drm/i915: Make addressing mode bits in context descriptor configurable
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
73e4d07f 291 *
ca82580c 292 * @ctx: Context to work on
9021ad03 293 * @engine: Engine the descriptor will be used with
73e4d07f 294 *
ca82580c
TU
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 303 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
05d9824b 376 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
d8cb8875
MK
387static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
26720ab9 407static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 408{
6d3d8274 409 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 410 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 411
0bc40be8 412 assert_spin_locked(&engine->execlist_lock);
acdd884a 413
779949f4
PA
414 /*
415 * If irqs are not active generate a warning as batches that finish
416 * without the irqs may get lost and a GPU Hang may occur.
417 */
c033666a 418 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 419
acdd884a 420 /* Try to read in pairs */
0bc40be8 421 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
422 execlist_link) {
423 if (!req0) {
424 req0 = cursor;
6d3d8274 425 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
426 /* Same ctx: ignore first request, as second request
427 * will update tail past first request's workload */
e1fee72c 428 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
429 list_del(&req0->execlist_link);
430 i915_gem_request_unreference(req0);
acdd884a
MT
431 req0 = cursor;
432 } else {
433 req1 = cursor;
c6a2ac71 434 WARN_ON(req1->elsp_submitted);
acdd884a
MT
435 break;
436 }
437 }
438
c6a2ac71
TU
439 if (unlikely(!req0))
440 return;
441
0bc40be8 442 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 443 /*
c6a2ac71
TU
444 * WaIdleLiteRestore: make sure we never cause a lite restore
445 * with HEAD==TAIL.
446 *
447 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
448 * resubmit the request. See gen8_emit_request() for where we
449 * prepare the padding after the end of the request.
53292cdb 450 */
c6a2ac71 451 struct intel_ringbuffer *ringbuf;
53292cdb 452
0bc40be8 453 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
454 req0->tail += 8;
455 req0->tail &= ringbuf->size - 1;
53292cdb
MT
456 }
457
d8cb8875 458 execlists_submit_requests(req0, req1);
acdd884a
MT
459}
460
c6a2ac71 461static unsigned int
e39d42fa 462execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 463{
6d3d8274 464 struct drm_i915_gem_request *head_req;
e981e7b1 465
0bc40be8 466 assert_spin_locked(&engine->execlist_lock);
e981e7b1 467
0bc40be8 468 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 469 struct drm_i915_gem_request,
e981e7b1
TD
470 execlist_link);
471
e39d42fa
TU
472 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
473 return 0;
c6a2ac71
TU
474
475 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
476
477 if (--head_req->elsp_submitted > 0)
478 return 0;
479
e39d42fa
TU
480 list_del(&head_req->execlist_link);
481 i915_gem_request_unreference(head_req);
e981e7b1 482
c6a2ac71 483 return 1;
e981e7b1
TD
484}
485
c6a2ac71 486static u32
0bc40be8 487get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 488 u32 *context_id)
91a41032 489{
c033666a 490 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 491 u32 status;
91a41032 492
c6a2ac71
TU
493 read_pointer %= GEN8_CSB_ENTRIES;
494
0bc40be8 495 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
496
497 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
498 return 0;
91a41032 499
0bc40be8 500 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
501 read_pointer));
502
503 return status;
91a41032
BW
504}
505
73e4d07f 506/**
3f7531c3 507 * intel_lrc_irq_handler() - handle Context Switch interrupts
14bb2c11 508 * @data: tasklet handler passed in unsigned long
73e4d07f
OM
509 *
510 * Check the unread Context Status Buffers and manage the submission of new
511 * contexts to the ELSP accordingly.
512 */
27af5eea 513static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 514{
27af5eea 515 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 516 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 517 u32 status_pointer;
c6a2ac71 518 unsigned int read_pointer, write_pointer;
26720ab9
TU
519 u32 csb[GEN8_CSB_ENTRIES][2];
520 unsigned int csb_read = 0, i;
c6a2ac71
TU
521 unsigned int submit_contexts = 0;
522
3756685a 523 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 524
0bc40be8 525 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 526
0bc40be8 527 read_pointer = engine->next_context_status_buffer;
5590a5f0 528 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 529 if (read_pointer > write_pointer)
dfc53c5e 530 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 531
e981e7b1 532 while (read_pointer < write_pointer) {
26720ab9
TU
533 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
534 break;
535 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
536 &csb[csb_read][1]);
537 csb_read++;
538 }
91a41032 539
26720ab9
TU
540 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
541
542 /* Update the read pointer to the old write pointer. Manual ringbuffer
543 * management ftw </sarcasm> */
544 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
545 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
546 engine->next_context_status_buffer << 8));
547
3756685a 548 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
549
550 spin_lock(&engine->execlist_lock);
551
552 for (i = 0; i < csb_read; i++) {
553 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
554 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
555 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
556 WARN(1, "Lite Restored request removed from queue\n");
557 } else
558 WARN(1, "Preemption without Lite Restore\n");
559 }
560
26720ab9 561 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
562 GEN8_CTX_STATUS_ELEMENT_SWITCH))
563 submit_contexts +=
26720ab9 564 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
565 }
566
c6a2ac71 567 if (submit_contexts) {
0bc40be8 568 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
569 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
570 execlists_context_unqueue(engine);
5af05fef 571 }
e981e7b1 572
0bc40be8 573 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
574
575 if (unlikely(submit_contexts > 2))
576 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
577}
578
c6a2ac71 579static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 580{
4a570db5 581 struct intel_engine_cs *engine = request->engine;
6d3d8274 582 struct drm_i915_gem_request *cursor;
f1ad5a1f 583 int num_elements = 0;
acdd884a 584
27af5eea 585 spin_lock_bh(&engine->execlist_lock);
acdd884a 586
e2f80391 587 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
588 if (++num_elements > 2)
589 break;
590
591 if (num_elements > 2) {
6d3d8274 592 struct drm_i915_gem_request *tail_req;
f1ad5a1f 593
e2f80391 594 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 595 struct drm_i915_gem_request,
f1ad5a1f
OM
596 execlist_link);
597
ae70797d 598 if (request->ctx == tail_req->ctx) {
f1ad5a1f 599 WARN(tail_req->elsp_submitted != 0,
7ba717cf 600 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
601 list_del(&tail_req->execlist_link);
602 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
603 }
604 }
605
e39d42fa 606 i915_gem_request_reference(request);
e2f80391 607 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 608 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 609 if (num_elements == 0)
e2f80391 610 execlists_context_unqueue(engine);
acdd884a 611
27af5eea 612 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
613}
614
2f20055d 615static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 616{
4a570db5 617 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
618 uint32_t flush_domains;
619 int ret;
620
621 flush_domains = 0;
e2f80391 622 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
623 flush_domains = I915_GEM_GPU_DOMAINS;
624
e2f80391 625 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
626 if (ret)
627 return ret;
628
e2f80391 629 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
630 return 0;
631}
632
535fbe82 633static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
634 struct list_head *vmas)
635{
666796da 636 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
637 struct i915_vma *vma;
638 uint32_t flush_domains = 0;
639 bool flush_chipset = false;
640 int ret;
641
642 list_for_each_entry(vma, vmas, exec_list) {
643 struct drm_i915_gem_object *obj = vma->obj;
644
03ade511 645 if (obj->active & other_rings) {
4a570db5 646 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
647 if (ret)
648 return ret;
649 }
ba8b7ccb
OM
650
651 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
652 flush_chipset |= i915_gem_clflush_object(obj, false);
653
654 flush_domains |= obj->base.write_domain;
655 }
656
657 if (flush_domains & I915_GEM_DOMAIN_GTT)
658 wmb();
659
660 /* Unconditionally invalidate gpu caches and ensure that we do flush
661 * any residual writes from the previous batch.
662 */
2f20055d 663 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
664}
665
40e895ce 666int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 667{
24f1d3cc 668 struct intel_engine_cs *engine = request->engine;
9021ad03 669 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 670 int ret;
bc0dce3f 671
6310346e
CW
672 /* Flush enough space to reduce the likelihood of waiting after
673 * we start building the request - in which case we will just
674 * have to repeat work.
