drm/i915/gen8: Re-order init pipe_control in lrc mode
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
191
192#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d7b2633d 193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
e5815a2e
MT
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198}
199
84b790f8
BW
200enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205};
206#define GEN8_CTX_MODE_SHIFT 3
207enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212};
213#define GEN8_CTX_ID_SHIFT 32
17ee950d 214#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 215
7ba717cf
TD
216static int intel_lr_context_pin(struct intel_engine_cs *ring,
217 struct intel_context *ctx);
218
73e4d07f
OM
219/**
220 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221 * @dev: DRM device.
222 * @enable_execlists: value of i915.enable_execlists module parameter.
223 *
224 * Only certain platforms support Execlists (the prerequisites being
27401d12 225 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
226 *
227 * Return: 1 if Execlists is supported and has to be enabled.
228 */
127f1003
OM
229int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230{
bd84b1e9
DV
231 WARN_ON(i915.enable_ppgtt == -1);
232
70ee45e1
DL
233 if (INTEL_INFO(dev)->gen >= 9)
234 return 1;
235
127f1003
OM
236 if (enable_execlists == 0)
237 return 0;
238
14bf993e
OM
239 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240 i915.use_mmio_flip >= 0)
127f1003
OM
241 return 1;
242
243 return 0;
244}
ede7d42b 245
73e4d07f
OM
246/**
247 * intel_execlists_ctx_id() - get the Execlists Context ID
248 * @ctx_obj: Logical Ring Context backing object.
249 *
250 * Do not confuse with ctx->id! Unfortunately we have a name overload
251 * here: the old context ID we pass to userspace as a handler so that
252 * they can refer to a context, and the new context ID we pass to the
253 * ELSP so that the GPU can inform us of the context status via
254 * interrupts.
255 *
256 * Return: 20-bits globally unique context ID.
257 */
84b790f8
BW
258u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259{
260 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 /* LRCA is required to be 4K aligned so the more significant 20 bits
263 * are globally unique */
264 return lrca >> 12;
265}
266
203a571b
NH
267static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268 struct drm_i915_gem_object *ctx_obj)
84b790f8 269{
203a571b 270 struct drm_device *dev = ring->dev;
84b790f8
BW
271 uint64_t desc;
272 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
273
274 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
275
276 desc = GEN8_CTX_VALID;
277 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
51847fb9
AS
278 if (IS_GEN8(ctx_obj->base.dev))
279 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
280 desc |= GEN8_CTX_PRIVILEGE;
281 desc |= lrca;
282 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
203a571b
NH
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 if (IS_GEN9(dev) &&
290 INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 (ring->id == BCS || ring->id == VCS ||
292 ring->id == VECS || ring->id == VCS2))
293 desc |= GEN8_CTX_FORCE_RESTORE;
294
84b790f8
BW
295 return desc;
296}
297
298static void execlists_elsp_write(struct intel_engine_cs *ring,
299 struct drm_i915_gem_object *ctx_obj0,
300 struct drm_i915_gem_object *ctx_obj1)
301{
6e7cc470
TU
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
304 uint64_t temp = 0;
305 uint32_t desc[4];
306
307 /* XXX: You must always write both descriptors in the order below. */
308 if (ctx_obj1)
203a571b 309 temp = execlists_ctx_descriptor(ring, ctx_obj1);
84b790f8
BW
310 else
311 temp = 0;
312 desc[1] = (u32)(temp >> 32);
313 desc[0] = (u32)temp;
314
203a571b 315 temp = execlists_ctx_descriptor(ring, ctx_obj0);
84b790f8
BW
316 desc[3] = (u32)(temp >> 32);
317 desc[2] = (u32)temp;
318
a6111f7b
CW
319 spin_lock(&dev_priv->uncore.lock);
320 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
6daccb0b 324
84b790f8 325 /* The context is automatically loaded after the following */
a6111f7b 326 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
84b790f8
BW
327
328 /* ELSP is a wo register, so use another nearby reg for posting instead */
a6111f7b
CW
329 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
332}
333
7ba717cf
TD
334static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335 struct drm_i915_gem_object *ring_obj,
d7b2633d 336 struct i915_hw_ppgtt *ppgtt,
7ba717cf 337 u32 tail)
ae1250b9
OM
338{
339 struct page *page;
340 uint32_t *reg_state;
341
342 page = i915_gem_object_get_page(ctx_obj, 1);
343 reg_state = kmap_atomic(page);
344
345 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 346 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9 347
d7b2633d
MT
348 /* True PPGTT with dynamic page allocation: update PDP registers and
349 * point the unallocated PDPs to the scratch page
350 */
351 if (ppgtt) {
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356 }
357
ae1250b9
OM
358 kunmap_atomic(reg_state);
359
360 return 0;
361}
362
cd0707cb
DG
363static void execlists_submit_contexts(struct intel_engine_cs *ring,
364 struct intel_context *to0, u32 tail0,
365 struct intel_context *to1, u32 tail1)
84b790f8 366{
7ba717cf
TD
367 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 369 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 370 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 371
84b790f8 372 BUG_ON(!ctx_obj0);
acdd884a 373 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 374 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 375
d7b2633d 376 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
ae1250b9 377
84b790f8 378 if (to1) {
7ba717cf 379 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
380 ctx_obj1 = to1->engine[ring->id].state;
381 BUG_ON(!ctx_obj1);
acdd884a 382 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 383 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 384
d7b2633d 385 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
84b790f8
BW
386 }
387
388 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
389}
390
acdd884a
MT
391static void execlists_context_unqueue(struct intel_engine_cs *ring)
392{
6d3d8274
NH
393 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
395
396 assert_spin_locked(&ring->execlist_lock);
acdd884a 397
779949f4
PA
398 /*
399 * If irqs are not active generate a warning as batches that finish
400 * without the irqs may get lost and a GPU Hang may occur.
401 */
402 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
acdd884a
MT
404 if (list_empty(&ring->execlist_queue))
405 return;
406
407 /* Try to read in pairs */
408 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409 execlist_link) {
410 if (!req0) {
411 req0 = cursor;
6d3d8274 412 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
413 /* Same ctx: ignore first request, as second request
414 * will update tail past first request's workload */
e1fee72c 415 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 416 list_del(&req0->execlist_link);
c86ee3a9
TD
417 list_add_tail(&req0->execlist_link,
418 &ring->execlist_retired_req_list);
acdd884a
MT
419 req0 = cursor;
420 } else {
421 req1 = cursor;
422 break;
423 }
424 }
425
53292cdb
MT
426 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427 /*
428 * WaIdleLiteRestore: make sure we never cause a lite
429 * restore with HEAD==TAIL
430 */
d63f820f 431 if (req0->elsp_submitted) {
53292cdb
MT
432 /*
433 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434 * as we resubmit the request. See gen8_emit_request()
435 * for where we prepare the padding after the end of the
436 * request.
