= 0) {
474 list_del(&head_req->execlist_link);
c86ee3a9
TD
475 list_add_tail(&head_req->execlist_link,
476 &ring->execlist_retired_req_list);
e1fee72c
OM
477 return true;
478 }
e981e7b1
TD
479 }
480 }
481
482 return false;
483}
484
73e4d07f 485/**
3f7531c3 486 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
487 * @ring: Engine Command Streamer to handle.
488 *
489 * Check the unread Context Status Buffers and manage the submission of new
490 * contexts to the ELSP accordingly.
491 */
3f7531c3 492void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
493{
494 struct drm_i915_private *dev_priv = ring->dev->dev_private;
495 u32 status_pointer;
496 u8 read_pointer;
497 u8 write_pointer;
498 u32 status;
499 u32 status_id;
500 u32 submit_contexts = 0;
501
502 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
503
504 read_pointer = ring->next_context_status_buffer;
505 write_pointer = status_pointer & 0x07;
506 if (read_pointer > write_pointer)
507 write_pointer += 6;
508
509 spin_lock(&ring->execlist_lock);
510
511 while (read_pointer < write_pointer) {
512 read_pointer++;
513 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
514 (read_pointer % 6) * 8);
515 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8 + 4);
517
e1fee72c
OM
518 if (status & GEN8_CTX_STATUS_PREEMPTED) {
519 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
520 if (execlists_check_remove_request(ring, status_id))
521 WARN(1, "Lite Restored request removed from queue\n");
522 } else
523 WARN(1, "Preemption without Lite Restore\n");
524 }
525
526 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
527 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
528 if (execlists_check_remove_request(ring, status_id))
529 submit_contexts++;
530 }
531 }
532
533 if (submit_contexts != 0)
534 execlists_context_unqueue(ring);
535
536 spin_unlock(&ring->execlist_lock);
537
538 WARN(submit_contexts > 2, "More than two context complete events?\n");
539 ring->next_context_status_buffer = write_pointer % 6;
540
541 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
542 ((u32)ring->next_context_status_buffer & 0x07) << 8);
543}
544
ae70797d 545static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 546{
ae70797d 547 struct intel_engine_cs *ring = request->ring;
6d3d8274 548 struct drm_i915_gem_request *cursor;
f1ad5a1f 549 int num_elements = 0;
acdd884a 550
ae70797d
JH
551 if (request->ctx != ring->default_context)
552 intel_lr_context_pin(ring, request->ctx);
9bb1af44
JH
553
554 i915_gem_request_reference(request);
555
ae70797d 556 request->tail = request->ringbuf->tail;
2d12955a 557
b5eba372 558 spin_lock_irq(&ring->execlist_lock);
acdd884a 559
f1ad5a1f
OM
560 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
561 if (++num_elements > 2)
562 break;
563
564 if (num_elements > 2) {
6d3d8274 565 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
566
567 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 568 struct drm_i915_gem_request,
f1ad5a1f
OM
569 execlist_link);
570
ae70797d 571 if (request->ctx == tail_req->ctx) {
f1ad5a1f 572 WARN(tail_req->elsp_submitted != 0,
7ba717cf 573 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 574 list_del(&tail_req->execlist_link);
c86ee3a9
TD
575 list_add_tail(&tail_req->execlist_link,
576 &ring->execlist_retired_req_list);
f1ad5a1f
OM
577 }
578 }
579
6d3d8274 580 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 581 if (num_elements == 0)
acdd884a
MT
582 execlists_context_unqueue(ring);
583
b5eba372 584 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
585
586 return 0;
587}
588
2f20055d 589static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 590{
2f20055d 591 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
592 uint32_t flush_domains;
593 int ret;
594
595 flush_domains = 0;
596 if (ring->gpu_caches_dirty)
597 flush_domains = I915_GEM_GPU_DOMAINS;
598
7deb4d39 599 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
600 if (ret)
601 return ret;
602
603 ring->gpu_caches_dirty = false;
604 return 0;
605}
606
535fbe82 607static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
608 struct list_head *vmas)
609{
535fbe82 610 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
611 struct i915_vma *vma;
612 uint32_t flush_domains = 0;
613 bool flush_chipset = false;
614 int ret;
615
616 list_for_each_entry(vma, vmas, exec_list) {
617 struct drm_i915_gem_object *obj = vma->obj;
618
03ade511 619 if (obj->active & other_rings) {
91af127f 620 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
621 if (ret)
622 return ret;
623 }
ba8b7ccb
OM
624
625 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
626 flush_chipset |= i915_gem_clflush_object(obj, false);
627
628 flush_domains |= obj->base.write_domain;
629 }
630
631 if (flush_domains & I915_GEM_DOMAIN_GTT)
632 wmb();
633
634 /* Unconditionally invalidate gpu caches and ensure that we do flush
635 * any residual writes from the previous batch.
636 */
2f20055d 637 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
638}
639
40e895ce 640int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 641{
bc0dce3f
JH
642 int ret;
643
40e895ce
JH
644 if (request->ctx != request->ring->default_context) {
645 ret = intel_lr_context_pin(request->ring, request->ctx);
6689cb2b 646 if (ret)
bc0dce3f 647 return ret;
bc0dce3f
JH
648 }
649
40e895ce 650 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
bc0dce3f 651
bc0dce3f
JH
652 return 0;
653}
654
ae70797d 655static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 656 int bytes)
bc0dce3f 657{
ae70797d
JH
658 struct intel_ringbuffer *ringbuf = req->ringbuf;
659 struct intel_engine_cs *ring = req->ring;
660 struct drm_i915_gem_request *target;
b4716185
CW
661 unsigned space;
662 int ret;
bc0dce3f
JH
663
664 if (intel_ring_space(ringbuf) >= bytes)
665 return 0;
666
79bbcc29
JH
667 /* The whole point of reserving space is to not wait! */
668 WARN_ON(ringbuf->reserved_in_use);
669
ae70797d 670 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
671 /*
672 * The request queue is per-engine, so can contain requests
673 * from multiple ringbuffers. Here, we must ignore any that
674 * aren't from the ringbuffer we're considering.
675 */
ae70797d 676 if (target->ringbuf != ringbuf)
bc0dce3f
JH
677 continue;
678
679 /* Would completion of this request free enough space? */
ae70797d 680 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
681 ringbuf->size);
682 if (space >= bytes)
bc0dce3f 683 break;
bc0dce3f
JH
684 }
685
ae70797d 686 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
687 return -ENOSPC;
688
ae70797d 689 ret = i915_wait_request(target);
bc0dce3f
JH
690 if (ret)
691 return ret;
692
b4716185
CW
693 ringbuf->space = space;
694 return 0;
bc0dce3f
JH
695}
696
697/*
698 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 699 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
700 *
701 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
702 * really happens during submission is that the context and current tail will be placed
703 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
704 * point, the tail *inside* the context is updated and the ELSP written to.
