drm/i915: Fix VCS ring selection after uapi decoupling
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
17ee950d 226#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 227
8ba319da 228static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
229static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c
TU
266static void
267logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
268{
269 struct drm_device *dev = ring->dev;
270
271 ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
272 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
273 (ring->id == VCS || ring->id == VCS2);
274
275 ring->ctx_desc_template = GEN8_CTX_VALID;
276 ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
277 GEN8_CTX_ADDRESSING_MODE_SHIFT;
278 if (IS_GEN8(dev))
279 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
280 ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
281
282 /* TODO: WaDisableLiteRestore when we start using semaphore
283 * signalling between Command Streamers */
284 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
285
286 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
287 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
288 if (ring->disable_lite_restore_wa)
289 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
290}
291
73e4d07f 292/**
ca82580c
TU
293 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
294 * descriptor for a pinned context
73e4d07f 295 *
ca82580c
TU
296 * @ctx: Context to work on
297 * @ring: Engine the descriptor will be used with
73e4d07f 298 *
ca82580c
TU
299 * The context descriptor encodes various attributes of a context,
300 * including its GTT address and some flags. Because it's fairly
301 * expensive to calculate, we'll just do it once and cache the result,
302 * which remains valid until the context is unpinned.
303 *
304 * This is what a descriptor looks like, from LSB to MSB:
305 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
306 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
307 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
308 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 309 */
ca82580c
TU
310static void
311intel_lr_context_descriptor_update(struct intel_context *ctx,
312 struct intel_engine_cs *ring)
84b790f8 313{
ca82580c 314 uint64_t lrca, desc;
84b790f8 315
ca82580c
TU
316 lrca = ctx->engine[ring->id].lrc_vma->node.start +
317 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 318
ca82580c
TU
319 desc = ring->ctx_desc_template; /* bits 0-11 */
320 desc |= lrca; /* bits 12-31 */
321 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 322
ca82580c 323 ctx->engine[ring->id].lrc_desc = desc;
5af05fef
MT
324}
325
919f1f55
DG
326uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
327 struct intel_engine_cs *ring)
84b790f8 328{
ca82580c
TU
329 return ctx->engine[ring->id].lrc_desc;
330}
203a571b 331
ca82580c
TU
332/**
333 * intel_execlists_ctx_id() - get the Execlists Context ID
334 * @ctx: Context to get the ID for
335 * @ring: Engine to get the ID for
336 *
337 * Do not confuse with ctx->id! Unfortunately we have a name overload
338 * here: the old context ID we pass to userspace as a handler so that
339 * they can refer to a context, and the new context ID we pass to the
340 * ELSP so that the GPU can inform us of the context status via
341 * interrupts.
342 *
343 * The context ID is a portion of the context descriptor, so we can
344 * just extract the required part from the cached descriptor.
345 *
346 * Return: 20-bits globally unique context ID.
347 */
348u32 intel_execlists_ctx_id(struct intel_context *ctx,
349 struct intel_engine_cs *ring)
350{
351 return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
352}
353
cc3c4253
MK
354static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
355 struct drm_i915_gem_request *rq1)
84b790f8 356{
cc3c4253
MK
357
358 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
359 struct drm_device *dev = ring->dev;
360 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 361 uint64_t desc[2];
84b790f8 362
1cff8cc3 363 if (rq1) {
919f1f55 364 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
365 rq1->elsp_submitted++;
366 } else {
367 desc[1] = 0;
368 }
84b790f8 369
919f1f55 370 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 371 rq0->elsp_submitted++;
84b790f8 372
1cff8cc3 373 /* You must always write both descriptors in the order below. */
a6111f7b
CW
374 spin_lock(&dev_priv->uncore.lock);
375 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
376 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
377 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 378
1cff8cc3 379 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 380 /* The context is automatically loaded after the following */
1cff8cc3 381 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 382
1cff8cc3 383 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 384 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
385 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
386 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
387}
388
05d9824b 389static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 390{
05d9824b
MK
391 struct intel_engine_cs *ring = rq->ring;
392 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
82352e90 393 uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
ae1250b9 394
05d9824b 395 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 396
2dba3239
MT
397 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
398 /* True 32b PPGTT with dynamic page allocation: update PDP
399 * registers and point the unallocated PDPs to scratch page.