437 */
438 struct intel_ringbuffer *ringbuf;
439
440 ringbuf = req0->ctx->engine[ring->id].ringbuf;
441 req0->tail += 8;
442 req0->tail &= ringbuf->size - 1;
443 }
444 }
445
e1fee72c
OM
446 WARN_ON(req1 && req1->elsp_submitted);
447
6d3d8274
NH
448 execlists_submit_contexts(ring, req0->ctx, req0->tail,
449 req1 ? req1->ctx : NULL,
450 req1 ? req1->tail : 0);
e1fee72c
OM
451
452 req0->elsp_submitted++;
453 if (req1)
454 req1->elsp_submitted++;
acdd884a
MT
455}
456
e981e7b1
TD
457static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458 u32 request_id)
459{
6d3d8274 460 struct drm_i915_gem_request *head_req;
e981e7b1
TD
461
462 assert_spin_locked(&ring->execlist_lock);
463
464 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 465 struct drm_i915_gem_request,
e981e7b1
TD
466 execlist_link);
467
468 if (head_req != NULL) {
469 struct drm_i915_gem_object *ctx_obj =
6d3d8274 470 head_req->ctx->engine[ring->id].state;
e981e7b1 471 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
472 WARN(head_req->elsp_submitted == 0,
473 "Never submitted head request\n");
474
475 if (--head_req->elsp_submitted <= 0) {
476 list_del(&head_req->execlist_link);
c86ee3a9
TD
477 list_add_tail(&head_req->execlist_link,
478 &ring->execlist_retired_req_list);
e1fee72c
OM
479 return true;
480 }
e981e7b1
TD
481 }
482 }
483
484 return false;
485}
486
73e4d07f 487/**
3f7531c3 488 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
489 * @ring: Engine Command Streamer to handle.
490 *
491 * Check the unread Context Status Buffers and manage the submission of new
492 * contexts to the ELSP accordingly.
493 */
3f7531c3 494void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
495{
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 status_pointer;
498 u8 read_pointer;
499 u8 write_pointer;
500 u32 status;
501 u32 status_id;
502 u32 submit_contexts = 0;
503
504 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506 read_pointer = ring->next_context_status_buffer;
507 write_pointer = status_pointer & 0x07;
508 if (read_pointer > write_pointer)
509 write_pointer += 6;
510
511 spin_lock(&ring->execlist_lock);
512
513 while (read_pointer < write_pointer) {
514 read_pointer++;
515 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8);
517 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518 (read_pointer % 6) * 8 + 4);
519
e1fee72c
OM
520 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522 if (execlists_check_remove_request(ring, status_id))
523 WARN(1, "Lite Restored request removed from queue\n");
524 } else
525 WARN(1, "Preemption without Lite Restore\n");
526 }
527
528 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
530 if (execlists_check_remove_request(ring, status_id))
531 submit_contexts++;
532 }
533 }
534
535 if (submit_contexts != 0)
536 execlists_context_unqueue(ring);
537
538 spin_unlock(&ring->execlist_lock);
539
540 WARN(submit_contexts > 2, "More than two context complete events?\n");
541 ring->next_context_status_buffer = write_pointer % 6;
542
543 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544 ((u32)ring->next_context_status_buffer & 0x07) << 8);
545}
546
acdd884a
MT
547static int execlists_context_queue(struct intel_engine_cs *ring,
548 struct intel_context *to,
2d12955a
NH
549 u32 tail,
550 struct drm_i915_gem_request *request)
acdd884a 551{
6d3d8274 552 struct drm_i915_gem_request *cursor;
f1ad5a1f 553 int num_elements = 0;
acdd884a 554
7ba717cf
TD
555 if (to != ring->default_context)
556 intel_lr_context_pin(ring, to);
557
2d12955a
NH
558 if (!request) {
559 /*
560 * If there isn't a request associated with this submission,
561 * create one as a temporary holder.
562 */
2d12955a
NH
563 request = kzalloc(sizeof(*request), GFP_KERNEL);
564 if (request == NULL)
565 return -ENOMEM;
2d12955a 566 request->ring = ring;
6d3d8274 567 request->ctx = to;
b3a38998 568 kref_init(&request->ref);
b3a38998 569 i915_gem_context_reference(request->ctx);
21076372 570 } else {
b3a38998 571 i915_gem_request_reference(request);
21076372 572 WARN_ON(to != request->ctx);
2d12955a 573 }
72f95afa 574 request->tail = tail;
2d12955a 575
b5eba372 576 spin_lock_irq(&ring->execlist_lock);
acdd884a 577
f1ad5a1f
OM
578 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579 if (++num_elements > 2)
580 break;
581
582 if (num_elements > 2) {
6d3d8274 583 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
584
585 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 586 struct drm_i915_gem_request,
f1ad5a1f
OM
587 execlist_link);
588
6d3d8274 589 if (to == tail_req->ctx) {
f1ad5a1f 590 WARN(tail_req->elsp_submitted != 0,
7ba717cf 591 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 592 list_del(&tail_req->execlist_link);
c86ee3a9
TD
593 list_add_tail(&tail_req->execlist_link,
594 &ring->execlist_retired_req_list);
f1ad5a1f
OM
595 }
596 }
597
6d3d8274 598 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 599 if (num_elements == 0)
acdd884a
MT
600 execlists_context_unqueue(ring);
601
b5eba372 602 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
603
604 return 0;
605}
606
21076372
NH
607static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
608 struct intel_context *ctx)
ba8b7ccb
OM
609{
610 struct intel_engine_cs *ring = ringbuf->ring;
611 uint32_t flush_domains;
612 int ret;
613
614 flush_domains = 0;
615 if (ring->gpu_caches_dirty)
616 flush_domains = I915_GEM_GPU_DOMAINS;
617
21076372
NH
618 ret = ring->emit_flush(ringbuf, ctx,
619 I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
620 if (ret)
621 return ret;
622
623 ring->gpu_caches_dirty = false;
624 return 0;
625}
626
627static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
21076372 628 struct intel_context *ctx,
ba8b7ccb
OM
629 struct list_head *vmas)
630{
631 struct intel_engine_cs *ring = ringbuf->ring;
03ade511 632 const unsigned other_rings = ~intel_ring_flag(ring);
ba8b7ccb
OM
633 struct i915_vma *vma;
634 uint32_t flush_domains = 0;
635 bool flush_chipset = false;
636 int ret;
637
638 list_for_each_entry(vma, vmas, exec_list) {
639 struct drm_i915_gem_object *obj = vma->obj;
640
03ade511
CW
641 if (obj->active & other_rings) {
642 ret = i915_gem_object_sync(obj, ring);
643 if (ret)
644 return ret;
645 }
ba8b7ccb
OM
646
647 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
648 flush_chipset |= i915_gem_clflush_object(obj, false);
649
650 flush_domains |= obj->base.write_domain;
651 }
652
653 if (flush_domains & I915_GEM_DOMAIN_GTT)
654 wmb();
655
656 /* Unconditionally invalidate gpu caches and ensure that we do flush
657 * any residual writes from the previous batch.
658 */
21076372 659 return logical_ring_invalidate_all_caches(ringbuf, ctx);
ba8b7ccb
OM
660}
661
6689cb2b
JH
662int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
663 struct intel_context *ctx)
bc0dce3f 664{
bc0dce3f
JH
665 int ret;
666
6689cb2b
JH
667 if (ctx != request->ring->default_context) {
668 ret = intel_lr_context_pin(request->ring, ctx);
669 if (ret)
bc0dce3f 670 return ret;
bc0dce3f
JH
671 }
672
6689cb2b
JH
673 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
674 request->ctx = ctx;
bc0dce3f 675 i915_gem_context_reference(request->ctx);
bc0dce3f 676
bc0dce3f
JH
677 return 0;
678}
679
595e1eeb
CW
680static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
681 struct intel_context *ctx,
682 int bytes)
bc0dce3f
JH
683{
684 struct intel_engine_cs *ring = ringbuf->ring;
685 struct drm_i915_gem_request *request;
b4716185
CW
686 unsigned space;
687 int ret;
bc0dce3f
JH
688
689 if (intel_ring_space(ringbuf) >= bytes)
690 return 0;
691
692 list_for_each_entry(request, &ring->request_list, list) {
693 /*
694 * The request queue is per-engine, so can contain requests
695 * from multiple ringbuffers. Here, we must ignore any that
696 * aren't from the ringbuffer we're considering.
