drm/i915: Don't read out port_clock on CHV when DPLL is disabled
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
71562919
MT
227#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 229
e5292823
TU
230static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
0bc40be8
TU
232static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
233 struct drm_i915_gem_object *default_ctx_obj);
e84fe803 234
7ba717cf 235
73e4d07f
OM
236/**
237 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238 * @dev: DRM device.
239 * @enable_execlists: value of i915.enable_execlists module parameter.
240 *
241 * Only certain platforms support Execlists (the prerequisites being
27401d12 242 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
243 *
244 * Return: 1 if Execlists is supported and has to be enabled.
245 */
127f1003
OM
246int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247{
bd84b1e9
DV
248 WARN_ON(i915.enable_ppgtt == -1);
249
a0bd6c31
ZL
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
252 */
253 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254 return 1;
255
70ee45e1
DL
256 if (INTEL_INFO(dev)->gen >= 9)
257 return 1;
258
127f1003
OM
259 if (enable_execlists == 0)
260 return 0;
261
14bf993e
OM
262 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263 i915.use_mmio_flip >= 0)
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
0bc40be8 272 struct drm_device *dev = engine->dev;
ca82580c 273
c6a2ac71 274 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
0bc40be8 277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 278 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8
TU
281 engine->ctx_desc_template = GEN8_CTX_VALID;
282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
284 if (IS_GEN8(dev))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c
TU
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
313 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
314 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 315 */
ca82580c
TU
316static void
317intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 318 struct intel_engine_cs *engine)
84b790f8 319{
ca82580c 320 uint64_t lrca, desc;
84b790f8 321
0bc40be8 322 lrca = ctx->engine[engine->id].lrc_vma->node.start +
ca82580c 323 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 324
0bc40be8 325 desc = engine->ctx_desc_template; /* bits 0-11 */
ca82580c
TU
326 desc |= lrca; /* bits 12-31 */
327 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 328
0bc40be8 329 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
330}
331
919f1f55 332uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 333 struct intel_engine_cs *engine)
84b790f8 334{
0bc40be8 335 return ctx->engine[engine->id].lrc_desc;
ca82580c 336}
203a571b 337
ca82580c
TU
338/**
339 * intel_execlists_ctx_id() - get the Execlists Context ID
340 * @ctx: Context to get the ID for
341 * @ring: Engine to get the ID for
342 *
343 * Do not confuse with ctx->id! Unfortunately we have a name overload
344 * here: the old context ID we pass to userspace as a handler so that
345 * they can refer to a context, and the new context ID we pass to the
346 * ELSP so that the GPU can inform us of the context status via
347 * interrupts.
348 *
349 * The context ID is a portion of the context descriptor, so we can
350 * just extract the required part from the cached descriptor.
351 *
352 * Return: 20-bits globally unique context ID.
353 */
354u32 intel_execlists_ctx_id(struct intel_context *ctx,
0bc40be8 355 struct intel_engine_cs *engine)
ca82580c 356{
0bc40be8 357 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
358}
359
cc3c4253
MK
360static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
361 struct drm_i915_gem_request *rq1)
84b790f8 362{
cc3c4253 363
4a570db5 364 struct intel_engine_cs *engine = rq0->engine;
e2f80391 365 struct drm_device *dev = engine->dev;
6e7cc470 366 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 367 uint64_t desc[2];
84b790f8 368
1cff8cc3 369 if (rq1) {
4a570db5 370 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
371 rq1->elsp_submitted++;
372 } else {
373 desc[1] = 0;
374 }
84b790f8 375
4a570db5 376 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 377 rq0->elsp_submitted++;
84b790f8 378
1cff8cc3 379 /* You must always write both descriptors in the order below. */
e2f80391
TU
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
381 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 382
e2f80391 383 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 384 /* The context is automatically loaded after the following */
e2f80391 385 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 386
1cff8cc3 387 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 388 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
389}
390
c6a2ac71
TU
391static void
392execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393{
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398}
399
400static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 401{
4a570db5 402 struct intel_engine_cs *engine = rq->engine;
05d9824b 403 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 404 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 405
05d9824b 406 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 407
c6a2ac71
TU
408 /* True 32b PPGTT with dynamic page allocation: update PDP
409 * registers and point the unallocated PDPs to scratch page.
410 * PML4 is allocated during ppgtt init, so this is not needed
411 * in 48-bit mode.
412 */
413 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
414 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
415}
416
d8cb8875
MK
417static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
418 struct drm_i915_gem_request *rq1)
84b790f8 419{
26720ab9 420 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 421 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 422
05d9824b 423 execlists_update_context(rq0);
d8cb8875 424
cc3c4253 425 if (rq1)
05d9824b 426 execlists_update_context(rq1);
84b790f8 427
27af5eea 428 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 429 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 430
cc3c4253 431 execlists_elsp_write(rq0, rq1);
26720ab9 432
3756685a 433 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 434 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
435}
436
26720ab9 437static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 438{
6d3d8274 439 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 440 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 441
0bc40be8 442 assert_spin_locked(&engine->execlist_lock);
acdd884a 443
779949f4
PA
444 /*
445 * If irqs are not active generate a warning as batches that finish
446 * without the irqs may get lost and a GPU Hang may occur.
447 */
0bc40be8 448 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 449
acdd884a 450 /* Try to read in pairs */
0bc40be8 451 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
452 execlist_link) {
453 if (!req0) {
454 req0 = cursor;
6d3d8274 455 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
456 /* Same ctx: ignore first request, as second request
457 * will update tail past first request's workload */
e1fee72c 458 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 459 list_move_tail(&req0->execlist_link,
0bc40be8 460 &engine->execlist_retired_req_list);
acdd884a
MT
461 req0 = cursor;
462 } else {
463 req1 = cursor;
c6a2ac71 464 WARN_ON(req1->elsp_submitted);
acdd884a
MT
465 break;
466 }
467 }
468
c6a2ac71
TU
469 if (unlikely(!req0))
470 return;
471
0bc40be8 472 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 473 /*
c6a2ac71
TU
474 * WaIdleLiteRestore: make sure we never cause a lite restore
475 * with HEAD==TAIL.
476 *
477 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
478 * resubmit the request. See gen8_emit_request() for where we
479 * prepare the padding after the end of the request.
53292cdb 480 */
c6a2ac71 481 struct intel_ringbuffer *ringbuf;
53292cdb 482
0bc40be8 483 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
484 req0->tail += 8;
485 req0->tail &= ringbuf->size - 1;
53292cdb
MT
486 }
487
d8cb8875 488 execlists_submit_requests(req0, req1);
acdd884a
MT
489}
490
c6a2ac71 491static unsigned int
0bc40be8 492execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 493{
6d3d8274 494 struct drm_i915_gem_request *head_req;
e981e7b1 495
0bc40be8 496 assert_spin_locked(&engine->execlist_lock);
e981e7b1 497
0bc40be8 498 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 499 struct drm_i915_gem_request,
e981e7b1
TD
500 execlist_link);
501
c6a2ac71
TU
502 if (!head_req)
503 return 0;
e1fee72c 504
0bc40be8 505 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
c6a2ac71
TU
506 return 0;
507
508 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
509
510 if (--head_req->elsp_submitted > 0)
511 return 0;
512
513 list_move_tail(&head_req->execlist_link,
0bc40be8 514 &engine->execlist_retired_req_list);
e981e7b1 515
c6a2ac71 516 return 1;
e981e7b1
TD
517}
518
c6a2ac71 519static u32
0bc40be8 520get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 521 u32 *context_id)
91a41032 522{
0bc40be8 523 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 524 u32 status;
91a41032 525
c6a2ac71
TU
526 read_pointer %= GEN8_CSB_ENTRIES;
527
0bc40be8 528 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 return 0;
91a41032 532
0bc40be8 533 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
534 read_pointer));
535
536 return status;
91a41032
BW
537}
538
73e4d07f 539/**
3f7531c3 540 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 541 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
542 *
543 * Check the unread Context Status Buffers and manage the submission of new
544 * contexts to the ELSP accordingly.
