Merge branch 'for-next' of http://git.agner.ch/git/linux-drm-fsl-dcu into drm-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
73e4d07f 291 *
ca82580c 292 * @ctx: Context to work on
9021ad03 293 * @engine: Engine the descriptor will be used with
73e4d07f 294 *
ca82580c
TU
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 303 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
05d9824b 376 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
d8cb8875
MK
387static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
3c7ba635
ZW
407static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410{
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419}
420
26720ab9 421static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 422{
6d3d8274 423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 424 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 425
0bc40be8 426 assert_spin_locked(&engine->execlist_lock);
acdd884a 427
779949f4
PA
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
c033666a 432 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 433
acdd884a 434 /* Try to read in pairs */
0bc40be8 435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
6d3d8274 439 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
e1fee72c 442 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
443 list_del(&req0->execlist_link);
444 i915_gem_request_unreference(req0);
acdd884a
MT
445 req0 = cursor;
446 } else {
80a9a8db
ZW
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
acdd884a 461 req1 = cursor;
c6a2ac71 462 WARN_ON(req1->elsp_submitted);
acdd884a
MT
463 break;
464 }
465 }
466
c6a2ac71
TU
467 if (unlikely(!req0))
468 return;
469
3c7ba635
ZW
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
0bc40be8 476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 477 /*
c6a2ac71
TU
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
53292cdb 484 */
c6a2ac71 485 struct intel_ringbuffer *ringbuf;
53292cdb 486
0bc40be8 487 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
488 req0->tail += 8;
489 req0->tail &= ringbuf->size - 1;
53292cdb
MT
490 }
491
d8cb8875 492 execlists_submit_requests(req0, req1);
acdd884a
MT
493}
494
c6a2ac71 495static unsigned int
e39d42fa 496execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 497{
6d3d8274 498 struct drm_i915_gem_request *head_req;
e981e7b1 499
0bc40be8 500 assert_spin_locked(&engine->execlist_lock);
e981e7b1 501
0bc40be8 502 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 503 struct drm_i915_gem_request,
e981e7b1
TD
504 execlist_link);
505
e39d42fa
TU
506 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507 return 0;
c6a2ac71
TU
508
509 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511 if (--head_req->elsp_submitted > 0)
512 return 0;
513
3c7ba635
ZW
514 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
e39d42fa
TU
516 list_del(&head_req->execlist_link);
517 i915_gem_request_unreference(head_req);
e981e7b1 518
c6a2ac71 519 return 1;
e981e7b1
TD
520}
521
c6a2ac71 522static u32
0bc40be8 523get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 524 u32 *context_id)
91a41032 525{
c033666a 526 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 527 u32 status;
91a41032 528
c6a2ac71
TU
529 read_pointer %= GEN8_CSB_ENTRIES;
530
0bc40be8 531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
91a41032 535
0bc40be8 536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
537 read_pointer));
538
539 return status;
91a41032
BW
540}
541
73e4d07f 542/**
3f7531c3 543 * intel_lrc_irq_handler() - handle Context Switch interrupts
14bb2c11 544 * @data: tasklet handler passed in unsigned long
73e4d07f
OM
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
27af5eea 549static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 550{
27af5eea 551 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 552 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 553 u32 status_pointer;
c6a2ac71 554 unsigned int read_pointer, write_pointer;
26720ab9
TU
555 u32 csb[GEN8_CSB_ENTRIES][2];
556 unsigned int csb_read = 0, i;
c6a2ac71
TU
557 unsigned int submit_contexts = 0;
558
3756685a 559 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 560
0bc40be8 561 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 562
0bc40be8 563 read_pointer = engine->next_context_status_buffer;
5590a5f0 564 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 565 if (read_pointer > write_pointer)
dfc53c5e 566 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 567
e981e7b1 568 while (read_pointer < write_pointer) {
26720ab9
TU
569 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570 break;
571 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572 &csb[csb_read][1]);
573 csb_read++;
574 }
91a41032 575
26720ab9
TU
576 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578 /* Update the read pointer to the old write pointer. Manual ringbuffer
579 * management ftw </sarcasm> */
580 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582 engine->next_context_status_buffer << 8));
583
3756685a 584 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
585
586 spin_lock(&engine->execlist_lock);
587
588 for (i = 0; i < csb_read; i++) {
589 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
592 WARN(1, "Lite Restored request removed from queue\n");
593 } else
594 WARN(1, "Preemption without Lite Restore\n");
595 }
596
26720ab9 597 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
598 GEN8_CTX_STATUS_ELEMENT_SWITCH))
599 submit_contexts +=
26720ab9 600 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
601 }
602
c6a2ac71 603 if (submit_contexts) {
0bc40be8 604 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
605 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606 execlists_context_unqueue(engine);
5af05fef 607 }
e981e7b1 608
0bc40be8 609 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
610
611 if (unlikely(submit_contexts > 2))
612 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
613}
614
c6a2ac71 615static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 616{
4a570db5 617 struct intel_engine_cs *engine = request->engine;
6d3d8274 618 struct drm_i915_gem_request *cursor;
f1ad5a1f 619 int num_elements = 0;
acdd884a 620
27af5eea 621 spin_lock_bh(&engine->execlist_lock);
acdd884a 622
e2f80391 623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
6d3d8274 628 struct drm_i915_gem_request *tail_req;
f1ad5a1f 629
e2f80391 630 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 631 struct drm_i915_gem_request,
f1ad5a1f
OM
632 execlist_link);
633
ae70797d 634 if (request->ctx == tail_req->ctx) {
f1ad5a1f 635 WARN(tail_req->elsp_submitted != 0,
7ba717cf 636 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
637 list_del(&tail_req->execlist_link);
638 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
639 }
640 }
641
e39d42fa 642 i915_gem_request_reference(request);
e2f80391 643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 644 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 645 if (num_elements == 0)
e2f80391 646 execlists_context_unqueue(engine);
acdd884a 647
27af5eea 648 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
649}
650
2f20055d 651static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 652{
4a570db5 653 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
e2f80391 658 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
e2f80391 661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
662 if (ret)
663 return ret;
664
e2f80391 665 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
666 return 0;
667}
668
535fbe82 669static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
670 struct list_head *vmas)
671{
666796da 672 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
03ade511 681 if (obj->active & other_rings) {
4a570db5 682 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
683 if (ret)
684 return ret;
685 }
ba8b7ccb
OM
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
2f20055d 699 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
700}
701
40e895ce 702int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 703{
24f1d3cc 704 struct intel_engine_cs *engine = request->engine;
9021ad03 705 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 706 int ret;
bc0dce3f 707
6310346e
CW
708 /* Flush enough space to reduce the likelihood of waiting after
709 * we start building the request - in which case we will just
710 * have to repeat work.
711 */
0e93cdd4 712 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 713
9021ad03 714 if (!ce->state) {
978f1e09
CW
715 ret = execlists_context_deferred_alloc(request->ctx, engine);
716 if (ret)
717 return ret;
718 }
719
9021ad03 720 request->ringbuf = ce->ringbuf;
f3cc01f0 721
a7e02199
AD
722 if (i915.enable_guc_submission) {
723 /*
724 * Check that the GuC has space for the request before
725 * going any further, as the i915_add_request() call
726 * later on mustn't fail ...
727 */
7c2c270d 728 ret = i915_guc_wq_check_space(request);
a7e02199
AD
729 if (ret)
730 return ret;
731 }
732
24f1d3cc
CW
733 ret = intel_lr_context_pin(request->ctx, engine);
734 if (ret)
735 return ret;
e28e404c 736
bfa01200
CW
737 ret = intel_ring_begin(request, 0);
738 if (ret)
739 goto err_unpin;
740
9021ad03 741 if (!ce->initialised) {
24f1d3cc
CW
742 ret = engine->init_context(request);
743 if (ret)
744 goto err_unpin;
745
9021ad03 746 ce->initialised = true;
24f1d3cc
CW
747 }
748
749 /* Note that after this point, we have committed to using
750 * this request as it is being used to both track the
751 * state of engine initialisation and liveness of the
752 * golden renderstate above. Think twice before you try
753 * to cancel/unwind this request now.