400 * PML4 is allocated during ppgtt init, so this is not needed
401 * in 48-bit mode.
402 */
d7b2633d
MT
403 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
404 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
405 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
406 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
407 }
408
ae1250b9
OM
409 return 0;
410}
411
d8cb8875
MK
412static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
413 struct drm_i915_gem_request *rq1)
84b790f8 414{
05d9824b 415 execlists_update_context(rq0);
d8cb8875 416
cc3c4253 417 if (rq1)
05d9824b 418 execlists_update_context(rq1);
84b790f8 419
cc3c4253 420 execlists_elsp_write(rq0, rq1);
84b790f8
BW
421}
422
acdd884a
MT
423static void execlists_context_unqueue(struct intel_engine_cs *ring)
424{
6d3d8274
NH
425 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
426 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
427
428 assert_spin_locked(&ring->execlist_lock);
acdd884a 429
779949f4
PA
430 /*
431 * If irqs are not active generate a warning as batches that finish
432 * without the irqs may get lost and a GPU Hang may occur.
433 */
434 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
435
acdd884a
MT
436 if (list_empty(&ring->execlist_queue))
437 return;
438
439 /* Try to read in pairs */
440 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
441 execlist_link) {
442 if (!req0) {
443 req0 = cursor;
6d3d8274 444 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
445 /* Same ctx: ignore first request, as second request
446 * will update tail past first request's workload */
e1fee72c 447 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25
TU
448 list_move_tail(&req0->execlist_link,
449 &ring->execlist_retired_req_list);
acdd884a
MT
450 req0 = cursor;
451 } else {
452 req1 = cursor;
453 break;
454 }
455 }
456
53292cdb
MT
457 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
458 /*
459 * WaIdleLiteRestore: make sure we never cause a lite
460 * restore with HEAD==TAIL
461 */
d63f820f 462 if (req0->elsp_submitted) {
53292cdb
MT
463 /*
464 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
465 * as we resubmit the request. See gen8_emit_request()
466 * for where we prepare the padding after the end of the
467 * request.
468 */
469 struct intel_ringbuffer *ringbuf;
470
471 ringbuf = req0->ctx->engine[ring->id].ringbuf;
472 req0->tail += 8;
473 req0->tail &= ringbuf->size - 1;
474 }
475 }
476
e1fee72c
OM
477 WARN_ON(req1 && req1->elsp_submitted);
478
d8cb8875 479 execlists_submit_requests(req0, req1);
acdd884a
MT
480}
481
e981e7b1
TD
482static bool execlists_check_remove_request(struct intel_engine_cs *ring,
483 u32 request_id)
484{
6d3d8274 485 struct drm_i915_gem_request *head_req;
e981e7b1
TD
486
487 assert_spin_locked(&ring->execlist_lock);
488
489 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 490 struct drm_i915_gem_request,
e981e7b1
TD
491 execlist_link);
492
493 if (head_req != NULL) {
ca82580c 494 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
e1fee72c
OM
495 WARN(head_req->elsp_submitted == 0,
496 "Never submitted head request\n");
497
498 if (--head_req->elsp_submitted <= 0) {
7eb08a25
TU
499 list_move_tail(&head_req->execlist_link,
500 &ring->execlist_retired_req_list);
e1fee72c
OM
501 return true;
502 }
e981e7b1
TD
503 }
504 }
505
506 return false;
507}
508
91a41032
BW
509static void get_context_status(struct intel_engine_cs *ring,
510 u8 read_pointer,
511 u32 *status, u32 *context_id)
512{
513 struct drm_i915_private *dev_priv = ring->dev->dev_private;
514
515 if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
516 return;
517
518 *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
519 *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
520}
521
73e4d07f 522/**
3f7531c3 523 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
524 * @ring: Engine Command Streamer to handle.
525 *
526 * Check the unread Context Status Buffers and manage the submission of new
527 * contexts to the ELSP accordingly.
