drm/i915: Limit the auto arming of mmio debugs on vlv/chv
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
17ee950d 226#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 227
8ba319da 228static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
229static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c
TU
266static void
267logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
268{
269 struct drm_device *dev = ring->dev;
270
271 ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
272 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
273 (ring->id == VCS || ring->id == VCS2);
274
275 ring->ctx_desc_template = GEN8_CTX_VALID;
276 ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
277 GEN8_CTX_ADDRESSING_MODE_SHIFT;
278 if (IS_GEN8(dev))
279 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
280 ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
281
282 /* TODO: WaDisableLiteRestore when we start using semaphore
283 * signalling between Command Streamers */
284 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
285
286 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
287 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
288 if (ring->disable_lite_restore_wa)
289 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
290}
291
73e4d07f 292/**
ca82580c
TU
293 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
294 * descriptor for a pinned context
73e4d07f 295 *
ca82580c
TU
296 * @ctx: Context to work on
297 * @ring: Engine the descriptor will be used with
73e4d07f 298 *
ca82580c
TU
299 * The context descriptor encodes various attributes of a context,
300 * including its GTT address and some flags. Because it's fairly
301 * expensive to calculate, we'll just do it once and cache the result,
302 * which remains valid until the context is unpinned.
303 *
304 * This is what a descriptor looks like, from LSB to MSB:
305 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
306 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
307 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
308 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 309 */
ca82580c
TU
310static void
311intel_lr_context_descriptor_update(struct intel_context *ctx,
312 struct intel_engine_cs *ring)
84b790f8 313{
ca82580c 314 uint64_t lrca, desc;
84b790f8 315
ca82580c
TU
316 lrca = ctx->engine[ring->id].lrc_vma->node.start +
317 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 318
ca82580c
TU
319 desc = ring->ctx_desc_template; /* bits 0-11 */
320 desc |= lrca; /* bits 12-31 */
321 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 322
ca82580c 323 ctx->engine[ring->id].lrc_desc = desc;
5af05fef
MT
324}
325
919f1f55
DG
326uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
327 struct intel_engine_cs *ring)
84b790f8 328{
ca82580c
TU
329 return ctx->engine[ring->id].lrc_desc;
330}
203a571b 331
ca82580c
TU
332/**
333 * intel_execlists_ctx_id() - get the Execlists Context ID
334 * @ctx: Context to get the ID for
335 * @ring: Engine to get the ID for
336 *
337 * Do not confuse with ctx->id! Unfortunately we have a name overload
338 * here: the old context ID we pass to userspace as a handler so that
339 * they can refer to a context, and the new context ID we pass to the
340 * ELSP so that the GPU can inform us of the context status via
341 * interrupts.
342 *
343 * The context ID is a portion of the context descriptor, so we can
344 * just extract the required part from the cached descriptor.
345 *
346 * Return: 20-bits globally unique context ID.
347 */
348u32 intel_execlists_ctx_id(struct intel_context *ctx,
349 struct intel_engine_cs *ring)
350{
351 return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
352}
353
cc3c4253
MK
354static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
355 struct drm_i915_gem_request *rq1)
84b790f8 356{
cc3c4253
MK
357
358 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
359 struct drm_device *dev = ring->dev;
360 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 361 uint64_t desc[2];
84b790f8 362
1cff8cc3 363 if (rq1) {
919f1f55 364 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
365 rq1->elsp_submitted++;
366 } else {
367 desc[1] = 0;
368 }
84b790f8 369
919f1f55 370 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 371 rq0->elsp_submitted++;
84b790f8 372
1cff8cc3 373 /* You must always write both descriptors in the order below. */
a6111f7b
CW
374 spin_lock(&dev_priv->uncore.lock);
375 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
376 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
377 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 378
1cff8cc3 379 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 380 /* The context is automatically loaded after the following */
1cff8cc3 381 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 382
1cff8cc3 383 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 384 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
385 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
386 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
387}
388
05d9824b 389static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 390{
05d9824b
MK
391 struct intel_engine_cs *ring = rq->ring;
392 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
82352e90 393 uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
ae1250b9 394
05d9824b 395 reg_state[CTX_RING_TAIL+1] = rq->tail;
0eb973d3 396 reg_state[CTX_RING_BUFFER_START+1] = rq->ringbuf->vma->node.start;
ae1250b9 397
2dba3239
MT
398 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
399 /* True 32b PPGTT with dynamic page allocation: update PDP
400 * registers and point the unallocated PDPs to scratch page.
401 * PML4 is allocated during ppgtt init, so this is not needed
402 * in 48-bit mode.
403 */
d7b2633d
MT
404 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
405 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
406 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
407 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
408 }
409
ae1250b9
OM
410 return 0;
411}
412
d8cb8875
MK
413static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
414 struct drm_i915_gem_request *rq1)
84b790f8 415{
05d9824b 416 execlists_update_context(rq0);
d8cb8875 417
cc3c4253 418 if (rq1)
05d9824b 419 execlists_update_context(rq1);
84b790f8 420
cc3c4253 421 execlists_elsp_write(rq0, rq1);
84b790f8
BW
422}
423
acdd884a
MT
424static void execlists_context_unqueue(struct intel_engine_cs *ring)
425{
6d3d8274
NH
426 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
427 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
428
429 assert_spin_locked(&ring->execlist_lock);
acdd884a 430
779949f4
PA
431 /*
432 * If irqs are not active generate a warning as batches that finish
433 * without the irqs may get lost and a GPU Hang may occur.
434 */
435 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
436
acdd884a
MT
437 if (list_empty(&ring->execlist_queue))
438 return;
439
440 /* Try to read in pairs */
441 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
442 execlist_link) {
443 if (!req0) {
444 req0 = cursor;
6d3d8274 445 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
446 /* Same ctx: ignore first request, as second request
447 * will update tail past first request's workload */
e1fee72c 448 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25
TU
449 list_move_tail(&req0->execlist_link,
450 &ring->execlist_retired_req_list);
acdd884a
MT
451 req0 = cursor;
452 } else {
453 req1 = cursor;
454 break;
455 }
456 }
457
53292cdb
MT
458 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
459 /*
460 * WaIdleLiteRestore: make sure we never cause a lite
461 * restore with HEAD==TAIL
462 */
d63f820f 463 if (req0->elsp_submitted) {
53292cdb
MT
464 /*
465 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
466 * as we resubmit the request. See gen8_emit_request()
467 * for where we prepare the padding after the end of the
468 * request.
469 */
470 struct intel_ringbuffer *ringbuf;
471
472 ringbuf = req0->ctx->engine[ring->id].ringbuf;
473 req0->tail += 8;
474 req0->tail &= ringbuf->size - 1;
475 }
476 }
477
e1fee72c
OM
478 WARN_ON(req1 && req1->elsp_submitted);
479
d8cb8875 480 execlists_submit_requests(req0, req1);
acdd884a
MT
481}
482
e981e7b1
TD
483static bool execlists_check_remove_request(struct intel_engine_cs *ring,
484 u32 request_id)
485{
6d3d8274 486 struct drm_i915_gem_request *head_req;
e981e7b1
TD
487
488 assert_spin_locked(&ring->execlist_lock);
489
490 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 491 struct drm_i915_gem_request,
e981e7b1
TD
492 execlist_link);
493
494 if (head_req != NULL) {
ca82580c 495 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
e1fee72c
OM
496 WARN(head_req->elsp_submitted == 0,
497 "Never submitted head request\n");
498
499 if (--head_req->elsp_submitted <= 0) {
7eb08a25
TU
500 list_move_tail(&head_req->execlist_link,
501 &ring->execlist_retired_req_list);
e1fee72c
OM
502 return true;
503 }
e981e7b1
TD
504 }
505 }
506
507 return false;
508}
509
91a41032
BW
510static void get_context_status(struct intel_engine_cs *ring,
511 u8 read_pointer,
512 u32 *status, u32 *context_id)
513{
514 struct drm_i915_private *dev_priv = ring->dev->dev_private;
515
516 if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
517 return;
518
519 *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
520 *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
521}
522
73e4d07f 523/**
3f7531c3 524 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
525 * @ring: Engine Command Streamer to handle.
526 *
527 * Check the unread Context Status Buffers and manage the submission of new
528 * contexts to the ELSP accordingly.