754 */
755
0e93cdd4 756 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
757 return 0;
758
759err_unpin:
24f1d3cc 760 intel_lr_context_unpin(request->ctx, engine);
e28e404c 761 return ret;
bc0dce3f
JH
762}
763
bc0dce3f
JH
764/*
765 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 766 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
767 *
768 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769 * really happens during submission is that the context and current tail will be placed
770 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771 * point, the tail *inside* the context is updated and the ELSP written to.
772 */
7c17d377 773static int
ae70797d 774intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 775{
7c17d377 776 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 777 struct intel_engine_cs *engine = request->engine;
bc0dce3f 778
7c17d377
CW
779 intel_logical_ring_advance(ringbuf);
780 request->tail = ringbuf->tail;
bc0dce3f 781
7c17d377
CW
782 /*
783 * Here we add two extra NOOPs as padding to avoid
784 * lite restore of a context with HEAD==TAIL.
785 *
786 * Caller must reserve WA_TAIL_DWORDS for us!
787 */
788 intel_logical_ring_emit(ringbuf, MI_NOOP);
789 intel_logical_ring_emit(ringbuf, MI_NOOP);
790 intel_logical_ring_advance(ringbuf);
d1675198 791
a16a4052
CW
792 /* We keep the previous context alive until we retire the following
793 * request. This ensures that any the context object is still pinned
794 * for any residual writes the HW makes into it on the context switch
795 * into the next object following the breadcrumb. Otherwise, we may
796 * retire the context too early.
797 */
798 request->previous_context = engine->last_context;
799 engine->last_context = request->ctx;
f4e2dece 800
7c2c270d
DG
801 if (i915.enable_guc_submission)
802 i915_guc_submit(request);
d1675198
AD
803 else
804 execlists_context_queue(request);
7c17d377
CW
805
806 return 0;
bc0dce3f
JH
807}
808
73e4d07f
OM
809/**
810 * execlists_submission() - submit a batchbuffer for execution, Execlists style
14bb2c11 811 * @params: execbuffer call parameters.
73e4d07f
OM
812 * @args: execbuffer call arguments.
813 * @vmas: list of vmas.
73e4d07f
OM
814 *
815 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
816 * away the submission details of the execbuffer ioctl call.
817 *
818 * Return: non-zero if the submission fails.
819 */
5f19e2bf 820int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 821 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 822 struct list_head *vmas)
454afebd 823{
5f19e2bf 824 struct drm_device *dev = params->dev;
4a570db5 825 struct intel_engine_cs *engine = params->engine;
fac5e23e 826 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 827 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 828 u64 exec_start;
ba8b7ccb
OM
829 int instp_mode;
830 u32 instp_mask;
831 int ret;
832
833 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
834 instp_mask = I915_EXEC_CONSTANTS_MASK;
835 switch (instp_mode) {
836 case I915_EXEC_CONSTANTS_REL_GENERAL:
837 case I915_EXEC_CONSTANTS_ABSOLUTE:
838 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 839 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
840 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
841 return -EINVAL;
842 }
843
844 if (instp_mode != dev_priv->relative_constants_mode) {
845 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
846 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
847 return -EINVAL;
848 }
849
850 /* The HW changed the meaning on this bit on gen6 */
851 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
852 }
853 break;
854 default:
855 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
856 return -EINVAL;
857 }
858
ba8b7ccb
OM
859 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
860 DRM_DEBUG("sol reset is gen7 only\n");
861 return -EINVAL;
862 }
863
535fbe82 864 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
865 if (ret)
866 return ret;
867
4a570db5 868 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 869 instp_mode != dev_priv->relative_constants_mode) {
987046ad 870 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
871 if (ret)
872 return ret;
873
874 intel_logical_ring_emit(ringbuf, MI_NOOP);
875 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 876 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
877 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
878 intel_logical_ring_advance(ringbuf);
879
880 dev_priv->relative_constants_mode = instp_mode;
881 }
882
5f19e2bf
JH
883 exec_start = params->batch_obj_vm_offset +
884 args->batch_start_offset;
885
e2f80391 886 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
887 if (ret)
888 return ret;
889
95c24161 890 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 891
8a8edb59 892 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 893
454afebd
OM
894 return 0;
895}
896
e39d42fa 897void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 898{
6d3d8274 899 struct drm_i915_gem_request *req, *tmp;
e39d42fa 900 LIST_HEAD(cancel_list);
c86ee3a9 901
91c8a326 902 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
c86ee3a9 903
27af5eea 904 spin_lock_bh(&engine->execlist_lock);
e39d42fa 905 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 906 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 907
e39d42fa 908 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 909 list_del(&req->execlist_link);
f8210795 910 i915_gem_request_unreference(req);
c86ee3a9
TD
911 }
912}
913
0bc40be8 914void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 915{
c033666a 916 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
917 int ret;
918
117897f4 919 if (!intel_engine_initialized(engine))
9832b9da
OM
920 return;
921
666796da 922 ret = intel_engine_idle(engine);
f4457ae7 923 if (ret)
9832b9da 924 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 925 engine->name, ret);
9832b9da
OM
926
927 /* TODO: Is this correct with Execlists enabled? */
0bc40be8 928 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
3e7941a1
CW
929 if (intel_wait_for_register(dev_priv,
930 RING_MI_MODE(engine->mmio_base),
931 MODE_IDLE, MODE_IDLE,
932 1000)) {
0bc40be8 933 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
934 return;
935 }
0bc40be8 936 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
937}
938
4866d729 939int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 940{
4a570db5 941 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
942 int ret;
943
e2f80391 944 if (!engine->gpu_caches_dirty)
48e29f55
OM
945 return 0;
946
e2f80391 947 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
948 if (ret)
949 return ret;
950
e2f80391 951 engine->gpu_caches_dirty = false;
48e29f55
OM
952 return 0;
953}
954
e2efd130 955static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 956 struct intel_engine_cs *engine)
dcb4c12a 957{
24f1d3cc 958 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 959 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
960 void *vaddr;
961 u32 *lrc_reg_state;
ca82580c 962 int ret;
dcb4c12a 963
91c8a326 964 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 965
9021ad03 966 if (ce->pin_count++)
24f1d3cc
CW
967 return 0;
968
9021ad03
CW
969 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
970 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 971 if (ret)
24f1d3cc 972 goto err;
7ba717cf 973
9021ad03 974 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
975 if (IS_ERR(vaddr)) {
976 ret = PTR_ERR(vaddr);
82352e90
TU
977 goto unpin_ctx_obj;
978 }
979
7d774cac
TU
980 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
981
9021ad03 982 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
e84fe803 983 if (ret)
7d774cac 984 goto unpin_map;
d1675198 985
24f1d3cc 986 i915_gem_context_reference(ctx);
9021ad03 987 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 988 intel_lr_context_descriptor_update(ctx, engine);
9021ad03
CW
989
990 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
991 ce->lrc_reg_state = lrc_reg_state;
992 ce->state->dirty = true;
e93c28f3 993
e84fe803
NH
994 /* Invalidate GuC TLB. */
995 if (i915.enable_guc_submission)
996 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 997
24f1d3cc 998 return 0;
7ba717cf 999
7d774cac 1000unpin_map:
9021ad03 1001 i915_gem_object_unpin_map(ce->state);
7ba717cf 1002unpin_ctx_obj:
9021ad03 1003 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 1004err:
9021ad03 1005 ce->pin_count = 0;
e84fe803
NH
1006 return ret;
1007}
1008
e2efd130 1009void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 1010 struct intel_engine_cs *engine)
e84fe803 1011{
9021ad03 1012 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 1013
91c8a326 1014 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 1015 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1016
9021ad03 1017 if (--ce->pin_count)
24f1d3cc 1018 return;
e84fe803 1019
9021ad03 1020 intel_unpin_ringbuffer_obj(ce->ringbuf);
dcb4c12a 1021
9021ad03
CW
1022 i915_gem_object_unpin_map(ce->state);
1023 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 1024
9021ad03
CW
1025 ce->lrc_vma = NULL;
1026 ce->lrc_desc = 0;
1027 ce->lrc_reg_state = NULL;
321fe304 1028
24f1d3cc 1029 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1030}
1031
e2be4faf 1032static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1033{
1034 int ret, i;
4a570db5 1035 struct intel_engine_cs *engine = req->engine;
e2be4faf 1036 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1037 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1038
cd7feaaa 1039 if (w->count == 0)
771b9a53
MT
1040 return 0;
1041
e2f80391 1042 engine->gpu_caches_dirty = true;
4866d729 1043 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1044 if (ret)
1045 return ret;
1046
987046ad 1047 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1048 if (ret)
1049 return ret;
1050
1051 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052 for (i = 0; i < w->count; i++) {
f92a9162 1053 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1054 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055 }
1056 intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058 intel_logical_ring_advance(ringbuf);
1059
e2f80391 1060 engine->gpu_caches_dirty = true;
4866d729 1061 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1062 if (ret)
1063 return ret;
1064
1065 return 0;
1066}
1067
83b8a982 1068#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1069 do { \
83b8a982
AS
1070 int __index = (index)++; \
1071 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1072 return -ENOSPC; \
1073 } \
83b8a982 1074 batch[__index] = (cmd); \
17ee950d
AS
1075 } while (0)
1076
8f40db77 1077#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1078 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1079
1080/*
1081 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1082 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1083 * but there is a slight complication as this is applied in WA batch where the
1084 * values are only initialized once so we cannot take register value at the
1085 * beginning and reuse it further; hence we save its value to memory, upload a
1086 * constant value with bit21 set and then we restore it back with the saved value.