528 */
3f7531c3 529void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
530{
531 struct drm_i915_private *dev_priv = ring->dev->dev_private;
532 u32 status_pointer;
533 u8 read_pointer;
534 u8 write_pointer;
5af05fef 535 u32 status = 0;
e981e7b1
TD
536 u32 status_id;
537 u32 submit_contexts = 0;
538
539 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
540
541 read_pointer = ring->next_context_status_buffer;
5590a5f0 542 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 543 if (read_pointer > write_pointer)
dfc53c5e 544 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1
TD
545
546 spin_lock(&ring->execlist_lock);
547
548 while (read_pointer < write_pointer) {
91a41032
BW
549
550 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
551 &status, &status_id);
e981e7b1 552
031a8936
MK
553 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
554 continue;
555
e1fee72c
OM
556 if (status & GEN8_CTX_STATUS_PREEMPTED) {
557 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
558 if (execlists_check_remove_request(ring, status_id))
559 WARN(1, "Lite Restored request removed from queue\n");
560 } else
561 WARN(1, "Preemption without Lite Restore\n");
562 }
563
eba51190
BW
564 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
565 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
566 if (execlists_check_remove_request(ring, status_id))
567 submit_contexts++;
568 }
569 }
570
ca82580c 571 if (ring->disable_lite_restore_wa) {
5af05fef
MT
572 /* Prevent a ctx to preempt itself */
573 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
574 (submit_contexts != 0))
575 execlists_context_unqueue(ring);
576 } else if (submit_contexts != 0) {
e981e7b1 577 execlists_context_unqueue(ring);
5af05fef 578 }
e981e7b1
TD
579
580 spin_unlock(&ring->execlist_lock);
581
f764a8b1
BW
582 if (unlikely(submit_contexts > 2))
583 DRM_ERROR("More than two context complete events?\n");
584
dfc53c5e 585 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 586
5590a5f0
BW
587 /* Update the read pointer to the old write pointer. Manual ringbuffer
588 * management ftw </sarcasm> */
e981e7b1 589 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
5590a5f0
BW
590 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
591 ring->next_context_status_buffer << 8));
e981e7b1
TD
592}
593
ae70797d 594static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 595{
ae70797d 596 struct intel_engine_cs *ring = request->ring;
6d3d8274 597 struct drm_i915_gem_request *cursor;
f1ad5a1f 598 int num_elements = 0;
acdd884a 599
ed54c1a1 600 if (request->ctx != request->i915->kernel_context)
af3302b9
DV
601 intel_lr_context_pin(request);
602
9bb1af44
JH
603 i915_gem_request_reference(request);
604
b5eba372 605 spin_lock_irq(&ring->execlist_lock);
acdd884a 606
f1ad5a1f
OM
607 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
608 if (++num_elements > 2)
609 break;
610
611 if (num_elements > 2) {
6d3d8274 612 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
613
614 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 615 struct drm_i915_gem_request,
f1ad5a1f
OM
616 execlist_link);
617
ae70797d 618 if (request->ctx == tail_req->ctx) {
f1ad5a1f 619 WARN(tail_req->elsp_submitted != 0,
7ba717cf 620 "More than 2 already-submitted reqs queued\n");
7eb08a25
TU
621 list_move_tail(&tail_req->execlist_link,
622 &ring->execlist_retired_req_list);
f1ad5a1f
OM
623 }
624 }
625
6d3d8274 626 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 627 if (num_elements == 0)
acdd884a
MT
628 execlists_context_unqueue(ring);
629
b5eba372 630 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
631
632 return 0;
633}
634
2f20055d 635static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 636{
2f20055d 637 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
638 uint32_t flush_domains;
639 int ret;
640
641 flush_domains = 0;
642 if (ring->gpu_caches_dirty)
643 flush_domains = I915_GEM_GPU_DOMAINS;
644
7deb4d39 645 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
646 if (ret)
647 return ret;
648
649 ring->gpu_caches_dirty = false;
650 return 0;
651}
652
535fbe82 653static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
654 struct list_head *vmas)
655{
535fbe82 656 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
657 struct i915_vma *vma;
658 uint32_t flush_domains = 0;
659 bool flush_chipset = false;
660 int ret;
661
662 list_for_each_entry(vma, vmas, exec_list) {
663 struct drm_i915_gem_object *obj = vma->obj;
664
03ade511 665 if (obj->active & other_rings) {
91af127f 666 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
667 if (ret)
668 return ret;
669 }
ba8b7ccb
OM
670
671 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
672 flush_chipset |= i915_gem_clflush_object(obj, false);
673
674 flush_domains |= obj->base.write_domain;
675 }
676
677 if (flush_domains & I915_GEM_DOMAIN_GTT)
678 wmb();
679
680 /* Unconditionally invalidate gpu caches and ensure that we do flush
681 * any residual writes from the previous batch.