705 */
706static void
ae70797d 707intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 708{
ae70797d 709 struct intel_engine_cs *ring = request->ring;
bc0dce3f 710
ae70797d 711 intel_logical_ring_advance(request->ringbuf);
bc0dce3f
JH
712
713 if (intel_ring_stopped(ring))
714 return;
715
ae70797d 716 execlists_context_queue(request);
bc0dce3f
JH
717}
718
79bbcc29 719static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
720{
721 uint32_t __iomem *virt;
722 int rem = ringbuf->size - ringbuf->tail;
723
bc0dce3f
JH
724 virt = ringbuf->virtual_start + ringbuf->tail;
725 rem /= 4;
726 while (rem--)
727 iowrite32(MI_NOOP, virt++);
728
729 ringbuf->tail = 0;
730 intel_ring_update_space(ringbuf);
bc0dce3f
JH
731}
732
ae70797d 733static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 734{
ae70797d 735 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
736 int remain_usable = ringbuf->effective_size - ringbuf->tail;
737 int remain_actual = ringbuf->size - ringbuf->tail;
738 int ret, total_bytes, wait_bytes = 0;
739 bool need_wrap = false;
29b1b415 740
79bbcc29
JH
741 if (ringbuf->reserved_in_use)
742 total_bytes = bytes;
743 else
744 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 745
79bbcc29
JH
746 if (unlikely(bytes > remain_usable)) {
747 /*
748 * Not enough space for the basic request. So need to flush
749 * out the remainder and then wait for base + reserved.
750 */
751 wait_bytes = remain_actual + total_bytes;
752 need_wrap = true;
753 } else {
754 if (unlikely(total_bytes > remain_usable)) {
755 /*
756 * The base request will fit but the reserved space
757 * falls off the end. So only need to to wait for the
758 * reserved size after flushing out the remainder.
759 */
760 wait_bytes = remain_actual + ringbuf->reserved_size;
761 need_wrap = true;
762 } else if (total_bytes > ringbuf->space) {
763 /* No wrapping required, just waiting. */
764 wait_bytes = total_bytes;
29b1b415 765 }
bc0dce3f
JH
766 }
767
79bbcc29
JH
768 if (wait_bytes) {
769 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
770 if (unlikely(ret))
771 return ret;
79bbcc29
JH
772
773 if (need_wrap)
774 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
775 }
776
777 return 0;
778}
779
780/**
781 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
782 *
4d616a29 783 * @request: The request to start some new work for
4d78c8dc 784 * @ctx: Logical ring context whose ringbuffer is being prepared.
bc0dce3f
JH
785 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
786 *
787 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
788 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
789 * and also preallocates a request (every workload submission is still mediated through
790 * requests, same as it did with legacy ringbuffer submission).
791 *
792 * Return: non-zero if the ringbuffer is not ready to be written to.
793 */
4d616a29
JH
794static int intel_logical_ring_begin(struct drm_i915_gem_request *req,
795 int num_dwords)
bc0dce3f 796{
4d616a29 797 struct drm_i915_private *dev_priv;
bc0dce3f
JH
798 int ret;
799
4d616a29
JH
800 WARN_ON(req == NULL);
801 dev_priv = req->ring->dev->dev_private;
802
bc0dce3f
JH
803 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
804 dev_priv->mm.interruptible);
805 if (ret)
806 return ret;
807
ae70797d 808 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
809 if (ret)
810 return ret;
811
4d616a29 812 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
813 return 0;
814}
815
ccd98fe4
JH
816int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
817{
818 /*
819 * The first call merely notes the reserve request and is common for
820 * all back ends. The subsequent localised _begin() call actually
821 * ensures that the reservation is available. Without the begin, if
822 * the request creator immediately submitted the request without
823 * adding any commands to it then there might not actually be
824 * sufficient room for the submission commands.
825 */
826 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
827
828 return intel_logical_ring_begin(request, 0);
829}
830
73e4d07f
OM
831/**
832 * execlists_submission() - submit a batchbuffer for execution, Execlists style
833 * @dev: DRM device.
834 * @file: DRM file.
835 * @ring: Engine Command Streamer to submit to.
836 * @ctx: Context to employ for this submission.
837 * @args: execbuffer call arguments.
838 * @vmas: list of vmas.
839 * @batch_obj: the batchbuffer to submit.
840 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 841 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
842 *
843 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
844 * away the submission details of the execbuffer ioctl call.
845 *
846 * Return: non-zero if the submission fails.
847 */
5f19e2bf 848int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 849 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 850 struct list_head *vmas)
454afebd 851{
5f19e2bf
JH
852 struct drm_device *dev = params->dev;
853 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 854 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
855 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
856 u64 exec_start;
ba8b7ccb
OM
857 int instp_mode;
858 u32 instp_mask;
859 int ret;
860
861 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
862 instp_mask = I915_EXEC_CONSTANTS_MASK;
863 switch (instp_mode) {
864 case I915_EXEC_CONSTANTS_REL_GENERAL:
865 case I915_EXEC_CONSTANTS_ABSOLUTE:
866 case I915_EXEC_CONSTANTS_REL_SURFACE:
867 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
868 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
869 return -EINVAL;
870 }
871
872 if (instp_mode != dev_priv->relative_constants_mode) {
873 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
874 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
875 return -EINVAL;
876 }
877
878 /* The HW changed the meaning on this bit on gen6 */
879 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
880 }
881 break;
882 default:
883 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
884 return -EINVAL;
885 }
886
887 if (args->num_cliprects != 0) {
888 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
889 return -EINVAL;
890 } else {
891 if (args->DR4 == 0xffffffff) {
892 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
893 args->DR4 = 0;
894 }
895
896 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
897 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
898 return -EINVAL;
899 }
900 }
901
902 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
903 DRM_DEBUG("sol reset is gen7 only\n");
904 return -EINVAL;
905 }
906
535fbe82 907 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
908 if (ret)
909 return ret;
910
911 if (ring == &dev_priv->ring[RCS] &&
912 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 913 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
914 if (ret)
915 return ret;
916
917 intel_logical_ring_emit(ringbuf, MI_NOOP);
918 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
919 intel_logical_ring_emit(ringbuf, INSTPM);
920 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
921 intel_logical_ring_advance(ringbuf);
922
923 dev_priv->relative_constants_mode = instp_mode;
924 }
925
5f19e2bf
JH
926 exec_start = params->batch_obj_vm_offset +
927 args->batch_start_offset;
928
be795fc1 929 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
930 if (ret)
931 return ret;
932
95c24161 933 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 934
8a8edb59 935 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 936 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 937
454afebd
OM
938 return 0;
939}
940
c86ee3a9
TD
941void intel_execlists_retire_requests(struct intel_engine_cs *ring)
942{
6d3d8274 943 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
944 struct list_head retired_list;
945
946 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
947 if (list_empty(&ring->execlist_retired_req_list))
948 return;
949
950 INIT_LIST_HEAD(&retired_list);
b5eba372 951 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 952 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 953 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