1087 * To simplify the WA, a constant value is formed by using the default value
1088 * of this register. This shouldn't be a problem because we are only modifying
1089 * it for a short period and this batch in non-premptible. We can ofcourse
1090 * use additional instructions that read the actual value of the register
1091 * at that time and set our bit of interest but it makes the WA complicated.
1092 *
1093 * This WA is also required for Gen9 so extracting as a function avoids
1094 * code duplication.
1095 */
0bc40be8 1096static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1097 uint32_t *const batch,
1098 uint32_t index)
1099{
1100 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1101
a4106a78 1102 /*
fe905819 1103 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
1104 * This WA is implemented in skl_init_clock_gating() but since
1105 * this batch updates GEN8_L3SQCREG4 with default value we need to
1106 * set this bit here to retain the WA during flush.
1107 */
fe905819
MK
1108 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1109 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
a4106a78
AS
1110 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1111
f1afe24f 1112 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1113 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1114 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1115 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1116 wa_ctx_emit(batch, index, 0);
1117
1118 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1119 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1120 wa_ctx_emit(batch, index, l3sqc4_flush);
1121
1122 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1123 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1124 PIPE_CONTROL_DC_FLUSH_ENABLE));
1125 wa_ctx_emit(batch, index, 0);
1126 wa_ctx_emit(batch, index, 0);
1127 wa_ctx_emit(batch, index, 0);
1128 wa_ctx_emit(batch, index, 0);
1129
f1afe24f 1130 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1131 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1132 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1133 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1134 wa_ctx_emit(batch, index, 0);
9e000847
AS
1135
1136 return index;
1137}
1138
17ee950d
AS
1139static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1140 uint32_t offset,
1141 uint32_t start_alignment)
1142{
1143 return wa_ctx->offset = ALIGN(offset, start_alignment);
1144}
1145
1146static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1147 uint32_t offset,
1148 uint32_t size_alignment)
1149{
1150 wa_ctx->size = offset - wa_ctx->offset;
1151
1152 WARN(wa_ctx->size % size_alignment,
1153 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1154 wa_ctx->size, size_alignment);
1155 return 0;
1156}
1157
1158/**
1159 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1160 *
14bb2c11 1161 * @engine: only applicable for RCS
17ee950d
AS
1162 * @wa_ctx: structure representing wa_ctx
1163 * offset: specifies start of the batch, should be cache-aligned. This is updated
1164 * with the offset value received as input.
1165 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1166 * @batch: page in which WA are loaded
1167 * @offset: This field specifies the start of the batch, it should be
1168 * cache-aligned otherwise it is adjusted accordingly.
1169 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1170 * initialized at the beginning and shared across all contexts but this field
1171 * helps us to have multiple batches at different offsets and select them based
1172 * on a criteria. At the moment this batch always start at the beginning of the page
1173 * and at this point we don't have multiple wa_ctx batch buffers.
1174 *
1175 * The number of WA applied are not known at the beginning; we use this field
1176 * to return the no of DWORDS written.
4d78c8dc 1177 *
17ee950d
AS
1178 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1179 * so it adds NOOPs as padding to make it cacheline aligned.
1180 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1181 * makes a complete batch buffer.
1182 *
1183 * Return: non-zero if we exceed the PAGE_SIZE limit.
1184 */
1185
0bc40be8 1186static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1187 struct i915_wa_ctx_bb *wa_ctx,
1188 uint32_t *const batch,
1189 uint32_t *offset)
1190{
0160f055 1191 uint32_t scratch_addr;
17ee950d
AS
1192 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1193
7ad00d1a 1194 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1195 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1196
c82435bb 1197 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1198 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1199 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1200 if (rc < 0)
1201 return rc;
1202 index = rc;
c82435bb
AS
1203 }
1204
0160f055
AS
1205 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1206 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1207 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1208
83b8a982
AS
1209 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1210 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1211 PIPE_CONTROL_GLOBAL_GTT_IVB |
1212 PIPE_CONTROL_CS_STALL |
1213 PIPE_CONTROL_QW_WRITE));
1214 wa_ctx_emit(batch, index, scratch_addr);
1215 wa_ctx_emit(batch, index, 0);
1216 wa_ctx_emit(batch, index, 0);
1217 wa_ctx_emit(batch, index, 0);
0160f055 1218
17ee950d
AS
1219 /* Pad to end of cacheline */
1220 while (index % CACHELINE_DWORDS)
83b8a982 1221 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1222
1223 /*
1224 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1225 * execution depends on the length specified in terms of cache lines
1226 * in the register CTX_RCS_INDIRECT_CTX
1227 */
1228
1229 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1230}
1231
1232/**
1233 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1234 *
14bb2c11 1235 * @engine: only applicable for RCS
17ee950d
AS
1236 * @wa_ctx: structure representing wa_ctx
1237 * offset: specifies start of the batch, should be cache-aligned.
1238 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1239 * @batch: page in which WA are loaded
17ee950d
AS
1240 * @offset: This field specifies the start of this batch.
1241 * This batch is started immediately after indirect_ctx batch. Since we ensure
1242 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1243 *
1244 * The number of DWORDS written are returned using this field.