529 */
3f7531c3 530void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
531{
532 struct drm_i915_private *dev_priv = ring->dev->dev_private;
533 u32 status_pointer;
534 u8 read_pointer;
535 u8 write_pointer;
5af05fef 536 u32 status = 0;
e981e7b1
TD
537 u32 status_id;
538 u32 submit_contexts = 0;
539
540 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
541
542 read_pointer = ring->next_context_status_buffer;
5590a5f0 543 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 544 if (read_pointer > write_pointer)
dfc53c5e 545 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1
TD
546
547 spin_lock(&ring->execlist_lock);
548
549 while (read_pointer < write_pointer) {
91a41032
BW
550
551 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
552 &status, &status_id);
e981e7b1 553
031a8936
MK
554 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
555 continue;
556
e1fee72c
OM
557 if (status & GEN8_CTX_STATUS_PREEMPTED) {
558 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
559 if (execlists_check_remove_request(ring, status_id))
560 WARN(1, "Lite Restored request removed from queue\n");
561 } else
562 WARN(1, "Preemption without Lite Restore\n");
563 }
564
eba51190
BW
565 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
566 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
567 if (execlists_check_remove_request(ring, status_id))
568 submit_contexts++;
569 }
570 }
571
ca82580c 572 if (ring->disable_lite_restore_wa) {
5af05fef
MT
573 /* Prevent a ctx to preempt itself */
574 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
575 (submit_contexts != 0))
576 execlists_context_unqueue(ring);
577 } else if (submit_contexts != 0) {
e981e7b1 578 execlists_context_unqueue(ring);
5af05fef 579 }
e981e7b1
TD
580
581 spin_unlock(&ring->execlist_lock);
582
f764a8b1
BW
583 if (unlikely(submit_contexts > 2))
584 DRM_ERROR("More than two context complete events?\n");
585
dfc53c5e 586 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 587
5590a5f0
BW
588 /* Update the read pointer to the old write pointer. Manual ringbuffer
589 * management ftw </sarcasm> */
e981e7b1 590 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
5590a5f0
BW
591 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
592 ring->next_context_status_buffer << 8));
e981e7b1
TD
593}
594
ae70797d 595static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 596{
ae70797d 597 struct intel_engine_cs *ring = request->ring;
6d3d8274 598 struct drm_i915_gem_request *cursor;
f1ad5a1f 599 int num_elements = 0;
acdd884a 600
ed54c1a1 601 if (request->ctx != request->i915->kernel_context)
af3302b9
DV
602 intel_lr_context_pin(request);
603
9bb1af44
JH
604 i915_gem_request_reference(request);
605
b5eba372 606 spin_lock_irq(&ring->execlist_lock);
acdd884a 607
f1ad5a1f
OM
608 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
609 if (++num_elements > 2)
610 break;
611
612 if (num_elements > 2) {
6d3d8274 613 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
614
615 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 616 struct drm_i915_gem_request,
f1ad5a1f
OM
617 execlist_link);
618
ae70797d 619 if (request->ctx == tail_req->ctx) {
f1ad5a1f 620 WARN(tail_req->elsp_submitted != 0,
7ba717cf 621 "More than 2 already-submitted reqs queued\n");
7eb08a25
TU
622 list_move_tail(&tail_req->execlist_link,
623 &ring->execlist_retired_req_list);
f1ad5a1f
OM
624 }
625 }
626
6d3d8274 627 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 628 if (num_elements == 0)
acdd884a
MT
629 execlists_context_unqueue(ring);
630
b5eba372 631 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
632
633 return 0;
634}
635
2f20055d 636static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 637{
2f20055d 638 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
639 uint32_t flush_domains;
640 int ret;
641
642 flush_domains = 0;
643 if (ring->gpu_caches_dirty)
644 flush_domains = I915_GEM_GPU_DOMAINS;
645
7deb4d39 646 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
647 if (ret)
648 return ret;
649
650 ring->gpu_caches_dirty = false;
651 return 0;
652}
653
535fbe82 654static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
655 struct list_head *vmas)
656{
535fbe82 657 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
658 struct i915_vma *vma;
659 uint32_t flush_domains = 0;
660 bool flush_chipset = false;
661 int ret;
662
663 list_for_each_entry(vma, vmas, exec_list) {
664 struct drm_i915_gem_object *obj = vma->obj;
665
03ade511 666 if (obj->active & other_rings) {
91af127f 667 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
668 if (ret)
669 return ret;
670 }
ba8b7ccb
OM
671
672 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
673 flush_chipset |= i915_gem_clflush_object(obj, false);
674
675 flush_domains |= obj->base.write_domain;
676 }
677
678 if (flush_domains & I915_GEM_DOMAIN_GTT)
679 wmb();
680
681 /* Unconditionally invalidate gpu caches and ensure that we do flush
682 * any residual writes from the previous batch.
683 */
2f20055d 684 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
685}
686
40e895ce 687int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 688{
e28e404c 689 int ret = 0;
bc0dce3f 690
f3cc01f0
MK
691 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
692
a7e02199
AD
693 if (i915.enable_guc_submission) {
694 /*
695 * Check that the GuC has space for the request before
696 * going any further, as the i915_add_request() call
697 * later on mustn't fail ...
698 */
699 struct intel_guc *guc = &request->i915->guc;
700
701 ret = i915_guc_wq_check_space(guc->execbuf_client);
702 if (ret)
703 return ret;
704 }
705
e28e404c
DG
706 if (request->ctx != request->i915->kernel_context)
707 ret = intel_lr_context_pin(request);
708
709 return ret;
bc0dce3f
JH
710}
711
ae70797d 712static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 713 int bytes)
bc0dce3f 714{
ae70797d
JH
715 struct intel_ringbuffer *ringbuf = req->ringbuf;
716 struct intel_engine_cs *ring = req->ring;
717 struct drm_i915_gem_request *target;
b4716185
CW
718 unsigned space;
719 int ret;
bc0dce3f
JH
720
721 if (intel_ring_space(ringbuf) >= bytes)
722 return 0;
723
79bbcc29
JH
724 /* The whole point of reserving space is to not wait! */
725 WARN_ON(ringbuf->reserved_in_use);
726
ae70797d 727 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
728 /*
729 * The request queue is per-engine, so can contain requests
730 * from multiple ringbuffers. Here, we must ignore any that
731 * aren't from the ringbuffer we're considering.
732 */
ae70797d 733 if (target->ringbuf != ringbuf)
bc0dce3f
JH
734 continue;
735
736 /* Would completion of this request free enough space? */
ae70797d 737 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
738 ringbuf->size);
739 if (space >= bytes)
bc0dce3f 740 break;
bc0dce3f
JH
741 }
742
ae70797d 743 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
744 return -ENOSPC;
745
ae70797d 746 ret = i915_wait_request(target);
bc0dce3f
JH
747 if (ret)
748 return ret;
749
b4716185
CW
750 ringbuf->space = space;
751 return 0;
bc0dce3f
JH
752}
753
754/*
755 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 756 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
757 *
758 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
759 * really happens during submission is that the context and current tail will be placed
760 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
761 * point, the tail *inside* the context is updated and the ELSP written to.
762 */
763static void
ae70797d 764intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 765{
ae70797d 766 struct intel_engine_cs *ring = request->ring;
d1675198 767 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 768
ae70797d 769 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 770
d1675198
AD
771 request->tail = request->ringbuf->tail;
772
bc0dce3f
JH
773 if (intel_ring_stopped(ring))
774 return;
775
d1675198
AD
776 if (dev_priv->guc.execbuf_client)
777 i915_guc_submit(dev_priv->guc.execbuf_client, request);
778 else
779 execlists_context_queue(request);
bc0dce3f
JH
780}
781
79bbcc29 782static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
783{
784 uint32_t __iomem *virt;
785 int rem = ringbuf->size - ringbuf->tail;
786
bc0dce3f
JH
787 virt = ringbuf->virtual_start + ringbuf->tail;
788 rem /= 4;
789 while (rem--)
790 iowrite32(MI_NOOP, virt++);
791
792 ringbuf->tail = 0;
793 intel_ring_update_space(ringbuf);
bc0dce3f
JH
794}
795
ae70797d 796static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 797{
ae70797d 798 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
799 int remain_usable = ringbuf->effective_size - ringbuf->tail;
800 int remain_actual = ringbuf->size - ringbuf->tail;
801 int ret, total_bytes, wait_bytes = 0;
802 bool need_wrap = false;
29b1b415 803
79bbcc29
JH
804 if (ringbuf->reserved_in_use)
805 total_bytes = bytes;
806 else
807 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 808
79bbcc29
JH
809 if (unlikely(bytes > remain_usable)) {
810 /*
811 * Not enough space for the basic request. So need to flush
812 * out the remainder and then wait for base + reserved.