954
955 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 956 struct intel_context *ctx = req->ctx;
7ba717cf
TD
957 struct drm_i915_gem_object *ctx_obj =
958 ctx->engine[ring->id].state;
959
960 if (ctx_obj && (ctx != ring->default_context))
961 intel_lr_context_unpin(ring, ctx);
c86ee3a9 962 list_del(&req->execlist_link);
f8210795 963 i915_gem_request_unreference(req);
c86ee3a9
TD
964 }
965}
966
454afebd
OM
967void intel_logical_ring_stop(struct intel_engine_cs *ring)
968{
9832b9da
OM
969 struct drm_i915_private *dev_priv = ring->dev->dev_private;
970 int ret;
971
972 if (!intel_ring_initialized(ring))
973 return;
974
975 ret = intel_ring_idle(ring);
976 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
977 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
978 ring->name, ret);
979
980 /* TODO: Is this correct with Execlists enabled? */
981 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
982 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
983 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
984 return;
985 }
986 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
987}
988
4866d729 989int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 990{
4866d729 991 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
992 int ret;
993
994 if (!ring->gpu_caches_dirty)
995 return 0;
996
7deb4d39 997 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
998 if (ret)
999 return ret;
1000
1001 ring->gpu_caches_dirty = false;
1002 return 0;
1003}
1004
dcb4c12a
OM
1005static int intel_lr_context_pin(struct intel_engine_cs *ring,
1006 struct intel_context *ctx)
1007{
1008 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1009 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1010 int ret = 0;
1011
1012 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1013 if (ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1014 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1015 GEN8_LR_CONTEXT_ALIGN, 0);
1016 if (ret)
a7cbedec 1017 goto reset_pin_count;
7ba717cf
TD
1018
1019 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1020 if (ret)
1021 goto unpin_ctx_obj;
dcb4c12a
OM
1022 }
1023
7ba717cf
TD
1024 return ret;
1025
1026unpin_ctx_obj:
1027 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec
MK
1028reset_pin_count:
1029 ctx->engine[ring->id].pin_count = 0;
7ba717cf 1030
dcb4c12a
OM
1031 return ret;
1032}
1033
1034void intel_lr_context_unpin(struct intel_engine_cs *ring,
1035 struct intel_context *ctx)
1036{
1037 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1038 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1039
1040 if (ctx_obj) {
1041 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1042 if (--ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1043 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1044 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1045 }
dcb4c12a
OM
1046 }
1047}
1048
e2be4faf 1049static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1050{
1051 int ret, i;
e2be4faf
JH
1052 struct intel_engine_cs *ring = req->ring;
1053 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1054 struct drm_device *dev = ring->dev;
1055 struct drm_i915_private *dev_priv = dev->dev_private;
1056 struct i915_workarounds *w = &dev_priv->workarounds;
1057
e6c1abb7 1058 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1059 return 0;
1060
1061 ring->gpu_caches_dirty = true;
4866d729 1062 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1063 if (ret)
1064 return ret;
1065
4d616a29 1066 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1067 if (ret)
1068 return ret;
1069
1070 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1071 for (i = 0; i < w->count; i++) {
1072 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1073 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1074 }
1075 intel_logical_ring_emit(ringbuf, MI_NOOP);
1076
1077 intel_logical_ring_advance(ringbuf);
1078
1079 ring->gpu_caches_dirty = true;
4866d729 1080 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1081 if (ret)
1082 return ret;
1083
1084 return 0;
1085}
1086
17ee950d
AS
1087#define wa_ctx_emit(batch, cmd) \
1088 do { \
1089 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1090 return -ENOSPC; \
1091 } \
1092 batch[index++] = (cmd); \
1093 } while (0)
1094
9e000847
AS
1095
1096/*
1097 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1098 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1099 * but there is a slight complication as this is applied in WA batch where the
1100 * values are only initialized once so we cannot take register value at the
1101 * beginning and reuse it further; hence we save its value to memory, upload a
1102 * constant value with bit21 set and then we restore it back with the saved value.
1103 * To simplify the WA, a constant value is formed by using the default value
1104 * of this register. This shouldn't be a problem because we are only modifying
1105 * it for a short period and this batch in non-premptible. We can ofcourse
1106 * use additional instructions that read the actual value of the register
1107 * at that time and set our bit of interest but it makes the WA complicated.
1108 *
1109 * This WA is also required for Gen9 so extracting as a function avoids
1110 * code duplication.
1111 */
1112static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1113 uint32_t *const batch,
1114 uint32_t index)
1115{
1116 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1117
1118 wa_ctx_emit(batch, (MI_STORE_REGISTER_MEM_GEN8(1) |
1119 MI_SRM_LRM_GLOBAL_GTT));
1120 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1121 wa_ctx_emit(batch, ring->scratch.gtt_offset + 256);
1122 wa_ctx_emit(batch, 0);
1123
1124 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1125 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1126 wa_ctx_emit(batch, l3sqc4_flush);
1127
1128 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1129 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1130 PIPE_CONTROL_DC_FLUSH_ENABLE));
1131 wa_ctx_emit(batch, 0);
1132 wa_ctx_emit(batch, 0);
1133 wa_ctx_emit(batch, 0);
1134 wa_ctx_emit(batch, 0);
1135
1136 wa_ctx_emit(batch, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1137 MI_SRM_LRM_GLOBAL_GTT));
1138 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1139 wa_ctx_emit(batch, ring->scratch.gtt_offset + 256);
1140 wa_ctx_emit(batch, 0);
1141
1142 return index;
1143}
1144
17ee950d
AS
1145static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1146 uint32_t offset,
1147 uint32_t start_alignment)
1148{
1149 return wa_ctx->offset = ALIGN(offset, start_alignment);
1150}
1151
1152static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1153 uint32_t offset,
1154 uint32_t size_alignment)
1155{
1156 wa_ctx->size = offset - wa_ctx->offset;
1157
1158 WARN(wa_ctx->size % size_alignment,
1159 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1160 wa_ctx->size, size_alignment);
1161 return 0;
1162}
1163
1164/**
1165 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1166 *
1167 * @ring: only applicable for RCS
1168 * @wa_ctx: structure representing wa_ctx
1169 * offset: specifies start of the batch, should be cache-aligned. This is updated
1170 * with the offset value received as input.
1171 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1172 * @batch: page in which WA are loaded
1173 * @offset: This field specifies the start of the batch, it should be
1174 * cache-aligned otherwise it is adjusted accordingly.
1175 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1176 * initialized at the beginning and shared across all contexts but this field
1177 * helps us to have multiple batches at different offsets and select them based
1178 * on a criteria. At the moment this batch always start at the beginning of the page
1179 * and at this point we don't have multiple wa_ctx batch buffers.
1180 *
1181 * The number of WA applied are not known at the beginning; we use this field
1182 * to return the no of DWORDS written.