697 */
b4716185 698 if (request->ringbuf != ringbuf)
bc0dce3f
JH
699 continue;
700
701 /* Would completion of this request free enough space? */
b4716185
CW
702 space = __intel_ring_space(request->postfix, ringbuf->tail,
703 ringbuf->size);
704 if (space >= bytes)
bc0dce3f 705 break;
bc0dce3f
JH
706 }
707
595e1eeb 708 if (WARN_ON(&request->list == &ring->request_list))
bc0dce3f
JH
709 return -ENOSPC;
710
711 ret = i915_wait_request(request);
712 if (ret)
713 return ret;
714
b4716185
CW
715 ringbuf->space = space;
716 return 0;
bc0dce3f
JH
717}
718
719/*
720 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
721 * @ringbuf: Logical Ringbuffer to advance.
722 *
723 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
724 * really happens during submission is that the context and current tail will be placed
725 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
726 * point, the tail *inside* the context is updated and the ELSP written to.
727 */
728static void
729intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
730 struct intel_context *ctx,
731 struct drm_i915_gem_request *request)
732{
733 struct intel_engine_cs *ring = ringbuf->ring;
734
735 intel_logical_ring_advance(ringbuf);
736
737 if (intel_ring_stopped(ring))
738 return;
739
740 execlists_context_queue(ring, ctx, ringbuf->tail, request);
741}
742
bc0dce3f
JH
743static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
744 struct intel_context *ctx)
745{
746 uint32_t __iomem *virt;
747 int rem = ringbuf->size - ringbuf->tail;
748
749 if (ringbuf->space < rem) {
750 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
751
752 if (ret)
753 return ret;
754 }
755
756 virt = ringbuf->virtual_start + ringbuf->tail;
757 rem /= 4;
758 while (rem--)
759 iowrite32(MI_NOOP, virt++);
760
761 ringbuf->tail = 0;
762 intel_ring_update_space(ringbuf);
763
764 return 0;
765}
766
767static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
768 struct intel_context *ctx, int bytes)
769{
770 int ret;
771
772 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
773 ret = logical_ring_wrap_buffer(ringbuf, ctx);
774 if (unlikely(ret))
775 return ret;
776 }
777
778 if (unlikely(ringbuf->space < bytes)) {
779 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
780 if (unlikely(ret))
781 return ret;
782 }
783
784 return 0;
785}
786
787/**
788 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
789 *
790 * @ringbuf: Logical ringbuffer.
791 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
792 *
793 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
794 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
795 * and also preallocates a request (every workload submission is still mediated through
796 * requests, same as it did with legacy ringbuffer submission).
797 *
798 * Return: non-zero if the ringbuffer is not ready to be written to.
799 */
800static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
801 struct intel_context *ctx, int num_dwords)
802{
803 struct intel_engine_cs *ring = ringbuf->ring;
804 struct drm_device *dev = ring->dev;
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 int ret;
807
808 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
809 dev_priv->mm.interruptible);
810 if (ret)
811 return ret;
812
813 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
814 if (ret)
815 return ret;
816
817 /* Preallocate the olr before touching the ring */
6689cb2b 818 ret = i915_gem_request_alloc(ring, ctx);
bc0dce3f
JH
819 if (ret)
820 return ret;
821
822 ringbuf->space -= num_dwords * sizeof(uint32_t);
823 return 0;
824}
825
73e4d07f
OM
826/**
827 * execlists_submission() - submit a batchbuffer for execution, Execlists style
828 * @dev: DRM device.
829 * @file: DRM file.
830 * @ring: Engine Command Streamer to submit to.
831 * @ctx: Context to employ for this submission.
832 * @args: execbuffer call arguments.
833 * @vmas: list of vmas.
834 * @batch_obj: the batchbuffer to submit.
835 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 836 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
837 *
838 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
839 * away the submission details of the execbuffer ioctl call.
840 *
841 * Return: non-zero if the submission fails.
842 */
454afebd
OM
843int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
844 struct intel_engine_cs *ring,
845 struct intel_context *ctx,
846 struct drm_i915_gem_execbuffer2 *args,
847 struct list_head *vmas,
848 struct drm_i915_gem_object *batch_obj,
8e004efc 849 u64 exec_start, u32 dispatch_flags)
454afebd 850{
ba8b7ccb
OM
851 struct drm_i915_private *dev_priv = dev->dev_private;
852 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
853 int instp_mode;
854 u32 instp_mask;
855 int ret;
856
857 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
858 instp_mask = I915_EXEC_CONSTANTS_MASK;
859 switch (instp_mode) {
860 case I915_EXEC_CONSTANTS_REL_GENERAL:
861 case I915_EXEC_CONSTANTS_ABSOLUTE:
862 case I915_EXEC_CONSTANTS_REL_SURFACE:
863 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
864 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
865 return -EINVAL;
866 }
867
868 if (instp_mode != dev_priv->relative_constants_mode) {
869 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
870 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
871 return -EINVAL;
872 }
873
874 /* The HW changed the meaning on this bit on gen6 */
875 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
876 }
877 break;
878 default:
879 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
880 return -EINVAL;
881 }
882
883 if (args->num_cliprects != 0) {
884 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
885 return -EINVAL;
886 } else {
887 if (args->DR4 == 0xffffffff) {
888 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
889 args->DR4 = 0;
890 }
891
892 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
893 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
894 return -EINVAL;
895 }
896 }
897
898 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
899 DRM_DEBUG("sol reset is gen7 only\n");
900 return -EINVAL;
901 }
902
21076372 903 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
ba8b7ccb
OM
904 if (ret)
905 return ret;
906
907 if (ring == &dev_priv->ring[RCS] &&
908 instp_mode != dev_priv->relative_constants_mode) {
21076372 909 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
ba8b7ccb
OM
910 if (ret)
911 return ret;
912
913 intel_logical_ring_emit(ringbuf, MI_NOOP);
914 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
915 intel_logical_ring_emit(ringbuf, INSTPM);
916 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
917 intel_logical_ring_advance(ringbuf);
918
919 dev_priv->relative_constants_mode = instp_mode;
920 }
921
8e004efc 922 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
ba8b7ccb
OM
923 if (ret)
924 return ret;
925
5e4be7bd
JH
926 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
927
ba8b7ccb
OM
928 i915_gem_execbuffer_move_to_active(vmas, ring);
929 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
930
454afebd
OM
931 return 0;
932}
933
c86ee3a9
TD
934void intel_execlists_retire_requests(struct intel_engine_cs *ring)
935{
6d3d8274 936 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
937 struct list_head retired_list;
938
939 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
940 if (list_empty(&ring->execlist_retired_req_list))
941 return;
942
943 INIT_LIST_HEAD(&retired_list);