813 */
814 wait_bytes = remain_actual + total_bytes;
815 need_wrap = true;
816 } else {
817 if (unlikely(total_bytes > remain_usable)) {
818 /*
819 * The base request will fit but the reserved space
820 * falls off the end. So only need to to wait for the
821 * reserved size after flushing out the remainder.
822 */
823 wait_bytes = remain_actual + ringbuf->reserved_size;
824 need_wrap = true;
825 } else if (total_bytes > ringbuf->space) {
826 /* No wrapping required, just waiting. */
827 wait_bytes = total_bytes;
29b1b415 828 }
bc0dce3f
JH
829 }
830
79bbcc29
JH
831 if (wait_bytes) {
832 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
833 if (unlikely(ret))
834 return ret;
79bbcc29
JH
835
836 if (need_wrap)
837 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
838 }
839
840 return 0;
841}
842
843/**
844 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
845 *
374887ba 846 * @req: The request to start some new work for
bc0dce3f
JH
847 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
848 *
849 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
850 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
851 * and also preallocates a request (every workload submission is still mediated through
852 * requests, same as it did with legacy ringbuffer submission).
853 *
854 * Return: non-zero if the ringbuffer is not ready to be written to.
855 */
3bbaba0c 856int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 857{
4d616a29 858 struct drm_i915_private *dev_priv;
bc0dce3f
JH
859 int ret;
860
4d616a29
JH
861 WARN_ON(req == NULL);
862 dev_priv = req->ring->dev->dev_private;
863
bc0dce3f
JH
864 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
865 dev_priv->mm.interruptible);
866 if (ret)
867 return ret;
868
ae70797d 869 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
870 if (ret)
871 return ret;
872
4d616a29 873 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
874 return 0;
875}
876
ccd98fe4
JH
877int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
878{
879 /*
880 * The first call merely notes the reserve request and is common for
881 * all back ends. The subsequent localised _begin() call actually
882 * ensures that the reservation is available. Without the begin, if
883 * the request creator immediately submitted the request without
884 * adding any commands to it then there might not actually be
885 * sufficient room for the submission commands.
886 */
887 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
888
889 return intel_logical_ring_begin(request, 0);
890}
891
73e4d07f
OM
892/**
893 * execlists_submission() - submit a batchbuffer for execution, Execlists style
894 * @dev: DRM device.
895 * @file: DRM file.
896 * @ring: Engine Command Streamer to submit to.
897 * @ctx: Context to employ for this submission.
898 * @args: execbuffer call arguments.
899 * @vmas: list of vmas.
900 * @batch_obj: the batchbuffer to submit.
901 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 902 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
903 *
904 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
905 * away the submission details of the execbuffer ioctl call.
906 *
907 * Return: non-zero if the submission fails.
908 */
5f19e2bf 909int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 910 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 911 struct list_head *vmas)
454afebd 912{
5f19e2bf
JH
913 struct drm_device *dev = params->dev;
914 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 915 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
916 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
917 u64 exec_start;
ba8b7ccb
OM
918 int instp_mode;
919 u32 instp_mask;
920 int ret;
921
922 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
923 instp_mask = I915_EXEC_CONSTANTS_MASK;
924 switch (instp_mode) {
925 case I915_EXEC_CONSTANTS_REL_GENERAL:
926 case I915_EXEC_CONSTANTS_ABSOLUTE:
927 case I915_EXEC_CONSTANTS_REL_SURFACE:
928 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
929 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
930 return -EINVAL;
931 }
932
933 if (instp_mode != dev_priv->relative_constants_mode) {
934 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
935 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
936 return -EINVAL;
937 }
938
939 /* The HW changed the meaning on this bit on gen6 */
940 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
941 }
942 break;
943 default:
944 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
945 return -EINVAL;
946 }
947
ba8b7ccb
OM
948 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
949 DRM_DEBUG("sol reset is gen7 only\n");
950 return -EINVAL;
951 }
952
535fbe82 953 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
954 if (ret)
955 return ret;
956
957 if (ring == &dev_priv->ring[RCS] &&
958 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 959 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
960 if (ret)
961 return ret;
962
963 intel_logical_ring_emit(ringbuf, MI_NOOP);
964 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 965 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
966 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
967 intel_logical_ring_advance(ringbuf);
968
969 dev_priv->relative_constants_mode = instp_mode;
970 }
971
5f19e2bf
JH
972 exec_start = params->batch_obj_vm_offset +
973 args->batch_start_offset;
974
be795fc1 975 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
976 if (ret)
977 return ret;
978
95c24161 979 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 980
8a8edb59 981 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 982 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 983
454afebd
OM
984 return 0;
985}
986
c86ee3a9
TD
987void intel_execlists_retire_requests(struct intel_engine_cs *ring)
988{
6d3d8274 989 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
990 struct list_head retired_list;
991
992 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
993 if (list_empty(&ring->execlist_retired_req_list))
994 return;
995
996 INIT_LIST_HEAD(&retired_list);
b5eba372 997 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 998 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 999 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
1000
1001 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1002 struct intel_context *ctx = req->ctx;
1003 struct drm_i915_gem_object *ctx_obj =
1004 ctx->engine[ring->id].state;
1005
ed54c1a1 1006 if (ctx_obj && (ctx != req->i915->kernel_context))
af3302b9 1007 intel_lr_context_unpin(req);
c86ee3a9 1008 list_del(&req->execlist_link);
f8210795 1009 i915_gem_request_unreference(req);
c86ee3a9
TD
1010 }
1011}
1012
454afebd
OM
1013void intel_logical_ring_stop(struct intel_engine_cs *ring)
1014{
9832b9da
OM
1015 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1016 int ret;
1017
1018 if (!intel_ring_initialized(ring))
1019 return;
1020
1021 ret = intel_ring_idle(ring);
1022 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1023 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1024 ring->name, ret);
1025
1026 /* TODO: Is this correct with Execlists enabled? */
1027 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1028 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1029 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1030 return;
1031 }
1032 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1033}
1034
4866d729 1035int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1036{
4866d729 1037 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1038 int ret;
1039
1040 if (!ring->gpu_caches_dirty)
1041 return 0;
1042
7deb4d39 1043 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1044 if (ret)
1045 return ret;
1046
1047 ring->gpu_caches_dirty = false;
1048 return 0;
1049}
1050
e84fe803 1051static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
ca82580c 1052 struct intel_context *ctx)
dcb4c12a 1053{
e84fe803
NH
1054 struct drm_device *dev = ring->dev;
1055 struct drm_i915_private *dev_priv = dev->dev_private;
ca82580c
TU
1056 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1057 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
82352e90 1058 struct page *lrc_state_page;
ca82580c 1059 int ret;
dcb4c12a
OM
1060
1061 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
ca82580c 1062
e84fe803
NH
1063 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1064 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1065 if (ret)
1066 return ret;
7ba717cf 1067
82352e90
TU
1068 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1069 if (WARN_ON(!lrc_state_page)) {
1070 ret = -ENODEV;
1071 goto unpin_ctx_obj;
1072 }
1073
e84fe803
NH
1074 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1075 if (ret)
1076 goto unpin_ctx_obj;
d1675198 1077
ca82580c
TU
1078 ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1079 intel_lr_context_descriptor_update(ctx, ring);
82352e90 1080 ctx->engine[ring->id].lrc_reg_state = kmap(lrc_state_page);
e84fe803 1081 ctx_obj->dirty = true;
e93c28f3 1082
e84fe803
NH
1083 /* Invalidate GuC TLB. */
1084 if (i915.enable_guc_submission)
1085 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1086
7ba717cf
TD
1087 return ret;
1088
1089unpin_ctx_obj:
1090 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1091
1092 return ret;
1093}
1094
1095static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1096{
1097 int ret = 0;
1098 struct intel_engine_cs *ring = rq->ring;
e84fe803
NH
1099
1100 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
ca82580c 1101 ret = intel_lr_context_do_pin(ring, rq->ctx);
e84fe803
NH
1102 if (ret)
1103 goto reset_pin_count;
1104 }
1105 return ret;
1106
a7cbedec 1107reset_pin_count:
8ba319da 1108 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1109 return ret;
1110}
1111
af3302b9 1112void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1113{
af3302b9
DV
1114 struct intel_engine_cs *ring = rq->ring;
1115 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1116 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1117
82352e90
TU
1118 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1119
1120 if (!ctx_obj)
1121 return;
1122
1123 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1124 kunmap(kmap_to_page(rq->ctx->engine[ring->id].lrc_reg_state));
1125 intel_unpin_ringbuffer_obj(ringbuf);
1126 i915_gem_object_ggtt_unpin(ctx_obj);
1127 rq->ctx->engine[ring->id].lrc_vma = NULL;
1128 rq->ctx->engine[ring->id].lrc_desc = 0;
1129 rq->ctx->engine[ring->id].lrc_reg_state = NULL;
dcb4c12a
OM
1130 }
1131}
1132
e2be4faf 1133static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1134{
1135 int ret, i;
e2be4faf
JH
1136 struct intel_engine_cs *ring = req->ring;
1137 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct i915_workarounds *w = &dev_priv->workarounds;
1141
cd7feaaa 1142 if (w->count == 0)
771b9a53
MT
1143 return 0;
1144
1145 ring->gpu_caches_dirty = true;
4866d729 1146 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1147 if (ret)
1148 return ret;
1149
4d616a29 1150 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1151 if (ret)
1152 return ret;
1153
1154 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1155 for (i = 0; i < w->count; i++) {
f92a9162 1156 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1157 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1158 }
1159 intel_logical_ring_emit(ringbuf, MI_NOOP);
1160
1161 intel_logical_ring_advance(ringbuf);
1162
1163 ring->gpu_caches_dirty = true;
4866d729 1164 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1165 if (ret)
1166 return ret;
1167
1168 return 0;
1169}
1170
83b8a982 1171#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1172 do { \
83b8a982
AS
1173 int __index = (index)++; \
1174 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1175 return -ENOSPC; \
1176 } \
83b8a982 1177 batch[__index] = (cmd); \
17ee950d
AS
1178 } while (0)
1179
8f40db77 1180#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1181 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1182
1183/*
1184 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1185 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1186 * but there is a slight complication as this is applied in WA batch where the
1187 * values are only initialized once so we cannot take register value at the
1188 * beginning and reuse it further; hence we save its value to memory, upload a
1189 * constant value with bit21 set and then we restore it back with the saved value.