675 */
0e93cdd4 676 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 677
9021ad03 678 if (!ce->state) {
978f1e09
CW
679 ret = execlists_context_deferred_alloc(request->ctx, engine);
680 if (ret)
681 return ret;
682 }
683
9021ad03 684 request->ringbuf = ce->ringbuf;
f3cc01f0 685
a7e02199
AD
686 if (i915.enable_guc_submission) {
687 /*
688 * Check that the GuC has space for the request before
689 * going any further, as the i915_add_request() call
690 * later on mustn't fail ...
691 */
7c2c270d 692 ret = i915_guc_wq_check_space(request);
a7e02199
AD
693 if (ret)
694 return ret;
695 }
696
24f1d3cc
CW
697 ret = intel_lr_context_pin(request->ctx, engine);
698 if (ret)
699 return ret;
e28e404c 700
bfa01200
CW
701 ret = intel_ring_begin(request, 0);
702 if (ret)
703 goto err_unpin;
704
9021ad03 705 if (!ce->initialised) {
24f1d3cc
CW
706 ret = engine->init_context(request);
707 if (ret)
708 goto err_unpin;
709
9021ad03 710 ce->initialised = true;
24f1d3cc
CW
711 }
712
713 /* Note that after this point, we have committed to using
714 * this request as it is being used to both track the
715 * state of engine initialisation and liveness of the
716 * golden renderstate above. Think twice before you try
717 * to cancel/unwind this request now.
718 */
719
0e93cdd4 720 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
721 return 0;
722
723err_unpin:
24f1d3cc 724 intel_lr_context_unpin(request->ctx, engine);
e28e404c 725 return ret;
bc0dce3f
JH
726}
727
bc0dce3f
JH
728/*
729 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 730 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
731 *
732 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
733 * really happens during submission is that the context and current tail will be placed
734 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
735 * point, the tail *inside* the context is updated and the ELSP written to.
736 */
7c17d377 737static int
ae70797d 738intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 739{
7c17d377 740 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 741 struct intel_engine_cs *engine = request->engine;
bc0dce3f 742
7c17d377
CW
743 intel_logical_ring_advance(ringbuf);
744 request->tail = ringbuf->tail;
bc0dce3f 745
7c17d377
CW
746 /*
747 * Here we add two extra NOOPs as padding to avoid
748 * lite restore of a context with HEAD==TAIL.
749 *
750 * Caller must reserve WA_TAIL_DWORDS for us!
751 */
752 intel_logical_ring_emit(ringbuf, MI_NOOP);
753 intel_logical_ring_emit(ringbuf, MI_NOOP);
754 intel_logical_ring_advance(ringbuf);
d1675198 755
117897f4 756 if (intel_engine_stopped(engine))
7c17d377 757 return 0;
bc0dce3f 758
a16a4052
CW
759 /* We keep the previous context alive until we retire the following
760 * request. This ensures that any the context object is still pinned
761 * for any residual writes the HW makes into it on the context switch
762 * into the next object following the breadcrumb. Otherwise, we may
763 * retire the context too early.
764 */
765 request->previous_context = engine->last_context;
766 engine->last_context = request->ctx;
f4e2dece 767
7c2c270d
DG
768 if (i915.enable_guc_submission)
769 i915_guc_submit(request);
d1675198
AD
770 else
771 execlists_context_queue(request);
7c17d377
CW
772
773 return 0;
bc0dce3f
JH
774}
775
73e4d07f
OM
776/**
777 * execlists_submission() - submit a batchbuffer for execution, Execlists style
14bb2c11 778 * @params: execbuffer call parameters.
73e4d07f
OM
779 * @args: execbuffer call arguments.
780 * @vmas: list of vmas.
73e4d07f
OM
781 *
782 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
783 * away the submission details of the execbuffer ioctl call.
784 *
785 * Return: non-zero if the submission fails.
786 */
5f19e2bf 787int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 788 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 789 struct list_head *vmas)
454afebd 790{
5f19e2bf 791 struct drm_device *dev = params->dev;
4a570db5 792 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 793 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 794 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 795 u64 exec_start;
ba8b7ccb
OM
796 int instp_mode;
797 u32 instp_mask;
798 int ret;
799
800 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
801 instp_mask = I915_EXEC_CONSTANTS_MASK;
802 switch (instp_mode) {
803 case I915_EXEC_CONSTANTS_REL_GENERAL:
804 case I915_EXEC_CONSTANTS_ABSOLUTE:
805 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 806 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
807 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
808 return -EINVAL;
809 }
810
811 if (instp_mode != dev_priv->relative_constants_mode) {
812 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
813 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
814 return -EINVAL;
815 }
816
817 /* The HW changed the meaning on this bit on gen6 */
818 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
819 }
820 break;
821 default:
822 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
823 return -EINVAL;
824 }
825
ba8b7ccb
OM
826 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
827 DRM_DEBUG("sol reset is gen7 only\n");
828 return -EINVAL;
829 }
830
535fbe82 831 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
832 if (ret)
833 return ret;
834
4a570db5 835 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 836 instp_mode != dev_priv->relative_constants_mode) {
987046ad 837 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
838 if (ret)
839 return ret;
840
841 intel_logical_ring_emit(ringbuf, MI_NOOP);
842 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 843 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
844 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
845 intel_logical_ring_advance(ringbuf);
846
847 dev_priv->relative_constants_mode = instp_mode;
848 }
849
5f19e2bf
JH
850 exec_start = params->batch_obj_vm_offset +
851 args->batch_start_offset;
852
e2f80391 853 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
854 if (ret)
855 return ret;
856
95c24161 857 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 858
8a8edb59 859 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 860
454afebd
OM
861 return 0;
862}
863
e39d42fa 864void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 865{
6d3d8274 866 struct drm_i915_gem_request *req, *tmp;
e39d42fa 867 LIST_HEAD(cancel_list);
c86ee3a9 868
c033666a 869 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
c86ee3a9 870
27af5eea 871 spin_lock_bh(&engine->execlist_lock);
e39d42fa 872 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 873 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 874
e39d42fa 875 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 876 list_del(&req->execlist_link);
f8210795 877 i915_gem_request_unreference(req);
c86ee3a9
TD
878 }
879}
880
0bc40be8 881void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 882{
c033666a 883 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
884 int ret;
885
117897f4 886 if (!intel_engine_initialized(engine))
9832b9da
OM
887 return;
888
666796da 889 ret = intel_engine_idle(engine);
f4457ae7 890 if (ret)
9832b9da 891 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 892 engine->name, ret);
9832b9da
OM
893
894 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
895 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
896 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
897 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
898 return;
899 }
0bc40be8 900 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
901}
902
4866d729 903int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 904{
4a570db5 905 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
906 int ret;
907
e2f80391 908 if (!engine->gpu_caches_dirty)
48e29f55
OM
909 return 0;
910
e2f80391 911 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
912 if (ret)
913 return ret;
914
e2f80391 915 engine->gpu_caches_dirty = false;
48e29f55
OM
916 return 0;
917}
918
e2efd130 919static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 920 struct intel_engine_cs *engine)
dcb4c12a 921{
24f1d3cc 922 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 923 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
924 void *vaddr;
925 u32 *lrc_reg_state;
ca82580c 926 int ret;
dcb4c12a 927
24f1d3cc 928 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 929
9021ad03 930 if (ce->pin_count++)
24f1d3cc
CW
931 return 0;
932
9021ad03
CW
933 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
934 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 935 if (ret)
24f1d3cc 936 goto err;
7ba717cf 937
9021ad03 938 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
939 if (IS_ERR(vaddr)) {
940 ret = PTR_ERR(vaddr);
82352e90
TU
941 goto unpin_ctx_obj;
942 }
943
7d774cac
TU
944 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
945
9021ad03 946 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
e84fe803 947 if (ret)
7d774cac 948 goto unpin_map;
d1675198 949
24f1d3cc 950 i915_gem_context_reference(ctx);
9021ad03 951 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 952 intel_lr_context_descriptor_update(ctx, engine);
9021ad03
CW
953
954 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
955 ce->lrc_reg_state = lrc_reg_state;