b5eba372 944 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 945 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 946 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
947
948 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 949 struct intel_context *ctx = req->ctx;
7ba717cf
TD
950 struct drm_i915_gem_object *ctx_obj =
951 ctx->engine[ring->id].state;
952
953 if (ctx_obj && (ctx != ring->default_context))
954 intel_lr_context_unpin(ring, ctx);
c86ee3a9 955 list_del(&req->execlist_link);
f8210795 956 i915_gem_request_unreference(req);
c86ee3a9
TD
957 }
958}
959
454afebd
OM
960void intel_logical_ring_stop(struct intel_engine_cs *ring)
961{
9832b9da
OM
962 struct drm_i915_private *dev_priv = ring->dev->dev_private;
963 int ret;
964
965 if (!intel_ring_initialized(ring))
966 return;
967
968 ret = intel_ring_idle(ring);
969 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
970 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
971 ring->name, ret);
972
973 /* TODO: Is this correct with Execlists enabled? */
974 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
975 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
976 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
977 return;
978 }
979 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
980}
981
21076372
NH
982int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
983 struct intel_context *ctx)
48e29f55
OM
984{
985 struct intel_engine_cs *ring = ringbuf->ring;
986 int ret;
987
988 if (!ring->gpu_caches_dirty)
989 return 0;
990
21076372 991 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
992 if (ret)
993 return ret;
994
995 ring->gpu_caches_dirty = false;
996 return 0;
997}
998
dcb4c12a
OM
999static int intel_lr_context_pin(struct intel_engine_cs *ring,
1000 struct intel_context *ctx)
1001{
1002 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1003 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1004 int ret = 0;
1005
1006 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1007 if (ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1008 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1009 GEN8_LR_CONTEXT_ALIGN, 0);
1010 if (ret)
a7cbedec 1011 goto reset_pin_count;
7ba717cf
TD
1012
1013 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1014 if (ret)
1015 goto unpin_ctx_obj;
dcb4c12a
OM
1016 }
1017
7ba717cf
TD
1018 return ret;
1019
1020unpin_ctx_obj:
1021 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec
MK
1022reset_pin_count:
1023 ctx->engine[ring->id].pin_count = 0;
7ba717cf 1024
dcb4c12a
OM
1025 return ret;
1026}
1027
1028void intel_lr_context_unpin(struct intel_engine_cs *ring,
1029 struct intel_context *ctx)
1030{
1031 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1032 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1033
1034 if (ctx_obj) {
1035 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1036 if (--ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1037 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1038 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1039 }
dcb4c12a
OM
1040 }
1041}
1042
771b9a53
MT
1043static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1044 struct intel_context *ctx)
1045{
1046 int ret, i;
1047 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1048 struct drm_device *dev = ring->dev;
1049 struct drm_i915_private *dev_priv = dev->dev_private;
1050 struct i915_workarounds *w = &dev_priv->workarounds;
1051
e6c1abb7 1052 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1053 return 0;
1054
1055 ring->gpu_caches_dirty = true;
21076372 1056 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1057 if (ret)
1058 return ret;
1059
21076372 1060 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
771b9a53
MT
1061 if (ret)
1062 return ret;
1063
1064 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1065 for (i = 0; i < w->count; i++) {
1066 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1067 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1068 }
1069 intel_logical_ring_emit(ringbuf, MI_NOOP);
1070
1071 intel_logical_ring_advance(ringbuf);
1072
1073 ring->gpu_caches_dirty = true;
21076372 1074 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1075 if (ret)
1076 return ret;
1077
1078 return 0;
1079}
1080
17ee950d
AS
1081#define wa_ctx_emit(batch, cmd) \
1082 do { \
1083 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1084 return -ENOSPC; \
1085 } \
1086 batch[index++] = (cmd); \
1087 } while (0)
1088
1089static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1090 uint32_t offset,
1091 uint32_t start_alignment)
1092{
1093 return wa_ctx->offset = ALIGN(offset, start_alignment);
1094}
1095
1096static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1097 uint32_t offset,
1098 uint32_t size_alignment)
1099{
1100 wa_ctx->size = offset - wa_ctx->offset;
1101
1102 WARN(wa_ctx->size % size_alignment,
1103 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1104 wa_ctx->size, size_alignment);
1105 return 0;
1106}
1107
1108/**
1109 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1110 *
1111 * @ring: only applicable for RCS
1112 * @wa_ctx: structure representing wa_ctx
1113 * offset: specifies start of the batch, should be cache-aligned. This is updated
1114 * with the offset value received as input.
1115 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1116 * @batch: page in which WA are loaded
1117 * @offset: This field specifies the start of the batch, it should be
1118 * cache-aligned otherwise it is adjusted accordingly.
1119 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1120 * initialized at the beginning and shared across all contexts but this field
1121 * helps us to have multiple batches at different offsets and select them based
1122 * on a criteria. At the moment this batch always start at the beginning of the page
1123 * and at this point we don't have multiple wa_ctx batch buffers.
1124 *
1125 * The number of WA applied are not known at the beginning; we use this field
1126 * to return the no of DWORDS written.
1127
1128 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1129 * so it adds NOOPs as padding to make it cacheline aligned.
1130 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1131 * makes a complete batch buffer.
1132 *
1133 * Return: non-zero if we exceed the PAGE_SIZE limit.
1134 */
1135
1136static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1137 struct i915_wa_ctx_bb *wa_ctx,
1138 uint32_t *const batch,
1139 uint32_t *offset)
1140{
1141 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1142
1143 /* FIXME: Replace me with WA */
1144 wa_ctx_emit(batch, MI_NOOP);
1145
1146 /* Pad to end of cacheline */
1147 while (index % CACHELINE_DWORDS)
1148 wa_ctx_emit(batch, MI_NOOP);
1149
1150 /*
1151 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1152 * execution depends on the length specified in terms of cache lines
1153 * in the register CTX_RCS_INDIRECT_CTX
1154 */
1155
1156 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1157}
1158
1159/**
1160 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1161 *
1162 * @ring: only applicable for RCS
1163 * @wa_ctx: structure representing wa_ctx
1164 * offset: specifies start of the batch, should be cache-aligned.
1165 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1166 * @offset: This field specifies the start of this batch.
1167 * This batch is started immediately after indirect_ctx batch. Since we ensure
1168 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1169 *
1170 * The number of DWORDS written are returned using this field.