1190 * To simplify the WA, a constant value is formed by using the default value
1191 * of this register. This shouldn't be a problem because we are only modifying
1192 * it for a short period and this batch in non-premptible. We can ofcourse
1193 * use additional instructions that read the actual value of the register
1194 * at that time and set our bit of interest but it makes the WA complicated.
1195 *
1196 * This WA is also required for Gen9 so extracting as a function avoids
1197 * code duplication.
1198 */
1199static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1200 uint32_t *const batch,
1201 uint32_t index)
1202{
1203 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1204
a4106a78
AS
1205 /*
1206 * WaDisableLSQCROPERFforOCL:skl
1207 * This WA is implemented in skl_init_clock_gating() but since
1208 * this batch updates GEN8_L3SQCREG4 with default value we need to
1209 * set this bit here to retain the WA during flush.
1210 */
e87a005d 1211 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1212 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1213
f1afe24f 1214 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1215 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1216 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1217 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1218 wa_ctx_emit(batch, index, 0);
1219
1220 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1221 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1222 wa_ctx_emit(batch, index, l3sqc4_flush);
1223
1224 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1225 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1226 PIPE_CONTROL_DC_FLUSH_ENABLE));
1227 wa_ctx_emit(batch, index, 0);
1228 wa_ctx_emit(batch, index, 0);
1229 wa_ctx_emit(batch, index, 0);
1230 wa_ctx_emit(batch, index, 0);
1231
f1afe24f 1232 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1233 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1234 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1235 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1236 wa_ctx_emit(batch, index, 0);
9e000847
AS
1237
1238 return index;
1239}
1240
17ee950d
AS
1241static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1242 uint32_t offset,
1243 uint32_t start_alignment)
1244{
1245 return wa_ctx->offset = ALIGN(offset, start_alignment);
1246}
1247
1248static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1249 uint32_t offset,
1250 uint32_t size_alignment)
1251{
1252 wa_ctx->size = offset - wa_ctx->offset;
1253
1254 WARN(wa_ctx->size % size_alignment,
1255 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1256 wa_ctx->size, size_alignment);
1257 return 0;
1258}
1259
1260/**
1261 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1262 *
1263 * @ring: only applicable for RCS
1264 * @wa_ctx: structure representing wa_ctx
1265 * offset: specifies start of the batch, should be cache-aligned. This is updated
1266 * with the offset value received as input.
1267 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1268 * @batch: page in which WA are loaded
1269 * @offset: This field specifies the start of the batch, it should be
1270 * cache-aligned otherwise it is adjusted accordingly.
1271 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1272 * initialized at the beginning and shared across all contexts but this field
1273 * helps us to have multiple batches at different offsets and select them based
1274 * on a criteria. At the moment this batch always start at the beginning of the page
1275 * and at this point we don't have multiple wa_ctx batch buffers.
1276 *
1277 * The number of WA applied are not known at the beginning; we use this field
1278 * to return the no of DWORDS written.
4d78c8dc 1279 *
17ee950d
AS
1280 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1281 * so it adds NOOPs as padding to make it cacheline aligned.
1282 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1283 * makes a complete batch buffer.
1284 *
1285 * Return: non-zero if we exceed the PAGE_SIZE limit.
1286 */
1287
1288static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1289 struct i915_wa_ctx_bb *wa_ctx,
1290 uint32_t *const batch,
1291 uint32_t *offset)
1292{
0160f055 1293 uint32_t scratch_addr;
17ee950d
AS
1294 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1295
7ad00d1a 1296 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1297 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1298
c82435bb
AS
1299 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1300 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1301 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1302 if (rc < 0)
1303 return rc;
1304 index = rc;
c82435bb
AS
1305 }
1306
0160f055
AS
1307 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1308 /* Actual scratch location is at 128 bytes offset */
1309 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1310
83b8a982
AS
1311 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1312 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1313 PIPE_CONTROL_GLOBAL_GTT_IVB |
1314 PIPE_CONTROL_CS_STALL |
1315 PIPE_CONTROL_QW_WRITE));
1316 wa_ctx_emit(batch, index, scratch_addr);
1317 wa_ctx_emit(batch, index, 0);
1318 wa_ctx_emit(batch, index, 0);
1319 wa_ctx_emit(batch, index, 0);
0160f055 1320
17ee950d
AS
1321 /* Pad to end of cacheline */
1322 while (index % CACHELINE_DWORDS)
83b8a982 1323 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1324
1325 /*
1326 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1327 * execution depends on the length specified in terms of cache lines
1328 * in the register CTX_RCS_INDIRECT_CTX
1329 */
1330
1331 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1332}
1333
1334/**
1335 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1336 *
1337 * @ring: only applicable for RCS
1338 * @wa_ctx: structure representing wa_ctx
1339 * offset: specifies start of the batch, should be cache-aligned.
1340 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1341 * @batch: page in which WA are loaded
17ee950d
AS
1342 * @offset: This field specifies the start of this batch.
1343 * This batch is started immediately after indirect_ctx batch. Since we ensure
1344 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1345 *
1346 * The number of DWORDS written are returned using this field.