4d78c8dc 1183 *
17ee950d
AS
1184 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1185 * so it adds NOOPs as padding to make it cacheline aligned.
1186 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1187 * makes a complete batch buffer.
1188 *
1189 * Return: non-zero if we exceed the PAGE_SIZE limit.
1190 */
1191
1192static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1193 struct i915_wa_ctx_bb *wa_ctx,
1194 uint32_t *const batch,
1195 uint32_t *offset)
1196{
0160f055 1197 uint32_t scratch_addr;
17ee950d
AS
1198 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1199
7ad00d1a
AS
1200 /* WaDisableCtxRestoreArbitration:bdw,chv */
1201 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1202
c82435bb
AS
1203 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1204 if (IS_BROADWELL(ring->dev)) {
9e000847
AS
1205 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1206 if (index < 0)
1207 return index;
c82435bb
AS
1208 }
1209
0160f055
AS
1210 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1211 /* Actual scratch location is at 128 bytes offset */
1212 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1213
1214 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1215 wa_ctx_emit(batch, (PIPE_CONTROL_FLUSH_L3 |
1216 PIPE_CONTROL_GLOBAL_GTT_IVB |
1217 PIPE_CONTROL_CS_STALL |
1218 PIPE_CONTROL_QW_WRITE));
1219 wa_ctx_emit(batch, scratch_addr);
1220 wa_ctx_emit(batch, 0);
1221 wa_ctx_emit(batch, 0);
1222 wa_ctx_emit(batch, 0);
1223
17ee950d
AS
1224 /* Pad to end of cacheline */
1225 while (index % CACHELINE_DWORDS)
1226 wa_ctx_emit(batch, MI_NOOP);
1227
1228 /*
1229 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1230 * execution depends on the length specified in terms of cache lines
1231 * in the register CTX_RCS_INDIRECT_CTX
1232 */
1233
1234 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1235}
1236
1237/**
1238 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1239 *
1240 * @ring: only applicable for RCS
1241 * @wa_ctx: structure representing wa_ctx
1242 * offset: specifies start of the batch, should be cache-aligned.
1243 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1244 * @batch: page in which WA are loaded
17ee950d
AS
1245 * @offset: This field specifies the start of this batch.
1246 * This batch is started immediately after indirect_ctx batch. Since we ensure
1247 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1248 *
1249 * The number of DWORDS written are returned using this field.
1250 *
1251 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1252 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1253 */
1254static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1255 struct i915_wa_ctx_bb *wa_ctx,
1256 uint32_t *const batch,
1257 uint32_t *offset)
1258{
1259 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1260
7ad00d1a
AS
1261 /* WaDisableCtxRestoreArbitration:bdw,chv */
1262 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1263
17ee950d
AS
1264 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1265
1266 return wa_ctx_end(wa_ctx, *offset = index, 1);
1267}
1268
1269static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1270{
1271 int ret;
1272
1273 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1274 if (!ring->wa_ctx.obj) {
1275 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1276 return -ENOMEM;
1277 }
1278
1279 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1280 if (ret) {
1281 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1282 ret);
1283 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1284 return ret;
1285 }
1286
1287 return 0;
1288}
1289
1290static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1291{
1292 if (ring->wa_ctx.obj) {
1293 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1294 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1295 ring->wa_ctx.obj = NULL;
1296 }
1297}
1298
1299static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1300{
1301 int ret;
1302 uint32_t *batch;
1303 uint32_t offset;
1304 struct page *page;
1305 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1306
1307 WARN_ON(ring->id != RCS);
1308
5e60d790
AS
1309 /* update this when WA for higher Gen are added */
1310 if (WARN(INTEL_INFO(ring->dev)->gen > 8,
1311 "WA batch buffer is not initialized for Gen%d\n",
1312 INTEL_INFO(ring->dev)->gen))
1313 return 0;
1314
c4db7599
AS
1315 /* some WA perform writes to scratch page, ensure it is valid */
1316 if (ring->scratch.obj == NULL) {
1317 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1318 return -EINVAL;
1319 }
1320
17ee950d
AS
1321 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1322 if (ret) {
1323 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1324 return ret;
1325 }
1326
1327 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1328 batch = kmap_atomic(page);
1329 offset = 0;
1330
1331 if (INTEL_INFO(ring->dev)->gen == 8) {
1332 ret = gen8_init_indirectctx_bb(ring,
1333 &wa_ctx->indirect_ctx,
1334 batch,
1335 &offset);
1336 if (ret)
1337 goto out;
1338
1339 ret = gen8_init_perctx_bb(ring,
1340 &wa_ctx->per_ctx,
1341 batch,
1342 &offset);
1343 if (ret)
1344 goto out;
17ee950d
AS
1345 }
1346
1347out:
1348 kunmap_atomic(batch);
1349 if (ret)
1350 lrc_destroy_wa_ctx_obj(ring);
1351
1352 return ret;
1353}
1354
9b1136d5
OM
1355static int gen8_init_common_ring(struct intel_engine_cs *ring)
1356{
1357 struct drm_device *dev = ring->dev;
1358 struct drm_i915_private *dev_priv = dev->dev_private;
1359
73d477f6
OM
1360 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1361 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1362
9b1136d5
OM
1363 I915_WRITE(RING_MODE_GEN7(ring),
1364 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1365 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1366 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1367 ring->next_context_status_buffer = 0;
9b1136d5
OM
1368 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1369
1370 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1371
1372 return 0;
1373}
1374
1375static int gen8_init_render_ring(struct intel_engine_cs *ring)
1376{
1377 struct drm_device *dev = ring->dev;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 int ret;
1380
1381 ret = gen8_init_common_ring(ring);
1382 if (ret)
1383 return ret;
1384
1385 /* We need to disable the AsyncFlip performance optimisations in order
1386 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1387 * programmed to '1' on all products.
1388 *
1389 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1390 */
1391 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1392
9b1136d5
OM
1393 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1394
771b9a53 1395 return init_workarounds_ring(ring);
9b1136d5
OM
1396}
1397
82ef822e
DL
1398static int gen9_init_render_ring(struct intel_engine_cs *ring)
1399{
1400 int ret;
1401
1402 ret = gen8_init_common_ring(ring);
1403 if (ret)
1404 return ret;
1405
1406 return init_workarounds_ring(ring);
1407}
1408
7a01a0a2
MT
1409static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1410{
1411 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1412 struct intel_engine_cs *ring = req->ring;
1413 struct intel_ringbuffer *ringbuf = req->ringbuf;
1414 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1415 int i, ret;
1416
1417 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1418 if (ret)
1419 return ret;
1420
1421 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1422 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1423 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1424
1425 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1426 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1427 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1428 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1429 }
1430
1431 intel_logical_ring_emit(ringbuf, MI_NOOP);
1432 intel_logical_ring_advance(ringbuf);
1433
1434 return 0;
1435}
1436
be795fc1 1437static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1438 u64 offset, unsigned dispatch_flags)
15648585 1439{
be795fc1 1440 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1441 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1442 int ret;
1443
7a01a0a2
MT
1444 /* Don't rely in hw updating PDPs, specially in lite-restore.