1245 *
1246 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1247 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1248 */
0bc40be8 1249static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1250 struct i915_wa_ctx_bb *wa_ctx,
1251 uint32_t *const batch,
1252 uint32_t *offset)
1253{
1254 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1255
7ad00d1a 1256 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1257 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1258
83b8a982 1259 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1260
1261 return wa_ctx_end(wa_ctx, *offset = index, 1);
1262}
1263
0bc40be8 1264static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1265 struct i915_wa_ctx_bb *wa_ctx,
1266 uint32_t *const batch,
1267 uint32_t *offset)
1268{
a4106a78 1269 int ret;
0504cffc
AS
1270 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1271
0907c8f7 1272 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1273 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1274 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1275 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1276
a4106a78 1277 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1278 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1279 if (ret < 0)
1280 return ret;
1281 index = ret;
1282
066d4628
MK
1283 /* WaClearSlmSpaceAtContextSwitch:kbl */
1284 /* Actual scratch location is at 128 bytes offset */
1285 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1286 uint32_t scratch_addr
1287 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1288
1289 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1290 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1291 PIPE_CONTROL_GLOBAL_GTT_IVB |
1292 PIPE_CONTROL_CS_STALL |
1293 PIPE_CONTROL_QW_WRITE));
1294 wa_ctx_emit(batch, index, scratch_addr);
1295 wa_ctx_emit(batch, index, 0);
1296 wa_ctx_emit(batch, index, 0);
1297 wa_ctx_emit(batch, index, 0);
1298 }
3485d99e
TG
1299
1300 /* WaMediaPoolStateCmdInWABB:bxt */
1301 if (HAS_POOLED_EU(engine->i915)) {
1302 /*
1303 * EU pool configuration is setup along with golden context
1304 * during context initialization. This value depends on
1305 * device type (2x6 or 3x6) and needs to be updated based
1306 * on which subslice is disabled especially for 2x6
1307 * devices, however it is safe to load default
1308 * configuration of 3x6 device instead of masking off
1309 * corresponding bits because HW ignores bits of a disabled
1310 * subslice and drops down to appropriate config. Please
1311 * see render_state_setup() in i915_gem_render_state.c for
1312 * possible configurations, to avoid duplication they are
1313 * not shown here again.
1314 */
1315 u32 eu_pool_config = 0x00777000;
1316 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1317 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1318 wa_ctx_emit(batch, index, eu_pool_config);
1319 wa_ctx_emit(batch, index, 0);
1320 wa_ctx_emit(batch, index, 0);
1321 wa_ctx_emit(batch, index, 0);
1322 }
1323
0504cffc
AS
1324 /* Pad to end of cacheline */
1325 while (index % CACHELINE_DWORDS)
1326 wa_ctx_emit(batch, index, MI_NOOP);
1327
1328 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1329}
1330
0bc40be8 1331static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1332 struct i915_wa_ctx_bb *wa_ctx,
1333 uint32_t *const batch,
1334 uint32_t *offset)
1335{
1336 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1337
9b01435d 1338 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1339 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1340 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1341 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1342 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1343 wa_ctx_emit(batch, index,
1344 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1345 wa_ctx_emit(batch, index, MI_NOOP);
1346 }
1347
b1e429fe 1348 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1349 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1350 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1351
1352 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1353 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1354
1355 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1356 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1357
1358 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1359 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1360
1361 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1362 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1363 wa_ctx_emit(batch, index, 0x0);
1364 wa_ctx_emit(batch, index, MI_NOOP);
1365 }
1366
0907c8f7 1367 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1368 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1369 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1370 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1371
0504cffc
AS
1372 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1373
1374 return wa_ctx_end(wa_ctx, *offset = index, 1);
1375}
1376
0bc40be8 1377static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1378{
1379 int ret;
1380
91c8a326
CW
1381 engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1382 PAGE_ALIGN(size));
fe3db79b 1383 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1384 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1385 ret = PTR_ERR(engine->wa_ctx.obj);
1386 engine->wa_ctx.obj = NULL;
1387 return ret;
17ee950d
AS
1388 }
1389
0bc40be8 1390 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1391 if (ret) {
1392 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1393 ret);
0bc40be8 1394 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1395 return ret;
1396 }
1397
1398 return 0;
1399}
1400
0bc40be8 1401static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1402{
0bc40be8
TU
1403 if (engine->wa_ctx.obj) {
1404 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1405 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1406 engine->wa_ctx.obj = NULL;
17ee950d
AS
1407 }
1408}
1409
0bc40be8 1410static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1411{
1412 int ret;
1413 uint32_t *batch;
1414 uint32_t offset;
1415 struct page *page;
0bc40be8 1416 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1417
0bc40be8 1418 WARN_ON(engine->id != RCS);
17ee950d 1419
5e60d790 1420 /* update this when WA for higher Gen are added */
c033666a 1421 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1422 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1423 INTEL_GEN(engine->i915));
5e60d790 1424 return 0;
0504cffc 1425 }
5e60d790 1426
c4db7599 1427 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1428 if (engine->scratch.obj == NULL) {
1429 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1430 return -EINVAL;
1431 }
1432
0bc40be8 1433 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1434 if (ret) {
1435 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1436 return ret;
1437 }
1438
033908ae 1439 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1440 batch = kmap_atomic(page);
1441 offset = 0;
1442
c033666a 1443 if (IS_GEN8(engine->i915)) {
0bc40be8 1444 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1445 &wa_ctx->indirect_ctx,
1446 batch,
1447 &offset);
1448 if (ret)
1449 goto out;
1450
0bc40be8 1451 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1452 &wa_ctx->per_ctx,
1453 batch,
1454 &offset);
1455 if (ret)
1456 goto out;
c033666a 1457 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1458 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1459 &wa_ctx->indirect_ctx,
1460 batch,
1461 &offset);
1462 if (ret)
1463 goto out;
1464
0bc40be8 1465 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1466 &wa_ctx->per_ctx,
1467 batch,
1468 &offset);
1469 if (ret)
1470 goto out;
17ee950d
AS
1471 }
1472
1473out:
1474 kunmap_atomic(batch);
1475 if (ret)
0bc40be8 1476 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1477
1478 return ret;
1479}
1480
04794adb
TU
1481static void lrc_init_hws(struct intel_engine_cs *engine)
1482{
c033666a 1483 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1484
1485 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1486 (u32)engine->status_page.gfx_addr);
1487 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1488}
1489
0bc40be8 1490static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1491{
c033666a 1492 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1493 unsigned int next_context_status_buffer_hw;
9b1136d5 1494
04794adb 1495 lrc_init_hws(engine);
e84fe803 1496
0bc40be8
TU
1497 I915_WRITE_IMR(engine,
1498 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1499 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1500
0bc40be8 1501 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1502 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1503 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1504 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1505
1506 /*
1507 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1508 * zero, we need to read the write pointer from hardware and use its
1509 * value because "this register is power context save restored".
1510 * Effectively, these states have been observed:
1511 *
1512 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1513 * BDW | CSB regs not reset | CSB regs reset |
1514 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1515 * SKL | ? | ? |
1516 * BXT | ? | ? |
dfc53c5e 1517 */
5590a5f0 1518 next_context_status_buffer_hw =
0bc40be8 1519 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1520
1521 /*
1522 * When the CSB registers are reset (also after power-up / gpu reset),
1523 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1524 * this special case, so the first element read is CSB[0].
1525 */
1526 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1527 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1528
0bc40be8
TU
1529 engine->next_context_status_buffer = next_context_status_buffer_hw;
1530 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1531
fc0768ce 1532 intel_engine_init_hangcheck(engine);
9b1136d5 1533
0ccdacf6 1534 return intel_mocs_init_engine(engine);
9b1136d5
OM
1535}
1536
0bc40be8 1537static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1538{
c033666a 1539 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1540 int ret;
1541
0bc40be8 1542 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1543 if (ret)
1544 return ret;
1545
1546 /* We need to disable the AsyncFlip performance optimisations in order
1547 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1548 * programmed to '1' on all products.