545 */
27af5eea 546static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 547{
27af5eea 548 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 549 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 550 u32 status_pointer;
c6a2ac71 551 unsigned int read_pointer, write_pointer;
26720ab9
TU
552 u32 csb[GEN8_CSB_ENTRIES][2];
553 unsigned int csb_read = 0, i;
c6a2ac71
TU
554 unsigned int submit_contexts = 0;
555
3756685a 556 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 557
0bc40be8 558 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 559
0bc40be8 560 read_pointer = engine->next_context_status_buffer;
5590a5f0 561 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 562 if (read_pointer > write_pointer)
dfc53c5e 563 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 564
e981e7b1 565 while (read_pointer < write_pointer) {
26720ab9
TU
566 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
567 break;
568 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
569 &csb[csb_read][1]);
570 csb_read++;
571 }
91a41032 572
26720ab9
TU
573 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
574
575 /* Update the read pointer to the old write pointer. Manual ringbuffer
576 * management ftw </sarcasm> */
577 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
578 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579 engine->next_context_status_buffer << 8));
580
3756685a 581 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
582
583 spin_lock(&engine->execlist_lock);
584
585 for (i = 0; i < csb_read; i++) {
586 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
587 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
588 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
589 WARN(1, "Lite Restored request removed from queue\n");
590 } else
591 WARN(1, "Preemption without Lite Restore\n");
592 }
593
26720ab9 594 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
595 GEN8_CTX_STATUS_ELEMENT_SWITCH))
596 submit_contexts +=
26720ab9 597 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
598 }
599
c6a2ac71 600 if (submit_contexts) {
0bc40be8 601 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
602 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
603 execlists_context_unqueue(engine);
5af05fef 604 }
e981e7b1 605
0bc40be8 606 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
607
608 if (unlikely(submit_contexts > 2))
609 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
610}
611
c6a2ac71 612static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 613{
4a570db5 614 struct intel_engine_cs *engine = request->engine;
6d3d8274 615 struct drm_i915_gem_request *cursor;
f1ad5a1f 616 int num_elements = 0;
acdd884a 617
ed54c1a1 618 if (request->ctx != request->i915->kernel_context)
e2f80391 619 intel_lr_context_pin(request->ctx, engine);
af3302b9 620
9bb1af44
JH
621 i915_gem_request_reference(request);
622
27af5eea 623 spin_lock_bh(&engine->execlist_lock);
acdd884a 624
e2f80391 625 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
626 if (++num_elements > 2)
627 break;
628
629 if (num_elements > 2) {
6d3d8274 630 struct drm_i915_gem_request *tail_req;
f1ad5a1f 631
e2f80391 632 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 633 struct drm_i915_gem_request,
f1ad5a1f
OM
634 execlist_link);
635
ae70797d 636 if (request->ctx == tail_req->ctx) {
f1ad5a1f 637 WARN(tail_req->elsp_submitted != 0,
7ba717cf 638 "More than 2 already-submitted reqs queued\n");
7eb08a25 639 list_move_tail(&tail_req->execlist_link,
e2f80391 640 &engine->execlist_retired_req_list);
f1ad5a1f
OM
641 }
642 }
643
e2f80391 644 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 645 if (num_elements == 0)
e2f80391 646 execlists_context_unqueue(engine);
acdd884a 647
27af5eea 648 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
649}
650
2f20055d 651static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 652{
4a570db5 653 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
e2f80391 658 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
e2f80391 661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
662 if (ret)
663 return ret;
664
e2f80391 665 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
666 return 0;
667}
668
535fbe82 669static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
670 struct list_head *vmas)
671{
666796da 672 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
03ade511 681 if (obj->active & other_rings) {
4a570db5 682 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
683 if (ret)
684 return ret;
685 }
ba8b7ccb
OM
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
2f20055d 699 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
700}
701
40e895ce 702int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 703{
e28e404c 704 int ret = 0;
bc0dce3f 705
4a570db5 706 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 707
a7e02199
AD
708 if (i915.enable_guc_submission) {
709 /*
710 * Check that the GuC has space for the request before
711 * going any further, as the i915_add_request() call
712 * later on mustn't fail ...
713 */
714 struct intel_guc *guc = &request->i915->guc;
715
716 ret = i915_guc_wq_check_space(guc->execbuf_client);
717 if (ret)
718 return ret;
719 }
720
e28e404c 721 if (request->ctx != request->i915->kernel_context)
4a570db5 722 ret = intel_lr_context_pin(request->ctx, request->engine);
e28e404c
DG
723
724 return ret;
bc0dce3f
JH
725}
726
ae70797d 727static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 728 int bytes)
bc0dce3f 729{
ae70797d 730 struct intel_ringbuffer *ringbuf = req->ringbuf;
4a570db5 731 struct intel_engine_cs *engine = req->engine;
ae70797d 732 struct drm_i915_gem_request *target;
b4716185
CW
733 unsigned space;
734 int ret;
bc0dce3f
JH
735
736 if (intel_ring_space(ringbuf) >= bytes)
737 return 0;
738
79bbcc29
JH
739 /* The whole point of reserving space is to not wait! */
740 WARN_ON(ringbuf->reserved_in_use);
741
e2f80391 742 list_for_each_entry(target, &engine->request_list, list) {
bc0dce3f
JH
743 /*
744 * The request queue is per-engine, so can contain requests
745 * from multiple ringbuffers. Here, we must ignore any that
746 * aren't from the ringbuffer we're considering.
747 */
ae70797d 748 if (target->ringbuf != ringbuf)
bc0dce3f
JH
749 continue;
750
751 /* Would completion of this request free enough space? */
ae70797d 752 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
753 ringbuf->size);
754 if (space >= bytes)
bc0dce3f 755 break;
bc0dce3f
JH
756 }
757
e2f80391 758 if (WARN_ON(&target->list == &engine->request_list))
bc0dce3f
JH
759 return -ENOSPC;
760
ae70797d 761 ret = i915_wait_request(target);
bc0dce3f
JH
762 if (ret)
763 return ret;
764
b4716185
CW
765 ringbuf->space = space;
766 return 0;
bc0dce3f
JH
767}
768
769/*
770 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 771 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
772 *
773 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
774 * really happens during submission is that the context and current tail will be placed
775 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
776 * point, the tail *inside* the context is updated and the ELSP written to.
777 */
7c17d377 778static int
ae70797d 779intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 780{
7c17d377 781 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 782 struct drm_i915_private *dev_priv = request->i915;
4a570db5 783 struct intel_engine_cs *engine = request->engine;
bc0dce3f 784
7c17d377
CW
785 intel_logical_ring_advance(ringbuf);
786 request->tail = ringbuf->tail;
bc0dce3f 787
7c17d377
CW
788 /*
789 * Here we add two extra NOOPs as padding to avoid
790 * lite restore of a context with HEAD==TAIL.
791 *
792 * Caller must reserve WA_TAIL_DWORDS for us!
793 */
794 intel_logical_ring_emit(ringbuf, MI_NOOP);
795 intel_logical_ring_emit(ringbuf, MI_NOOP);
796 intel_logical_ring_advance(ringbuf);
d1675198 797
117897f4 798 if (intel_engine_stopped(engine))
7c17d377 799 return 0;
bc0dce3f 800
f4e2dece
TU
801 if (engine->last_context != request->ctx) {
802 if (engine->last_context)
803 intel_lr_context_unpin(engine->last_context, engine);
804 if (request->ctx != request->i915->kernel_context) {
805 intel_lr_context_pin(request->ctx, engine);
806 engine->last_context = request->ctx;
807 } else {
808 engine->last_context = NULL;
809 }
810 }
811
d1675198
AD
812 if (dev_priv->guc.execbuf_client)
813 i915_guc_submit(dev_priv->guc.execbuf_client, request);
814 else
815 execlists_context_queue(request);
7c17d377
CW
816
817 return 0;
bc0dce3f
JH
818}
819
79bbcc29 820static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
821{
822 uint32_t __iomem *virt;
823 int rem = ringbuf->size - ringbuf->tail;
824
bc0dce3f
JH
825 virt = ringbuf->virtual_start + ringbuf->tail;
826 rem /= 4;
827 while (rem--)
828 iowrite32(MI_NOOP, virt++);
829
830 ringbuf->tail = 0;
831 intel_ring_update_space(ringbuf);
bc0dce3f
JH
832}
833
ae70797d 834static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 835{
ae70797d 836 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
837 int remain_usable = ringbuf->effective_size - ringbuf->tail;
838 int remain_actual = ringbuf->size - ringbuf->tail;
839 int ret, total_bytes, wait_bytes = 0;
840 bool need_wrap = false;
29b1b415 841
79bbcc29
JH
842 if (ringbuf->reserved_in_use)
843 total_bytes = bytes;
844 else
845 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 846
79bbcc29
JH
847 if (unlikely(bytes > remain_usable)) {
848 /*
849 * Not enough space for the basic request. So need to flush
850 * out the remainder and then wait for base + reserved.
851 */
852 wait_bytes = remain_actual + total_bytes;
853 need_wrap = true;
854 } else {
855 if (unlikely(total_bytes > remain_usable)) {
856 /*
857 * The base request will fit but the reserved space
782f6bc0
AG
858 * falls off the end. So don't need an immediate wrap
859 * and only need to effectively wait for the reserved
860 * size space from the start of ringbuffer.
79bbcc29
JH
861 */
862 wait_bytes = remain_actual + ringbuf->reserved_size;
79bbcc29
JH
863 } else if (total_bytes > ringbuf->space) {
864 /* No wrapping required, just waiting. */
865 wait_bytes = total_bytes;
29b1b415 866 }
bc0dce3f
JH
867 }
868
79bbcc29
JH
869 if (wait_bytes) {
870 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
871 if (unlikely(ret))
872 return ret;
79bbcc29
JH
873
874 if (need_wrap)
875 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
876 }
877
878 return 0;
879}
880
881/**
882 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
883 *
374887ba 884 * @req: The request to start some new work for
bc0dce3f
JH
885 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
886 *
887 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
888 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
889 * and also preallocates a request (every workload submission is still mediated through
890 * requests, same as it did with legacy ringbuffer submission).