1445 * Ideally, we should set Force PD Restore in ctx descriptor,
1446 * but we can't. Force Restore would be a second option, but
1447 * it is unsafe in case of lite-restore (because the ctx is
1448 * not idle). */
1449 if (req->ctx->ppgtt &&
1450 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1451 ret = intel_logical_ring_emit_pdps(req);
1452 if (ret)
1453 return ret;
1454
1455 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1456 }
1457
4d616a29 1458 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1459 if (ret)
1460 return ret;
1461
1462 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1463 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1464 (ppgtt<<8) |
1465 (dispatch_flags & I915_DISPATCH_RS ?
1466 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1467 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1468 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1469 intel_logical_ring_emit(ringbuf, MI_NOOP);
1470 intel_logical_ring_advance(ringbuf);
1471
1472 return 0;
1473}
1474
73d477f6
OM
1475static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1476{
1477 struct drm_device *dev = ring->dev;
1478 struct drm_i915_private *dev_priv = dev->dev_private;
1479 unsigned long flags;
1480
7cd512f1 1481 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1482 return false;
1483
1484 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1485 if (ring->irq_refcount++ == 0) {
1486 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1487 POSTING_READ(RING_IMR(ring->mmio_base));
1488 }
1489 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1490
1491 return true;
1492}
1493
1494static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1495{
1496 struct drm_device *dev = ring->dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 unsigned long flags;
1499
1500 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1501 if (--ring->irq_refcount == 0) {
1502 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1503 POSTING_READ(RING_IMR(ring->mmio_base));
1504 }
1505 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1506}
1507
7deb4d39 1508static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1509 u32 invalidate_domains,
1510 u32 unused)
1511{
7deb4d39 1512 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1513 struct intel_engine_cs *ring = ringbuf->ring;
1514 struct drm_device *dev = ring->dev;
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516 uint32_t cmd;
1517 int ret;
1518
4d616a29 1519 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1520 if (ret)
1521 return ret;
1522
1523 cmd = MI_FLUSH_DW + 1;
1524
f0a1fb10
CW
1525 /* We always require a command barrier so that subsequent
1526 * commands, such as breadcrumb interrupts, are strictly ordered
1527 * wrt the contents of the write cache being flushed to memory
1528 * (and thus being coherent from the CPU).
1529 */
1530 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1531
1532 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1533 cmd |= MI_INVALIDATE_TLB;
1534 if (ring == &dev_priv->ring[VCS])
1535 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1536 }
1537
1538 intel_logical_ring_emit(ringbuf, cmd);
1539 intel_logical_ring_emit(ringbuf,
1540 I915_GEM_HWS_SCRATCH_ADDR |
1541 MI_FLUSH_DW_USE_GTT);
1542 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1543 intel_logical_ring_emit(ringbuf, 0); /* value */
1544 intel_logical_ring_advance(ringbuf);
1545
1546 return 0;
1547}
1548
7deb4d39 1549static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1550 u32 invalidate_domains,
1551 u32 flush_domains)
1552{
7deb4d39 1553 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1554 struct intel_engine_cs *ring = ringbuf->ring;
1555 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1556 bool vf_flush_wa;
4712274c
OM
1557 u32 flags = 0;
1558 int ret;
1559
1560 flags |= PIPE_CONTROL_CS_STALL;
1561
1562 if (flush_domains) {
1563 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1564 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1565 }
1566
1567 if (invalidate_domains) {
1568 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1569 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1570 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1571 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1572 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1573 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1574 flags |= PIPE_CONTROL_QW_WRITE;
1575 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1576 }
1577
9647ff36
ID
1578 /*
1579 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1580 * control.
1581 */
1582 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1583 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1584
4d616a29 1585 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1586 if (ret)
1587 return ret;
1588
9647ff36
ID
1589 if (vf_flush_wa) {
1590 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1591 intel_logical_ring_emit(ringbuf, 0);
1592 intel_logical_ring_emit(ringbuf, 0);
1593 intel_logical_ring_emit(ringbuf, 0);
1594 intel_logical_ring_emit(ringbuf, 0);
1595 intel_logical_ring_emit(ringbuf, 0);
1596 }
1597
4712274c
OM
1598 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1599 intel_logical_ring_emit(ringbuf, flags);
1600 intel_logical_ring_emit(ringbuf, scratch_addr);
1601 intel_logical_ring_emit(ringbuf, 0);
1602 intel_logical_ring_emit(ringbuf, 0);
1603 intel_logical_ring_emit(ringbuf, 0);
1604 intel_logical_ring_advance(ringbuf);
1605
1606 return 0;
1607}
1608
e94e37ad
OM
1609static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1610{
1611 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1612}
1613
1614static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1615{
1616 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1617}
1618
c4e76638 1619static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1620{
c4e76638 1621 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1622 struct intel_engine_cs *ring = ringbuf->ring;
1623 u32 cmd;
1624 int ret;
1625
53292cdb
MT
1626 /*
1627 * Reserve space for 2 NOOPs at the end of each request to be
1628 * used as a workaround for not being allowed to do lite
1629 * restore with HEAD==TAIL (WaIdleLiteRestore).
1630 */
4d616a29 1631 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1632 if (ret)
1633 return ret;
1634
8edfbb8b 1635 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1636 cmd |= MI_GLOBAL_GTT;
1637
1638 intel_logical_ring_emit(ringbuf, cmd);
1639 intel_logical_ring_emit(ringbuf,
1640 (ring->status_page.gfx_addr +
1641 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1642 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1643 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1644 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1645 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1646 intel_logical_ring_advance_and_submit(request);
4da46e1e 1647
53292cdb
MT
1648 /*
1649 * Here we add two extra NOOPs as padding to avoid
1650 * lite restore of a context with HEAD==TAIL.
1651 */
1652 intel_logical_ring_emit(ringbuf, MI_NOOP);
1653 intel_logical_ring_emit(ringbuf, MI_NOOP);
1654 intel_logical_ring_advance(ringbuf);
1655
4da46e1e
OM
1656 return 0;
1657}
1658
be01363f 1659static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1660{
cef437ad 1661 struct render_state so;
cef437ad
DL
1662 int ret;
1663
be01363f 1664 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1665 if (ret)
1666 return ret;
1667
1668 if (so.rodata == NULL)
1669 return 0;
1670
be795fc1 1671 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1672 I915_DISPATCH_SECURE);
cef437ad
DL
1673 if (ret)
1674 goto out;
1675
b2af0376 1676 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1677
cef437ad
DL
1678out:
1679 i915_gem_render_state_fini(&so);
1680 return ret;
1681}
1682
8753181e 1683static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1684{
1685 int ret;
1686
e2be4faf 1687 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1688 if (ret)
1689 return ret;
1690
be01363f 1691 return intel_lr_context_render_state_init(req);
e7778be1
TD
1692}
1693
73e4d07f
OM
1694/**
1695 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1696 *
1697 * @ring: Engine Command Streamer.