682 */
2f20055d 683 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
684}
685
40e895ce 686int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 687{
e28e404c 688 int ret = 0;
bc0dce3f 689
f3cc01f0
MK
690 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
691
a7e02199
AD
692 if (i915.enable_guc_submission) {
693 /*
694 * Check that the GuC has space for the request before
695 * going any further, as the i915_add_request() call
696 * later on mustn't fail ...
697 */
698 struct intel_guc *guc = &request->i915->guc;
699
700 ret = i915_guc_wq_check_space(guc->execbuf_client);
701 if (ret)
702 return ret;
703 }
704
e28e404c
DG
705 if (request->ctx != request->i915->kernel_context)
706 ret = intel_lr_context_pin(request);
707
708 return ret;
bc0dce3f
JH
709}
710
ae70797d 711static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 712 int bytes)
bc0dce3f 713{
ae70797d
JH
714 struct intel_ringbuffer *ringbuf = req->ringbuf;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_i915_gem_request *target;
b4716185
CW
717 unsigned space;
718 int ret;
bc0dce3f
JH
719
720 if (intel_ring_space(ringbuf) >= bytes)
721 return 0;
722
79bbcc29
JH
723 /* The whole point of reserving space is to not wait! */
724 WARN_ON(ringbuf->reserved_in_use);
725
ae70797d 726 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
727 /*
728 * The request queue is per-engine, so can contain requests
729 * from multiple ringbuffers. Here, we must ignore any that
730 * aren't from the ringbuffer we're considering.
731 */
ae70797d 732 if (target->ringbuf != ringbuf)
bc0dce3f
JH
733 continue;
734
735 /* Would completion of this request free enough space? */
ae70797d 736 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
737 ringbuf->size);
738 if (space >= bytes)
bc0dce3f 739 break;
bc0dce3f
JH
740 }
741
ae70797d 742 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
743 return -ENOSPC;
744
ae70797d 745 ret = i915_wait_request(target);
bc0dce3f
JH
746 if (ret)
747 return ret;
748
b4716185
CW
749 ringbuf->space = space;
750 return 0;
bc0dce3f
JH
751}
752
753/*
754 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 755 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
756 *
757 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
758 * really happens during submission is that the context and current tail will be placed
759 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
760 * point, the tail *inside* the context is updated and the ELSP written to.
761 */
7c17d377 762static int
ae70797d 763intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 764{
7c17d377 765 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 766 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 767
7c17d377
CW
768 intel_logical_ring_advance(ringbuf);
769 request->tail = ringbuf->tail;
bc0dce3f 770
7c17d377
CW
771 /*
772 * Here we add two extra NOOPs as padding to avoid
773 * lite restore of a context with HEAD==TAIL.
774 *
775 * Caller must reserve WA_TAIL_DWORDS for us!
776 */
777 intel_logical_ring_emit(ringbuf, MI_NOOP);
778 intel_logical_ring_emit(ringbuf, MI_NOOP);
779 intel_logical_ring_advance(ringbuf);
d1675198 780
7c17d377
CW
781 if (intel_ring_stopped(request->ring))
782 return 0;
bc0dce3f 783
d1675198
AD
784 if (dev_priv->guc.execbuf_client)
785 i915_guc_submit(dev_priv->guc.execbuf_client, request);
786 else
787 execlists_context_queue(request);
7c17d377
CW
788
789 return 0;
bc0dce3f
JH
790}
791
79bbcc29 792static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
793{
794 uint32_t __iomem *virt;
795 int rem = ringbuf->size - ringbuf->tail;
796
bc0dce3f
JH
797 virt = ringbuf->virtual_start + ringbuf->tail;
798 rem /= 4;
799 while (rem--)
800 iowrite32(MI_NOOP, virt++);
801
802 ringbuf->tail = 0;
803 intel_ring_update_space(ringbuf);
bc0dce3f
JH
804}
805
ae70797d 806static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 807{
ae70797d 808 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
809 int remain_usable = ringbuf->effective_size - ringbuf->tail;
810 int remain_actual = ringbuf->size - ringbuf->tail;
811 int ret, total_bytes, wait_bytes = 0;
812 bool need_wrap = false;
29b1b415 813
79bbcc29
JH
814 if (ringbuf->reserved_in_use)
815 total_bytes = bytes;
816 else
817 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 818
79bbcc29
JH
819 if (unlikely(bytes > remain_usable)) {
820 /*
821 * Not enough space for the basic request. So need to flush
822 * out the remainder and then wait for base + reserved.