891 *
892 * Return: non-zero if the ringbuffer is not ready to be written to.
893 */
3bbaba0c 894int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 895{
4d616a29 896 struct drm_i915_private *dev_priv;
bc0dce3f
JH
897 int ret;
898
4d616a29 899 WARN_ON(req == NULL);
39dabecd 900 dev_priv = req->i915;
4d616a29 901
bc0dce3f
JH
902 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
903 dev_priv->mm.interruptible);
904 if (ret)
905 return ret;
906
ae70797d 907 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
908 if (ret)
909 return ret;
910
4d616a29 911 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
912 return 0;
913}
914
ccd98fe4
JH
915int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
916{
917 /*
918 * The first call merely notes the reserve request and is common for
919 * all back ends. The subsequent localised _begin() call actually
920 * ensures that the reservation is available. Without the begin, if
921 * the request creator immediately submitted the request without
922 * adding any commands to it then there might not actually be
923 * sufficient room for the submission commands.
924 */
925 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
926
927 return intel_logical_ring_begin(request, 0);
928}
929
73e4d07f
OM
930/**
931 * execlists_submission() - submit a batchbuffer for execution, Execlists style
932 * @dev: DRM device.
933 * @file: DRM file.
934 * @ring: Engine Command Streamer to submit to.
935 * @ctx: Context to employ for this submission.
936 * @args: execbuffer call arguments.
937 * @vmas: list of vmas.
938 * @batch_obj: the batchbuffer to submit.
939 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 940 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
941 *
942 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
943 * away the submission details of the execbuffer ioctl call.
944 *
945 * Return: non-zero if the submission fails.
946 */
5f19e2bf 947int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 948 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 949 struct list_head *vmas)
454afebd 950{
5f19e2bf 951 struct drm_device *dev = params->dev;
4a570db5 952 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 953 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 954 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 955 u64 exec_start;
ba8b7ccb
OM
956 int instp_mode;
957 u32 instp_mask;
958 int ret;
959
960 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
961 instp_mask = I915_EXEC_CONSTANTS_MASK;
962 switch (instp_mode) {
963 case I915_EXEC_CONSTANTS_REL_GENERAL:
964 case I915_EXEC_CONSTANTS_ABSOLUTE:
965 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 966 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
967 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
968 return -EINVAL;
969 }
970
971 if (instp_mode != dev_priv->relative_constants_mode) {
972 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
973 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
974 return -EINVAL;
975 }
976
977 /* The HW changed the meaning on this bit on gen6 */
978 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
979 }
980 break;
981 default:
982 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
983 return -EINVAL;
984 }
985
ba8b7ccb
OM
986 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
987 DRM_DEBUG("sol reset is gen7 only\n");
988 return -EINVAL;
989 }
990
535fbe82 991 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
992 if (ret)
993 return ret;
994
4a570db5 995 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 996 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 997 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
998 if (ret)
999 return ret;
1000
1001 intel_logical_ring_emit(ringbuf, MI_NOOP);
1002 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 1003 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
1004 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1005 intel_logical_ring_advance(ringbuf);
1006
1007 dev_priv->relative_constants_mode = instp_mode;
1008 }
1009
5f19e2bf
JH
1010 exec_start = params->batch_obj_vm_offset +
1011 args->batch_start_offset;
1012
e2f80391 1013 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
1014 if (ret)
1015 return ret;
1016
95c24161 1017 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 1018
8a8edb59 1019 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 1020 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 1021
454afebd
OM
1022 return 0;
1023}
1024
0bc40be8 1025void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 1026{
6d3d8274 1027 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
1028 struct list_head retired_list;
1029
0bc40be8
TU
1030 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1031 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
1032 return;
1033
1034 INIT_LIST_HEAD(&retired_list);
27af5eea 1035 spin_lock_bh(&engine->execlist_lock);
0bc40be8 1036 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 1037 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
1038
1039 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1040 struct intel_context *ctx = req->ctx;
1041 struct drm_i915_gem_object *ctx_obj =
0bc40be8 1042 ctx->engine[engine->id].state;
af3302b9 1043
ed54c1a1 1044 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 1045 intel_lr_context_unpin(ctx, engine);
e5292823 1046
c86ee3a9 1047 list_del(&req->execlist_link);
f8210795 1048 i915_gem_request_unreference(req);
c86ee3a9
TD
1049 }
1050}
1051
0bc40be8 1052void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 1053{
0bc40be8 1054 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
1055 int ret;
1056
117897f4 1057 if (!intel_engine_initialized(engine))
9832b9da
OM
1058 return;
1059
666796da 1060 ret = intel_engine_idle(engine);
0bc40be8 1061 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
9832b9da 1062 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 1063 engine->name, ret);
9832b9da
OM
1064
1065 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
1066 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1067 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1068 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
1069 return;
1070 }
0bc40be8 1071 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1072}
1073
4866d729 1074int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1075{
4a570db5 1076 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
1077 int ret;
1078
e2f80391 1079 if (!engine->gpu_caches_dirty)
48e29f55
OM
1080 return 0;
1081
e2f80391 1082 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1083 if (ret)
1084 return ret;
1085
e2f80391 1086 engine->gpu_caches_dirty = false;
48e29f55
OM
1087 return 0;
1088}
1089
e5292823 1090static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 1091 struct intel_engine_cs *engine)
dcb4c12a 1092{
0bc40be8 1093 struct drm_device *dev = engine->dev;
e84fe803 1094 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
1095 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1096 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
82352e90 1097 struct page *lrc_state_page;
77b04a04 1098 uint32_t *lrc_reg_state;
ca82580c 1099 int ret;
dcb4c12a 1100
0bc40be8 1101 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 1102
e84fe803
NH
1103 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1104 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1105 if (ret)
1106 return ret;
7ba717cf 1107
82352e90
TU
1108 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1109 if (WARN_ON(!lrc_state_page)) {
1110 ret = -ENODEV;
1111 goto unpin_ctx_obj;
1112 }
1113
0bc40be8 1114 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803
NH
1115 if (ret)
1116 goto unpin_ctx_obj;
d1675198 1117
0bc40be8
TU
1118 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1119 intel_lr_context_descriptor_update(ctx, engine);
77b04a04
TU
1120 lrc_reg_state = kmap(lrc_state_page);
1121 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 1122 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 1123 ctx_obj->dirty = true;
e93c28f3 1124
e84fe803
NH
1125 /* Invalidate GuC TLB. */
1126 if (i915.enable_guc_submission)
1127 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1128
7ba717cf
TD
1129 return ret;
1130
1131unpin_ctx_obj:
1132 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1133
1134 return ret;
1135}
1136
e5292823
TU
1137static int intel_lr_context_pin(struct intel_context *ctx,
1138 struct intel_engine_cs *engine)
e84fe803
NH
1139{
1140 int ret = 0;
e84fe803 1141
e5292823
TU
1142 if (ctx->engine[engine->id].pin_count++ == 0) {
1143 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
1144 if (ret)
1145 goto reset_pin_count;
321fe304
TU
1146
1147 i915_gem_context_reference(ctx);
e84fe803
NH
1148 }
1149 return ret;
1150
a7cbedec 1151reset_pin_count:
e5292823 1152 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1153 return ret;
1154}
1155
e5292823
TU
1156void intel_lr_context_unpin(struct intel_context *ctx,
1157 struct intel_engine_cs *engine)
dcb4c12a 1158{
e5292823 1159 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1160
f4e2dece 1161 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823
TU
1162 if (--ctx->engine[engine->id].pin_count == 0) {
1163 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1164 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1165 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1166 ctx->engine[engine->id].lrc_vma = NULL;
1167 ctx->engine[engine->id].lrc_desc = 0;
1168 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1169
1170 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1171 }
1172}
1173
e2be4faf 1174static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1175{
1176 int ret, i;
4a570db5 1177 struct intel_engine_cs *engine = req->engine;
e2be4faf 1178 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1179 struct drm_device *dev = engine->dev;
771b9a53
MT
1180 struct drm_i915_private *dev_priv = dev->dev_private;
1181 struct i915_workarounds *w = &dev_priv->workarounds;
1182
cd7feaaa 1183 if (w->count == 0)
771b9a53
MT
1184 return 0;
1185
e2f80391 1186 engine->gpu_caches_dirty = true;
4866d729 1187 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1188 if (ret)
1189 return ret;
1190
4d616a29 1191 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1192 if (ret)
1193 return ret;
1194
1195 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1196 for (i = 0; i < w->count; i++) {
f92a9162 1197 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1198 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1199 }
1200 intel_logical_ring_emit(ringbuf, MI_NOOP);
1201
1202 intel_logical_ring_advance(ringbuf);
1203
e2f80391 1204 engine->gpu_caches_dirty = true;
4866d729 1205 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1206 if (ret)
1207 return ret;
1208
1209 return 0;
1210}
1211
83b8a982 1212#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1213 do { \
83b8a982
AS
1214 int __index = (index)++; \
1215 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1216 return -ENOSPC; \
1217 } \
83b8a982 1218 batch[__index] = (cmd); \
17ee950d
AS
1219 } while (0)
1220
8f40db77 1221#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1222 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1223
1224/*
1225 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1226 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1227 * but there is a slight complication as this is applied in WA batch where the
1228 * values are only initialized once so we cannot take register value at the
1229 * beginning and reuse it further; hence we save its value to memory, upload a
1230 * constant value with bit21 set and then we restore it back with the saved value.