1171 *
1172 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1173 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1174 */
1175static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1176 struct i915_wa_ctx_bb *wa_ctx,
1177 uint32_t *const batch,
1178 uint32_t *offset)
1179{
1180 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1181
1182 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1183
1184 return wa_ctx_end(wa_ctx, *offset = index, 1);
1185}
1186
1187static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1188{
1189 int ret;
1190
1191 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1192 if (!ring->wa_ctx.obj) {
1193 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1194 return -ENOMEM;
1195 }
1196
1197 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1198 if (ret) {
1199 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1200 ret);
1201 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1202 return ret;
1203 }
1204
1205 return 0;
1206}
1207
1208static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1209{
1210 if (ring->wa_ctx.obj) {
1211 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1212 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1213 ring->wa_ctx.obj = NULL;
1214 }
1215}
1216
1217static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1218{
1219 int ret;
1220 uint32_t *batch;
1221 uint32_t offset;
1222 struct page *page;
1223 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1224
1225 WARN_ON(ring->id != RCS);
1226
c4db7599
AS
1227 /* some WA perform writes to scratch page, ensure it is valid */
1228 if (ring->scratch.obj == NULL) {
1229 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1230 return -EINVAL;
1231 }
1232
17ee950d
AS
1233 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1234 if (ret) {
1235 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1236 return ret;
1237 }
1238
1239 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1240 batch = kmap_atomic(page);
1241 offset = 0;
1242
1243 if (INTEL_INFO(ring->dev)->gen == 8) {
1244 ret = gen8_init_indirectctx_bb(ring,
1245 &wa_ctx->indirect_ctx,
1246 batch,
1247 &offset);
1248 if (ret)
1249 goto out;
1250
1251 ret = gen8_init_perctx_bb(ring,
1252 &wa_ctx->per_ctx,
1253 batch,
1254 &offset);
1255 if (ret)
1256 goto out;
1257 } else {
1258 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1259 "WA batch buffer is not initialized for Gen%d\n",
1260 INTEL_INFO(ring->dev)->gen);
1261 lrc_destroy_wa_ctx_obj(ring);
1262 }
1263
1264out:
1265 kunmap_atomic(batch);
1266 if (ret)
1267 lrc_destroy_wa_ctx_obj(ring);
1268
1269 return ret;
1270}
1271
9b1136d5
OM
1272static int gen8_init_common_ring(struct intel_engine_cs *ring)
1273{
1274 struct drm_device *dev = ring->dev;
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1276
73d477f6
OM
1277 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1278 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1279
9b1136d5
OM
1280 I915_WRITE(RING_MODE_GEN7(ring),
1281 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1282 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1283 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1284 ring->next_context_status_buffer = 0;
9b1136d5
OM
1285 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1286
1287 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1288
1289 return 0;
1290}
1291
1292static int gen8_init_render_ring(struct intel_engine_cs *ring)
1293{
1294 struct drm_device *dev = ring->dev;
1295 struct drm_i915_private *dev_priv = dev->dev_private;
1296 int ret;
1297
1298 ret = gen8_init_common_ring(ring);
1299 if (ret)
1300 return ret;
1301
1302 /* We need to disable the AsyncFlip performance optimisations in order
1303 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1304 * programmed to '1' on all products.
1305 *
1306 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1307 */
1308 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1309
9b1136d5
OM
1310 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1311
771b9a53 1312 return init_workarounds_ring(ring);
9b1136d5
OM
1313}
1314
82ef822e
DL
1315static int gen9_init_render_ring(struct intel_engine_cs *ring)
1316{
1317 int ret;
1318
1319 ret = gen8_init_common_ring(ring);
1320 if (ret)
1321 return ret;
1322
1323 return init_workarounds_ring(ring);
1324}
1325
15648585 1326static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
21076372 1327 struct intel_context *ctx,
8e004efc 1328 u64 offset, unsigned dispatch_flags)
15648585 1329{
8e004efc 1330 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1331 int ret;
1332
21076372 1333 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
15648585
OM
1334 if (ret)
1335 return ret;
1336
1337 /* FIXME(BDW): Address space and security selectors. */
1338 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1339 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1340 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1341 intel_logical_ring_emit(ringbuf, MI_NOOP);
1342 intel_logical_ring_advance(ringbuf);
1343
1344 return 0;
1345}
1346
73d477f6
OM
1347static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1348{
1349 struct drm_device *dev = ring->dev;
1350 struct drm_i915_private *dev_priv = dev->dev_private;
1351 unsigned long flags;
1352
7cd512f1 1353 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1354 return false;
1355
1356 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1357 if (ring->irq_refcount++ == 0) {
1358 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1359 POSTING_READ(RING_IMR(ring->mmio_base));
1360 }
1361 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1362
1363 return true;
1364}
1365
1366static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1367{
1368 struct drm_device *dev = ring->dev;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 unsigned long flags;
1371
1372 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1373 if (--ring->irq_refcount == 0) {
1374 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1375 POSTING_READ(RING_IMR(ring->mmio_base));
1376 }
1377 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1378}
1379
4712274c 1380static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
21076372 1381 struct intel_context *ctx,
4712274c
OM
1382 u32 invalidate_domains,
1383 u32 unused)
1384{
1385 struct intel_engine_cs *ring = ringbuf->ring;
1386 struct drm_device *dev = ring->dev;
1387 struct drm_i915_private *dev_priv = dev->dev_private;
1388 uint32_t cmd;
1389 int ret;
1390
21076372 1391 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
4712274c
OM
1392 if (ret)
1393 return ret;
1394
1395 cmd = MI_FLUSH_DW + 1;
1396
f0a1fb10
CW
1397 /* We always require a command barrier so that subsequent
1398 * commands, such as breadcrumb interrupts, are strictly ordered
1399 * wrt the contents of the write cache being flushed to memory
1400 * (and thus being coherent from the CPU).
1401 */
1402 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1403
1404 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1405 cmd |= MI_INVALIDATE_TLB;
1406 if (ring == &dev_priv->ring[VCS])
1407 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1408 }
1409
1410 intel_logical_ring_emit(ringbuf, cmd);
1411 intel_logical_ring_emit(ringbuf,
1412 I915_GEM_HWS_SCRATCH_ADDR |
1413 MI_FLUSH_DW_USE_GTT);
1414 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1415 intel_logical_ring_emit(ringbuf, 0); /* value */
1416 intel_logical_ring_advance(ringbuf);
1417
1418 return 0;
1419}
1420
1421static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
21076372 1422 struct intel_context *ctx,
4712274c
OM
1423 u32 invalidate_domains,
1424 u32 flush_domains)
1425{
1426 struct intel_engine_cs *ring = ringbuf->ring;
1427 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1428 bool vf_flush_wa;
4712274c
OM
1429 u32 flags = 0;
1430 int ret;
1431
1432 flags |= PIPE_CONTROL_CS_STALL;
1433
1434 if (flush_domains) {
1435 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1436 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1437 }
1438
1439 if (invalidate_domains) {
1440 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1441 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1442 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1443 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1444 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1445 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1446 flags |= PIPE_CONTROL_QW_WRITE;
1447 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1448 }
1449
9647ff36
ID
1450 /*
1451 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1452 * control.
1453 */
1454 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1455 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1456
1457 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
4712274c
OM
1458 if (ret)
1459 return ret;
1460
9647ff36
ID
1461 if (vf_flush_wa) {
1462 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1463 intel_logical_ring_emit(ringbuf, 0);
1464 intel_logical_ring_emit(ringbuf, 0);
1465 intel_logical_ring_emit(ringbuf, 0);
1466 intel_logical_ring_emit(ringbuf, 0);
1467 intel_logical_ring_emit(ringbuf, 0);
1468 }
1469
4712274c
OM
1470 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1471 intel_logical_ring_emit(ringbuf, flags);
1472 intel_logical_ring_emit(ringbuf, scratch_addr);
1473 intel_logical_ring_emit(ringbuf, 0);
1474 intel_logical_ring_emit(ringbuf, 0);
1475 intel_logical_ring_emit(ringbuf, 0);
1476 intel_logical_ring_advance(ringbuf);
1477
1478 return 0;
1479}
1480
e94e37ad
OM
1481static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1482{
1483 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1484}
1485
1486static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1487{
1488 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1489}
1490
2d12955a
NH
1491static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1492 struct drm_i915_gem_request *request)
4da46e1e
OM
1493{
1494 struct intel_engine_cs *ring = ringbuf->ring;
1495 u32 cmd;
1496 int ret;
1497
53292cdb
MT
1498 /*
1499 * Reserve space for 2 NOOPs at the end of each request to be
1500 * used as a workaround for not being allowed to do lite
1501 * restore with HEAD==TAIL (WaIdleLiteRestore).