956 ce->state->dirty = true;
e93c28f3 957
e84fe803
NH
958 /* Invalidate GuC TLB. */
959 if (i915.enable_guc_submission)
960 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 961
24f1d3cc 962 return 0;
7ba717cf 963
7d774cac 964unpin_map:
9021ad03 965 i915_gem_object_unpin_map(ce->state);
7ba717cf 966unpin_ctx_obj:
9021ad03 967 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 968err:
9021ad03 969 ce->pin_count = 0;
e84fe803
NH
970 return ret;
971}
972
e2efd130 973void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 974 struct intel_engine_cs *engine)
e84fe803 975{
9021ad03 976 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 977
24f1d3cc 978 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
9021ad03 979 GEM_BUG_ON(ce->pin_count == 0);
321fe304 980
9021ad03 981 if (--ce->pin_count)
24f1d3cc 982 return;
e84fe803 983
9021ad03 984 intel_unpin_ringbuffer_obj(ce->ringbuf);
dcb4c12a 985
9021ad03
CW
986 i915_gem_object_unpin_map(ce->state);
987 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 988
9021ad03
CW
989 ce->lrc_vma = NULL;
990 ce->lrc_desc = 0;
991 ce->lrc_reg_state = NULL;
321fe304 992
24f1d3cc 993 i915_gem_context_unreference(ctx);
dcb4c12a
OM
994}
995
e2be4faf 996static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
997{
998 int ret, i;
4a570db5 999 struct intel_engine_cs *engine = req->engine;
e2be4faf 1000 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1001 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1002
cd7feaaa 1003 if (w->count == 0)
771b9a53
MT
1004 return 0;
1005
e2f80391 1006 engine->gpu_caches_dirty = true;
4866d729 1007 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1008 if (ret)
1009 return ret;
1010
987046ad 1011 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1012 if (ret)
1013 return ret;
1014
1015 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1016 for (i = 0; i < w->count; i++) {
f92a9162 1017 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1018 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1019 }
1020 intel_logical_ring_emit(ringbuf, MI_NOOP);
1021
1022 intel_logical_ring_advance(ringbuf);
1023
e2f80391 1024 engine->gpu_caches_dirty = true;
4866d729 1025 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1026 if (ret)
1027 return ret;
1028
1029 return 0;
1030}
1031
83b8a982 1032#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1033 do { \
83b8a982
AS
1034 int __index = (index)++; \
1035 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1036 return -ENOSPC; \
1037 } \
83b8a982 1038 batch[__index] = (cmd); \
17ee950d
AS
1039 } while (0)
1040
8f40db77 1041#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1042 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1043
1044/*
1045 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1046 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1047 * but there is a slight complication as this is applied in WA batch where the
1048 * values are only initialized once so we cannot take register value at the
1049 * beginning and reuse it further; hence we save its value to memory, upload a
1050 * constant value with bit21 set and then we restore it back with the saved value.
1051 * To simplify the WA, a constant value is formed by using the default value
1052 * of this register. This shouldn't be a problem because we are only modifying
1053 * it for a short period and this batch in non-premptible. We can ofcourse
1054 * use additional instructions that read the actual value of the register
1055 * at that time and set our bit of interest but it makes the WA complicated.
1056 *
1057 * This WA is also required for Gen9 so extracting as a function avoids
1058 * code duplication.
1059 */
0bc40be8 1060static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1061 uint32_t *const batch,
1062 uint32_t index)
1063{
1064 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1065
a4106a78 1066 /*
fe905819 1067 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
1068 * This WA is implemented in skl_init_clock_gating() but since
1069 * this batch updates GEN8_L3SQCREG4 with default value we need to
1070 * set this bit here to retain the WA during flush.
1071 */
fe905819
MK
1072 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1073 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
a4106a78
AS
1074 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1075
f1afe24f 1076 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1077 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1078 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1079 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1080 wa_ctx_emit(batch, index, 0);
1081
1082 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1083 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1084 wa_ctx_emit(batch, index, l3sqc4_flush);
1085
1086 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1087 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1088 PIPE_CONTROL_DC_FLUSH_ENABLE));
1089 wa_ctx_emit(batch, index, 0);
1090 wa_ctx_emit(batch, index, 0);
1091 wa_ctx_emit(batch, index, 0);
1092 wa_ctx_emit(batch, index, 0);
1093
f1afe24f 1094 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1095 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1096 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1097 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1098 wa_ctx_emit(batch, index, 0);
9e000847
AS
1099
1100 return index;
1101}
1102
17ee950d
AS
1103static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1104 uint32_t offset,
1105 uint32_t start_alignment)
1106{
1107 return wa_ctx->offset = ALIGN(offset, start_alignment);
1108}
1109
1110static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1111 uint32_t offset,
1112 uint32_t size_alignment)
1113{
1114 wa_ctx->size = offset - wa_ctx->offset;
1115
1116 WARN(wa_ctx->size % size_alignment,
1117 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1118 wa_ctx->size, size_alignment);
1119 return 0;
1120}
1121
1122/**
1123 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1124 *
14bb2c11 1125 * @engine: only applicable for RCS
17ee950d
AS
1126 * @wa_ctx: structure representing wa_ctx
1127 * offset: specifies start of the batch, should be cache-aligned. This is updated
1128 * with the offset value received as input.
1129 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1130 * @batch: page in which WA are loaded
1131 * @offset: This field specifies the start of the batch, it should be
1132 * cache-aligned otherwise it is adjusted accordingly.
1133 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1134 * initialized at the beginning and shared across all contexts but this field
1135 * helps us to have multiple batches at different offsets and select them based
1136 * on a criteria. At the moment this batch always start at the beginning of the page
1137 * and at this point we don't have multiple wa_ctx batch buffers.
1138 *
1139 * The number of WA applied are not known at the beginning; we use this field
1140 * to return the no of DWORDS written.
4d78c8dc 1141 *
17ee950d
AS
1142 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1143 * so it adds NOOPs as padding to make it cacheline aligned.
1144 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1145 * makes a complete batch buffer.
1146 *
1147 * Return: non-zero if we exceed the PAGE_SIZE limit.
1148 */
1149
0bc40be8 1150static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1151 struct i915_wa_ctx_bb *wa_ctx,
1152 uint32_t *const batch,
1153 uint32_t *offset)
1154{
0160f055 1155 uint32_t scratch_addr;
17ee950d
AS
1156 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1157
7ad00d1a 1158 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1159 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1160
c82435bb 1161 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1162 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1163 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1164 if (rc < 0)
1165 return rc;
1166 index = rc;
c82435bb
AS
1167 }
1168
0160f055
AS
1169 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1170 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1171 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1172
83b8a982
AS
1173 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1174 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1175 PIPE_CONTROL_GLOBAL_GTT_IVB |
1176 PIPE_CONTROL_CS_STALL |
1177 PIPE_CONTROL_QW_WRITE));
1178 wa_ctx_emit(batch, index, scratch_addr);
1179 wa_ctx_emit(batch, index, 0);
1180 wa_ctx_emit(batch, index, 0);
1181 wa_ctx_emit(batch, index, 0);
0160f055 1182
17ee950d
AS
1183 /* Pad to end of cacheline */
1184 while (index % CACHELINE_DWORDS)
83b8a982 1185 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1186
1187 /*
1188 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1189 * execution depends on the length specified in terms of cache lines
1190 * in the register CTX_RCS_INDIRECT_CTX
1191 */
1192
1193 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1194}
1195
1196/**
1197 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1198 *
14bb2c11 1199 * @engine: only applicable for RCS
17ee950d
AS
1200 * @wa_ctx: structure representing wa_ctx
1201 * offset: specifies start of the batch, should be cache-aligned.