1549 *
1550 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1551 */
1552 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1553
9b1136d5
OM
1554 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1555
0bc40be8 1556 return init_workarounds_ring(engine);
9b1136d5
OM
1557}
1558
0bc40be8 1559static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1560{
1561 int ret;
1562
0bc40be8 1563 ret = gen8_init_common_ring(engine);
82ef822e
DL
1564 if (ret)
1565 return ret;
1566
0bc40be8 1567 return init_workarounds_ring(engine);
82ef822e
DL
1568}
1569
7a01a0a2
MT
1570static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1571{
1572 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1573 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1574 struct intel_ringbuffer *ringbuf = req->ringbuf;
1575 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1576 int i, ret;
1577
987046ad 1578 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1579 if (ret)
1580 return ret;
1581
1582 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1583 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1584 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1585
e2f80391
TU
1586 intel_logical_ring_emit_reg(ringbuf,
1587 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1588 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1589 intel_logical_ring_emit_reg(ringbuf,
1590 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1591 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1592 }
1593
1594 intel_logical_ring_emit(ringbuf, MI_NOOP);
1595 intel_logical_ring_advance(ringbuf);
1596
1597 return 0;
1598}
1599
be795fc1 1600static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1601 u64 offset, unsigned dispatch_flags)
15648585 1602{
be795fc1 1603 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1604 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1605 int ret;
1606
7a01a0a2
MT
1607 /* Don't rely in hw updating PDPs, specially in lite-restore.
1608 * Ideally, we should set Force PD Restore in ctx descriptor,
1609 * but we can't. Force Restore would be a second option, but
1610 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1611 * not idle). PML4 is allocated during ppgtt init so this is
1612 * not needed in 48-bit.*/
7a01a0a2 1613 if (req->ctx->ppgtt &&
666796da 1614 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1615 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1616 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1617 ret = intel_logical_ring_emit_pdps(req);
1618 if (ret)
1619 return ret;
1620 }
7a01a0a2 1621
666796da 1622 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1623 }
1624
987046ad 1625 ret = intel_ring_begin(req, 4);
15648585
OM
1626 if (ret)
1627 return ret;
1628
1629 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1630 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1631 (ppgtt<<8) |
1632 (dispatch_flags & I915_DISPATCH_RS ?
1633 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1634 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1635 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1636 intel_logical_ring_emit(ringbuf, MI_NOOP);
1637 intel_logical_ring_advance(ringbuf);
1638
1639 return 0;
1640}
1641
31bb59cc 1642static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1643{
c033666a 1644 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1645 I915_WRITE_IMR(engine,
1646 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1647 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1648}
1649
31bb59cc 1650static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1651{
c033666a 1652 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1653 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1654}
1655
7deb4d39 1656static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1657 u32 invalidate_domains,
1658 u32 unused)
1659{
7deb4d39 1660 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1661 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1662 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1663 uint32_t cmd;
1664 int ret;
1665
987046ad 1666 ret = intel_ring_begin(request, 4);
4712274c
OM
1667 if (ret)
1668 return ret;
1669
1670 cmd = MI_FLUSH_DW + 1;
1671
f0a1fb10
CW
1672 /* We always require a command barrier so that subsequent
1673 * commands, such as breadcrumb interrupts, are strictly ordered
1674 * wrt the contents of the write cache being flushed to memory
1675 * (and thus being coherent from the CPU).
1676 */
1677 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1678
1679 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1680 cmd |= MI_INVALIDATE_TLB;
4a570db5 1681 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1682 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1683 }
1684
1685 intel_logical_ring_emit(ringbuf, cmd);
1686 intel_logical_ring_emit(ringbuf,
1687 I915_GEM_HWS_SCRATCH_ADDR |
1688 MI_FLUSH_DW_USE_GTT);
1689 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1690 intel_logical_ring_emit(ringbuf, 0); /* value */
1691 intel_logical_ring_advance(ringbuf);
1692
1693 return 0;
1694}
1695
7deb4d39 1696static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1697 u32 invalidate_domains,
1698 u32 flush_domains)
1699{
7deb4d39 1700 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1701 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1702 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
0b2d0934 1703 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1704 u32 flags = 0;
1705 int ret;
0b2d0934 1706 int len;
4712274c
OM
1707
1708 flags |= PIPE_CONTROL_CS_STALL;
1709
1710 if (flush_domains) {
1711 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1712 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1713 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1714 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1715 }
1716
1717 if (invalidate_domains) {
1718 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1719 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1720 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1721 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1722 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1723 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1724 flags |= PIPE_CONTROL_QW_WRITE;
1725 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1726
1a5a9ce7
BW
1727 /*
1728 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1729 * pipe control.
1730 */
c033666a 1731 if (IS_GEN9(request->i915))
1a5a9ce7 1732 vf_flush_wa = true;
0b2d0934
MK
1733
1734 /* WaForGAMHang:kbl */
1735 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1736 dc_flush_wa = true;
1a5a9ce7 1737 }
9647ff36 1738
0b2d0934
MK
1739 len = 6;
1740
1741 if (vf_flush_wa)
1742 len += 6;
1743
1744 if (dc_flush_wa)
1745 len += 12;
1746
1747 ret = intel_ring_begin(request, len);
4712274c
OM
1748 if (ret)
1749 return ret;
1750
9647ff36
ID
1751 if (vf_flush_wa) {
1752 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1753 intel_logical_ring_emit(ringbuf, 0);
1754 intel_logical_ring_emit(ringbuf, 0);
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 }
1759
0b2d0934
MK
1760 if (dc_flush_wa) {
1761 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1762 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1763 intel_logical_ring_emit(ringbuf, 0);
1764 intel_logical_ring_emit(ringbuf, 0);
1765 intel_logical_ring_emit(ringbuf, 0);
1766 intel_logical_ring_emit(ringbuf, 0);
1767 }
1768
4712274c
OM
1769 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1770 intel_logical_ring_emit(ringbuf, flags);
1771 intel_logical_ring_emit(ringbuf, scratch_addr);
1772 intel_logical_ring_emit(ringbuf, 0);
1773 intel_logical_ring_emit(ringbuf, 0);
1774 intel_logical_ring_emit(ringbuf, 0);
0b2d0934
MK
1775
1776 if (dc_flush_wa) {
1777 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1778 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1779 intel_logical_ring_emit(ringbuf, 0);
1780 intel_logical_ring_emit(ringbuf, 0);
1781 intel_logical_ring_emit(ringbuf, 0);
1782 intel_logical_ring_emit(ringbuf, 0);
1783 }
1784
4712274c
OM
1785 intel_logical_ring_advance(ringbuf);
1786
1787 return 0;
1788}
1789
c04e0f3b 1790static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1791{
319404df
ID
1792 /*
1793 * On BXT A steppings there is a HW coherency issue whereby the
1794 * MI_STORE_DATA_IMM storing the completed request's seqno
1795 * occasionally doesn't invalidate the CPU cache. Work around this by
1796 * clflushing the corresponding cacheline whenever the caller wants
1797 * the coherency to be guaranteed. Note that this cacheline is known
1798 * to be clean at this point, since we only write it in
1799 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1800 * this clflush in practice becomes an invalidate operation.
1801 */
c04e0f3b 1802 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1803}
1804
7c17d377
CW
1805/*
1806 * Reserve space for 2 NOOPs at the end of each request to be
1807 * used as a workaround for not being allowed to do lite
1808 * restore with HEAD==TAIL (WaIdleLiteRestore).
1809 */
1810#define WA_TAIL_DWORDS 2
1811
c4e76638 1812static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1813{
c4e76638 1814 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1815 int ret;
1816
987046ad 1817 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1818 if (ret)
1819 return ret;
1820
7c17d377
CW
1821 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1822 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1823
4da46e1e 1824 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1825 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1826 intel_logical_ring_emit(ringbuf,
a58c01aa 1827 intel_hws_seqno_address(request->engine) |
7c17d377 1828 MI_FLUSH_DW_USE_GTT);
4da46e1e 1829 intel_logical_ring_emit(ringbuf, 0);
1b7744e7 1830 intel_logical_ring_emit(ringbuf, request->seqno);
4da46e1e
OM
1831 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1832 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1833 return intel_logical_ring_advance_and_submit(request);
1834}
4da46e1e 1835
7c17d377
CW
1836static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1837{
1838 struct intel_ringbuffer *ringbuf = request->ringbuf;
1839 int ret;
53292cdb 1840
987046ad 1841 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1842 if (ret)
1843 return ret;
1844
ce81a65c
MW
1845 /* We're using qword write, seqno should be aligned to 8 bytes. */
1846 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1847
7c17d377
CW
1848 /* w/a for post sync ops following a GPGPU operation we
1849 * need a prior CS_STALL, which is emitted by the flush
1850 * following the batch.