1502 */
1503 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
4da46e1e
OM
1504 if (ret)
1505 return ret;
1506
8edfbb8b 1507 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1508 cmd |= MI_GLOBAL_GTT;
1509
1510 intel_logical_ring_emit(ringbuf, cmd);
1511 intel_logical_ring_emit(ringbuf,
1512 (ring->status_page.gfx_addr +
1513 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1514 intel_logical_ring_emit(ringbuf, 0);
6259cead
JH
1515 intel_logical_ring_emit(ringbuf,
1516 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
4da46e1e
OM
1517 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1518 intel_logical_ring_emit(ringbuf, MI_NOOP);
21076372 1519 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
4da46e1e 1520
53292cdb
MT
1521 /*
1522 * Here we add two extra NOOPs as padding to avoid
1523 * lite restore of a context with HEAD==TAIL.
1524 */
1525 intel_logical_ring_emit(ringbuf, MI_NOOP);
1526 intel_logical_ring_emit(ringbuf, MI_NOOP);
1527 intel_logical_ring_advance(ringbuf);
1528
4da46e1e
OM
1529 return 0;
1530}
1531
cef437ad
DL
1532static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1533 struct intel_context *ctx)
1534{
1535 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1536 struct render_state so;
1537 struct drm_i915_file_private *file_priv = ctx->file_priv;
1538 struct drm_file *file = file_priv ? file_priv->file : NULL;
1539 int ret;
1540
1541 ret = i915_gem_render_state_prepare(ring, &so);
1542 if (ret)
1543 return ret;
1544
1545 if (so.rodata == NULL)
1546 return 0;
1547
1548 ret = ring->emit_bb_start(ringbuf,
1549 ctx,
1550 so.ggtt_offset,
1551 I915_DISPATCH_SECURE);
1552 if (ret)
1553 goto out;
1554
1555 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1556
1557 ret = __i915_add_request(ring, file, so.obj);
1558 /* intel_logical_ring_add_request moves object to inactive if it
1559 * fails */
1560out:
1561 i915_gem_render_state_fini(&so);
1562 return ret;
1563}
1564
e7778be1
TD
1565static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1566 struct intel_context *ctx)
1567{
1568 int ret;
1569
1570 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1571 if (ret)
1572 return ret;
1573
1574 return intel_lr_context_render_state_init(ring, ctx);
1575}
1576
73e4d07f
OM
1577/**
1578 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1579 *
1580 * @ring: Engine Command Streamer.
1581 *
1582 */
454afebd
OM
1583void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1584{
6402c330 1585 struct drm_i915_private *dev_priv;
9832b9da 1586
48d82387
OM
1587 if (!intel_ring_initialized(ring))
1588 return;
1589
6402c330
JH
1590 dev_priv = ring->dev->dev_private;
1591
9832b9da
OM
1592 intel_logical_ring_stop(ring);
1593 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
6259cead 1594 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
48d82387
OM
1595
1596 if (ring->cleanup)
1597 ring->cleanup(ring);
1598
1599 i915_cmd_parser_fini_ring(ring);
06fbca71 1600 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1601
1602 if (ring->status_page.obj) {
1603 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1604 ring->status_page.obj = NULL;
1605 }
17ee950d
AS
1606
1607 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1608}
1609
1610static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1611{
48d82387 1612 int ret;
48d82387
OM
1613
1614 /* Intentionally left blank. */
1615 ring->buffer = NULL;
1616
1617 ring->dev = dev;
1618 INIT_LIST_HEAD(&ring->active_list);
1619 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1620 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1621 init_waitqueue_head(&ring->irq_queue);
1622
acdd884a 1623 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1624 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1625 spin_lock_init(&ring->execlist_lock);
1626
48d82387
OM
1627 ret = i915_cmd_parser_init_ring(ring);
1628 if (ret)
1629 return ret;
1630
564ddb2f
OM
1631 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1632
1633 return ret;
454afebd
OM
1634}
1635
1636static int logical_render_ring_init(struct drm_device *dev)
1637{
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1640 int ret;
454afebd
OM
1641
1642 ring->name = "render ring";
1643 ring->id = RCS;
1644 ring->mmio_base = RENDER_RING_BASE;
1645 ring->irq_enable_mask =
1646 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1647 ring->irq_keep_mask =
1648 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1649 if (HAS_L3_DPF(dev))
1650 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1651
82ef822e
DL
1652 if (INTEL_INFO(dev)->gen >= 9)
1653 ring->init_hw = gen9_init_render_ring;
1654 else
1655 ring->init_hw = gen8_init_render_ring;
e7778be1 1656 ring->init_context = gen8_init_rcs_context;
9b1136d5 1657 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1658 ring->get_seqno = gen8_get_seqno;
1659 ring->set_seqno = gen8_set_seqno;
4da46e1e 1660 ring->emit_request = gen8_emit_request;
4712274c 1661 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1662 ring->irq_get = gen8_logical_ring_get_irq;
1663 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1664 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1665
99be1dfe 1666 ring->dev = dev;
c4db7599
AS
1667
1668 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1669 if (ret)
1670 return ret;
1671
17ee950d
AS
1672 ret = intel_init_workaround_bb(ring);
1673 if (ret) {
1674 /*
1675 * We continue even if we fail to initialize WA batch
1676 * because we only expect rare glitches but nothing
1677 * critical to prevent us from using GPU
1678 */
1679 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1680 ret);
1681 }
1682
c4db7599
AS
1683 ret = logical_ring_init(dev, ring);
1684 if (ret) {
17ee950d 1685 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1686 }
17ee950d
AS
1687
1688 return ret;
454afebd
OM
1689}
1690
1691static int logical_bsd_ring_init(struct drm_device *dev)
1692{
1693 struct drm_i915_private *dev_priv = dev->dev_private;
1694 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1695
1696 ring->name = "bsd ring";
1697 ring->id = VCS;
1698 ring->mmio_base = GEN6_BSD_RING_BASE;
1699 ring->irq_enable_mask =
1700 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1701 ring->irq_keep_mask =
1702 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1703
ecfe00d8 1704 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1705 ring->get_seqno = gen8_get_seqno;
1706 ring->set_seqno = gen8_set_seqno;
4da46e1e 1707 ring->emit_request = gen8_emit_request;
4712274c 1708 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1709 ring->irq_get = gen8_logical_ring_get_irq;
1710 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1711 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1712
454afebd
OM
1713 return logical_ring_init(dev, ring);
1714}
1715
1716static int logical_bsd2_ring_init(struct drm_device *dev)
1717{
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1720
1721 ring->name = "bds2 ring";
1722 ring->id = VCS2;
1723 ring->mmio_base = GEN8_BSD2_RING_BASE;
1724 ring->irq_enable_mask =
1725 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1726 ring->irq_keep_mask =
1727 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1728
ecfe00d8 1729 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1730 ring->get_seqno = gen8_get_seqno;
1731 ring->set_seqno = gen8_set_seqno;
4da46e1e 1732 ring->emit_request = gen8_emit_request;
4712274c 1733 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1734 ring->irq_get = gen8_logical_ring_get_irq;
1735 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1736 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1737
454afebd
OM
1738 return logical_ring_init(dev, ring);
1739}
1740
1741static int logical_blt_ring_init(struct drm_device *dev)
1742{
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1745
1746 ring->name = "blitter ring";
1747 ring->id = BCS;
1748 ring->mmio_base = BLT_RING_BASE;
1749 ring->irq_enable_mask =
1750 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1751 ring->irq_keep_mask =
1752 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1753
ecfe00d8 1754 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1755 ring->get_seqno = gen8_get_seqno;
1756 ring->set_seqno = gen8_set_seqno;
4da46e1e 1757 ring->emit_request = gen8_emit_request;
4712274c 1758 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1759 ring->irq_get = gen8_logical_ring_get_irq;
1760 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1761 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1762
454afebd
OM
1763 return logical_ring_init(dev, ring);
1764}
1765
1766static int logical_vebox_ring_init(struct drm_device *dev)
1767{
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1770
1771 ring->name = "video enhancement ring";
1772 ring->id = VECS;
1773 ring->mmio_base = VEBOX_RING_BASE;
1774 ring->irq_enable_mask =
1775 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1776 ring->irq_keep_mask =
1777 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1778
ecfe00d8 1779 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1780 ring->get_seqno = gen8_get_seqno;
1781 ring->set_seqno = gen8_set_seqno;
4da46e1e 1782 ring->emit_request = gen8_emit_request;
4712274c 1783 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1784 ring->irq_get = gen8_logical_ring_get_irq;
1785 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1786 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1787
454afebd
OM
1788 return logical_ring_init(dev, ring);
1789}
1790
73e4d07f
OM
1791/**
1792 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1793 * @dev: DRM device.