1347 *
1348 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1349 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1350 */
1351static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1352 struct i915_wa_ctx_bb *wa_ctx,
1353 uint32_t *const batch,
1354 uint32_t *offset)
1355{
1356 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1357
7ad00d1a 1358 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1359 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1360
83b8a982 1361 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1362
1363 return wa_ctx_end(wa_ctx, *offset = index, 1);
1364}
1365
0504cffc
AS
1366static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1367 struct i915_wa_ctx_bb *wa_ctx,
1368 uint32_t *const batch,
1369 uint32_t *offset)
1370{
a4106a78 1371 int ret;
0907c8f7 1372 struct drm_device *dev = ring->dev;
0504cffc
AS
1373 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1374
0907c8f7 1375 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1376 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1377 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1378 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1379
a4106a78
AS
1380 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1381 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1382 if (ret < 0)
1383 return ret;
1384 index = ret;
1385
0504cffc
AS
1386 /* Pad to end of cacheline */
1387 while (index % CACHELINE_DWORDS)
1388 wa_ctx_emit(batch, index, MI_NOOP);
1389
1390 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1391}
1392
1393static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1394 struct i915_wa_ctx_bb *wa_ctx,
1395 uint32_t *const batch,
1396 uint32_t *offset)
1397{
0907c8f7 1398 struct drm_device *dev = ring->dev;
0504cffc
AS
1399 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1400
9b01435d 1401 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1402 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1403 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1404 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1405 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1406 wa_ctx_emit(batch, index,
1407 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1408 wa_ctx_emit(batch, index, MI_NOOP);
1409 }
1410
0907c8f7 1411 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1412 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1413 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1414 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1415
0504cffc
AS
1416 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1417
1418 return wa_ctx_end(wa_ctx, *offset = index, 1);
1419}
1420
17ee950d
AS
1421static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1422{
1423 int ret;
1424
1425 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1426 if (!ring->wa_ctx.obj) {
1427 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1428 return -ENOMEM;
1429 }
1430
1431 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1432 if (ret) {
1433 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1434 ret);
1435 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1436 return ret;
1437 }
1438
1439 return 0;
1440}
1441
1442static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1443{
1444 if (ring->wa_ctx.obj) {
1445 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1446 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1447 ring->wa_ctx.obj = NULL;
1448 }
1449}
1450
1451static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1452{
1453 int ret;
1454 uint32_t *batch;
1455 uint32_t offset;
1456 struct page *page;
1457 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1458
1459 WARN_ON(ring->id != RCS);
1460
5e60d790 1461 /* update this when WA for higher Gen are added */
0504cffc
AS
1462 if (INTEL_INFO(ring->dev)->gen > 9) {
1463 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1464 INTEL_INFO(ring->dev)->gen);
5e60d790 1465 return 0;
0504cffc 1466 }
5e60d790 1467
c4db7599
AS
1468 /* some WA perform writes to scratch page, ensure it is valid */
1469 if (ring->scratch.obj == NULL) {
1470 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1471 return -EINVAL;
1472 }
1473
17ee950d
AS
1474 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1475 if (ret) {
1476 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1477 return ret;
1478 }
1479
033908ae 1480 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1481 batch = kmap_atomic(page);
1482 offset = 0;
1483
1484 if (INTEL_INFO(ring->dev)->gen == 8) {
1485 ret = gen8_init_indirectctx_bb(ring,
1486 &wa_ctx->indirect_ctx,
1487 batch,
1488 &offset);
1489 if (ret)
1490 goto out;
1491
1492 ret = gen8_init_perctx_bb(ring,
1493 &wa_ctx->per_ctx,
1494 batch,
1495 &offset);
1496 if (ret)
1497 goto out;
0504cffc
AS
1498 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1499 ret = gen9_init_indirectctx_bb(ring,
1500 &wa_ctx->indirect_ctx,
1501 batch,
1502 &offset);
1503 if (ret)
1504 goto out;
1505
1506 ret = gen9_init_perctx_bb(ring,
1507 &wa_ctx->per_ctx,
1508 batch,
1509 &offset);
1510 if (ret)
1511 goto out;
17ee950d
AS
1512 }
1513
1514out:
1515 kunmap_atomic(batch);
1516 if (ret)
1517 lrc_destroy_wa_ctx_obj(ring);
1518
1519 return ret;
1520}
1521
9b1136d5
OM
1522static int gen8_init_common_ring(struct intel_engine_cs *ring)
1523{
1524 struct drm_device *dev = ring->dev;
1525 struct drm_i915_private *dev_priv = dev->dev_private;
dfc53c5e 1526 u8 next_context_status_buffer_hw;
9b1136d5 1527
e84fe803 1528 lrc_setup_hardware_status_page(ring,
ed54c1a1 1529 dev_priv->kernel_context->engine[ring->id].state);
e84fe803 1530
73d477f6
OM
1531 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1532 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1533
9b1136d5
OM
1534 I915_WRITE(RING_MODE_GEN7(ring),
1535 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1536 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1537 POSTING_READ(RING_MODE_GEN7(ring));
dfc53c5e
MT
1538
1539 /*
1540 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1541 * zero, we need to read the write pointer from hardware and use its
1542 * value because "this register is power context save restored".
1543 * Effectively, these states have been observed:
1544 *
1545 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1546 * BDW | CSB regs not reset | CSB regs reset |
1547 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1548 * SKL | ? | ? |
1549 * BXT | ? | ? |
dfc53c5e 1550 */
5590a5f0
BW
1551 next_context_status_buffer_hw =
1552 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
dfc53c5e
MT
1553
1554 /*
1555 * When the CSB registers are reset (also after power-up / gpu reset),
1556 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1557 * this special case, so the first element read is CSB[0].
1558 */
1559 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1560 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1561
1562 ring->next_context_status_buffer = next_context_status_buffer_hw;
9b1136d5
OM
1563 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1564
1565 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1566
1567 return 0;
1568}
1569
1570static int gen8_init_render_ring(struct intel_engine_cs *ring)
1571{
1572 struct drm_device *dev = ring->dev;
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 int ret;
1575
1576 ret = gen8_init_common_ring(ring);
1577 if (ret)
1578 return ret;
1579
1580 /* We need to disable the AsyncFlip performance optimisations in order
1581 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1582 * programmed to '1' on all products.
1583 *
1584 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1585 */
1586 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1587
9b1136d5
OM
1588 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1589
771b9a53 1590 return init_workarounds_ring(ring);
9b1136d5
OM
1591}
1592
82ef822e
DL
1593static int gen9_init_render_ring(struct intel_engine_cs *ring)
1594{
1595 int ret;
1596
1597 ret = gen8_init_common_ring(ring);
1598 if (ret)
1599 return ret;
1600
1601 return init_workarounds_ring(ring);
1602}
1603
7a01a0a2
MT
1604static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1605{
1606 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1607 struct intel_engine_cs *ring = req->ring;
1608 struct intel_ringbuffer *ringbuf = req->ringbuf;
1609 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1610 int i, ret;
1611
1612 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1613 if (ret)
1614 return ret;
1615
1616 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1617 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1618 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1619
f92a9162 1620 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
7a01a0a2 1621 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
f92a9162 1622 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
7a01a0a2
MT
1623 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1624 }
1625
1626 intel_logical_ring_emit(ringbuf, MI_NOOP);
1627 intel_logical_ring_advance(ringbuf);
1628
1629 return 0;
1630}
1631
be795fc1 1632static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1633 u64 offset, unsigned dispatch_flags)
15648585 1634{
be795fc1 1635 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1636 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1637 int ret;
1638
7a01a0a2
MT
1639 /* Don't rely in hw updating PDPs, specially in lite-restore.
1640 * Ideally, we should set Force PD Restore in ctx descriptor,
1641 * but we can't. Force Restore would be a second option, but
1642 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1643 * not idle). PML4 is allocated during ppgtt init so this is
1644 * not needed in 48-bit.*/
7a01a0a2
MT
1645 if (req->ctx->ppgtt &&
1646 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1647 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1648 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1649 ret = intel_logical_ring_emit_pdps(req);
1650 if (ret)
1651 return ret;
1652 }
7a01a0a2
MT
1653
1654 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1655 }
1656
4d616a29 1657 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1658 if (ret)
1659 return ret;
1660
1661 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1662 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1663 (ppgtt<<8) |
1664 (dispatch_flags & I915_DISPATCH_RS ?
1665 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1666 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1667 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1668 intel_logical_ring_emit(ringbuf, MI_NOOP);
1669 intel_logical_ring_advance(ringbuf);
1670
1671 return 0;
1672}
1673
73d477f6
OM
1674static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1675{
1676 struct drm_device *dev = ring->dev;
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 unsigned long flags;
1679
7cd512f1 1680 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1681 return false;
1682
1683 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1684 if (ring->irq_refcount++ == 0) {
1685 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1686 POSTING_READ(RING_IMR(ring->mmio_base));
1687 }
1688 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1689
1690 return true;
1691}
1692
1693static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1694{
1695 struct drm_device *dev = ring->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1700 if (--ring->irq_refcount == 0) {
1701 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1702 POSTING_READ(RING_IMR(ring->mmio_base));
1703 }
1704 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1705}
1706
7deb4d39 1707static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1708 u32 invalidate_domains,
1709 u32 unused)
1710{
7deb4d39 1711 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1712 struct intel_engine_cs *ring = ringbuf->ring;
1713 struct drm_device *dev = ring->dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 uint32_t cmd;
1716 int ret;
1717
4d616a29 1718 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1719 if (ret)
1720 return ret;
1721
1722 cmd = MI_FLUSH_DW + 1;
1723
f0a1fb10
CW
1724 /* We always require a command barrier so that subsequent
1725 * commands, such as breadcrumb interrupts, are strictly ordered
1726 * wrt the contents of the write cache being flushed to memory
1727 * (and thus being coherent from the CPU).