1851 */
ce81a65c 1852 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1853 intel_logical_ring_emit(ringbuf,
1854 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1855 PIPE_CONTROL_CS_STALL |
1856 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1857 intel_logical_ring_emit(ringbuf,
1858 intel_hws_seqno_address(request->engine));
7c17d377
CW
1859 intel_logical_ring_emit(ringbuf, 0);
1860 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1861 /* We're thrashing one dword of HWS. */
1862 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1863 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1864 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1865 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1866}
1867
be01363f 1868static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1869{
cef437ad 1870 struct render_state so;
cef437ad
DL
1871 int ret;
1872
4a570db5 1873 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1874 if (ret)
1875 return ret;
1876
1877 if (so.rodata == NULL)
1878 return 0;
1879
4a570db5 1880 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1881 I915_DISPATCH_SECURE);
cef437ad
DL
1882 if (ret)
1883 goto out;
1884
4a570db5 1885 ret = req->engine->emit_bb_start(req,
84e81020
AS
1886 (so.ggtt_offset + so.aux_batch_offset),
1887 I915_DISPATCH_SECURE);
1888 if (ret)
1889 goto out;
1890
b2af0376 1891 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1892
cef437ad
DL
1893out:
1894 i915_gem_render_state_fini(&so);
1895 return ret;
1896}
1897
8753181e 1898static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1899{
1900 int ret;
1901
e2be4faf 1902 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1903 if (ret)
1904 return ret;
1905
3bbaba0c
PA
1906 ret = intel_rcs_context_init_mocs(req);
1907 /*
1908 * Failing to program the MOCS is non-fatal.The system will not
1909 * run at peak performance. So generate an error and carry on.
1910 */
1911 if (ret)
1912 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1913
be01363f 1914 return intel_lr_context_render_state_init(req);
e7778be1
TD
1915}
1916
73e4d07f
OM
1917/**
1918 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1919 *
14bb2c11 1920 * @engine: Engine Command Streamer.
73e4d07f
OM
1921 *
1922 */
0bc40be8 1923void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1924{
6402c330 1925 struct drm_i915_private *dev_priv;
9832b9da 1926
117897f4 1927 if (!intel_engine_initialized(engine))
48d82387
OM
1928 return;
1929
27af5eea
TU
1930 /*
1931 * Tasklet cannot be active at this point due intel_mark_active/idle
1932 * so this is just for documentation.
1933 */
1934 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1935 tasklet_kill(&engine->irq_tasklet);
1936
c033666a 1937 dev_priv = engine->i915;
6402c330 1938
0bc40be8
TU
1939 if (engine->buffer) {
1940 intel_logical_ring_stop(engine);
1941 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1942 }
48d82387 1943
0bc40be8
TU
1944 if (engine->cleanup)
1945 engine->cleanup(engine);
48d82387 1946
0bc40be8
TU
1947 i915_cmd_parser_fini_ring(engine);
1948 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1949
688e6c72
CW
1950 intel_engine_fini_breadcrumbs(engine);
1951
0bc40be8 1952 if (engine->status_page.obj) {
7d774cac 1953 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1954 engine->status_page.obj = NULL;
48d82387 1955 }
24f1d3cc 1956 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1957
0bc40be8
TU
1958 engine->idle_lite_restore_wa = 0;
1959 engine->disable_lite_restore_wa = false;
1960 engine->ctx_desc_template = 0;
ca82580c 1961
0bc40be8 1962 lrc_destroy_wa_ctx_obj(engine);
c033666a 1963 engine->i915 = NULL;
454afebd
OM
1964}
1965
c9cacf93 1966static void
e1382efb 1967logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1968{
1969 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1970 engine->init_hw = gen8_init_common_ring;
1971 engine->emit_request = gen8_emit_request;
1972 engine->emit_flush = gen8_emit_flush;
31bb59cc
CW
1973 engine->irq_enable = gen8_logical_ring_enable_irq;
1974 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1975 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1976 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1977 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1978}
1979
d9f3af96 1980static inline void
0bc40be8 1981logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1982{
0bc40be8
TU
1983 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1984 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1985}
1986
7d774cac 1987static int
04794adb
TU
1988lrc_setup_hws(struct intel_engine_cs *engine,
1989 struct drm_i915_gem_object *dctx_obj)
1990{
7d774cac 1991 void *hws;
04794adb
TU
1992
1993 /* The HWSP is part of the default context object in LRC mode. */
1994 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1995 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1996 hws = i915_gem_object_pin_map(dctx_obj);
1997 if (IS_ERR(hws))
1998 return PTR_ERR(hws);
1999 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 2000 engine->status_page.obj = dctx_obj;
7d774cac
TU
2001
2002 return 0;
04794adb
TU
2003}
2004
a19d6ff2
TU
2005static int
2006logical_ring_init(struct intel_engine_cs *engine)
2007{
2008 struct i915_gem_context *dctx = engine->i915->kernel_context;
2009 int ret;
2010
688e6c72
CW
2011 ret = intel_engine_init_breadcrumbs(engine);
2012 if (ret)
2013 goto error;
2014
a19d6ff2
TU
2015 ret = i915_cmd_parser_init_ring(engine);
2016 if (ret)
2017 goto error;
2018
2019 ret = execlists_context_deferred_alloc(dctx, engine);
2020 if (ret)
2021 goto error;
2022
2023 /* As this is the default context, always pin it */
2024 ret = intel_lr_context_pin(dctx, engine);
2025 if (ret) {
2026 DRM_ERROR("Failed to pin context for %s: %d\n",
2027 engine->name, ret);
2028 goto error;
2029 }
2030
2031 /* And setup the hardware status page. */
2032 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2033 if (ret) {
2034 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2035 goto error;
2036 }
2037
2038 return 0;
2039
2040error:
2041 intel_logical_ring_cleanup(engine);
2042 return ret;
2043}
2044
2045static int logical_render_ring_init(struct intel_engine_cs *engine)
2046{
2047 struct drm_i915_private *dev_priv = engine->i915;
2048 int ret;
2049
2050 if (HAS_L3_DPF(dev_priv))
2051 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2052
2053 /* Override some for render ring. */
2054 if (INTEL_GEN(dev_priv) >= 9)
2055 engine->init_hw = gen9_init_render_ring;
2056 else
2057 engine->init_hw = gen8_init_render_ring;
2058 engine->init_context = gen8_init_rcs_context;
2059 engine->cleanup = intel_fini_pipe_control;
2060 engine->emit_flush = gen8_emit_flush_render;
2061 engine->emit_request = gen8_emit_request_render;
2062
7d5ea807 2063 ret = intel_init_pipe_control(engine, 4096);
a19d6ff2
TU
2064 if (ret)
2065 return ret;
2066
2067 ret = intel_init_workaround_bb(engine);
2068 if (ret) {
2069 /*
2070 * We continue even if we fail to initialize WA batch
2071 * because we only expect rare glitches but nothing
2072 * critical to prevent us from using GPU
2073 */
2074 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2075 ret);
2076 }
2077
2078 ret = logical_ring_init(engine);
2079 if (ret) {
2080 lrc_destroy_wa_ctx_obj(engine);
2081 }
2082
2083 return ret;
2084}
2085
e1382efb
CW
2086static const struct logical_ring_info {
2087 const char *name;
2088 unsigned exec_id;
2089 unsigned guc_id;
2090 u32 mmio_base;
2091 unsigned irq_shift;
a19d6ff2 2092 int (*init)(struct intel_engine_cs *engine);
e1382efb
CW
2093} logical_rings[] = {
2094 [RCS] = {
2095 .name = "render ring",
2096 .exec_id = I915_EXEC_RENDER,
2097 .guc_id = GUC_RENDER_ENGINE,
2098 .mmio_base = RENDER_RING_BASE,
2099 .irq_shift = GEN8_RCS_IRQ_SHIFT,
a19d6ff2 2100 .init = logical_render_ring_init,
e1382efb
CW
2101 },
2102 [BCS] = {
2103 .name = "blitter ring",
2104 .exec_id = I915_EXEC_BLT,
2105 .guc_id = GUC_BLITTER_ENGINE,
2106 .mmio_base = BLT_RING_BASE,
2107 .irq_shift = GEN8_BCS_IRQ_SHIFT,
a19d6ff2 2108 .init = logical_ring_init,
e1382efb
CW
2109 },
2110 [VCS] = {
2111 .name = "bsd ring",
2112 .exec_id = I915_EXEC_BSD,
2113 .guc_id = GUC_VIDEO_ENGINE,
2114 .mmio_base = GEN6_BSD_RING_BASE,
2115 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