823 */
824 wait_bytes = remain_actual + total_bytes;
825 need_wrap = true;
826 } else {
827 if (unlikely(total_bytes > remain_usable)) {
828 /*
829 * The base request will fit but the reserved space
830 * falls off the end. So only need to to wait for the
831 * reserved size after flushing out the remainder.
832 */
833 wait_bytes = remain_actual + ringbuf->reserved_size;
834 need_wrap = true;
835 } else if (total_bytes > ringbuf->space) {
836 /* No wrapping required, just waiting. */
837 wait_bytes = total_bytes;
29b1b415 838 }
bc0dce3f
JH
839 }
840
79bbcc29
JH
841 if (wait_bytes) {
842 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
843 if (unlikely(ret))
844 return ret;
79bbcc29
JH
845
846 if (need_wrap)
847 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
848 }
849
850 return 0;
851}
852
853/**
854 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
855 *
374887ba 856 * @req: The request to start some new work for
bc0dce3f
JH
857 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
858 *
859 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
860 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
861 * and also preallocates a request (every workload submission is still mediated through
862 * requests, same as it did with legacy ringbuffer submission).
863 *
864 * Return: non-zero if the ringbuffer is not ready to be written to.
865 */
3bbaba0c 866int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 867{
4d616a29 868 struct drm_i915_private *dev_priv;
bc0dce3f
JH
869 int ret;
870
4d616a29
JH
871 WARN_ON(req == NULL);
872 dev_priv = req->ring->dev->dev_private;
873
bc0dce3f
JH
874 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
875 dev_priv->mm.interruptible);
876 if (ret)
877 return ret;
878
ae70797d 879 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
880 if (ret)
881 return ret;
882
4d616a29 883 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
884 return 0;
885}
886
ccd98fe4
JH
887int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
888{
889 /*
890 * The first call merely notes the reserve request and is common for
891 * all back ends. The subsequent localised _begin() call actually
892 * ensures that the reservation is available. Without the begin, if
893 * the request creator immediately submitted the request without
894 * adding any commands to it then there might not actually be
895 * sufficient room for the submission commands.
896 */
897 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
898
899 return intel_logical_ring_begin(request, 0);
900}
901
73e4d07f
OM
902/**
903 * execlists_submission() - submit a batchbuffer for execution, Execlists style
904 * @dev: DRM device.
905 * @file: DRM file.
906 * @ring: Engine Command Streamer to submit to.
907 * @ctx: Context to employ for this submission.
908 * @args: execbuffer call arguments.
909 * @vmas: list of vmas.
910 * @batch_obj: the batchbuffer to submit.
911 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 912 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
913 *
914 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
915 * away the submission details of the execbuffer ioctl call.
916 *
917 * Return: non-zero if the submission fails.