1202 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1203 * @batch: page in which WA are loaded
17ee950d
AS
1204 * @offset: This field specifies the start of this batch.
1205 * This batch is started immediately after indirect_ctx batch. Since we ensure
1206 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1207 *
1208 * The number of DWORDS written are returned using this field.
1209 *
1210 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1211 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1212 */
0bc40be8 1213static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1214 struct i915_wa_ctx_bb *wa_ctx,
1215 uint32_t *const batch,
1216 uint32_t *offset)
1217{
1218 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1219
7ad00d1a 1220 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1221 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1222
83b8a982 1223 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1224
1225 return wa_ctx_end(wa_ctx, *offset = index, 1);
1226}
1227
0bc40be8 1228static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1229 struct i915_wa_ctx_bb *wa_ctx,
1230 uint32_t *const batch,
1231 uint32_t *offset)
1232{
a4106a78 1233 int ret;
0504cffc
AS
1234 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1235
0907c8f7 1236 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1237 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1238 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1239 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1240
a4106a78 1241 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1242 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1243 if (ret < 0)
1244 return ret;
1245 index = ret;
1246
066d4628
MK
1247 /* WaClearSlmSpaceAtContextSwitch:kbl */
1248 /* Actual scratch location is at 128 bytes offset */
1249 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1250 uint32_t scratch_addr
1251 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1252
1253 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1254 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1255 PIPE_CONTROL_GLOBAL_GTT_IVB |
1256 PIPE_CONTROL_CS_STALL |
1257 PIPE_CONTROL_QW_WRITE));
1258 wa_ctx_emit(batch, index, scratch_addr);
1259 wa_ctx_emit(batch, index, 0);
1260 wa_ctx_emit(batch, index, 0);
1261 wa_ctx_emit(batch, index, 0);
1262 }
0504cffc
AS
1263 /* Pad to end of cacheline */
1264 while (index % CACHELINE_DWORDS)
1265 wa_ctx_emit(batch, index, MI_NOOP);
1266
1267 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1268}
1269
0bc40be8 1270static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1271 struct i915_wa_ctx_bb *wa_ctx,
1272 uint32_t *const batch,
1273 uint32_t *offset)
1274{
1275 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1276
9b01435d 1277 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1278 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1279 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1280 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1281 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1282 wa_ctx_emit(batch, index,
1283 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1284 wa_ctx_emit(batch, index, MI_NOOP);
1285 }
1286
b1e429fe 1287 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1288 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1289 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1290
1291 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1292 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1293
1294 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1295 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1296
1297 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1298 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1299
1300 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1301 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1302 wa_ctx_emit(batch, index, 0x0);
1303 wa_ctx_emit(batch, index, MI_NOOP);
1304 }
1305
0907c8f7 1306 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1307 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1308 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1309 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1310
0504cffc
AS
1311 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1312
1313 return wa_ctx_end(wa_ctx, *offset = index, 1);
1314}
1315
0bc40be8 1316static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1317{
1318 int ret;
1319
c033666a 1320 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
0bc40be8 1321 PAGE_ALIGN(size));
fe3db79b 1322 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1323 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1324 ret = PTR_ERR(engine->wa_ctx.obj);
1325 engine->wa_ctx.obj = NULL;
1326 return ret;
17ee950d
AS
1327 }
1328
0bc40be8 1329 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1330 if (ret) {
1331 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1332 ret);
0bc40be8 1333 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1334 return ret;
1335 }
1336
1337 return 0;
1338}
1339
0bc40be8 1340static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1341{
0bc40be8
TU
1342 if (engine->wa_ctx.obj) {
1343 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1344 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1345 engine->wa_ctx.obj = NULL;
17ee950d
AS
1346 }
1347}
1348
0bc40be8 1349static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1350{
1351 int ret;
1352 uint32_t *batch;
1353 uint32_t offset;
1354 struct page *page;
0bc40be8 1355 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1356
0bc40be8 1357 WARN_ON(engine->id != RCS);
17ee950d 1358
5e60d790 1359 /* update this when WA for higher Gen are added */
c033666a 1360 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1361 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1362 INTEL_GEN(engine->i915));
5e60d790 1363 return 0;
0504cffc 1364 }
5e60d790 1365
c4db7599 1366 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1367 if (engine->scratch.obj == NULL) {
1368 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1369 return -EINVAL;
1370 }
1371
0bc40be8 1372 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1373 if (ret) {
1374 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1375 return ret;
1376 }
1377
033908ae 1378 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1379 batch = kmap_atomic(page);
1380 offset = 0;
1381
c033666a 1382 if (IS_GEN8(engine->i915)) {
0bc40be8 1383 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1384 &wa_ctx->indirect_ctx,
1385 batch,
1386 &offset);
1387 if (ret)
1388 goto out;
1389
0bc40be8 1390 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1391 &wa_ctx->per_ctx,
1392 batch,
1393 &offset);
1394 if (ret)
1395 goto out;
c033666a 1396 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1397 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1398 &wa_ctx->indirect_ctx,
1399 batch,
1400 &offset);
1401 if (ret)
1402 goto out;
1403
0bc40be8 1404 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1405 &wa_ctx->per_ctx,
1406 batch,
1407 &offset);
1408 if (ret)
1409 goto out;
17ee950d
AS
1410 }
1411
1412out:
1413 kunmap_atomic(batch);
1414 if (ret)
0bc40be8 1415 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1416
1417 return ret;
1418}
1419
04794adb
TU
1420static void lrc_init_hws(struct intel_engine_cs *engine)
1421{
c033666a 1422 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1423
1424 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1425 (u32)engine->status_page.gfx_addr);
1426 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1427}
1428
0bc40be8 1429static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1430{
c033666a 1431 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1432 unsigned int next_context_status_buffer_hw;
9b1136d5 1433
04794adb 1434 lrc_init_hws(engine);
e84fe803 1435
0bc40be8
TU
1436 I915_WRITE_IMR(engine,
1437 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1438 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1439
0bc40be8 1440 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1441 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1442 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1443 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1444
1445 /*
1446 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1447 * zero, we need to read the write pointer from hardware and use its
1448 * value because "this register is power context save restored".
1449 * Effectively, these states have been observed:
1450 *
1451 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1452 * BDW | CSB regs not reset | CSB regs reset |
1453 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1454 * SKL | ? | ? |
1455 * BXT | ? | ? |
dfc53c5e 1456 */
5590a5f0 1457 next_context_status_buffer_hw =
0bc40be8 1458 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1459
1460 /*
1461 * When the CSB registers are reset (also after power-up / gpu reset),
1462 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1463 * this special case, so the first element read is CSB[0].
1464 */
1465 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1466 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1467
0bc40be8
TU
1468 engine->next_context_status_buffer = next_context_status_buffer_hw;
1469 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1470
fc0768ce 1471 intel_engine_init_hangcheck(engine);
9b1136d5 1472
0ccdacf6 1473 return intel_mocs_init_engine(engine);
9b1136d5
OM
1474}
1475
0bc40be8 1476static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1477{
c033666a 1478 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1479 int ret;
1480
0bc40be8 1481 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1482 if (ret)
1483 return ret;
1484
1485 /* We need to disable the AsyncFlip performance optimisations in order
1486 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1487 * programmed to '1' on all products.