1728 */
1729 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1730
1731 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1732 cmd |= MI_INVALIDATE_TLB;
1733 if (ring == &dev_priv->ring[VCS])
1734 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1735 }
1736
1737 intel_logical_ring_emit(ringbuf, cmd);
1738 intel_logical_ring_emit(ringbuf,
1739 I915_GEM_HWS_SCRATCH_ADDR |
1740 MI_FLUSH_DW_USE_GTT);
1741 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1742 intel_logical_ring_emit(ringbuf, 0); /* value */
1743 intel_logical_ring_advance(ringbuf);
1744
1745 return 0;
1746}
1747
7deb4d39 1748static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1749 u32 invalidate_domains,
1750 u32 flush_domains)
1751{
7deb4d39 1752 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1753 struct intel_engine_cs *ring = ringbuf->ring;
1754 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1755 bool vf_flush_wa = false;
4712274c
OM
1756 u32 flags = 0;
1757 int ret;
1758
1759 flags |= PIPE_CONTROL_CS_STALL;
1760
1761 if (flush_domains) {
1762 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1763 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1764 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1765 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1766 }
1767
1768 if (invalidate_domains) {
1769 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1770 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1771 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1772 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1773 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1774 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1775 flags |= PIPE_CONTROL_QW_WRITE;
1776 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1777
1a5a9ce7
BW
1778 /*
1779 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1780 * pipe control.
1781 */
1782 if (IS_GEN9(ring->dev))
1783 vf_flush_wa = true;
1784 }
9647ff36 1785
4d616a29 1786 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1787 if (ret)
1788 return ret;
1789
9647ff36
ID
1790 if (vf_flush_wa) {
1791 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1792 intel_logical_ring_emit(ringbuf, 0);
1793 intel_logical_ring_emit(ringbuf, 0);
1794 intel_logical_ring_emit(ringbuf, 0);
1795 intel_logical_ring_emit(ringbuf, 0);
1796 intel_logical_ring_emit(ringbuf, 0);
1797 }
1798
4712274c
OM
1799 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1800 intel_logical_ring_emit(ringbuf, flags);
1801 intel_logical_ring_emit(ringbuf, scratch_addr);
1802 intel_logical_ring_emit(ringbuf, 0);
1803 intel_logical_ring_emit(ringbuf, 0);
1804 intel_logical_ring_emit(ringbuf, 0);
1805 intel_logical_ring_advance(ringbuf);
1806
1807 return 0;
1808}
1809
e94e37ad
OM
1810static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1811{
1812 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1813}
1814
1815static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1816{
1817 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1818}
1819
319404df
ID
1820static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1821{
1822
1823 /*
1824 * On BXT A steppings there is a HW coherency issue whereby the
1825 * MI_STORE_DATA_IMM storing the completed request's seqno
1826 * occasionally doesn't invalidate the CPU cache. Work around this by
1827 * clflushing the corresponding cacheline whenever the caller wants
1828 * the coherency to be guaranteed. Note that this cacheline is known
1829 * to be clean at this point, since we only write it in
1830 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1831 * this clflush in practice becomes an invalidate operation.
1832 */
1833
1834 if (!lazy_coherency)
1835 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1836
1837 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1838}
1839
1840static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1841{
1842 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1843
1844 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1845 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1846}
1847
c4e76638 1848static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1849{
c4e76638 1850 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1851 struct intel_engine_cs *ring = ringbuf->ring;
1852 u32 cmd;
1853 int ret;
1854
53292cdb
MT
1855 /*
1856 * Reserve space for 2 NOOPs at the end of each request to be
1857 * used as a workaround for not being allowed to do lite
1858 * restore with HEAD==TAIL (WaIdleLiteRestore).
1859 */
4d616a29 1860 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1861 if (ret)
1862 return ret;
1863
8edfbb8b 1864 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1865 cmd |= MI_GLOBAL_GTT;
1866
1867 intel_logical_ring_emit(ringbuf, cmd);
1868 intel_logical_ring_emit(ringbuf,
1869 (ring->status_page.gfx_addr +
1870 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1871 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1872 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1873 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1874 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1875 intel_logical_ring_advance_and_submit(request);
4da46e1e 1876
53292cdb
MT
1877 /*
1878 * Here we add two extra NOOPs as padding to avoid
1879 * lite restore of a context with HEAD==TAIL.
1880 */
1881 intel_logical_ring_emit(ringbuf, MI_NOOP);
1882 intel_logical_ring_emit(ringbuf, MI_NOOP);
1883 intel_logical_ring_advance(ringbuf);
1884
4da46e1e
OM
1885 return 0;
1886}
1887
be01363f 1888static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1889{
cef437ad 1890 struct render_state so;
cef437ad
DL
1891 int ret;
1892
be01363f 1893 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1894 if (ret)
1895 return ret;
1896
1897 if (so.rodata == NULL)
1898 return 0;
1899
be795fc1 1900 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1901 I915_DISPATCH_SECURE);
cef437ad
DL
1902 if (ret)
1903 goto out;
1904
84e81020
AS
1905 ret = req->ring->emit_bb_start(req,
1906 (so.ggtt_offset + so.aux_batch_offset),
1907 I915_DISPATCH_SECURE);
1908 if (ret)
1909 goto out;
1910
b2af0376 1911 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1912
cef437ad
DL
1913out:
1914 i915_gem_render_state_fini(&so);
1915 return ret;
1916}
1917
8753181e 1918static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1919{
1920 int ret;
1921
e2be4faf 1922 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1923 if (ret)
1924 return ret;
1925
3bbaba0c
PA
1926 ret = intel_rcs_context_init_mocs(req);
1927 /*
1928 * Failing to program the MOCS is non-fatal.The system will not
1929 * run at peak performance. So generate an error and carry on.
1930 */
1931 if (ret)
1932 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1933
be01363f 1934 return intel_lr_context_render_state_init(req);
e7778be1
TD
1935}
1936
73e4d07f
OM
1937/**
1938 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1939 *
1940 * @ring: Engine Command Streamer.
1941 *
1942 */
454afebd
OM
1943void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1944{
6402c330 1945 struct drm_i915_private *dev_priv;
9832b9da 1946
48d82387
OM
1947 if (!intel_ring_initialized(ring))
1948 return;
1949
6402c330
JH
1950 dev_priv = ring->dev->dev_private;
1951
b0366a54
DG
1952 if (ring->buffer) {
1953 intel_logical_ring_stop(ring);
1954 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1955 }
48d82387
OM
1956
1957 if (ring->cleanup)
1958 ring->cleanup(ring);
1959
1960 i915_cmd_parser_fini_ring(ring);
06fbca71 1961 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1962
1963 if (ring->status_page.obj) {
1964 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1965 ring->status_page.obj = NULL;
1966 }
17ee950d 1967
ca82580c
TU
1968 ring->disable_lite_restore_wa = false;
1969 ring->ctx_desc_template = 0;
1970
17ee950d 1971 lrc_destroy_wa_ctx_obj(ring);
b0366a54 1972 ring->dev = NULL;
454afebd
OM
1973}
1974
c9cacf93
TU
1975static void
1976logical_ring_default_vfuncs(struct drm_device *dev,
1977 struct intel_engine_cs *ring)
1978{
1979 /* Default vfuncs which can be overriden by each engine. */
1980 ring->init_hw = gen8_init_common_ring;
1981 ring->emit_request = gen8_emit_request;
1982 ring->emit_flush = gen8_emit_flush;
1983 ring->irq_get = gen8_logical_ring_get_irq;
1984 ring->irq_put = gen8_logical_ring_put_irq;
1985 ring->emit_bb_start = gen8_emit_bb_start;
1986 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1987 ring->get_seqno = bxt_a_get_seqno;
1988 ring->set_seqno = bxt_a_set_seqno;
1989 } else {
1990 ring->get_seqno = gen8_get_seqno;
1991 ring->set_seqno = gen8_set_seqno;
1992 }
1993}
1994
d9f3af96
TU
1995static inline void
1996logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
1997{
1998 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1999 ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2000}
2001
c9cacf93
TU
2002static int
2003logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
454afebd 2004{
ed54c1a1 2005 struct intel_context *dctx = to_i915(dev)->kernel_context;
48d82387 2006 int ret;
48d82387
OM
2007
2008 /* Intentionally left blank. */
2009 ring->buffer = NULL;
2010
2011 ring->dev = dev;
2012 INIT_LIST_HEAD(&ring->active_list);