1231 * To simplify the WA, a constant value is formed by using the default value
1232 * of this register. This shouldn't be a problem because we are only modifying
1233 * it for a short period and this batch in non-premptible. We can ofcourse
1234 * use additional instructions that read the actual value of the register
1235 * at that time and set our bit of interest but it makes the WA complicated.
1236 *
1237 * This WA is also required for Gen9 so extracting as a function avoids
1238 * code duplication.
1239 */
0bc40be8 1240static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1241 uint32_t *const batch,
1242 uint32_t index)
1243{
1244 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1245
a4106a78
AS
1246 /*
1247 * WaDisableLSQCROPERFforOCL:skl
1248 * This WA is implemented in skl_init_clock_gating() but since
1249 * this batch updates GEN8_L3SQCREG4 with default value we need to
1250 * set this bit here to retain the WA during flush.
1251 */
0bc40be8 1252 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1253 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1254
f1afe24f 1255 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1256 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1257 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1258 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1259 wa_ctx_emit(batch, index, 0);
1260
1261 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1262 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1263 wa_ctx_emit(batch, index, l3sqc4_flush);
1264
1265 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1267 PIPE_CONTROL_DC_FLUSH_ENABLE));
1268 wa_ctx_emit(batch, index, 0);
1269 wa_ctx_emit(batch, index, 0);
1270 wa_ctx_emit(batch, index, 0);
1271 wa_ctx_emit(batch, index, 0);
1272
f1afe24f 1273 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1274 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1275 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1276 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1277 wa_ctx_emit(batch, index, 0);
9e000847
AS
1278
1279 return index;
1280}
1281
17ee950d
AS
1282static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1283 uint32_t offset,
1284 uint32_t start_alignment)
1285{
1286 return wa_ctx->offset = ALIGN(offset, start_alignment);
1287}
1288
1289static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1290 uint32_t offset,
1291 uint32_t size_alignment)
1292{
1293 wa_ctx->size = offset - wa_ctx->offset;
1294
1295 WARN(wa_ctx->size % size_alignment,
1296 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1297 wa_ctx->size, size_alignment);
1298 return 0;
1299}
1300
1301/**
1302 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1303 *
1304 * @ring: only applicable for RCS
1305 * @wa_ctx: structure representing wa_ctx
1306 * offset: specifies start of the batch, should be cache-aligned. This is updated
1307 * with the offset value received as input.
1308 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1309 * @batch: page in which WA are loaded
1310 * @offset: This field specifies the start of the batch, it should be
1311 * cache-aligned otherwise it is adjusted accordingly.
1312 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1313 * initialized at the beginning and shared across all contexts but this field
1314 * helps us to have multiple batches at different offsets and select them based
1315 * on a criteria. At the moment this batch always start at the beginning of the page
1316 * and at this point we don't have multiple wa_ctx batch buffers.
1317 *
1318 * The number of WA applied are not known at the beginning; we use this field
1319 * to return the no of DWORDS written.
4d78c8dc 1320 *
17ee950d
AS
1321 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1322 * so it adds NOOPs as padding to make it cacheline aligned.
1323 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1324 * makes a complete batch buffer.
1325 *
1326 * Return: non-zero if we exceed the PAGE_SIZE limit.
1327 */
1328
0bc40be8 1329static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1330 struct i915_wa_ctx_bb *wa_ctx,
1331 uint32_t *const batch,
1332 uint32_t *offset)
1333{
0160f055 1334 uint32_t scratch_addr;
17ee950d
AS
1335 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1336
7ad00d1a 1337 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1338 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1339
c82435bb 1340 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1341 if (IS_BROADWELL(engine->dev)) {
1342 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1343 if (rc < 0)
1344 return rc;
1345 index = rc;
c82435bb
AS
1346 }
1347
0160f055
AS
1348 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1349 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1350 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1351
83b8a982
AS
1352 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1353 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1354 PIPE_CONTROL_GLOBAL_GTT_IVB |
1355 PIPE_CONTROL_CS_STALL |
1356 PIPE_CONTROL_QW_WRITE));
1357 wa_ctx_emit(batch, index, scratch_addr);
1358 wa_ctx_emit(batch, index, 0);
1359 wa_ctx_emit(batch, index, 0);
1360 wa_ctx_emit(batch, index, 0);
0160f055 1361
17ee950d
AS
1362 /* Pad to end of cacheline */
1363 while (index % CACHELINE_DWORDS)
83b8a982 1364 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1365
1366 /*
1367 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1368 * execution depends on the length specified in terms of cache lines
1369 * in the register CTX_RCS_INDIRECT_CTX
1370 */
1371
1372 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1373}
1374
1375/**
1376 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1377 *
1378 * @ring: only applicable for RCS
1379 * @wa_ctx: structure representing wa_ctx
1380 * offset: specifies start of the batch, should be cache-aligned.
1381 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1382 * @batch: page in which WA are loaded
17ee950d
AS
1383 * @offset: This field specifies the start of this batch.
1384 * This batch is started immediately after indirect_ctx batch. Since we ensure
1385 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1386 *
1387 * The number of DWORDS written are returned using this field.
1388 *
1389 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1390 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1391 */
0bc40be8 1392static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1393 struct i915_wa_ctx_bb *wa_ctx,
1394 uint32_t *const batch,
1395 uint32_t *offset)
1396{
1397 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1398
7ad00d1a 1399 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1400 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1401
83b8a982 1402 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1403
1404 return wa_ctx_end(wa_ctx, *offset = index, 1);
1405}
1406
0bc40be8 1407static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1408 struct i915_wa_ctx_bb *wa_ctx,
1409 uint32_t *const batch,
1410 uint32_t *offset)
1411{
a4106a78 1412 int ret;
0bc40be8 1413 struct drm_device *dev = engine->dev;
0504cffc
AS
1414 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1415
0907c8f7 1416 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1417 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1418 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1419 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1420
a4106a78 1421 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1422 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1423 if (ret < 0)
1424 return ret;
1425 index = ret;
1426
0504cffc
AS
1427 /* Pad to end of cacheline */
1428 while (index % CACHELINE_DWORDS)
1429 wa_ctx_emit(batch, index, MI_NOOP);
1430
1431 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1432}
1433
0bc40be8 1434static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1435 struct i915_wa_ctx_bb *wa_ctx,
1436 uint32_t *const batch,
1437 uint32_t *offset)
1438{
0bc40be8 1439 struct drm_device *dev = engine->dev;
0504cffc
AS
1440 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1441
9b01435d 1442 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1443 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1444 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1445 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1446 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1447 wa_ctx_emit(batch, index,
1448 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1449 wa_ctx_emit(batch, index, MI_NOOP);
1450 }
1451
b1e429fe
TG
1452 /* WaClearTdlStateAckDirtyBits:bxt */
1453 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1454 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1455
1456 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1457 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1458
1459 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1460 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1461
1462 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1463 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1464
1465 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1466 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1467 wa_ctx_emit(batch, index, 0x0);
1468 wa_ctx_emit(batch, index, MI_NOOP);
1469 }
1470
0907c8f7 1471 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1472 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1473 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1474 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1475
0504cffc
AS
1476 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1477
1478 return wa_ctx_end(wa_ctx, *offset = index, 1);
1479}
1480
0bc40be8 1481static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1482{
1483 int ret;
1484
0bc40be8
TU
1485 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1486 PAGE_ALIGN(size));
1487 if (!engine->wa_ctx.obj) {
17ee950d
AS
1488 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1489 return -ENOMEM;
1490 }
1491
0bc40be8 1492 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1493 if (ret) {
1494 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1495 ret);
0bc40be8 1496 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1497 return ret;
1498 }
1499
1500 return 0;
1501}
1502
0bc40be8 1503static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1504{
0bc40be8
TU
1505 if (engine->wa_ctx.obj) {
1506 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1507 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1508 engine->wa_ctx.obj = NULL;
17ee950d
AS
1509 }
1510}
1511
0bc40be8 1512static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1513{
1514 int ret;
1515 uint32_t *batch;
1516 uint32_t offset;
1517 struct page *page;
0bc40be8 1518 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1519
0bc40be8 1520 WARN_ON(engine->id != RCS);
17ee950d 1521
5e60d790 1522 /* update this when WA for higher Gen are added */
0bc40be8 1523 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1524 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1525 INTEL_INFO(engine->dev)->gen);
5e60d790 1526 return 0;
0504cffc 1527 }
5e60d790 1528
c4db7599 1529 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1530 if (engine->scratch.obj == NULL) {
1531 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1532 return -EINVAL;
1533 }
1534
0bc40be8 1535 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1536 if (ret) {
1537 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1538 return ret;
1539 }
1540
033908ae 1541 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1542 batch = kmap_atomic(page);
1543 offset = 0;
1544
0bc40be8
TU
1545 if (INTEL_INFO(engine->dev)->gen == 8) {
1546 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1547 &wa_ctx->indirect_ctx,
1548 batch,
1549 &offset);
1550 if (ret)
1551 goto out;
1552
0bc40be8 1553 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1554 &wa_ctx->per_ctx,
1555 batch,
1556 &offset);
1557 if (ret)
1558 goto out;
0bc40be8
TU
1559 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1560 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1561 &wa_ctx->indirect_ctx,
1562 batch,
1563 &offset);
1564 if (ret)
1565 goto out;
1566
0bc40be8 1567 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1568 &wa_ctx->per_ctx,
1569 batch,
1570 &offset);
1571 if (ret)
1572 goto out;
17ee950d
AS
1573 }
1574
1575out:
1576 kunmap_atomic(batch);
1577 if (ret)
0bc40be8 1578 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1579
1580 return ret;
1581}
1582
0bc40be8 1583static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1584{
0bc40be8 1585 struct drm_device *dev = engine->dev;
9b1136d5 1586 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1587 unsigned int next_context_status_buffer_hw;
9b1136d5 1588
0bc40be8
TU
1589 lrc_setup_hardware_status_page(engine,
1590 dev_priv->kernel_context->engine[engine->id].state);
e84fe803 1591
0bc40be8
TU
1592 I915_WRITE_IMR(engine,
1593 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1594 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1595
0bc40be8 1596 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1597 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1598 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1599 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1600
1601 /*
1602 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1603 * zero, we need to read the write pointer from hardware and use its
1604 * value because "this register is power context save restored".