1794 *
1795 * This function inits the engines for an Execlists submission style (the equivalent in the
1796 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1797 * those engines that are present in the hardware.
1798 *
1799 * Return: non-zero if the initialization failed.
1800 */
454afebd
OM
1801int intel_logical_rings_init(struct drm_device *dev)
1802{
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 int ret;
1805
1806 ret = logical_render_ring_init(dev);
1807 if (ret)
1808 return ret;
1809
1810 if (HAS_BSD(dev)) {
1811 ret = logical_bsd_ring_init(dev);
1812 if (ret)
1813 goto cleanup_render_ring;
1814 }
1815
1816 if (HAS_BLT(dev)) {
1817 ret = logical_blt_ring_init(dev);
1818 if (ret)
1819 goto cleanup_bsd_ring;
1820 }
1821
1822 if (HAS_VEBOX(dev)) {
1823 ret = logical_vebox_ring_init(dev);
1824 if (ret)
1825 goto cleanup_blt_ring;
1826 }
1827
1828 if (HAS_BSD2(dev)) {
1829 ret = logical_bsd2_ring_init(dev);
1830 if (ret)
1831 goto cleanup_vebox_ring;
1832 }
1833
1834 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1835 if (ret)
1836 goto cleanup_bsd2_ring;
1837
1838 return 0;
1839
1840cleanup_bsd2_ring:
1841 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1842cleanup_vebox_ring:
1843 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1844cleanup_blt_ring:
1845 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1846cleanup_bsd_ring:
1847 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1848cleanup_render_ring:
1849 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1850
1851 return ret;
1852}
1853
0cea6502
JM
1854static u32
1855make_rpcs(struct drm_device *dev)
1856{
1857 u32 rpcs = 0;
1858
1859 /*
1860 * No explicit RPCS request is needed to ensure full
1861 * slice/subslice/EU enablement prior to Gen9.
1862 */
1863 if (INTEL_INFO(dev)->gen < 9)
1864 return 0;
1865
1866 /*
1867 * Starting in Gen9, render power gating can leave
1868 * slice/subslice/EU in a partially enabled state. We
1869 * must make an explicit request through RPCS for full
1870 * enablement.
1871 */
1872 if (INTEL_INFO(dev)->has_slice_pg) {
1873 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1874 rpcs |= INTEL_INFO(dev)->slice_total <<
1875 GEN8_RPCS_S_CNT_SHIFT;
1876 rpcs |= GEN8_RPCS_ENABLE;
1877 }
1878
1879 if (INTEL_INFO(dev)->has_subslice_pg) {
1880 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1881 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1882 GEN8_RPCS_SS_CNT_SHIFT;
1883 rpcs |= GEN8_RPCS_ENABLE;
1884 }
1885
1886 if (INTEL_INFO(dev)->has_eu_pg) {
1887 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1888 GEN8_RPCS_EU_MIN_SHIFT;
1889 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1890 GEN8_RPCS_EU_MAX_SHIFT;
1891 rpcs |= GEN8_RPCS_ENABLE;
1892 }
1893
1894 return rpcs;
1895}
1896
8670d6f9
OM
1897static int
1898populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1899 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1900{
2d965536
TD
1901 struct drm_device *dev = ring->dev;
1902 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1903 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1904 struct page *page;
1905 uint32_t *reg_state;
1906 int ret;
1907
2d965536
TD
1908 if (!ppgtt)
1909 ppgtt = dev_priv->mm.aliasing_ppgtt;
1910
8670d6f9
OM
1911 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1912 if (ret) {
1913 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1914 return ret;
1915 }
1916
1917 ret = i915_gem_object_get_pages(ctx_obj);
1918 if (ret) {
1919 DRM_DEBUG_DRIVER("Could not get object pages\n");
1920 return ret;
1921 }
1922
1923 i915_gem_object_pin_pages(ctx_obj);
1924
1925 /* The second page of the context object contains some fields which must
1926 * be set up prior to the first execution. */
1927 page = i915_gem_object_get_page(ctx_obj, 1);
1928 reg_state = kmap_atomic(page);
1929
1930 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1931 * commands followed by (reg, value) pairs. The values we are setting here are
1932 * only for the first context restore: on a subsequent save, the GPU will
1933 * recreate this batchbuffer with new values (including all the missing
1934 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1935 if (ring->id == RCS)
1936 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1937 else
1938 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1939 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1940 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1941 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5
ZW
1942 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1943 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9
OM
1944 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1945 reg_state[CTX_RING_HEAD+1] = 0;
1946 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1947 reg_state[CTX_RING_TAIL+1] = 0;
1948 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1949 /* Ring buffer start address is not known until the buffer is pinned.
1950 * It is written to the context image in execlists_update_context()
1951 */
8670d6f9
OM
1952 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1953 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1954 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1955 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1956 reg_state[CTX_BB_HEAD_U+1] = 0;
1957 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1958 reg_state[CTX_BB_HEAD_L+1] = 0;
1959 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1960 reg_state[CTX_BB_STATE+1] = (1<<5);
1961 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1962 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1963 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1964 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1965 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1966 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1967 if (ring->id == RCS) {
8670d6f9
OM
1968 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1969 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1970 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1971 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1972 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1973 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
1974 if (ring->wa_ctx.obj) {
1975 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1976 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
1977
1978 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1979 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1980 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1981
1982 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1983 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
1984
1985 reg_state[CTX_BB_PER_CTX_PTR+1] =
1986 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1987 0x01;
1988 }
8670d6f9
OM
1989 }
1990 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1991 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1992 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1993 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1994 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1995 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1996 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1997 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1998 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1999 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2000 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2001 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d
MT
2002
2003 /* With dynamic page allocation, PDPs may not be allocated at this point,
2004 * Point the unallocated PDPs to the scratch page
e5815a2e
MT
2005 */
2006 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2007 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2008 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2009 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
8670d6f9
OM
2010 if (ring->id == RCS) {
2011 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2012 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2013 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2014 }
2015
2016 kunmap_atomic(reg_state);
2017
2018 ctx_obj->dirty = 1;
2019 set_page_dirty(page);
2020 i915_gem_object_unpin_pages(ctx_obj);
2021
2022 return 0;
2023}
2024
73e4d07f
OM
2025/**
2026 * intel_lr_context_free() - free the LRC specific bits of a context
2027 * @ctx: the LR context to free.