1488 *
1489 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1490 */
1491 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1492
9b1136d5
OM
1493 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1494
0bc40be8 1495 return init_workarounds_ring(engine);
9b1136d5
OM
1496}
1497
0bc40be8 1498static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1499{
1500 int ret;
1501
0bc40be8 1502 ret = gen8_init_common_ring(engine);
82ef822e
DL
1503 if (ret)
1504 return ret;
1505
0bc40be8 1506 return init_workarounds_ring(engine);
82ef822e
DL
1507}
1508
7a01a0a2
MT
1509static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1510{
1511 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1512 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1513 struct intel_ringbuffer *ringbuf = req->ringbuf;
1514 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1515 int i, ret;
1516
987046ad 1517 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1518 if (ret)
1519 return ret;
1520
1521 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1522 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1523 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1524
e2f80391
TU
1525 intel_logical_ring_emit_reg(ringbuf,
1526 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1527 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1528 intel_logical_ring_emit_reg(ringbuf,
1529 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1530 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1531 }
1532
1533 intel_logical_ring_emit(ringbuf, MI_NOOP);
1534 intel_logical_ring_advance(ringbuf);
1535
1536 return 0;
1537}
1538
be795fc1 1539static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1540 u64 offset, unsigned dispatch_flags)
15648585 1541{
be795fc1 1542 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1543 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1544 int ret;
1545
7a01a0a2
MT
1546 /* Don't rely in hw updating PDPs, specially in lite-restore.
1547 * Ideally, we should set Force PD Restore in ctx descriptor,
1548 * but we can't. Force Restore would be a second option, but
1549 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1550 * not idle). PML4 is allocated during ppgtt init so this is
1551 * not needed in 48-bit.*/
7a01a0a2 1552 if (req->ctx->ppgtt &&
666796da 1553 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1554 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1555 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1556 ret = intel_logical_ring_emit_pdps(req);
1557 if (ret)
1558 return ret;
1559 }
7a01a0a2 1560
666796da 1561 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1562 }
1563
987046ad 1564 ret = intel_ring_begin(req, 4);
15648585
OM
1565 if (ret)
1566 return ret;
1567
1568 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1569 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1570 (ppgtt<<8) |
1571 (dispatch_flags & I915_DISPATCH_RS ?
1572 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1573 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1574 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1575 intel_logical_ring_emit(ringbuf, MI_NOOP);
1576 intel_logical_ring_advance(ringbuf);
1577
1578 return 0;
1579}
1580
0bc40be8 1581static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1582{
c033666a 1583 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1584 unsigned long flags;
1585
7cd512f1 1586 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1587 return false;
1588
1589 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1590 if (engine->irq_refcount++ == 0) {
1591 I915_WRITE_IMR(engine,
1592 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1593 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1594 }
1595 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1596
1597 return true;
1598}
1599
0bc40be8 1600static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1601{
c033666a 1602 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1603 unsigned long flags;
1604
1605 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1606 if (--engine->irq_refcount == 0) {
1607 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1608 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1609 }
1610 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1611}
1612
7deb4d39 1613static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1614 u32 invalidate_domains,
1615 u32 unused)
1616{
7deb4d39 1617 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1618 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1619 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1620 uint32_t cmd;
1621 int ret;
1622
987046ad 1623 ret = intel_ring_begin(request, 4);
4712274c
OM
1624 if (ret)
1625 return ret;
1626
1627 cmd = MI_FLUSH_DW + 1;
1628
f0a1fb10
CW
1629 /* We always require a command barrier so that subsequent
1630 * commands, such as breadcrumb interrupts, are strictly ordered
1631 * wrt the contents of the write cache being flushed to memory
1632 * (and thus being coherent from the CPU).
1633 */
1634 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1635
1636 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1637 cmd |= MI_INVALIDATE_TLB;
4a570db5 1638 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1639 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1640 }
1641
1642 intel_logical_ring_emit(ringbuf, cmd);
1643 intel_logical_ring_emit(ringbuf,
1644 I915_GEM_HWS_SCRATCH_ADDR |
1645 MI_FLUSH_DW_USE_GTT);
1646 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1647 intel_logical_ring_emit(ringbuf, 0); /* value */
1648 intel_logical_ring_advance(ringbuf);
1649
1650 return 0;
1651}
1652
7deb4d39 1653static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1654 u32 invalidate_domains,
1655 u32 flush_domains)
1656{
7deb4d39 1657 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1658 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1659 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
0b2d0934 1660 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1661 u32 flags = 0;
1662 int ret;
0b2d0934 1663 int len;
4712274c
OM
1664
1665 flags |= PIPE_CONTROL_CS_STALL;
1666
1667 if (flush_domains) {
1668 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1669 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1670 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1671 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1672 }
1673
1674 if (invalidate_domains) {
1675 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1676 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1677 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1678 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1679 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1680 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1681 flags |= PIPE_CONTROL_QW_WRITE;
1682 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1683
1a5a9ce7
BW
1684 /*
1685 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1686 * pipe control.
1687 */
c033666a 1688 if (IS_GEN9(request->i915))
1a5a9ce7 1689 vf_flush_wa = true;
0b2d0934
MK
1690
1691 /* WaForGAMHang:kbl */
1692 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1693 dc_flush_wa = true;
1a5a9ce7 1694 }
9647ff36 1695
0b2d0934
MK
1696 len = 6;
1697
1698 if (vf_flush_wa)
1699 len += 6;
1700
1701 if (dc_flush_wa)
1702 len += 12;
1703
1704 ret = intel_ring_begin(request, len);
4712274c
OM
1705 if (ret)
1706 return ret;
1707
9647ff36
ID
1708 if (vf_flush_wa) {
1709 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1710 intel_logical_ring_emit(ringbuf, 0);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_emit(ringbuf, 0);
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_emit(ringbuf, 0);
1715 }
1716
0b2d0934
MK
1717 if (dc_flush_wa) {
1718 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1719 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 intel_logical_ring_emit(ringbuf, 0);
1722 intel_logical_ring_emit(ringbuf, 0);
1723 intel_logical_ring_emit(ringbuf, 0);
1724 }
1725
4712274c
OM
1726 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1727 intel_logical_ring_emit(ringbuf, flags);
1728 intel_logical_ring_emit(ringbuf, scratch_addr);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_emit(ringbuf, 0);
1731 intel_logical_ring_emit(ringbuf, 0);
0b2d0934
MK
1732
1733 if (dc_flush_wa) {
1734 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1735 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1736 intel_logical_ring_emit(ringbuf, 0);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 }
1741
4712274c
OM
1742 intel_logical_ring_advance(ringbuf);
1743
1744 return 0;
1745}
1746
c04e0f3b 1747static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1748{
0bc40be8 1749 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1750}
1751
0bc40be8 1752static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1753{
0bc40be8 1754 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1755}
1756
c04e0f3b 1757static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1758{
319404df
ID
1759 /*
1760 * On BXT A steppings there is a HW coherency issue whereby the
1761 * MI_STORE_DATA_IMM storing the completed request's seqno
1762 * occasionally doesn't invalidate the CPU cache. Work around this by
1763 * clflushing the corresponding cacheline whenever the caller wants
1764 * the coherency to be guaranteed. Note that this cacheline is known
1765 * to be clean at this point, since we only write it in
1766 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1767 * this clflush in practice becomes an invalidate operation.
1768 */
c04e0f3b 1769 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1770}
1771
0bc40be8 1772static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1773{
0bc40be8 1774 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1775
1776 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1777 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1778}
1779
7c17d377
CW
1780/*
1781 * Reserve space for 2 NOOPs at the end of each request to be
1782 * used as a workaround for not being allowed to do lite
1783 * restore with HEAD==TAIL (WaIdleLiteRestore).
1784 */
1785#define WA_TAIL_DWORDS 2
1786
c4e76638 1787static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1788{
c4e76638 1789 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1790 int ret;
1791
987046ad 1792 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1793 if (ret)
1794 return ret;
1795
7c17d377
CW
1796 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1797 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1798
4da46e1e 1799 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1800 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1801 intel_logical_ring_emit(ringbuf,
a58c01aa 1802 intel_hws_seqno_address(request->engine) |
7c17d377 1803 MI_FLUSH_DW_USE_GTT);
4da46e1e 1804 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1805 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1806 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1807 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1808 return intel_logical_ring_advance_and_submit(request);
1809}
4da46e1e 1810
7c17d377
CW
1811static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1812{
1813 struct intel_ringbuffer *ringbuf = request->ringbuf;
1814 int ret;
53292cdb 1815
987046ad 1816 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1817 if (ret)
1818 return ret;
1819
ce81a65c
MW
1820 /* We're using qword write, seqno should be aligned to 8 bytes. */
1821 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1822
7c17d377
CW
1823 /* w/a for post sync ops following a GPGPU operation we
1824 * need a prior CS_STALL, which is emitted by the flush
1825 * following the batch.