1605 * Effectively, these states have been observed:
1606 *
1607 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1608 * BDW | CSB regs not reset | CSB regs reset |
1609 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1610 * SKL | ? | ? |
1611 * BXT | ? | ? |
dfc53c5e 1612 */
5590a5f0 1613 next_context_status_buffer_hw =
0bc40be8 1614 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1615
1616 /*
1617 * When the CSB registers are reset (also after power-up / gpu reset),
1618 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1619 * this special case, so the first element read is CSB[0].
1620 */
1621 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1622 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1623
0bc40be8
TU
1624 engine->next_context_status_buffer = next_context_status_buffer_hw;
1625 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1626
fc0768ce 1627 intel_engine_init_hangcheck(engine);
9b1136d5
OM
1628
1629 return 0;
1630}
1631
0bc40be8 1632static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1633{
0bc40be8 1634 struct drm_device *dev = engine->dev;
9b1136d5
OM
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 int ret;
1637
0bc40be8 1638 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1639 if (ret)
1640 return ret;
1641
1642 /* We need to disable the AsyncFlip performance optimisations in order
1643 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1644 * programmed to '1' on all products.
1645 *
1646 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1647 */
1648 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1649
9b1136d5
OM
1650 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1651
0bc40be8 1652 return init_workarounds_ring(engine);
9b1136d5
OM
1653}
1654
0bc40be8 1655static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1656{
1657 int ret;
1658
0bc40be8 1659 ret = gen8_init_common_ring(engine);
82ef822e
DL
1660 if (ret)
1661 return ret;
1662
0bc40be8 1663 return init_workarounds_ring(engine);
82ef822e
DL
1664}
1665
7a01a0a2
MT
1666static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1667{
1668 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1669 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1670 struct intel_ringbuffer *ringbuf = req->ringbuf;
1671 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1672 int i, ret;
1673
1674 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1675 if (ret)
1676 return ret;
1677
1678 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1679 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1680 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1681
e2f80391
TU
1682 intel_logical_ring_emit_reg(ringbuf,
1683 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1684 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1685 intel_logical_ring_emit_reg(ringbuf,
1686 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1687 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1688 }
1689
1690 intel_logical_ring_emit(ringbuf, MI_NOOP);
1691 intel_logical_ring_advance(ringbuf);
1692
1693 return 0;
1694}
1695
be795fc1 1696static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1697 u64 offset, unsigned dispatch_flags)
15648585 1698{
be795fc1 1699 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1700 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1701 int ret;
1702
7a01a0a2
MT
1703 /* Don't rely in hw updating PDPs, specially in lite-restore.
1704 * Ideally, we should set Force PD Restore in ctx descriptor,
1705 * but we can't. Force Restore would be a second option, but
1706 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1707 * not idle). PML4 is allocated during ppgtt init so this is
1708 * not needed in 48-bit.*/
7a01a0a2 1709 if (req->ctx->ppgtt &&
666796da 1710 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1711 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1712 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1713 ret = intel_logical_ring_emit_pdps(req);
1714 if (ret)
1715 return ret;
1716 }
7a01a0a2 1717
666796da 1718 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1719 }
1720
4d616a29 1721 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1722 if (ret)
1723 return ret;
1724
1725 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1726 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1727 (ppgtt<<8) |
1728 (dispatch_flags & I915_DISPATCH_RS ?
1729 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1730 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1731 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1732 intel_logical_ring_emit(ringbuf, MI_NOOP);
1733 intel_logical_ring_advance(ringbuf);
1734
1735 return 0;
1736}
1737
0bc40be8 1738static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1739{
0bc40be8 1740 struct drm_device *dev = engine->dev;
73d477f6
OM
1741 struct drm_i915_private *dev_priv = dev->dev_private;
1742 unsigned long flags;
1743
7cd512f1 1744 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1745 return false;
1746
1747 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1748 if (engine->irq_refcount++ == 0) {
1749 I915_WRITE_IMR(engine,
1750 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1751 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1752 }
1753 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1754
1755 return true;
1756}
1757
0bc40be8 1758static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1759{
0bc40be8 1760 struct drm_device *dev = engine->dev;
73d477f6
OM
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 unsigned long flags;
1763
1764 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1765 if (--engine->irq_refcount == 0) {
1766 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1767 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1768 }
1769 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1770}
1771
7deb4d39 1772static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1773 u32 invalidate_domains,
1774 u32 unused)
1775{
7deb4d39 1776 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1777 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1778 struct drm_device *dev = engine->dev;
4712274c
OM
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 uint32_t cmd;
1781 int ret;
1782
4d616a29 1783 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1784 if (ret)
1785 return ret;
1786
1787 cmd = MI_FLUSH_DW + 1;
1788
f0a1fb10
CW
1789 /* We always require a command barrier so that subsequent
1790 * commands, such as breadcrumb interrupts, are strictly ordered
1791 * wrt the contents of the write cache being flushed to memory
1792 * (and thus being coherent from the CPU).
1793 */
1794 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1795
1796 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1797 cmd |= MI_INVALIDATE_TLB;
4a570db5 1798 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1799 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1800 }
1801
1802 intel_logical_ring_emit(ringbuf, cmd);
1803 intel_logical_ring_emit(ringbuf,
1804 I915_GEM_HWS_SCRATCH_ADDR |
1805 MI_FLUSH_DW_USE_GTT);
1806 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1807 intel_logical_ring_emit(ringbuf, 0); /* value */
1808 intel_logical_ring_advance(ringbuf);
1809
1810 return 0;
1811}
1812
7deb4d39 1813static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1814 u32 invalidate_domains,
1815 u32 flush_domains)
1816{
7deb4d39 1817 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1818 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1819 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1820 bool vf_flush_wa = false;
4712274c
OM
1821 u32 flags = 0;
1822 int ret;
1823
1824 flags |= PIPE_CONTROL_CS_STALL;
1825
1826 if (flush_domains) {
1827 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1828 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1829 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1830 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1831 }
1832
1833 if (invalidate_domains) {
1834 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1835 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1836 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1837 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1838 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1839 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1840 flags |= PIPE_CONTROL_QW_WRITE;
1841 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1842
1a5a9ce7
BW
1843 /*
1844 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1845 * pipe control.