1698 *
1699 */
454afebd
OM
1700void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1701{
6402c330 1702 struct drm_i915_private *dev_priv;
9832b9da 1703
48d82387
OM
1704 if (!intel_ring_initialized(ring))
1705 return;
1706
6402c330
JH
1707 dev_priv = ring->dev->dev_private;
1708
9832b9da
OM
1709 intel_logical_ring_stop(ring);
1710 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1711
1712 if (ring->cleanup)
1713 ring->cleanup(ring);
1714
1715 i915_cmd_parser_fini_ring(ring);
06fbca71 1716 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1717
1718 if (ring->status_page.obj) {
1719 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1720 ring->status_page.obj = NULL;
1721 }
17ee950d
AS
1722
1723 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1724}
1725
1726static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1727{
48d82387 1728 int ret;
48d82387
OM
1729
1730 /* Intentionally left blank. */
1731 ring->buffer = NULL;
1732
1733 ring->dev = dev;
1734 INIT_LIST_HEAD(&ring->active_list);
1735 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1736 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1737 init_waitqueue_head(&ring->irq_queue);
1738
acdd884a 1739 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1740 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1741 spin_lock_init(&ring->execlist_lock);
1742
48d82387
OM
1743 ret = i915_cmd_parser_init_ring(ring);
1744 if (ret)
1745 return ret;
1746
564ddb2f
OM
1747 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1748
1749 return ret;
454afebd
OM
1750}
1751
1752static int logical_render_ring_init(struct drm_device *dev)
1753{
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1755 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1756 int ret;
454afebd
OM
1757
1758 ring->name = "render ring";
1759 ring->id = RCS;
1760 ring->mmio_base = RENDER_RING_BASE;
1761 ring->irq_enable_mask =
1762 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1763 ring->irq_keep_mask =
1764 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1765 if (HAS_L3_DPF(dev))
1766 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1767
82ef822e
DL
1768 if (INTEL_INFO(dev)->gen >= 9)
1769 ring->init_hw = gen9_init_render_ring;
1770 else
1771 ring->init_hw = gen8_init_render_ring;
e7778be1 1772 ring->init_context = gen8_init_rcs_context;
9b1136d5 1773 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1774 ring->get_seqno = gen8_get_seqno;
1775 ring->set_seqno = gen8_set_seqno;
4da46e1e 1776 ring->emit_request = gen8_emit_request;
4712274c 1777 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1778 ring->irq_get = gen8_logical_ring_get_irq;
1779 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1780 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1781
99be1dfe 1782 ring->dev = dev;
c4db7599
AS
1783
1784 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1785 if (ret)
1786 return ret;
1787
17ee950d
AS
1788 ret = intel_init_workaround_bb(ring);
1789 if (ret) {
1790 /*
1791 * We continue even if we fail to initialize WA batch
1792 * because we only expect rare glitches but nothing
1793 * critical to prevent us from using GPU
1794 */
1795 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1796 ret);
1797 }
1798
c4db7599
AS
1799 ret = logical_ring_init(dev, ring);
1800 if (ret) {
17ee950d 1801 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1802 }
17ee950d
AS
1803
1804 return ret;
454afebd
OM
1805}
1806
1807static int logical_bsd_ring_init(struct drm_device *dev)
1808{
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1811
1812 ring->name = "bsd ring";
1813 ring->id = VCS;
1814 ring->mmio_base = GEN6_BSD_RING_BASE;
1815 ring->irq_enable_mask =
1816 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1817 ring->irq_keep_mask =
1818 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1819
ecfe00d8 1820 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1821 ring->get_seqno = gen8_get_seqno;
1822 ring->set_seqno = gen8_set_seqno;
4da46e1e 1823 ring->emit_request = gen8_emit_request;
4712274c 1824 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1825 ring->irq_get = gen8_logical_ring_get_irq;
1826 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1827 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1828
454afebd
OM
1829 return logical_ring_init(dev, ring);
1830}
1831
1832static int logical_bsd2_ring_init(struct drm_device *dev)
1833{
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1836
1837 ring->name = "bds2 ring";
1838 ring->id = VCS2;
1839 ring->mmio_base = GEN8_BSD2_RING_BASE;
1840 ring->irq_enable_mask =
1841 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1842 ring->irq_keep_mask =
1843 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1844
ecfe00d8 1845 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1846 ring->get_seqno = gen8_get_seqno;
1847 ring->set_seqno = gen8_set_seqno;
4da46e1e 1848 ring->emit_request = gen8_emit_request;
4712274c 1849 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1850 ring->irq_get = gen8_logical_ring_get_irq;
1851 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1852 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1853
454afebd
OM
1854 return logical_ring_init(dev, ring);
1855}
1856
1857static int logical_blt_ring_init(struct drm_device *dev)
1858{
1859 struct drm_i915_private *dev_priv = dev->dev_private;
1860 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1861
1862 ring->name = "blitter ring";
1863 ring->id = BCS;
1864 ring->mmio_base = BLT_RING_BASE;
1865 ring->irq_enable_mask =
1866 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1867 ring->irq_keep_mask =
1868 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1869
ecfe00d8 1870 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1871 ring->get_seqno = gen8_get_seqno;
1872 ring->set_seqno = gen8_set_seqno;
4da46e1e 1873 ring->emit_request = gen8_emit_request;
4712274c 1874 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1875 ring->irq_get = gen8_logical_ring_get_irq;
1876 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1877 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1878
454afebd
OM
1879 return logical_ring_init(dev, ring);
1880}
1881
1882static int logical_vebox_ring_init(struct drm_device *dev)
1883{
1884 struct drm_i915_private *dev_priv = dev->dev_private;
1885 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1886
1887 ring->name = "video enhancement ring";
1888 ring->id = VECS;
1889 ring->mmio_base = VEBOX_RING_BASE;
1890 ring->irq_enable_mask =
1891 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1892 ring->irq_keep_mask =
1893 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1894
ecfe00d8 1895 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1896 ring->get_seqno = gen8_get_seqno;
1897 ring->set_seqno = gen8_set_seqno;
4da46e1e 1898 ring->emit_request = gen8_emit_request;
4712274c 1899 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1900 ring->irq_get = gen8_logical_ring_get_irq;
1901 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1902 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1903
454afebd
OM
1904 return logical_ring_init(dev, ring);
1905}
1906
73e4d07f
OM
1907/**
1908 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1909 * @dev: DRM device.
1910 *
1911 * This function inits the engines for an Execlists submission style (the equivalent in the
1912 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1913 * those engines that are present in the hardware.
1914 *
1915 * Return: non-zero if the initialization failed.