1826 */
ce81a65c 1827 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1828 intel_logical_ring_emit(ringbuf,
1829 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1830 PIPE_CONTROL_CS_STALL |
1831 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1832 intel_logical_ring_emit(ringbuf,
1833 intel_hws_seqno_address(request->engine));
7c17d377
CW
1834 intel_logical_ring_emit(ringbuf, 0);
1835 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1836 /* We're thrashing one dword of HWS. */
1837 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1838 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1839 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1840 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1841}
1842
be01363f 1843static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1844{
cef437ad 1845 struct render_state so;
cef437ad
DL
1846 int ret;
1847
4a570db5 1848 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1849 if (ret)
1850 return ret;
1851
1852 if (so.rodata == NULL)
1853 return 0;
1854
4a570db5 1855 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1856 I915_DISPATCH_SECURE);
cef437ad
DL
1857 if (ret)
1858 goto out;
1859
4a570db5 1860 ret = req->engine->emit_bb_start(req,
84e81020
AS
1861 (so.ggtt_offset + so.aux_batch_offset),
1862 I915_DISPATCH_SECURE);
1863 if (ret)
1864 goto out;
1865
b2af0376 1866 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1867
cef437ad
DL
1868out:
1869 i915_gem_render_state_fini(&so);
1870 return ret;
1871}
1872
8753181e 1873static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1874{
1875 int ret;
1876
e2be4faf 1877 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1878 if (ret)
1879 return ret;
1880
3bbaba0c
PA
1881 ret = intel_rcs_context_init_mocs(req);
1882 /*
1883 * Failing to program the MOCS is non-fatal.The system will not
1884 * run at peak performance. So generate an error and carry on.
1885 */
1886 if (ret)
1887 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1888
be01363f 1889 return intel_lr_context_render_state_init(req);
e7778be1
TD
1890}
1891
73e4d07f
OM
1892/**
1893 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1894 *
14bb2c11 1895 * @engine: Engine Command Streamer.
73e4d07f
OM
1896 *
1897 */
0bc40be8 1898void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1899{
6402c330 1900 struct drm_i915_private *dev_priv;
9832b9da 1901
117897f4 1902 if (!intel_engine_initialized(engine))
48d82387
OM
1903 return;
1904
27af5eea
TU
1905 /*
1906 * Tasklet cannot be active at this point due intel_mark_active/idle
1907 * so this is just for documentation.
1908 */
1909 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1910 tasklet_kill(&engine->irq_tasklet);
1911
c033666a 1912 dev_priv = engine->i915;
6402c330 1913
0bc40be8
TU
1914 if (engine->buffer) {
1915 intel_logical_ring_stop(engine);
1916 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1917 }
48d82387 1918
0bc40be8
TU
1919 if (engine->cleanup)
1920 engine->cleanup(engine);
48d82387 1921
0bc40be8
TU
1922 i915_cmd_parser_fini_ring(engine);
1923 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1924
0bc40be8 1925 if (engine->status_page.obj) {
7d774cac 1926 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1927 engine->status_page.obj = NULL;
48d82387 1928 }
24f1d3cc 1929 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1930
0bc40be8
TU
1931 engine->idle_lite_restore_wa = 0;
1932 engine->disable_lite_restore_wa = false;
1933 engine->ctx_desc_template = 0;
ca82580c 1934
0bc40be8 1935 lrc_destroy_wa_ctx_obj(engine);
c033666a 1936 engine->i915 = NULL;
454afebd
OM
1937}
1938
c9cacf93 1939static void
e1382efb 1940logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1941{
1942 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1943 engine->init_hw = gen8_init_common_ring;
1944 engine->emit_request = gen8_emit_request;
1945 engine->emit_flush = gen8_emit_flush;
1946 engine->irq_get = gen8_logical_ring_get_irq;
1947 engine->irq_put = gen8_logical_ring_put_irq;
1948 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1949 engine->get_seqno = gen8_get_seqno;
1950 engine->set_seqno = gen8_set_seqno;
c033666a 1951 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
c04e0f3b 1952 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1953 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1954 }
1955}
1956
d9f3af96 1957static inline void
0bc40be8 1958logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1959{
0bc40be8
TU
1960 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1961 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
e1382efb 1962 init_waitqueue_head(&engine->irq_queue);
d9f3af96
TU
1963}
1964
7d774cac 1965static int
04794adb
TU
1966lrc_setup_hws(struct intel_engine_cs *engine,
1967 struct drm_i915_gem_object *dctx_obj)
1968{
7d774cac 1969 void *hws;
04794adb
TU
1970
1971 /* The HWSP is part of the default context object in LRC mode. */
1972 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1973 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1974 hws = i915_gem_object_pin_map(dctx_obj);
1975 if (IS_ERR(hws))
1976 return PTR_ERR(hws);
1977 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1978 engine->status_page.obj = dctx_obj;
7d774cac
TU
1979
1980 return 0;
04794adb
TU
1981}
1982
e1382efb
CW
1983static const struct logical_ring_info {
1984 const char *name;
1985 unsigned exec_id;
1986 unsigned guc_id;
1987 u32 mmio_base;
1988 unsigned irq_shift;
1989} logical_rings[] = {
1990 [RCS] = {
1991 .name = "render ring",
1992 .exec_id = I915_EXEC_RENDER,
1993 .guc_id = GUC_RENDER_ENGINE,
1994 .mmio_base = RENDER_RING_BASE,
1995 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1996 },
1997 [BCS] = {
1998 .name = "blitter ring",
1999 .exec_id = I915_EXEC_BLT,
2000 .guc_id = GUC_BLITTER_ENGINE,
2001 .mmio_base = BLT_RING_BASE,
2002 .irq_shift = GEN8_BCS_IRQ_SHIFT,
2003 },
2004 [VCS] = {
2005 .name = "bsd ring",
2006 .exec_id = I915_EXEC_BSD,
2007 .guc_id = GUC_VIDEO_ENGINE,
2008 .mmio_base = GEN6_BSD_RING_BASE,
2009 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
2010 },
2011 [VCS2] = {
2012 .name = "bsd2 ring",
2013 .exec_id = I915_EXEC_BSD,
2014 .guc_id = GUC_VIDEO_ENGINE2,
2015 .mmio_base = GEN8_BSD2_RING_BASE,
2016 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
2017 },
2018 [VECS] = {
2019 .name = "video enhancement ring",
2020 .exec_id = I915_EXEC_VEBOX,
2021 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2022 .mmio_base = VEBOX_RING_BASE,
2023 .irq_shift = GEN8_VECS_IRQ_SHIFT,
2024 },
2025};
2026
2027static struct intel_engine_cs *
2028logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
454afebd 2029{
e1382efb 2030 const struct logical_ring_info *info = &logical_rings[id];
3756685a 2031 struct drm_i915_private *dev_priv = to_i915(dev);
e1382efb 2032 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 2033 enum forcewake_domains fw_domains;
48d82387 2034
e1382efb
CW
2035 engine->id = id;
2036 engine->name = info->name;
2037 engine->exec_id = info->exec_id;
2038 engine->guc_id = info->guc_id;
2039 engine->mmio_base = info->mmio_base;
48d82387 2040
c033666a 2041 engine->i915 = dev_priv;
acdd884a 2042
e1382efb
CW
2043 /* Intentionally left blank. */
2044 engine->buffer = NULL;
ca82580c 2045
3756685a
TU
2046 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2047 RING_ELSP(engine),
2048 FW_REG_WRITE);
2049
2050 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2051 RING_CONTEXT_STATUS_PTR(engine),
2052 FW_REG_READ | FW_REG_WRITE);
2053
2054 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2055 RING_CONTEXT_STATUS_BUF_BASE(engine),
2056 FW_REG_READ);
2057
2058 engine->fw_domains = fw_domains;
2059
e1382efb
CW
2060 INIT_LIST_HEAD(&engine->active_list);
2061 INIT_LIST_HEAD(&engine->request_list);
2062 INIT_LIST_HEAD(&engine->buffers);
2063 INIT_LIST_HEAD(&engine->execlist_queue);
2064 spin_lock_init(&engine->execlist_lock);
2065
2066 tasklet_init(&engine->irq_tasklet,
2067 intel_lrc_irq_handler, (unsigned long)engine);
2068
2069 logical_ring_init_platform_invariants(engine);
2070 logical_ring_default_vfuncs(engine);
2071 logical_ring_default_irqs(engine, info->irq_shift);
2072
2073 intel_engine_init_hangcheck(engine);
c033666a 2074 i915_gem_batch_pool_init(dev, &engine->batch_pool);
e1382efb
CW
2075
2076 return engine;
2077}
2078
2079static int
2080logical_ring_init(struct intel_engine_cs *engine)
2081{
e2efd130 2082 struct i915_gem_context *dctx = engine->i915->kernel_context;
e1382efb
CW
2083 int ret;
2084
0bc40be8 2085 ret = i915_cmd_parser_init_ring(engine);
48d82387 2086 if (ret)
b0366a54 2087 goto error;
48d82387 2088