1846 */
e2f80391 1847 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1848 vf_flush_wa = true;
1849 }
9647ff36 1850
4d616a29 1851 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1852 if (ret)
1853 return ret;
1854
9647ff36
ID
1855 if (vf_flush_wa) {
1856 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1857 intel_logical_ring_emit(ringbuf, 0);
1858 intel_logical_ring_emit(ringbuf, 0);
1859 intel_logical_ring_emit(ringbuf, 0);
1860 intel_logical_ring_emit(ringbuf, 0);
1861 intel_logical_ring_emit(ringbuf, 0);
1862 }
1863
4712274c
OM
1864 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1865 intel_logical_ring_emit(ringbuf, flags);
1866 intel_logical_ring_emit(ringbuf, scratch_addr);
1867 intel_logical_ring_emit(ringbuf, 0);
1868 intel_logical_ring_emit(ringbuf, 0);
1869 intel_logical_ring_emit(ringbuf, 0);
1870 intel_logical_ring_advance(ringbuf);
1871
1872 return 0;
1873}
1874
c04e0f3b 1875static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1876{
0bc40be8 1877 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1878}
1879
0bc40be8 1880static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1881{
0bc40be8 1882 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1883}
1884
c04e0f3b 1885static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1886{
319404df
ID
1887 /*
1888 * On BXT A steppings there is a HW coherency issue whereby the
1889 * MI_STORE_DATA_IMM storing the completed request's seqno
1890 * occasionally doesn't invalidate the CPU cache. Work around this by
1891 * clflushing the corresponding cacheline whenever the caller wants
1892 * the coherency to be guaranteed. Note that this cacheline is known
1893 * to be clean at this point, since we only write it in
1894 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1895 * this clflush in practice becomes an invalidate operation.
1896 */
c04e0f3b 1897 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1898}
1899
0bc40be8 1900static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1901{
0bc40be8 1902 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1903
1904 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1905 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1906}
1907
7c17d377
CW
1908/*
1909 * Reserve space for 2 NOOPs at the end of each request to be
1910 * used as a workaround for not being allowed to do lite
1911 * restore with HEAD==TAIL (WaIdleLiteRestore).
1912 */
1913#define WA_TAIL_DWORDS 2
1914
1915static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1916{
1917 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1918}
1919
c4e76638 1920static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1921{
c4e76638 1922 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1923 int ret;
1924
7c17d377 1925 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1926 if (ret)
1927 return ret;
1928
7c17d377
CW
1929 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1930 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1931
4da46e1e 1932 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1933 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1934 intel_logical_ring_emit(ringbuf,
4a570db5 1935 hws_seqno_address(request->engine) |
7c17d377 1936 MI_FLUSH_DW_USE_GTT);
4da46e1e 1937 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1938 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1939 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1940 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1941 return intel_logical_ring_advance_and_submit(request);
1942}
4da46e1e 1943
7c17d377
CW
1944static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1945{
1946 struct intel_ringbuffer *ringbuf = request->ringbuf;
1947 int ret;
53292cdb 1948
7c17d377
CW
1949 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1950 if (ret)
1951 return ret;
1952
1953 /* w/a for post sync ops following a GPGPU operation we
1954 * need a prior CS_STALL, which is emitted by the flush
1955 * following the batch.
1956 */
1957 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1958 intel_logical_ring_emit(ringbuf,
1959 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1960 PIPE_CONTROL_CS_STALL |
1961 PIPE_CONTROL_QW_WRITE));
4a570db5 1962 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1963 intel_logical_ring_emit(ringbuf, 0);
1964 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1965 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1966 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1967}
1968
be01363f 1969static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1970{
cef437ad 1971 struct render_state so;
cef437ad
DL
1972 int ret;
1973
4a570db5 1974 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1975 if (ret)
1976 return ret;
1977
1978 if (so.rodata == NULL)
1979 return 0;
1980
4a570db5 1981 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1982 I915_DISPATCH_SECURE);
cef437ad
DL
1983 if (ret)
1984 goto out;
1985
4a570db5 1986 ret = req->engine->emit_bb_start(req,
84e81020
AS
1987 (so.ggtt_offset + so.aux_batch_offset),
1988 I915_DISPATCH_SECURE);
1989 if (ret)
1990 goto out;
1991
b2af0376 1992 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1993
cef437ad
DL
1994out:
1995 i915_gem_render_state_fini(&so);
1996 return ret;
1997}
1998
8753181e 1999static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
2000{
2001 int ret;
2002
e2be4faf 2003 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
2004 if (ret)
2005 return ret;
2006
3bbaba0c
PA
2007 ret = intel_rcs_context_init_mocs(req);
2008 /*
2009 * Failing to program the MOCS is non-fatal.The system will not
2010 * run at peak performance. So generate an error and carry on.
2011 */
2012 if (ret)
2013 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2014
be01363f 2015 return intel_lr_context_render_state_init(req);
e7778be1
TD
2016}
2017
73e4d07f
OM
2018/**
2019 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2020 *
2021 * @ring: Engine Command Streamer.
2022 *
2023 */
0bc40be8 2024void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 2025{
6402c330 2026 struct drm_i915_private *dev_priv;
9832b9da 2027
117897f4 2028 if (!intel_engine_initialized(engine))
48d82387
OM
2029 return;
2030
27af5eea
TU
2031 /*
2032 * Tasklet cannot be active at this point due intel_mark_active/idle
2033 * so this is just for documentation.
2034 */
2035 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2036 tasklet_kill(&engine->irq_tasklet);
2037
0bc40be8 2038 dev_priv = engine->dev->dev_private;
6402c330 2039
0bc40be8
TU
2040 if (engine->buffer) {
2041 intel_logical_ring_stop(engine);
2042 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 2043 }
48d82387 2044
0bc40be8
TU
2045 if (engine->cleanup)
2046 engine->cleanup(engine);
48d82387 2047
0bc40be8
TU
2048 i915_cmd_parser_fini_ring(engine);
2049 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 2050
0bc40be8
TU
2051 if (engine->status_page.obj) {
2052 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2053 engine->status_page.obj = NULL;
48d82387 2054 }
17ee950d 2055
0bc40be8
TU
2056 engine->idle_lite_restore_wa = 0;
2057 engine->disable_lite_restore_wa = false;
2058 engine->ctx_desc_template = 0;
ca82580c 2059
0bc40be8
TU
2060 lrc_destroy_wa_ctx_obj(engine);
2061 engine->dev = NULL;
454afebd
OM
2062}
2063
c9cacf93
TU
2064static void
2065logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 2066 struct intel_engine_cs *engine)
c9cacf93
TU
2067{
2068 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
2069 engine->init_hw = gen8_init_common_ring;
2070 engine->emit_request = gen8_emit_request;
2071 engine->emit_flush = gen8_emit_flush;
2072 engine->irq_get = gen8_logical_ring_get_irq;
2073 engine->irq_put = gen8_logical_ring_put_irq;
2074 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
2075 engine->get_seqno = gen8_get_seqno;
2076 engine->set_seqno = gen8_set_seqno;
c9cacf93 2077 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 2078 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 2079 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
2080 }
2081}
2082
d9f3af96 2083static inline void
0bc40be8 2084logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 2085{
0bc40be8
TU
2086 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2087 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
2088}
2089
c9cacf93 2090static int
0bc40be8 2091logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 2092{
3756685a
TU
2093 struct drm_i915_private *dev_priv = to_i915(dev);
2094 struct intel_context *dctx = dev_priv->kernel_context;
2095 enum forcewake_domains fw_domains;
48d82387 2096 int ret;
48d82387
OM
2097
2098 /* Intentionally left blank. */
0bc40be8 2099 engine->buffer = NULL;
48d82387 2100
0bc40be8
TU
2101 engine->dev = dev;
2102 INIT_LIST_HEAD(&engine->active_list);
2103 INIT_LIST_HEAD(&engine->request_list);
2104 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2105 init_waitqueue_head(&engine->irq_queue);
48d82387 2106
0bc40be8
TU
2107 INIT_LIST_HEAD(&engine->buffers);
2108 INIT_LIST_HEAD(&engine->execlist_queue);
2109 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2110 spin_lock_init(&engine->execlist_lock);
acdd884a 2111
27af5eea
TU
2112 tasklet_init(&engine->irq_tasklet,
2113 intel_lrc_irq_handler, (unsigned long)engine);
2114
0bc40be8 2115 logical_ring_init_platform_invariants(engine);
ca82580c 2116
3756685a
TU
2117 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2118 RING_ELSP(engine),
2119 FW_REG_WRITE);
2120
2121 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2122 RING_CONTEXT_STATUS_PTR(engine),
2123 FW_REG_READ | FW_REG_WRITE);
2124
2125 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2126 RING_CONTEXT_STATUS_BUF_BASE(engine),
2127 FW_REG_READ);
2128
2129 engine->fw_domains = fw_domains;
2130
0bc40be8 2131 ret = i915_cmd_parser_init_ring(engine);
48d82387 2132 if (ret)
b0366a54 2133 goto error;
48d82387 2134
0bc40be8 2135 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2136 if (ret)
b0366a54 2137 goto error;
e84fe803
NH
2138
2139 /* As this is the default context, always pin it */