a19d6ff2 2116 .init = logical_ring_init,
e1382efb
CW
2117 },
2118 [VCS2] = {
2119 .name = "bsd2 ring",
2120 .exec_id = I915_EXEC_BSD,
2121 .guc_id = GUC_VIDEO_ENGINE2,
2122 .mmio_base = GEN8_BSD2_RING_BASE,
2123 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
a19d6ff2 2124 .init = logical_ring_init,
e1382efb
CW
2125 },
2126 [VECS] = {
2127 .name = "video enhancement ring",
2128 .exec_id = I915_EXEC_VEBOX,
2129 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2130 .mmio_base = VEBOX_RING_BASE,
2131 .irq_shift = GEN8_VECS_IRQ_SHIFT,
a19d6ff2 2132 .init = logical_ring_init,
e1382efb
CW
2133 },
2134};
2135
2136static struct intel_engine_cs *
a19d6ff2 2137logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
454afebd 2138{
e1382efb 2139 const struct logical_ring_info *info = &logical_rings[id];
e1382efb 2140 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 2141 enum forcewake_domains fw_domains;
48d82387 2142
e1382efb
CW
2143 engine->id = id;
2144 engine->name = info->name;
2145 engine->exec_id = info->exec_id;
2146 engine->guc_id = info->guc_id;
2147 engine->mmio_base = info->mmio_base;
48d82387 2148
c033666a 2149 engine->i915 = dev_priv;
acdd884a 2150
e1382efb
CW
2151 /* Intentionally left blank. */
2152 engine->buffer = NULL;
ca82580c 2153
3756685a
TU
2154 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2155 RING_ELSP(engine),
2156 FW_REG_WRITE);
2157
2158 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2159 RING_CONTEXT_STATUS_PTR(engine),
2160 FW_REG_READ | FW_REG_WRITE);
2161
2162 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2163 RING_CONTEXT_STATUS_BUF_BASE(engine),
2164 FW_REG_READ);
2165
2166 engine->fw_domains = fw_domains;
2167
e1382efb
CW
2168 INIT_LIST_HEAD(&engine->active_list);
2169 INIT_LIST_HEAD(&engine->request_list);
2170 INIT_LIST_HEAD(&engine->buffers);
2171 INIT_LIST_HEAD(&engine->execlist_queue);
2172 spin_lock_init(&engine->execlist_lock);
2173
2174 tasklet_init(&engine->irq_tasklet,
2175 intel_lrc_irq_handler, (unsigned long)engine);
2176
2177 logical_ring_init_platform_invariants(engine);
2178 logical_ring_default_vfuncs(engine);
2179 logical_ring_default_irqs(engine, info->irq_shift);
2180
2181 intel_engine_init_hangcheck(engine);
91c8a326 2182 i915_gem_batch_pool_init(&dev_priv->drm, &engine->batch_pool);
e1382efb
CW
2183
2184 return engine;
2185}
2186
73e4d07f
OM
2187/**
2188 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2189 * @dev: DRM device.
2190 *
a19d6ff2
TU
2191 * This function inits the engines for an Execlists submission style (the
2192 * equivalent in the legacy ringbuffer submission world would be
2193 * i915_gem_init_engines). It does it only for those engines that are present in
2194 * the hardware.
73e4d07f
OM
2195 *
2196 * Return: non-zero if the initialization failed.
2197 */
454afebd
OM
2198int intel_logical_rings_init(struct drm_device *dev)
2199{
fac5e23e 2200 struct drm_i915_private *dev_priv = to_i915(dev);
a19d6ff2
TU
2201 unsigned int mask = 0;
2202 unsigned int i;
454afebd
OM
2203 int ret;
2204
a19d6ff2
TU
2205 WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2206 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
454afebd 2207
a19d6ff2
TU
2208 for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2209 if (!HAS_ENGINE(dev_priv, i))
2210 continue;
454afebd 2211
a19d6ff2
TU
2212 if (!logical_rings[i].init)
2213 continue;
454afebd 2214
a19d6ff2 2215 ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
454afebd 2216 if (ret)
a19d6ff2
TU
2217 goto cleanup;
2218
2219 mask |= ENGINE_MASK(i);
454afebd
OM
2220 }
2221
a19d6ff2
TU
2222 /*
2223 * Catch failures to update logical_rings table when the new engines
2224 * are added to the driver by a warning and disabling the forgotten
2225 * engines.
2226 */
2227 if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2228 struct intel_device_info *info =
2229 (struct intel_device_info *)&dev_priv->info;
2230 info->ring_mask = mask;
454afebd
OM
2231 }
2232
454afebd
OM
2233 return 0;
2234
a19d6ff2
TU
2235cleanup:
2236 for (i = 0; i < I915_NUM_ENGINES; i++)
2237 intel_logical_ring_cleanup(&dev_priv->engine[i]);
454afebd
OM
2238
2239 return ret;
2240}
2241
0cea6502 2242static u32
c033666a 2243make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2244{
2245 u32 rpcs = 0;
2246
2247 /*
2248 * No explicit RPCS request is needed to ensure full
2249 * slice/subslice/EU enablement prior to Gen9.
2250 */
c033666a 2251 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2252 return 0;
2253
2254 /*
2255 * Starting in Gen9, render power gating can leave
2256 * slice/subslice/EU in a partially enabled state. We
2257 * must make an explicit request through RPCS for full
2258 * enablement.
2259 */
c033666a 2260 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2261 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2262 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2263 GEN8_RPCS_S_CNT_SHIFT;
2264 rpcs |= GEN8_RPCS_ENABLE;
2265 }
2266
c033666a 2267 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2268 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2269 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2270 GEN8_RPCS_SS_CNT_SHIFT;
2271 rpcs |= GEN8_RPCS_ENABLE;
2272 }
2273
c033666a
CW
2274 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2275 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2276 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2277 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2278 GEN8_RPCS_EU_MAX_SHIFT;
2279 rpcs |= GEN8_RPCS_ENABLE;
2280 }
2281
2282 return rpcs;
2283}
2284
0bc40be8 2285static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2286{
2287 u32 indirect_ctx_offset;
2288
c033666a 2289 switch (INTEL_GEN(engine->i915)) {
71562919 2290 default:
c033666a 2291 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2292 /* fall through */
2293 case 9:
2294 indirect_ctx_offset =
2295 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2296 break;
2297 case 8:
2298 indirect_ctx_offset =
2299 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2300 break;
2301 }
2302
2303 return indirect_ctx_offset;
2304}
2305
8670d6f9 2306static int
e2efd130 2307populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2308 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2309 struct intel_engine_cs *engine,
2310 struct intel_ringbuffer *ringbuf)
8670d6f9 2311{
c033666a 2312 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2313 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2314 void *vaddr;
2315 u32 *reg_state;
8670d6f9
OM
2316 int ret;
2317
2d965536
TD
2318 if (!ppgtt)
2319 ppgtt = dev_priv->mm.aliasing_ppgtt;
2320
8670d6f9
OM
2321 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2322 if (ret) {
2323 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2324 return ret;
2325 }
2326
7d774cac
TU
2327 vaddr = i915_gem_object_pin_map(ctx_obj);
2328 if (IS_ERR(vaddr)) {
2329 ret = PTR_ERR(vaddr);
2330 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2331 return ret;
2332 }
7d774cac 2333 ctx_obj->dirty = true;
8670d6f9
OM
2334
2335 /* The second page of the context object contains some fields which must
2336 * be set up prior to the first execution. */
7d774cac 2337 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2338
2339 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2340 * commands followed by (reg, value) pairs. The values we are setting here are
2341 * only for the first context restore: on a subsequent save, the GPU will
2342 * recreate this batchbuffer with new values (including all the missing
2343 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2344 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2345 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2346 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2347 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2348 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2349 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2350 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2351 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2352 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2353 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2355 0);
7ba717cf
TD
2356 /* Ring buffer start address is not known until the buffer is pinned.