978f1e09 2089 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2090 if (ret)
b0366a54 2091 goto error;
e84fe803
NH
2092
2093 /* As this is the default context, always pin it */
24f1d3cc 2094 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2095 if (ret) {
24f1d3cc
CW
2096 DRM_ERROR("Failed to pin context for %s: %d\n",
2097 engine->name, ret);
b0366a54 2098 goto error;
e84fe803 2099 }
564ddb2f 2100
04794adb 2101 /* And setup the hardware status page. */
7d774cac
TU
2102 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2103 if (ret) {
2104 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2105 goto error;
2106 }
04794adb 2107
b0366a54
DG
2108 return 0;
2109
2110error:
0bc40be8 2111 intel_logical_ring_cleanup(engine);
564ddb2f 2112 return ret;
454afebd
OM
2113}
2114
2115static int logical_render_ring_init(struct drm_device *dev)
2116{
e1382efb 2117 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
99be1dfe 2118 int ret;
454afebd 2119
73d477f6 2120 if (HAS_L3_DPF(dev))
e2f80391 2121 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2122
c9cacf93 2123 /* Override some for render ring. */
82ef822e 2124 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2125 engine->init_hw = gen9_init_render_ring;
82ef822e 2126 else
e2f80391
TU
2127 engine->init_hw = gen8_init_render_ring;
2128 engine->init_context = gen8_init_rcs_context;
2129 engine->cleanup = intel_fini_pipe_control;
2130 engine->emit_flush = gen8_emit_flush_render;
2131 engine->emit_request = gen8_emit_request_render;
9b1136d5 2132
e2f80391 2133 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2134 if (ret)
2135 return ret;
2136
e2f80391 2137 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2138 if (ret) {
2139 /*
2140 * We continue even if we fail to initialize WA batch
2141 * because we only expect rare glitches but nothing
2142 * critical to prevent us from using GPU
2143 */
2144 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2145 ret);
2146 }
2147
e1382efb 2148 ret = logical_ring_init(engine);
c4db7599 2149 if (ret) {
e2f80391 2150 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2151 }
17ee950d
AS
2152
2153 return ret;
454afebd
OM
2154}
2155
2156static int logical_bsd_ring_init(struct drm_device *dev)
2157{
e1382efb 2158 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
454afebd 2159
e1382efb 2160 return logical_ring_init(engine);
454afebd
OM
2161}
2162
2163static int logical_bsd2_ring_init(struct drm_device *dev)
2164{
e1382efb 2165 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
454afebd 2166
e1382efb 2167 return logical_ring_init(engine);
454afebd
OM
2168}
2169
2170static int logical_blt_ring_init(struct drm_device *dev)
2171{
e1382efb 2172 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
9b1136d5 2173
e1382efb 2174 return logical_ring_init(engine);
454afebd
OM
2175}
2176
2177static int logical_vebox_ring_init(struct drm_device *dev)
2178{
e1382efb 2179 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
9b1136d5 2180
e1382efb 2181 return logical_ring_init(engine);
454afebd
OM
2182}
2183
73e4d07f
OM
2184/**
2185 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2186 * @dev: DRM device.
2187 *
2188 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2189 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2190 * those engines that are present in the hardware.
2191 *
2192 * Return: non-zero if the initialization failed.
2193 */
454afebd
OM
2194int intel_logical_rings_init(struct drm_device *dev)
2195{
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 int ret;
2198
2199 ret = logical_render_ring_init(dev);
2200 if (ret)
2201 return ret;
2202
2203 if (HAS_BSD(dev)) {
2204 ret = logical_bsd_ring_init(dev);
2205 if (ret)
2206 goto cleanup_render_ring;
2207 }
2208
2209 if (HAS_BLT(dev)) {
2210 ret = logical_blt_ring_init(dev);
2211 if (ret)
2212 goto cleanup_bsd_ring;
2213 }
2214
2215 if (HAS_VEBOX(dev)) {
2216 ret = logical_vebox_ring_init(dev);
2217 if (ret)
2218 goto cleanup_blt_ring;
2219 }
2220
2221 if (HAS_BSD2(dev)) {
2222 ret = logical_bsd2_ring_init(dev);
2223 if (ret)
2224 goto cleanup_vebox_ring;
2225 }
2226
454afebd
OM
2227 return 0;
2228
454afebd 2229cleanup_vebox_ring:
4a570db5 2230 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2231cleanup_blt_ring:
4a570db5 2232 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2233cleanup_bsd_ring:
4a570db5 2234 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2235cleanup_render_ring:
4a570db5 2236 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2237
2238 return ret;
2239}
2240
0cea6502 2241static u32
c033666a 2242make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2243{
2244 u32 rpcs = 0;
2245
2246 /*
2247 * No explicit RPCS request is needed to ensure full
2248 * slice/subslice/EU enablement prior to Gen9.
2249 */
c033666a 2250 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2251 return 0;
2252
2253 /*
2254 * Starting in Gen9, render power gating can leave
2255 * slice/subslice/EU in a partially enabled state. We
2256 * must make an explicit request through RPCS for full
2257 * enablement.
2258 */
c033666a 2259 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2260 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2261 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2262 GEN8_RPCS_S_CNT_SHIFT;
2263 rpcs |= GEN8_RPCS_ENABLE;
2264 }
2265
c033666a 2266 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2267 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2268 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2269 GEN8_RPCS_SS_CNT_SHIFT;
2270 rpcs |= GEN8_RPCS_ENABLE;
2271 }
2272
c033666a
CW
2273 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2274 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2275 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2276 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2277 GEN8_RPCS_EU_MAX_SHIFT;
2278 rpcs |= GEN8_RPCS_ENABLE;
2279 }
2280
2281 return rpcs;
2282}
2283
0bc40be8 2284static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2285{
2286 u32 indirect_ctx_offset;
2287
c033666a 2288 switch (INTEL_GEN(engine->i915)) {
71562919 2289 default:
c033666a 2290 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2291 /* fall through */
2292 case 9:
2293 indirect_ctx_offset =
2294 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2295 break;
2296 case 8:
2297 indirect_ctx_offset =
2298 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2299 break;
2300 }
2301
2302 return indirect_ctx_offset;
2303}
2304
8670d6f9 2305static int
e2efd130 2306populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2307 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2308 struct intel_engine_cs *engine,
2309 struct intel_ringbuffer *ringbuf)
8670d6f9 2310{
c033666a 2311 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2312 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2313 void *vaddr;
2314 u32 *reg_state;
8670d6f9
OM
2315 int ret;
2316
2d965536
TD
2317 if (!ppgtt)
2318 ppgtt = dev_priv->mm.aliasing_ppgtt;
2319
8670d6f9
OM
2320 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2321 if (ret) {
2322 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2323 return ret;
2324 }
2325
7d774cac
TU
2326 vaddr = i915_gem_object_pin_map(ctx_obj);
2327 if (IS_ERR(vaddr)) {
2328 ret = PTR_ERR(vaddr);
2329 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2330 return ret;
2331 }
7d774cac 2332 ctx_obj->dirty = true;
8670d6f9
OM
2333
2334 /* The second page of the context object contains some fields which must
2335 * be set up prior to the first execution. */
7d774cac 2336 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2337
2338 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2339 * commands followed by (reg, value) pairs. The values we are setting here are
2340 * only for the first context restore: on a subsequent save, the GPU will
2341 * recreate this batchbuffer with new values (including all the missing
2342 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2343 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2344 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2345 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2346 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2347 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2348 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2349 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2350 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2351 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2352 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2354 0);
7ba717cf
TD
2355 /* Ring buffer start address is not known until the buffer is pinned.