1916 */
454afebd
OM
1917int intel_logical_rings_init(struct drm_device *dev)
1918{
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 int ret;
1921
1922 ret = logical_render_ring_init(dev);
1923 if (ret)
1924 return ret;
1925
1926 if (HAS_BSD(dev)) {
1927 ret = logical_bsd_ring_init(dev);
1928 if (ret)
1929 goto cleanup_render_ring;
1930 }
1931
1932 if (HAS_BLT(dev)) {
1933 ret = logical_blt_ring_init(dev);
1934 if (ret)
1935 goto cleanup_bsd_ring;
1936 }
1937
1938 if (HAS_VEBOX(dev)) {
1939 ret = logical_vebox_ring_init(dev);
1940 if (ret)
1941 goto cleanup_blt_ring;
1942 }
1943
1944 if (HAS_BSD2(dev)) {
1945 ret = logical_bsd2_ring_init(dev);
1946 if (ret)
1947 goto cleanup_vebox_ring;
1948 }
1949
1950 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1951 if (ret)
1952 goto cleanup_bsd2_ring;
1953
1954 return 0;
1955
1956cleanup_bsd2_ring:
1957 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1958cleanup_vebox_ring:
1959 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1960cleanup_blt_ring:
1961 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1962cleanup_bsd_ring:
1963 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1964cleanup_render_ring:
1965 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1966
1967 return ret;
1968}
1969
0cea6502
JM
1970static u32
1971make_rpcs(struct drm_device *dev)
1972{
1973 u32 rpcs = 0;
1974
1975 /*
1976 * No explicit RPCS request is needed to ensure full
1977 * slice/subslice/EU enablement prior to Gen9.
1978 */
1979 if (INTEL_INFO(dev)->gen < 9)
1980 return 0;
1981
1982 /*
1983 * Starting in Gen9, render power gating can leave
1984 * slice/subslice/EU in a partially enabled state. We
1985 * must make an explicit request through RPCS for full
1986 * enablement.
1987 */
1988 if (INTEL_INFO(dev)->has_slice_pg) {
1989 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1990 rpcs |= INTEL_INFO(dev)->slice_total <<
1991 GEN8_RPCS_S_CNT_SHIFT;
1992 rpcs |= GEN8_RPCS_ENABLE;
1993 }
1994
1995 if (INTEL_INFO(dev)->has_subslice_pg) {
1996 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1997 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1998 GEN8_RPCS_SS_CNT_SHIFT;
1999 rpcs |= GEN8_RPCS_ENABLE;
2000 }
2001
2002 if (INTEL_INFO(dev)->has_eu_pg) {
2003 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2004 GEN8_RPCS_EU_MIN_SHIFT;
2005 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2006 GEN8_RPCS_EU_MAX_SHIFT;
2007 rpcs |= GEN8_RPCS_ENABLE;
2008 }
2009
2010 return rpcs;
2011}
2012
8670d6f9
OM
2013static int
2014populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2015 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2016{
2d965536
TD
2017 struct drm_device *dev = ring->dev;
2018 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2019 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2020 struct page *page;
2021 uint32_t *reg_state;
2022 int ret;
2023
2d965536
TD
2024 if (!ppgtt)
2025 ppgtt = dev_priv->mm.aliasing_ppgtt;
2026
8670d6f9
OM
2027 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2028 if (ret) {
2029 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2030 return ret;
2031 }
2032
2033 ret = i915_gem_object_get_pages(ctx_obj);
2034 if (ret) {
2035 DRM_DEBUG_DRIVER("Could not get object pages\n");
2036 return ret;
2037 }
2038
2039 i915_gem_object_pin_pages(ctx_obj);
2040
2041 /* The second page of the context object contains some fields which must
2042 * be set up prior to the first execution. */
2043 page = i915_gem_object_get_page(ctx_obj, 1);
2044 reg_state = kmap_atomic(page);
2045
2046 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2047 * commands followed by (reg, value) pairs. The values we are setting here are
2048 * only for the first context restore: on a subsequent save, the GPU will
2049 * recreate this batchbuffer with new values (including all the missing
2050 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2051 if (ring->id == RCS)
2052 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2053 else
2054 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2055 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2056 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2057 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5 2058 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
6922528a
AJ
2059 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2060 CTX_CTRL_RS_CTX_ENABLE);
8670d6f9
OM
2061 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2062 reg_state[CTX_RING_HEAD+1] = 0;
2063 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2064 reg_state[CTX_RING_TAIL+1] = 0;
2065 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
2066 /* Ring buffer start address is not known until the buffer is pinned.
2067 * It is written to the context image in execlists_update_context()
2068 */
8670d6f9
OM
2069 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2070 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2071 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2072 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2073 reg_state[CTX_BB_HEAD_U+1] = 0;
2074 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2075 reg_state[CTX_BB_HEAD_L+1] = 0;
2076 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2077 reg_state[CTX_BB_STATE+1] = (1<<5);
2078 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2079 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2080 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2081 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2082 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2083 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2084 if (ring->id == RCS) {
8670d6f9
OM
2085 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2086 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2087 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2088 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2089 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2090 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2091 if (ring->wa_ctx.obj) {
2092 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2093 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2094
2095 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2096 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2097 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2098
2099 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2100 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2101
2102 reg_state[CTX_BB_PER_CTX_PTR+1] =
2103 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2104 0x01;
2105 }
8670d6f9
OM
2106 }
2107 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2108 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2109 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2110 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2111 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2112 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2113 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2114 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2115 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2116 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2117 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2118 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d
MT
2119
2120 /* With dynamic page allocation, PDPs may not be allocated at this point,
2121 * Point the unallocated PDPs to the scratch page
e5815a2e
MT
2122 */
2123 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2124 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2125 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2126 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
8670d6f9
OM
2127 if (ring->id == RCS) {
2128 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2129 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2130 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2131 }
2132
2133 kunmap_atomic(reg_state);
2134
2135 ctx_obj->dirty = 1;
2136 set_page_dirty(page);
2137 i915_gem_object_unpin_pages(ctx_obj);
2138
2139 return 0;
2140}
2141
73e4d07f
OM
2142/**
2143 * intel_lr_context_free() - free the LRC specific bits of a context
2144 * @ctx: the LR context to free.
2145 *
2146 * The real context freeing is done in i915_gem_context_free: this only
2147 * takes care of the bits that are LRC related: the per-engine backing
2148 * objects and the logical ringbuffer.