2013 INIT_LIST_HEAD(&ring->request_list);
06fbca71 2014 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
2015 init_waitqueue_head(&ring->irq_queue);
2016
608c1a52 2017 INIT_LIST_HEAD(&ring->buffers);
acdd884a 2018 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 2019 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
2020 spin_lock_init(&ring->execlist_lock);
2021
ca82580c
TU
2022 logical_ring_init_platform_invariants(ring);
2023
48d82387
OM
2024 ret = i915_cmd_parser_init_ring(ring);
2025 if (ret)
b0366a54 2026 goto error;
48d82387 2027
ed54c1a1 2028 ret = intel_lr_context_deferred_alloc(dctx, ring);
e84fe803 2029 if (ret)
b0366a54 2030 goto error;
e84fe803
NH
2031
2032 /* As this is the default context, always pin it */
ed54c1a1 2033 ret = intel_lr_context_do_pin(ring, dctx);
e84fe803
NH
2034 if (ret) {
2035 DRM_ERROR(
2036 "Failed to pin and map ringbuffer %s: %d\n",
2037 ring->name, ret);
b0366a54 2038 goto error;
e84fe803 2039 }
564ddb2f 2040
b0366a54
DG
2041 return 0;
2042
2043error:
2044 intel_logical_ring_cleanup(ring);
564ddb2f 2045 return ret;
454afebd
OM
2046}
2047
2048static int logical_render_ring_init(struct drm_device *dev)
2049{
2050 struct drm_i915_private *dev_priv = dev->dev_private;
2051 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 2052 int ret;
454afebd
OM
2053
2054 ring->name = "render ring";
2055 ring->id = RCS;
2056 ring->mmio_base = RENDER_RING_BASE;
d9f3af96
TU
2057
2058 logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
73d477f6
OM
2059 if (HAS_L3_DPF(dev))
2060 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2061
c9cacf93
TU
2062 logical_ring_default_vfuncs(dev, ring);
2063
2064 /* Override some for render ring. */
82ef822e
DL
2065 if (INTEL_INFO(dev)->gen >= 9)
2066 ring->init_hw = gen9_init_render_ring;
2067 else
2068 ring->init_hw = gen8_init_render_ring;
e7778be1 2069 ring->init_context = gen8_init_rcs_context;
9b1136d5 2070 ring->cleanup = intel_fini_pipe_control;
4712274c 2071 ring->emit_flush = gen8_emit_flush_render;
9b1136d5 2072
99be1dfe 2073 ring->dev = dev;
c4db7599
AS
2074
2075 ret = intel_init_pipe_control(ring);
99be1dfe
DV
2076 if (ret)
2077 return ret;
2078
17ee950d
AS
2079 ret = intel_init_workaround_bb(ring);
2080 if (ret) {
2081 /*
2082 * We continue even if we fail to initialize WA batch
2083 * because we only expect rare glitches but nothing
2084 * critical to prevent us from using GPU
2085 */
2086 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2087 ret);
2088 }
2089
c4db7599
AS
2090 ret = logical_ring_init(dev, ring);
2091 if (ret) {
17ee950d 2092 lrc_destroy_wa_ctx_obj(ring);
c4db7599 2093 }
17ee950d
AS
2094
2095 return ret;
454afebd
OM
2096}
2097
2098static int logical_bsd_ring_init(struct drm_device *dev)
2099{
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2102
2103 ring->name = "bsd ring";
2104 ring->id = VCS;
2105 ring->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2106
d9f3af96 2107 logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
c9cacf93 2108 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2109
454afebd
OM
2110 return logical_ring_init(dev, ring);
2111}
2112
2113static int logical_bsd2_ring_init(struct drm_device *dev)
2114{
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2117
ec8a9776 2118 ring->name = "bsd2 ring";
454afebd
OM
2119 ring->id = VCS2;
2120 ring->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2121
d9f3af96 2122 logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
c9cacf93 2123 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2124
454afebd
OM
2125 return logical_ring_init(dev, ring);
2126}
2127
2128static int logical_blt_ring_init(struct drm_device *dev)
2129{
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2132
2133 ring->name = "blitter ring";
2134 ring->id = BCS;
2135 ring->mmio_base = BLT_RING_BASE;
454afebd 2136
d9f3af96 2137 logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
c9cacf93 2138 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2139
454afebd
OM
2140 return logical_ring_init(dev, ring);
2141}
2142
2143static int logical_vebox_ring_init(struct drm_device *dev)
2144{
2145 struct drm_i915_private *dev_priv = dev->dev_private;
2146 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2147
2148 ring->name = "video enhancement ring";
2149 ring->id = VECS;
2150 ring->mmio_base = VEBOX_RING_BASE;
454afebd 2151
d9f3af96 2152 logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
c9cacf93 2153 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2154
454afebd
OM
2155 return logical_ring_init(dev, ring);
2156}
2157
73e4d07f
OM
2158/**
2159 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2160 * @dev: DRM device.
2161 *
2162 * This function inits the engines for an Execlists submission style (the equivalent in the
2163 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2164 * those engines that are present in the hardware.
2165 *
2166 * Return: non-zero if the initialization failed.
2167 */
454afebd
OM
2168int intel_logical_rings_init(struct drm_device *dev)
2169{
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 int ret;
2172
2173 ret = logical_render_ring_init(dev);
2174 if (ret)
2175 return ret;
2176
2177 if (HAS_BSD(dev)) {
2178 ret = logical_bsd_ring_init(dev);
2179 if (ret)
2180 goto cleanup_render_ring;
2181 }
2182
2183 if (HAS_BLT(dev)) {
2184 ret = logical_blt_ring_init(dev);
2185 if (ret)
2186 goto cleanup_bsd_ring;
2187 }
2188
2189 if (HAS_VEBOX(dev)) {
2190 ret = logical_vebox_ring_init(dev);
2191 if (ret)
2192 goto cleanup_blt_ring;
2193 }
2194
2195 if (HAS_BSD2(dev)) {
2196 ret = logical_bsd2_ring_init(dev);
2197 if (ret)
2198 goto cleanup_vebox_ring;
2199 }
2200
454afebd
OM
2201 return 0;
2202
454afebd
OM
2203cleanup_vebox_ring:
2204 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2205cleanup_blt_ring:
2206 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2207cleanup_bsd_ring:
2208 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2209cleanup_render_ring:
2210 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2211
2212 return ret;
2213}
2214
0cea6502
JM
2215static u32
2216make_rpcs(struct drm_device *dev)
2217{
2218 u32 rpcs = 0;
2219
2220 /*
2221 * No explicit RPCS request is needed to ensure full
2222 * slice/subslice/EU enablement prior to Gen9.
2223 */
2224 if (INTEL_INFO(dev)->gen < 9)
2225 return 0;
2226
2227 /*
2228 * Starting in Gen9, render power gating can leave
2229 * slice/subslice/EU in a partially enabled state. We
2230 * must make an explicit request through RPCS for full
2231 * enablement.
2232 */
2233 if (INTEL_INFO(dev)->has_slice_pg) {
2234 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2235 rpcs |= INTEL_INFO(dev)->slice_total <<
2236 GEN8_RPCS_S_CNT_SHIFT;
2237 rpcs |= GEN8_RPCS_ENABLE;
2238 }
2239
2240 if (INTEL_INFO(dev)->has_subslice_pg) {
2241 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2242 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2243 GEN8_RPCS_SS_CNT_SHIFT;
2244 rpcs |= GEN8_RPCS_ENABLE;
2245 }
2246
2247 if (INTEL_INFO(dev)->has_eu_pg) {
2248 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2249 GEN8_RPCS_EU_MIN_SHIFT;
2250 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251 GEN8_RPCS_EU_MAX_SHIFT;
2252 rpcs |= GEN8_RPCS_ENABLE;
2253 }
2254
2255 return rpcs;
2256}
2257
8670d6f9
OM
2258static int
2259populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2260 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2261{
2d965536
TD
2262 struct drm_device *dev = ring->dev;
2263 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2264 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2265 struct page *page;
2266 uint32_t *reg_state;
2267 int ret;
2268
2d965536
TD
2269 if (!ppgtt)
2270 ppgtt = dev_priv->mm.aliasing_ppgtt;
2271
8670d6f9
OM
2272 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2273 if (ret) {
2274 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2275 return ret;
2276 }
2277
2278 ret = i915_gem_object_get_pages(ctx_obj);
2279 if (ret) {
2280 DRM_DEBUG_DRIVER("Could not get object pages\n");
2281 return ret;
2282 }
2283
2284 i915_gem_object_pin_pages(ctx_obj);
2285
2286 /* The second page of the context object contains some fields which must
2287 * be set up prior to the first execution. */
033908ae 2288 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2289 reg_state = kmap_atomic(page);
2290
2291 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2292 * commands followed by (reg, value) pairs. The values we are setting here are
2293 * only for the first context restore: on a subsequent save, the GPU will
2294 * recreate this batchbuffer with new values (including all the missing
2295 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2296 reg_state[CTX_LRI_HEADER_0] =
2297 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2298 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2299 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2300 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2301 CTX_CTRL_RS_CTX_ENABLE));
2302 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2303 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2304 /* Ring buffer start address is not known until the buffer is pinned.