2356 * It is written to the context image in execlists_update_context()
2357 */
0bc40be8
TU
2358 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2359 RING_START(engine->mmio_base), 0);
2360 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2361 RING_CTL(engine->mmio_base),
0d925ea0 2362 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2363 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2364 RING_BBADDR_UDW(engine->mmio_base), 0);
2365 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2366 RING_BBADDR(engine->mmio_base), 0);
2367 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2368 RING_BBSTATE(engine->mmio_base),
0d925ea0 2369 RING_BB_PPGTT);
0bc40be8
TU
2370 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2371 RING_SBBADDR_UDW(engine->mmio_base), 0);
2372 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2373 RING_SBBADDR(engine->mmio_base), 0);
2374 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2375 RING_SBBSTATE(engine->mmio_base), 0);
2376 if (engine->id == RCS) {
2377 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2378 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2379 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2380 RING_INDIRECT_CTX(engine->mmio_base), 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2382 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2383 if (engine->wa_ctx.obj) {
2384 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2385 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2386
2387 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2388 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2389 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2390
2391 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2392 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2393
2394 reg_state[CTX_BB_PER_CTX_PTR+1] =
2395 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2396 0x01;
2397 }
8670d6f9 2398 }
0d925ea0 2399 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2400 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2401 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2402 /* PDP values well be assigned later if needed */
0bc40be8
TU
2403 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2404 0);
2405 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2406 0);
2407 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2408 0);
2409 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2410 0);
2411 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2412 0);
2413 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2414 0);
2415 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2416 0);
2417 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2418 0);
d7b2633d 2419
2dba3239
MT
2420 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2421 /* 64b PPGTT (48bit canonical)
2422 * PDP0_DESCRIPTOR contains the base address to PML4 and
2423 * other PDP Descriptors are ignored.
2424 */
2425 ASSIGN_CTX_PML4(ppgtt, reg_state);
2426 } else {
2427 /* 32b PPGTT
2428 * PDP*_DESCRIPTOR contains the base address of space supported.
2429 * With dynamic page allocation, PDPs may not be allocated at
2430 * this point. Point the unallocated PDPs to the scratch page
2431 */
c6a2ac71 2432 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2433 }
2434
0bc40be8 2435 if (engine->id == RCS) {
8670d6f9 2436 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2437 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2438 make_rpcs(dev_priv));
8670d6f9
OM
2439 }
2440
7d774cac 2441 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2442
2443 return 0;
2444}
2445
c5d46ee2
DG
2446/**
2447 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2448 * @engine: which engine to find the context size for
c5d46ee2
DG
2449 *
2450 * Each engine may require a different amount of space for a context image,
2451 * so when allocating (or copying) an image, this function can be used to
2452 * find the right size for the specific engine.
2453 *
2454 * Return: size (in bytes) of an engine-specific context image
2455 *
2456 * Note: this size includes the HWSP, which is part of the context image
2457 * in LRC mode, but does not include the "shared data page" used with
2458 * GuC submission. The caller should account for this if using the GuC.
2459 */
0bc40be8 2460uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2461{
2462 int ret = 0;
2463
c033666a 2464 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2465
0bc40be8 2466 switch (engine->id) {
8c857917 2467 case RCS:
c033666a 2468 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2469 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2470 else
2471 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2472 break;
2473 case VCS:
2474 case BCS:
2475 case VECS:
2476 case VCS2:
2477 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2478 break;
2479 }
2480
2481 return ret;
ede7d42b
OM
2482}
2483
73e4d07f 2484/**
978f1e09 2485 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2486 * @ctx: LR context to create.
978f1e09 2487 * @engine: engine to be used with the context.
73e4d07f
OM
2488 *
2489 * This function can be called more than once, with different engines, if we plan
2490 * to use the context with them. The context backing objects and the ringbuffers
2491 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2492 * the creation is a deferred call: it's better to make sure first that we need to use
2493 * a given ring with the context.
2494 *
32197aab 2495 * Return: non-zero on error.
73e4d07f 2496 */
e2efd130 2497static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2498 struct intel_engine_cs *engine)
ede7d42b 2499{
8c857917 2500 struct drm_i915_gem_object *ctx_obj;
9021ad03 2501 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2502 uint32_t context_size;
84c2377f 2503 struct intel_ringbuffer *ringbuf;
8c857917
OM
2504 int ret;
2505
9021ad03 2506 WARN_ON(ce->state);
ede7d42b 2507
0bc40be8 2508 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2509
d1675198
AD
2510 /* One extra page as the sharing data between driver and GuC */
2511 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2512
c033666a 2513 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
fe3db79b 2514 if (IS_ERR(ctx_obj)) {
3126a660 2515 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2516 return PTR_ERR(ctx_obj);
8c857917
OM
2517 }
2518
bcd794c2 2519 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
01101fa7
CW
2520 if (IS_ERR(ringbuf)) {
2521 ret = PTR_ERR(ringbuf);
e84fe803 2522 goto error_deref_obj;
8670d6f9
OM
2523 }
2524
0bc40be8 2525 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2526 if (ret) {
2527 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2528 goto error_ringbuf;
84c2377f
OM
2529 }
2530
9021ad03
CW
2531 ce->ringbuf = ringbuf;
2532 ce->state = ctx_obj;
2533 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2534
2535 return 0;
8670d6f9 2536
01101fa7
CW
2537error_ringbuf:
2538 intel_ringbuffer_free(ringbuf);
e84fe803 2539error_deref_obj:
8670d6f9 2540 drm_gem_object_unreference(&ctx_obj->base);
9021ad03
CW
2541 ce->ringbuf = NULL;
2542 ce->state = NULL;
8670d6f9 2543 return ret;
ede7d42b 2544}
3e5b6f05 2545
7d774cac 2546void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2547 struct i915_gem_context *ctx)
3e5b6f05 2548{
e2f80391 2549 struct intel_engine_cs *engine;
3e5b6f05 2550
b4ac5afc 2551 for_each_engine(engine, dev_priv) {
9021ad03
CW
2552 struct intel_context *ce = &ctx->engine[engine->id];
2553 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2554 void *vaddr;
3e5b6f05 2555 uint32_t *reg_state;
3e5b6f05
TD
2556
2557 if (!ctx_obj)
2558 continue;
2559
7d774cac
TU
2560 vaddr = i915_gem_object_pin_map(ctx_obj);
2561 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2562 continue;
7d774cac
TU
2563
2564 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2565 ctx_obj->dirty = true;
3e5b6f05
TD
2566
2567 reg_state[CTX_RING_HEAD+1] = 0;
2568 reg_state[CTX_RING_TAIL+1] = 0;
2569
7d774cac 2570 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2571
9021ad03
CW
2572 ce->ringbuf->head = 0;
2573 ce->ringbuf->tail = 0;
3e5b6f05
TD
2574 }
2575}
This page took 0.342244 seconds and 5 git commands to generate.