2028 *
2029 * The real context freeing is done in i915_gem_context_free: this only
2030 * takes care of the bits that are LRC related: the per-engine backing
2031 * objects and the logical ringbuffer.
2032 */
ede7d42b
OM
2033void intel_lr_context_free(struct intel_context *ctx)
2034{
8c857917
OM
2035 int i;
2036
2037 for (i = 0; i < I915_NUM_RINGS; i++) {
2038 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2039
8c857917 2040 if (ctx_obj) {
dcb4c12a
OM
2041 struct intel_ringbuffer *ringbuf =
2042 ctx->engine[i].ringbuf;
2043 struct intel_engine_cs *ring = ringbuf->ring;
2044
7ba717cf
TD
2045 if (ctx == ring->default_context) {
2046 intel_unpin_ringbuffer_obj(ringbuf);
2047 i915_gem_object_ggtt_unpin(ctx_obj);
2048 }
a7cbedec 2049 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2050 intel_destroy_ringbuffer_obj(ringbuf);
2051 kfree(ringbuf);
8c857917
OM
2052 drm_gem_object_unreference(&ctx_obj->base);
2053 }
2054 }
2055}
2056
2057static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2058{
2059 int ret = 0;
2060
468c6816 2061 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2062
2063 switch (ring->id) {
2064 case RCS:
468c6816
MN
2065 if (INTEL_INFO(ring->dev)->gen >= 9)
2066 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2067 else
2068 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2069 break;
2070 case VCS:
2071 case BCS:
2072 case VECS:
2073 case VCS2:
2074 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2075 break;
2076 }
2077
2078 return ret;
ede7d42b
OM
2079}
2080
70b0ea86 2081static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2082 struct drm_i915_gem_object *default_ctx_obj)
2083{
2084 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2085
2086 /* The status page is offset 0 from the default context object
2087 * in LRC mode. */
2088 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2089 ring->status_page.page_addr =
2090 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
2091 ring->status_page.obj = default_ctx_obj;
2092
2093 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2094 (u32)ring->status_page.gfx_addr);
2095 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2096}
2097
73e4d07f
OM
2098/**
2099 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2100 * @ctx: LR context to create.
2101 * @ring: engine to be used with the context.
2102 *
2103 * This function can be called more than once, with different engines, if we plan
2104 * to use the context with them. The context backing objects and the ringbuffers
2105 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2106 * the creation is a deferred call: it's better to make sure first that we need to use
2107 * a given ring with the context.
2108 *
32197aab 2109 * Return: non-zero on error.
73e4d07f 2110 */
ede7d42b
OM
2111int intel_lr_context_deferred_create(struct intel_context *ctx,
2112 struct intel_engine_cs *ring)
2113{
dcb4c12a 2114 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
2115 struct drm_device *dev = ring->dev;
2116 struct drm_i915_gem_object *ctx_obj;
2117 uint32_t context_size;
84c2377f 2118 struct intel_ringbuffer *ringbuf;
8c857917
OM
2119 int ret;
2120
ede7d42b 2121 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2122 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2123
8c857917
OM
2124 context_size = round_up(get_lr_context_size(ring), 4096);
2125
149c86e7 2126 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2127 if (!ctx_obj) {
2128 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2129 return -ENOMEM;
8c857917
OM
2130 }
2131
dcb4c12a
OM
2132 if (is_global_default_ctx) {
2133 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2134 if (ret) {
2135 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2136 ret);
2137 drm_gem_object_unreference(&ctx_obj->base);
2138 return ret;
2139 }
8c857917
OM
2140 }
2141
84c2377f
OM
2142 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2143 if (!ringbuf) {
2144 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2145 ring->name);
84c2377f 2146 ret = -ENOMEM;
7ba717cf 2147 goto error_unpin_ctx;
84c2377f
OM
2148 }
2149
0c7dd53b 2150 ringbuf->ring = ring;
582d67f0 2151
84c2377f
OM
2152 ringbuf->size = 32 * PAGE_SIZE;
2153 ringbuf->effective_size = ringbuf->size;
2154 ringbuf->head = 0;
2155 ringbuf->tail = 0;
84c2377f 2156 ringbuf->last_retired_head = -1;
ebd0fd4b 2157 intel_ring_update_space(ringbuf);
84c2377f 2158
7ba717cf
TD
2159 if (ringbuf->obj == NULL) {
2160 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2161 if (ret) {
2162 DRM_DEBUG_DRIVER(
2163 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2164 ring->name, ret);
7ba717cf
TD
2165 goto error_free_rbuf;
2166 }
2167
2168 if (is_global_default_ctx) {
2169 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2170 if (ret) {
2171 DRM_ERROR(
2172 "Failed to pin and map ringbuffer %s: %d\n",
2173 ring->name, ret);
2174 goto error_destroy_rbuf;
2175 }
2176 }
2177
8670d6f9
OM
2178 }
2179
2180 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2181 if (ret) {
2182 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2183 goto error;
84c2377f
OM
2184 }
2185
2186 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2187 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2188
70b0ea86
DV
2189 if (ctx == ring->default_context)
2190 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2191 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
2192 if (ring->init_context) {
2193 ret = ring->init_context(ring, ctx);
e7778be1 2194 if (ret) {
771b9a53 2195 DRM_ERROR("ring init context: %d\n", ret);
e7778be1
TD
2196 ctx->engine[ring->id].ringbuf = NULL;
2197 ctx->engine[ring->id].state = NULL;
2198 goto error;
2199 }
771b9a53
MT
2200 }
2201
564ddb2f
OM
2202 ctx->rcs_initialized = true;
2203 }
2204
ede7d42b 2205 return 0;
8670d6f9
OM
2206
2207error:
7ba717cf
TD
2208 if (is_global_default_ctx)
2209 intel_unpin_ringbuffer_obj(ringbuf);
2210error_destroy_rbuf:
2211 intel_destroy_ringbuffer_obj(ringbuf);
2212error_free_rbuf:
8670d6f9 2213 kfree(ringbuf);
7ba717cf 2214error_unpin_ctx:
dcb4c12a
OM
2215 if (is_global_default_ctx)
2216 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2217 drm_gem_object_unreference(&ctx_obj->base);
2218 return ret;
ede7d42b 2219}
3e5b6f05
TD
2220
2221void intel_lr_context_reset(struct drm_device *dev,
2222 struct intel_context *ctx)
2223{
2224 struct drm_i915_private *dev_priv = dev->dev_private;
2225 struct intel_engine_cs *ring;
2226 int i;
2227
2228 for_each_ring(ring, dev_priv, i) {
2229 struct drm_i915_gem_object *ctx_obj =
2230 ctx->engine[ring->id].state;
2231 struct intel_ringbuffer *ringbuf =
2232 ctx->engine[ring->id].ringbuf;
2233 uint32_t *reg_state;
2234 struct page *page;
2235
2236 if (!ctx_obj)
2237 continue;
2238
2239 if (i915_gem_object_get_pages(ctx_obj)) {
2240 WARN(1, "Failed get_pages for context obj\n");
2241 continue;
2242 }
2243 page = i915_gem_object_get_page(ctx_obj, 1);
2244 reg_state = kmap_atomic(page);
2245
2246 reg_state[CTX_RING_HEAD+1] = 0;
2247 reg_state[CTX_RING_TAIL+1] = 0;
2248
2249 kunmap_atomic(reg_state);
2250
2251 ringbuf->head = 0;
2252 ringbuf->tail = 0;
2253 }
2254}
This page took 0.201055 seconds and 5 git commands to generate.