2149 */
ede7d42b
OM
2150void intel_lr_context_free(struct intel_context *ctx)
2151{
8c857917
OM
2152 int i;
2153
2154 for (i = 0; i < I915_NUM_RINGS; i++) {
2155 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2156
8c857917 2157 if (ctx_obj) {
dcb4c12a
OM
2158 struct intel_ringbuffer *ringbuf =
2159 ctx->engine[i].ringbuf;
2160 struct intel_engine_cs *ring = ringbuf->ring;
2161
7ba717cf
TD
2162 if (ctx == ring->default_context) {
2163 intel_unpin_ringbuffer_obj(ringbuf);
2164 i915_gem_object_ggtt_unpin(ctx_obj);
2165 }
a7cbedec 2166 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2167 intel_destroy_ringbuffer_obj(ringbuf);
2168 kfree(ringbuf);
8c857917
OM
2169 drm_gem_object_unreference(&ctx_obj->base);
2170 }
2171 }
2172}
2173
2174static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2175{
2176 int ret = 0;
2177
468c6816 2178 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2179
2180 switch (ring->id) {
2181 case RCS:
468c6816
MN
2182 if (INTEL_INFO(ring->dev)->gen >= 9)
2183 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2184 else
2185 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2186 break;
2187 case VCS:
2188 case BCS:
2189 case VECS:
2190 case VCS2:
2191 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2192 break;
2193 }
2194
2195 return ret;
ede7d42b
OM
2196}
2197
70b0ea86 2198static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2199 struct drm_i915_gem_object *default_ctx_obj)
2200{
2201 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2202
2203 /* The status page is offset 0 from the default context object
2204 * in LRC mode. */
2205 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2206 ring->status_page.page_addr =
2207 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
2208 ring->status_page.obj = default_ctx_obj;
2209
2210 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2211 (u32)ring->status_page.gfx_addr);
2212 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2213}
2214
73e4d07f
OM
2215/**
2216 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2217 * @ctx: LR context to create.
2218 * @ring: engine to be used with the context.
2219 *
2220 * This function can be called more than once, with different engines, if we plan
2221 * to use the context with them. The context backing objects and the ringbuffers
2222 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2223 * the creation is a deferred call: it's better to make sure first that we need to use
2224 * a given ring with the context.
2225 *
32197aab 2226 * Return: non-zero on error.
73e4d07f 2227 */
ede7d42b
OM
2228int intel_lr_context_deferred_create(struct intel_context *ctx,
2229 struct intel_engine_cs *ring)
2230{
dcb4c12a 2231 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
2232 struct drm_device *dev = ring->dev;
2233 struct drm_i915_gem_object *ctx_obj;
2234 uint32_t context_size;
84c2377f 2235 struct intel_ringbuffer *ringbuf;
8c857917
OM
2236 int ret;
2237
ede7d42b 2238 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2239 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2240
8c857917
OM
2241 context_size = round_up(get_lr_context_size(ring), 4096);
2242
149c86e7 2243 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2244 if (!ctx_obj) {
2245 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2246 return -ENOMEM;
8c857917
OM
2247 }
2248
dcb4c12a
OM
2249 if (is_global_default_ctx) {
2250 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2251 if (ret) {
2252 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2253 ret);
2254 drm_gem_object_unreference(&ctx_obj->base);
2255 return ret;
2256 }
8c857917
OM
2257 }
2258
84c2377f
OM
2259 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2260 if (!ringbuf) {
2261 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2262 ring->name);
84c2377f 2263 ret = -ENOMEM;
7ba717cf 2264 goto error_unpin_ctx;
84c2377f
OM
2265 }
2266
0c7dd53b 2267 ringbuf->ring = ring;
582d67f0 2268
84c2377f
OM
2269 ringbuf->size = 32 * PAGE_SIZE;
2270 ringbuf->effective_size = ringbuf->size;
2271 ringbuf->head = 0;
2272 ringbuf->tail = 0;
84c2377f 2273 ringbuf->last_retired_head = -1;
ebd0fd4b 2274 intel_ring_update_space(ringbuf);
84c2377f 2275
7ba717cf
TD
2276 if (ringbuf->obj == NULL) {
2277 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2278 if (ret) {
2279 DRM_DEBUG_DRIVER(
2280 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2281 ring->name, ret);
7ba717cf
TD
2282 goto error_free_rbuf;
2283 }
2284
2285 if (is_global_default_ctx) {
2286 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2287 if (ret) {
2288 DRM_ERROR(
2289 "Failed to pin and map ringbuffer %s: %d\n",
2290 ring->name, ret);
2291 goto error_destroy_rbuf;
2292 }
2293 }
2294
8670d6f9
OM
2295 }
2296
2297 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2298 if (ret) {
2299 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2300 goto error;
84c2377f
OM
2301 }
2302
2303 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2304 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2305
70b0ea86
DV
2306 if (ctx == ring->default_context)
2307 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2308 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53 2309 if (ring->init_context) {
76c39168
JH
2310 struct drm_i915_gem_request *req;
2311
2312 ret = i915_gem_request_alloc(ring, ctx, &req);
2313 if (ret)
2314 return ret;
2315
8753181e 2316 ret = ring->init_context(req);
e7778be1 2317 if (ret) {
771b9a53 2318 DRM_ERROR("ring init context: %d\n", ret);
76c39168 2319 i915_gem_request_cancel(req);
e7778be1
TD
2320 ctx->engine[ring->id].ringbuf = NULL;
2321 ctx->engine[ring->id].state = NULL;
2322 goto error;
2323 }
76c39168 2324
75289874 2325 i915_add_request_no_flush(req);
771b9a53
MT
2326 }
2327
564ddb2f
OM
2328 ctx->rcs_initialized = true;
2329 }
2330
ede7d42b 2331 return 0;
8670d6f9
OM
2332
2333error:
7ba717cf
TD
2334 if (is_global_default_ctx)
2335 intel_unpin_ringbuffer_obj(ringbuf);
2336error_destroy_rbuf:
2337 intel_destroy_ringbuffer_obj(ringbuf);
2338error_free_rbuf:
8670d6f9 2339 kfree(ringbuf);
7ba717cf 2340error_unpin_ctx:
dcb4c12a
OM
2341 if (is_global_default_ctx)
2342 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2343 drm_gem_object_unreference(&ctx_obj->base);
2344 return ret;
ede7d42b 2345}
3e5b6f05
TD
2346
2347void intel_lr_context_reset(struct drm_device *dev,
2348 struct intel_context *ctx)
2349{
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 struct intel_engine_cs *ring;
2352 int i;
2353
2354 for_each_ring(ring, dev_priv, i) {
2355 struct drm_i915_gem_object *ctx_obj =
2356 ctx->engine[ring->id].state;
2357 struct intel_ringbuffer *ringbuf =
2358 ctx->engine[ring->id].ringbuf;
2359 uint32_t *reg_state;
2360 struct page *page;
2361
2362 if (!ctx_obj)
2363 continue;
2364
2365 if (i915_gem_object_get_pages(ctx_obj)) {
2366 WARN(1, "Failed get_pages for context obj\n");
2367 continue;
2368 }
2369 page = i915_gem_object_get_page(ctx_obj, 1);
2370 reg_state = kmap_atomic(page);
2371
2372 reg_state[CTX_RING_HEAD+1] = 0;
2373 reg_state[CTX_RING_TAIL+1] = 0;
2374
2375 kunmap_atomic(reg_state);
2376
2377 ringbuf->head = 0;
2378 ringbuf->tail = 0;
2379 }
2380}
This page took 0.290833 seconds and 5 git commands to generate.