2357 * It is written to the context image in execlists_update_context()
2358 */
0bc40be8
TU
2359 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2360 RING_START(engine->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2362 RING_CTL(engine->mmio_base),
0d925ea0 2363 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2364 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2365 RING_BBADDR_UDW(engine->mmio_base), 0);
2366 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2367 RING_BBADDR(engine->mmio_base), 0);
2368 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2369 RING_BBSTATE(engine->mmio_base),
0d925ea0 2370 RING_BB_PPGTT);
0bc40be8
TU
2371 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2372 RING_SBBADDR_UDW(engine->mmio_base), 0);
2373 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2374 RING_SBBADDR(engine->mmio_base), 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2376 RING_SBBSTATE(engine->mmio_base), 0);
2377 if (engine->id == RCS) {
2378 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2379 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2380 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2381 RING_INDIRECT_CTX(engine->mmio_base), 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2383 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2384 if (engine->wa_ctx.obj) {
2385 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2386 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2387
2388 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2389 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2390 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2391
2392 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2393 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2394
2395 reg_state[CTX_BB_PER_CTX_PTR+1] =
2396 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2397 0x01;
2398 }
8670d6f9 2399 }
0d925ea0 2400 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2401 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2402 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2403 /* PDP values well be assigned later if needed */
0bc40be8
TU
2404 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2405 0);
2406 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2407 0);
2408 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2409 0);
2410 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2411 0);
2412 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2413 0);
2414 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2415 0);
2416 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2417 0);
2418 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2419 0);
d7b2633d 2420
2dba3239
MT
2421 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2422 /* 64b PPGTT (48bit canonical)
2423 * PDP0_DESCRIPTOR contains the base address to PML4 and
2424 * other PDP Descriptors are ignored.
2425 */
2426 ASSIGN_CTX_PML4(ppgtt, reg_state);
2427 } else {
2428 /* 32b PPGTT
2429 * PDP*_DESCRIPTOR contains the base address of space supported.
2430 * With dynamic page allocation, PDPs may not be allocated at
2431 * this point. Point the unallocated PDPs to the scratch page
2432 */
c6a2ac71 2433 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2434 }
2435
0bc40be8 2436 if (engine->id == RCS) {
8670d6f9 2437 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2438 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2439 make_rpcs(dev_priv));
8670d6f9
OM
2440 }
2441
7d774cac 2442 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2443
2444 return 0;
2445}
2446
c5d46ee2
DG
2447/**
2448 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2449 * @engine: which engine to find the context size for
c5d46ee2
DG
2450 *
2451 * Each engine may require a different amount of space for a context image,
2452 * so when allocating (or copying) an image, this function can be used to
2453 * find the right size for the specific engine.
2454 *
2455 * Return: size (in bytes) of an engine-specific context image
2456 *
2457 * Note: this size includes the HWSP, which is part of the context image
2458 * in LRC mode, but does not include the "shared data page" used with
2459 * GuC submission. The caller should account for this if using the GuC.
2460 */
0bc40be8 2461uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2462{
2463 int ret = 0;
2464
c033666a 2465 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2466
0bc40be8 2467 switch (engine->id) {
8c857917 2468 case RCS:
c033666a 2469 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2470 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2471 else
2472 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2473 break;
2474 case VCS:
2475 case BCS:
2476 case VECS:
2477 case VCS2:
2478 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2479 break;
2480 }
2481
2482 return ret;
ede7d42b
OM
2483}
2484
73e4d07f 2485/**
978f1e09 2486 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2487 * @ctx: LR context to create.
978f1e09 2488 * @engine: engine to be used with the context.
73e4d07f
OM
2489 *
2490 * This function can be called more than once, with different engines, if we plan
2491 * to use the context with them. The context backing objects and the ringbuffers
2492 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2493 * the creation is a deferred call: it's better to make sure first that we need to use
2494 * a given ring with the context.
2495 *
32197aab 2496 * Return: non-zero on error.
73e4d07f 2497 */
e2efd130 2498static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2499 struct intel_engine_cs *engine)
ede7d42b 2500{
8c857917 2501 struct drm_i915_gem_object *ctx_obj;
9021ad03 2502 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2503 uint32_t context_size;
84c2377f 2504 struct intel_ringbuffer *ringbuf;
8c857917
OM
2505 int ret;
2506
9021ad03 2507 WARN_ON(ce->state);
ede7d42b 2508
0bc40be8 2509 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2510
d1675198
AD
2511 /* One extra page as the sharing data between driver and GuC */
2512 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2513
91c8a326 2514 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2515 if (IS_ERR(ctx_obj)) {
3126a660 2516 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2517 return PTR_ERR(ctx_obj);
8c857917
OM
2518 }
2519
bcd794c2 2520 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
01101fa7
CW
2521 if (IS_ERR(ringbuf)) {
2522 ret = PTR_ERR(ringbuf);
e84fe803 2523 goto error_deref_obj;
8670d6f9
OM
2524 }
2525
0bc40be8 2526 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2527 if (ret) {
2528 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2529 goto error_ringbuf;
84c2377f
OM
2530 }
2531
9021ad03
CW
2532 ce->ringbuf = ringbuf;
2533 ce->state = ctx_obj;
2534 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2535
2536 return 0;
8670d6f9 2537
01101fa7
CW
2538error_ringbuf:
2539 intel_ringbuffer_free(ringbuf);
e84fe803 2540error_deref_obj:
8670d6f9 2541 drm_gem_object_unreference(&ctx_obj->base);
9021ad03
CW
2542 ce->ringbuf = NULL;
2543 ce->state = NULL;
8670d6f9 2544 return ret;
ede7d42b 2545}
3e5b6f05 2546
7d774cac 2547void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2548 struct i915_gem_context *ctx)
3e5b6f05 2549{
e2f80391 2550 struct intel_engine_cs *engine;
3e5b6f05 2551
b4ac5afc 2552 for_each_engine(engine, dev_priv) {
9021ad03
CW
2553 struct intel_context *ce = &ctx->engine[engine->id];
2554 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2555 void *vaddr;
3e5b6f05 2556 uint32_t *reg_state;
3e5b6f05
TD
2557
2558 if (!ctx_obj)
2559 continue;
2560
7d774cac
TU
2561 vaddr = i915_gem_object_pin_map(ctx_obj);
2562 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2563 continue;
7d774cac
TU
2564
2565 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2566 ctx_obj->dirty = true;
3e5b6f05
TD
2567
2568 reg_state[CTX_RING_HEAD+1] = 0;
2569 reg_state[CTX_RING_TAIL+1] = 0;
2570
7d774cac 2571 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2572
9021ad03
CW
2573 ce->ringbuf->head = 0;
2574 ce->ringbuf->tail = 0;
3e5b6f05
TD
2575 }
2576}
This page took 0.345896 seconds and 5 git commands to generate.