0bc40be8 2140 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2141 if (ret) {
2142 DRM_ERROR(
2143 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2144 engine->name, ret);
b0366a54 2145 goto error;
e84fe803 2146 }
564ddb2f 2147
b0366a54
DG
2148 return 0;
2149
2150error:
0bc40be8 2151 intel_logical_ring_cleanup(engine);
564ddb2f 2152 return ret;
454afebd
OM
2153}
2154
2155static int logical_render_ring_init(struct drm_device *dev)
2156{
2157 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2158 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2159 int ret;
454afebd 2160
e2f80391
TU
2161 engine->name = "render ring";
2162 engine->id = RCS;
2163 engine->exec_id = I915_EXEC_RENDER;
2164 engine->guc_id = GUC_RENDER_ENGINE;
2165 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2166
e2f80391 2167 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2168 if (HAS_L3_DPF(dev))
e2f80391 2169 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2170
e2f80391 2171 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2172
2173 /* Override some for render ring. */
82ef822e 2174 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2175 engine->init_hw = gen9_init_render_ring;
82ef822e 2176 else
e2f80391
TU
2177 engine->init_hw = gen8_init_render_ring;
2178 engine->init_context = gen8_init_rcs_context;
2179 engine->cleanup = intel_fini_pipe_control;
2180 engine->emit_flush = gen8_emit_flush_render;
2181 engine->emit_request = gen8_emit_request_render;
9b1136d5 2182
e2f80391 2183 engine->dev = dev;
c4db7599 2184
e2f80391 2185 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2186 if (ret)
2187 return ret;
2188
e2f80391 2189 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2190 if (ret) {
2191 /*
2192 * We continue even if we fail to initialize WA batch
2193 * because we only expect rare glitches but nothing
2194 * critical to prevent us from using GPU
2195 */
2196 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2197 ret);
2198 }
2199
e2f80391 2200 ret = logical_ring_init(dev, engine);
c4db7599 2201 if (ret) {
e2f80391 2202 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2203 }
17ee950d
AS
2204
2205 return ret;
454afebd
OM
2206}
2207
2208static int logical_bsd_ring_init(struct drm_device *dev)
2209{
2210 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2211 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2212
e2f80391
TU
2213 engine->name = "bsd ring";
2214 engine->id = VCS;
2215 engine->exec_id = I915_EXEC_BSD;
2216 engine->guc_id = GUC_VIDEO_ENGINE;
2217 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2218
e2f80391
TU
2219 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2220 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2221
e2f80391 2222 return logical_ring_init(dev, engine);
454afebd
OM
2223}
2224
2225static int logical_bsd2_ring_init(struct drm_device *dev)
2226{
2227 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2228 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2229
e2f80391
TU
2230 engine->name = "bsd2 ring";
2231 engine->id = VCS2;
2232 engine->exec_id = I915_EXEC_BSD;
2233 engine->guc_id = GUC_VIDEO_ENGINE2;
2234 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2235
e2f80391
TU
2236 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2237 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2238
e2f80391 2239 return logical_ring_init(dev, engine);
454afebd
OM
2240}
2241
2242static int logical_blt_ring_init(struct drm_device *dev)
2243{
2244 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2245 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2246
e2f80391
TU
2247 engine->name = "blitter ring";
2248 engine->id = BCS;
2249 engine->exec_id = I915_EXEC_BLT;
2250 engine->guc_id = GUC_BLITTER_ENGINE;
2251 engine->mmio_base = BLT_RING_BASE;
454afebd 2252
e2f80391
TU
2253 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2254 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2255
e2f80391 2256 return logical_ring_init(dev, engine);
454afebd
OM
2257}
2258
2259static int logical_vebox_ring_init(struct drm_device *dev)
2260{
2261 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2262 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2263
e2f80391
TU
2264 engine->name = "video enhancement ring";
2265 engine->id = VECS;
2266 engine->exec_id = I915_EXEC_VEBOX;
2267 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2268 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2269
e2f80391
TU
2270 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2271 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2272
e2f80391 2273 return logical_ring_init(dev, engine);
454afebd
OM
2274}
2275
73e4d07f
OM
2276/**
2277 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2278 * @dev: DRM device.
2279 *
2280 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2281 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2282 * those engines that are present in the hardware.
2283 *
2284 * Return: non-zero if the initialization failed.
2285 */
454afebd
OM
2286int intel_logical_rings_init(struct drm_device *dev)
2287{
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 int ret;
2290
2291 ret = logical_render_ring_init(dev);
2292 if (ret)
2293 return ret;
2294
2295 if (HAS_BSD(dev)) {
2296 ret = logical_bsd_ring_init(dev);
2297 if (ret)
2298 goto cleanup_render_ring;
2299 }
2300
2301 if (HAS_BLT(dev)) {
2302 ret = logical_blt_ring_init(dev);
2303 if (ret)
2304 goto cleanup_bsd_ring;
2305 }
2306
2307 if (HAS_VEBOX(dev)) {
2308 ret = logical_vebox_ring_init(dev);
2309 if (ret)
2310 goto cleanup_blt_ring;
2311 }
2312
2313 if (HAS_BSD2(dev)) {
2314 ret = logical_bsd2_ring_init(dev);
2315 if (ret)
2316 goto cleanup_vebox_ring;
2317 }
2318
454afebd
OM
2319 return 0;
2320
454afebd 2321cleanup_vebox_ring:
4a570db5 2322 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2323cleanup_blt_ring:
4a570db5 2324 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2325cleanup_bsd_ring:
4a570db5 2326 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2327cleanup_render_ring:
4a570db5 2328 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2329
2330 return ret;
2331}
2332
0cea6502
JM
2333static u32
2334make_rpcs(struct drm_device *dev)
2335{
2336 u32 rpcs = 0;
2337
2338 /*
2339 * No explicit RPCS request is needed to ensure full
2340 * slice/subslice/EU enablement prior to Gen9.
2341 */
2342 if (INTEL_INFO(dev)->gen < 9)
2343 return 0;
2344
2345 /*
2346 * Starting in Gen9, render power gating can leave
2347 * slice/subslice/EU in a partially enabled state. We
2348 * must make an explicit request through RPCS for full
2349 * enablement.
2350 */
2351 if (INTEL_INFO(dev)->has_slice_pg) {
2352 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2353 rpcs |= INTEL_INFO(dev)->slice_total <<
2354 GEN8_RPCS_S_CNT_SHIFT;
2355 rpcs |= GEN8_RPCS_ENABLE;
2356 }
2357
2358 if (INTEL_INFO(dev)->has_subslice_pg) {
2359 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2360 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2361 GEN8_RPCS_SS_CNT_SHIFT;
2362 rpcs |= GEN8_RPCS_ENABLE;
2363 }
2364
2365 if (INTEL_INFO(dev)->has_eu_pg) {
2366 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2367 GEN8_RPCS_EU_MIN_SHIFT;
2368 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2369 GEN8_RPCS_EU_MAX_SHIFT;
2370 rpcs |= GEN8_RPCS_ENABLE;
2371 }
2372
2373 return rpcs;
2374}
2375
0bc40be8 2376static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2377{
2378 u32 indirect_ctx_offset;
2379
0bc40be8 2380 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2381 default:
0bc40be8 2382 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2383 /* fall through */
2384 case 9:
2385 indirect_ctx_offset =
2386 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2387 break;
2388 case 8:
2389 indirect_ctx_offset =
2390 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2391 break;
2392 }
2393
2394 return indirect_ctx_offset;
2395}
2396
8670d6f9
OM
2397static int
2398populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2399 struct intel_engine_cs *engine,
2400 struct intel_ringbuffer *ringbuf)
8670d6f9 2401{
0bc40be8 2402 struct drm_device *dev = engine->dev;
2d965536 2403 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2404 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2405 struct page *page;
2406 uint32_t *reg_state;
2407 int ret;
2408
2d965536
TD
2409 if (!ppgtt)
2410 ppgtt = dev_priv->mm.aliasing_ppgtt;
2411
8670d6f9
OM
2412 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2413 if (ret) {
2414 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2415 return ret;
2416 }
2417
2418 ret = i915_gem_object_get_pages(ctx_obj);
2419 if (ret) {
2420 DRM_DEBUG_DRIVER("Could not get object pages\n");
2421 return ret;
2422 }
2423
2424 i915_gem_object_pin_pages(ctx_obj);
2425
2426 /* The second page of the context object contains some fields which must
2427 * be set up prior to the first execution. */
033908ae 2428 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2429 reg_state = kmap_atomic(page);
2430
2431 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2432 * commands followed by (reg, value) pairs. The values we are setting here are
2433 * only for the first context restore: on a subsequent save, the GPU will
2434 * recreate this batchbuffer with new values (including all the missing
2435 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2436 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2437 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2438 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2439 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2440 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2441 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2442 (HAS_RESOURCE_STREAMER(dev) ?
2443 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2444 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2445 0);
2446 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2447 0);
7ba717cf
TD
2448 /* Ring buffer start address is not known until the buffer is pinned.