2305 * It is written to the context image in execlists_update_context()
2306 */
0d925ea0
VS
2307 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2308 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2309 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2310 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2311 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2312 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2313 RING_BB_PPGTT);
2314 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2315 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2316 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2317 if (ring->id == RCS) {
0d925ea0
VS
2318 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2319 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2320 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2321 if (ring->wa_ctx.obj) {
2322 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2323 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2324
2325 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2326 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2327 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2328
2329 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2330 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2331
2332 reg_state[CTX_BB_PER_CTX_PTR+1] =
2333 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2334 0x01;
2335 }
8670d6f9 2336 }
0d925ea0
VS
2337 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2338 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2339 /* PDP values well be assigned later if needed */
2340 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2343 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2345 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2348
2dba3239
MT
2349 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2350 /* 64b PPGTT (48bit canonical)
2351 * PDP0_DESCRIPTOR contains the base address to PML4 and
2352 * other PDP Descriptors are ignored.
2353 */
2354 ASSIGN_CTX_PML4(ppgtt, reg_state);
2355 } else {
2356 /* 32b PPGTT
2357 * PDP*_DESCRIPTOR contains the base address of space supported.
2358 * With dynamic page allocation, PDPs may not be allocated at
2359 * this point. Point the unallocated PDPs to the scratch page
2360 */
2361 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2362 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2363 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2364 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2365 }
2366
8670d6f9
OM
2367 if (ring->id == RCS) {
2368 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2369 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2370 make_rpcs(dev));
8670d6f9
OM
2371 }
2372
2373 kunmap_atomic(reg_state);
8670d6f9
OM
2374 i915_gem_object_unpin_pages(ctx_obj);
2375
2376 return 0;
2377}
2378
73e4d07f
OM
2379/**
2380 * intel_lr_context_free() - free the LRC specific bits of a context
2381 * @ctx: the LR context to free.
2382 *
2383 * The real context freeing is done in i915_gem_context_free: this only
2384 * takes care of the bits that are LRC related: the per-engine backing
2385 * objects and the logical ringbuffer.
2386 */
ede7d42b
OM
2387void intel_lr_context_free(struct intel_context *ctx)
2388{
8c857917
OM
2389 int i;
2390
e28e404c
DG
2391 for (i = I915_NUM_RINGS; --i >= 0; ) {
2392 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2393 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2394
e28e404c
DG
2395 if (!ctx_obj)
2396 continue;
dcb4c12a 2397
e28e404c
DG
2398 if (ctx == ctx->i915->kernel_context) {
2399 intel_unpin_ringbuffer_obj(ringbuf);
2400 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2401 }
e28e404c
DG
2402
2403 WARN_ON(ctx->engine[i].pin_count);
2404 intel_ringbuffer_free(ringbuf);
2405 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2406 }
2407}
2408
c5d46ee2
DG
2409/**
2410 * intel_lr_context_size() - return the size of the context for an engine
2411 * @ring: which engine to find the context size for
2412 *
2413 * Each engine may require a different amount of space for a context image,
2414 * so when allocating (or copying) an image, this function can be used to
2415 * find the right size for the specific engine.
2416 *
2417 * Return: size (in bytes) of an engine-specific context image
2418 *
2419 * Note: this size includes the HWSP, which is part of the context image
2420 * in LRC mode, but does not include the "shared data page" used with
2421 * GuC submission. The caller should account for this if using the GuC.
2422 */
95a66f7e 2423uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
8c857917
OM
2424{
2425 int ret = 0;
2426
468c6816 2427 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2428
2429 switch (ring->id) {
2430 case RCS:
468c6816
MN
2431 if (INTEL_INFO(ring->dev)->gen >= 9)
2432 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2433 else
2434 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2435 break;
2436 case VCS:
2437 case BCS:
2438 case VECS:
2439 case VCS2:
2440 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2441 break;
2442 }
2443
2444 return ret;
ede7d42b
OM
2445}
2446
70b0ea86 2447static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2448 struct drm_i915_gem_object *default_ctx_obj)
2449{
2450 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2451 struct page *page;
1df06b75 2452
d1675198
AD
2453 /* The HWSP is part of the default context object in LRC mode. */
2454 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2455 + LRC_PPHWSP_PN * PAGE_SIZE;
2456 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2457 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2458 ring->status_page.obj = default_ctx_obj;
2459
2460 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2461 (u32)ring->status_page.gfx_addr);
2462 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2463}
2464
73e4d07f 2465/**
e84fe803 2466 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2467 * @ctx: LR context to create.
2468 * @ring: engine to be used with the context.
2469 *
2470 * This function can be called more than once, with different engines, if we plan
2471 * to use the context with them. The context backing objects and the ringbuffers
2472 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2473 * the creation is a deferred call: it's better to make sure first that we need to use
2474 * a given ring with the context.
2475 *
32197aab 2476 * Return: non-zero on error.
73e4d07f 2477 */
e84fe803
NH
2478
2479int intel_lr_context_deferred_alloc(struct intel_context *ctx,
e28e404c 2480 struct intel_engine_cs *ring)
ede7d42b 2481{
8c857917
OM
2482 struct drm_device *dev = ring->dev;
2483 struct drm_i915_gem_object *ctx_obj;
2484 uint32_t context_size;
84c2377f 2485 struct intel_ringbuffer *ringbuf;
8c857917
OM
2486 int ret;
2487
ede7d42b 2488 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2489 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2490
95a66f7e 2491 context_size = round_up(intel_lr_context_size(ring), 4096);
8c857917 2492
d1675198
AD
2493 /* One extra page as the sharing data between driver and GuC */
2494 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2495
149c86e7 2496 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2497 if (!ctx_obj) {
2498 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2499 return -ENOMEM;
8c857917
OM
2500 }
2501
01101fa7
CW
2502 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2503 if (IS_ERR(ringbuf)) {
2504 ret = PTR_ERR(ringbuf);
e84fe803 2505 goto error_deref_obj;
8670d6f9
OM
2506 }
2507
2508 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2509 if (ret) {
2510 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2511 goto error_ringbuf;
84c2377f
OM
2512 }
2513
2514 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2515 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2516
ed54c1a1 2517 if (ctx != ctx->i915->kernel_context && ring->init_context) {
e84fe803 2518 struct drm_i915_gem_request *req;
76c39168 2519
26827088
DG
2520 req = i915_gem_request_alloc(ring, ctx);
2521 if (IS_ERR(req)) {
2522 ret = PTR_ERR(req);
2523 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2524 goto error_ringbuf;
771b9a53
MT
2525 }
2526
e84fe803
NH
2527 ret = ring->init_context(req);
2528 if (ret) {
2529 DRM_ERROR("ring init context: %d\n",
2530 ret);
2531 i915_gem_request_cancel(req);
2532 goto error_ringbuf;
2533 }
2534 i915_add_request_no_flush(req);
564ddb2f 2535 }
ede7d42b 2536 return 0;
8670d6f9 2537
01101fa7
CW
2538error_ringbuf:
2539 intel_ringbuffer_free(ringbuf);
e84fe803 2540error_deref_obj:
8670d6f9 2541 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2542 ctx->engine[ring->id].ringbuf = NULL;
2543 ctx->engine[ring->id].state = NULL;
8670d6f9 2544 return ret;
ede7d42b 2545}
3e5b6f05
TD
2546
2547void intel_lr_context_reset(struct drm_device *dev,
2548 struct intel_context *ctx)
2549{
2550 struct drm_i915_private *dev_priv = dev->dev_private;
2551 struct intel_engine_cs *ring;
2552 int i;
2553
2554 for_each_ring(ring, dev_priv, i) {
2555 struct drm_i915_gem_object *ctx_obj =
2556 ctx->engine[ring->id].state;
2557 struct intel_ringbuffer *ringbuf =
2558 ctx->engine[ring->id].ringbuf;
2559 uint32_t *reg_state;
2560 struct page *page;
2561
2562 if (!ctx_obj)
2563 continue;
2564
2565 if (i915_gem_object_get_pages(ctx_obj)) {
2566 WARN(1, "Failed get_pages for context obj\n");
2567 continue;
2568 }
033908ae 2569 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2570 reg_state = kmap_atomic(page);
2571
2572 reg_state[CTX_RING_HEAD+1] = 0;
2573 reg_state[CTX_RING_TAIL+1] = 0;
2574
2575 kunmap_atomic(reg_state);
2576
2577 ringbuf->head = 0;
2578 ringbuf->tail = 0;
2579 }
2580}
This page took 0.340012 seconds and 5 git commands to generate.