2449 * It is written to the context image in execlists_update_context()
2450 */
0bc40be8
TU
2451 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2452 RING_START(engine->mmio_base), 0);
2453 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2454 RING_CTL(engine->mmio_base),
0d925ea0 2455 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2456 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2457 RING_BBADDR_UDW(engine->mmio_base), 0);
2458 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2459 RING_BBADDR(engine->mmio_base), 0);
2460 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2461 RING_BBSTATE(engine->mmio_base),
0d925ea0 2462 RING_BB_PPGTT);
0bc40be8
TU
2463 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2464 RING_SBBADDR_UDW(engine->mmio_base), 0);
2465 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2466 RING_SBBADDR(engine->mmio_base), 0);
2467 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2468 RING_SBBSTATE(engine->mmio_base), 0);
2469 if (engine->id == RCS) {
2470 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2471 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2472 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2473 RING_INDIRECT_CTX(engine->mmio_base), 0);
2474 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2475 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2476 if (engine->wa_ctx.obj) {
2477 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2478 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2479
2480 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2481 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2482 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2483
2484 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2485 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2486
2487 reg_state[CTX_BB_PER_CTX_PTR+1] =
2488 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2489 0x01;
2490 }
8670d6f9 2491 }
0d925ea0 2492 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2493 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2494 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2495 /* PDP values well be assigned later if needed */
0bc40be8
TU
2496 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2497 0);
2498 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2499 0);
2500 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2501 0);
2502 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2503 0);
2504 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2505 0);
2506 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2507 0);
2508 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2509 0);
2510 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2511 0);
d7b2633d 2512
2dba3239
MT
2513 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2514 /* 64b PPGTT (48bit canonical)
2515 * PDP0_DESCRIPTOR contains the base address to PML4 and
2516 * other PDP Descriptors are ignored.
2517 */
2518 ASSIGN_CTX_PML4(ppgtt, reg_state);
2519 } else {
2520 /* 32b PPGTT
2521 * PDP*_DESCRIPTOR contains the base address of space supported.
2522 * With dynamic page allocation, PDPs may not be allocated at
2523 * this point. Point the unallocated PDPs to the scratch page
2524 */
c6a2ac71 2525 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2526 }
2527
0bc40be8 2528 if (engine->id == RCS) {
8670d6f9 2529 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2530 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2531 make_rpcs(dev));
8670d6f9
OM
2532 }
2533
2534 kunmap_atomic(reg_state);
8670d6f9
OM
2535 i915_gem_object_unpin_pages(ctx_obj);
2536
2537 return 0;
2538}
2539
73e4d07f
OM
2540/**
2541 * intel_lr_context_free() - free the LRC specific bits of a context
2542 * @ctx: the LR context to free.
2543 *
2544 * The real context freeing is done in i915_gem_context_free: this only
2545 * takes care of the bits that are LRC related: the per-engine backing
2546 * objects and the logical ringbuffer.
2547 */
ede7d42b
OM
2548void intel_lr_context_free(struct intel_context *ctx)
2549{
8c857917
OM
2550 int i;
2551
666796da 2552 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2553 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2554 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2555
e28e404c
DG
2556 if (!ctx_obj)
2557 continue;
dcb4c12a 2558
e28e404c
DG
2559 if (ctx == ctx->i915->kernel_context) {
2560 intel_unpin_ringbuffer_obj(ringbuf);
2561 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2562 }
e28e404c
DG
2563
2564 WARN_ON(ctx->engine[i].pin_count);
2565 intel_ringbuffer_free(ringbuf);
2566 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2567 }
2568}
2569
c5d46ee2
DG
2570/**
2571 * intel_lr_context_size() - return the size of the context for an engine
2572 * @ring: which engine to find the context size for
2573 *
2574 * Each engine may require a different amount of space for a context image,
2575 * so when allocating (or copying) an image, this function can be used to
2576 * find the right size for the specific engine.
2577 *
2578 * Return: size (in bytes) of an engine-specific context image
2579 *
2580 * Note: this size includes the HWSP, which is part of the context image
2581 * in LRC mode, but does not include the "shared data page" used with
2582 * GuC submission. The caller should account for this if using the GuC.
2583 */
0bc40be8 2584uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2585{
2586 int ret = 0;
2587
0bc40be8 2588 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2589
0bc40be8 2590 switch (engine->id) {
8c857917 2591 case RCS:
0bc40be8 2592 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2593 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2594 else
2595 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2596 break;
2597 case VCS:
2598 case BCS:
2599 case VECS:
2600 case VCS2:
2601 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2602 break;
2603 }
2604
2605 return ret;
ede7d42b
OM
2606}
2607
0bc40be8
TU
2608static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2609 struct drm_i915_gem_object *default_ctx_obj)
1df06b75 2610{
0bc40be8 2611 struct drm_i915_private *dev_priv = engine->dev->dev_private;
d1675198 2612 struct page *page;
1df06b75 2613
d1675198 2614 /* The HWSP is part of the default context object in LRC mode. */
0bc40be8 2615 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
d1675198
AD
2616 + LRC_PPHWSP_PN * PAGE_SIZE;
2617 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
0bc40be8
TU
2618 engine->status_page.page_addr = kmap(page);
2619 engine->status_page.obj = default_ctx_obj;
1df06b75 2620
0bc40be8
TU
2621 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2622 (u32)engine->status_page.gfx_addr);
2623 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1df06b75
TD
2624}
2625
73e4d07f 2626/**
e84fe803 2627 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2628 * @ctx: LR context to create.
2629 * @ring: engine to be used with the context.
2630 *
2631 * This function can be called more than once, with different engines, if we plan
2632 * to use the context with them. The context backing objects and the ringbuffers
2633 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2634 * the creation is a deferred call: it's better to make sure first that we need to use
2635 * a given ring with the context.
2636 *
32197aab 2637 * Return: non-zero on error.
73e4d07f 2638 */
e84fe803
NH
2639
2640int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2641 struct intel_engine_cs *engine)
ede7d42b 2642{
0bc40be8 2643 struct drm_device *dev = engine->dev;
8c857917
OM
2644 struct drm_i915_gem_object *ctx_obj;
2645 uint32_t context_size;
84c2377f 2646 struct intel_ringbuffer *ringbuf;
8c857917
OM
2647 int ret;
2648
ede7d42b 2649 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2650 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2651
0bc40be8 2652 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2653
d1675198
AD
2654 /* One extra page as the sharing data between driver and GuC */
2655 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2656
149c86e7 2657 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2658 if (!ctx_obj) {
2659 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2660 return -ENOMEM;
8c857917
OM
2661 }
2662
0bc40be8 2663 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2664 if (IS_ERR(ringbuf)) {
2665 ret = PTR_ERR(ringbuf);
e84fe803 2666 goto error_deref_obj;
8670d6f9
OM
2667 }
2668
0bc40be8 2669 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2670 if (ret) {
2671 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2672 goto error_ringbuf;
84c2377f
OM
2673 }
2674
0bc40be8
TU
2675 ctx->engine[engine->id].ringbuf = ringbuf;
2676 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2677
0bc40be8 2678 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2679 struct drm_i915_gem_request *req;
76c39168 2680
0bc40be8 2681 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2682 if (IS_ERR(req)) {
2683 ret = PTR_ERR(req);
2684 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2685 goto error_ringbuf;
771b9a53
MT
2686 }
2687
0bc40be8 2688 ret = engine->init_context(req);
e84fe803
NH
2689 if (ret) {
2690 DRM_ERROR("ring init context: %d\n",
2691 ret);
2692 i915_gem_request_cancel(req);
2693 goto error_ringbuf;
2694 }
2695 i915_add_request_no_flush(req);
564ddb2f 2696 }
ede7d42b 2697 return 0;
8670d6f9 2698
01101fa7
CW
2699error_ringbuf:
2700 intel_ringbuffer_free(ringbuf);
e84fe803 2701error_deref_obj:
8670d6f9 2702 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2703 ctx->engine[engine->id].ringbuf = NULL;
2704 ctx->engine[engine->id].state = NULL;
8670d6f9 2705 return ret;
ede7d42b 2706}
3e5b6f05
TD
2707
2708void intel_lr_context_reset(struct drm_device *dev,
2709 struct intel_context *ctx)
2710{
2711 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2712 struct intel_engine_cs *engine;
3e5b6f05 2713
b4ac5afc 2714 for_each_engine(engine, dev_priv) {
3e5b6f05 2715 struct drm_i915_gem_object *ctx_obj =
e2f80391 2716 ctx->engine[engine->id].state;
3e5b6f05 2717 struct intel_ringbuffer *ringbuf =
e2f80391 2718 ctx->engine[engine->id].ringbuf;
3e5b6f05
TD
2719 uint32_t *reg_state;
2720 struct page *page;
2721
2722 if (!ctx_obj)
2723 continue;
2724
2725 if (i915_gem_object_get_pages(ctx_obj)) {
2726 WARN(1, "Failed get_pages for context obj\n");
2727 continue;
2728 }
033908ae 2729 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2730 reg_state = kmap_atomic(page);
2731
2732 reg_state[CTX_RING_HEAD+1] = 0;
2733 reg_state[CTX_RING_TAIL+1] = 0;
2734
2735 kunmap_atomic(reg_state);
2736
2737 ringbuf->head = 0;
2738 ringbuf->tail = 0;
2739 }
2740}
This page took 0.373395 seconds and 5 git commands to generate.