918 */
5f19e2bf 919int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 920 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 921 struct list_head *vmas)
454afebd 922{
5f19e2bf
JH
923 struct drm_device *dev = params->dev;
924 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 925 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
926 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
927 u64 exec_start;
ba8b7ccb
OM
928 int instp_mode;
929 u32 instp_mask;
930 int ret;
931
932 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
933 instp_mask = I915_EXEC_CONSTANTS_MASK;
934 switch (instp_mode) {
935 case I915_EXEC_CONSTANTS_REL_GENERAL:
936 case I915_EXEC_CONSTANTS_ABSOLUTE:
937 case I915_EXEC_CONSTANTS_REL_SURFACE:
938 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
939 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
940 return -EINVAL;
941 }
942
943 if (instp_mode != dev_priv->relative_constants_mode) {
944 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
945 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
946 return -EINVAL;
947 }
948
949 /* The HW changed the meaning on this bit on gen6 */
950 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
951 }
952 break;
953 default:
954 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
955 return -EINVAL;
956 }
957
ba8b7ccb
OM
958 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
959 DRM_DEBUG("sol reset is gen7 only\n");
960 return -EINVAL;
961 }
962
535fbe82 963 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
964 if (ret)
965 return ret;
966
967 if (ring == &dev_priv->ring[RCS] &&
968 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 969 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
970 if (ret)
971 return ret;
972
973 intel_logical_ring_emit(ringbuf, MI_NOOP);
974 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 975 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
976 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
977 intel_logical_ring_advance(ringbuf);
978
979 dev_priv->relative_constants_mode = instp_mode;
980 }
981
5f19e2bf
JH
982 exec_start = params->batch_obj_vm_offset +
983 args->batch_start_offset;
984
be795fc1 985 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
986 if (ret)
987 return ret;
988
95c24161 989 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 990
8a8edb59 991 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 992 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 993
454afebd
OM
994 return 0;
995}
996
c86ee3a9
TD
997void intel_execlists_retire_requests(struct intel_engine_cs *ring)
998{
6d3d8274 999 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
1000 struct list_head retired_list;
1001
1002 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1003 if (list_empty(&ring->execlist_retired_req_list))
1004 return;
1005
1006 INIT_LIST_HEAD(&retired_list);
b5eba372 1007 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 1008 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 1009 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
1010
1011 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1012 struct intel_context *ctx = req->ctx;
1013 struct drm_i915_gem_object *ctx_obj =
1014 ctx->engine[ring->id].state;
1015
ed54c1a1 1016 if (ctx_obj && (ctx != req->i915->kernel_context))
af3302b9 1017 intel_lr_context_unpin(req);
c86ee3a9 1018 list_del(&req->execlist_link);
f8210795 1019 i915_gem_request_unreference(req);
c86ee3a9
TD
1020 }
1021}
1022
454afebd
OM
1023void intel_logical_ring_stop(struct intel_engine_cs *ring)
1024{
9832b9da
OM
1025 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1026 int ret;
1027
1028 if (!intel_ring_initialized(ring))
1029 return;
1030
1031 ret = intel_ring_idle(ring);
1032 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1033 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1034 ring->name, ret);
1035
1036 /* TODO: Is this correct with Execlists enabled? */
1037 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1038 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1039 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1040 return;
1041 }
1042 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1043}
1044
4866d729 1045int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1046{
4866d729 1047 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1048 int ret;
1049
1050 if (!ring->gpu_caches_dirty)
1051 return 0;
1052
7deb4d39 1053 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1054 if (ret)
1055 return ret;
1056
1057 ring->gpu_caches_dirty = false;
1058 return 0;
1059}
1060
e84fe803 1061static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
ca82580c 1062 struct intel_context *ctx)
dcb4c12a 1063{
e84fe803
NH
1064 struct drm_device *dev = ring->dev;
1065 struct drm_i915_private *dev_priv = dev->dev_private;
ca82580c
TU
1066 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1067 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
82352e90 1068 struct page *lrc_state_page;
77b04a04 1069 uint32_t *lrc_reg_state;
ca82580c 1070 int ret;
dcb4c12a
OM
1071
1072 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
ca82580c 1073
e84fe803
NH
1074 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1075 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1076 if (ret)
1077 return ret;
7ba717cf 1078
82352e90
TU
1079 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1080 if (WARN_ON(!lrc_state_page)) {
1081 ret = -ENODEV;
1082 goto unpin_ctx_obj;
1083 }
1084
e84fe803
NH
1085 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1086 if (ret)
1087 goto unpin_ctx_obj;
d1675198 1088
ca82580c
TU
1089 ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1090 intel_lr_context_descriptor_update(ctx, ring);
77b04a04
TU
1091 lrc_reg_state = kmap(lrc_state_page);
1092 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1093 ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
e84fe803 1094 ctx_obj->dirty = true;
e93c28f3 1095
e84fe803
NH
1096 /* Invalidate GuC TLB. */
1097 if (i915.enable_guc_submission)
1098 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1099
7ba717cf
TD
1100 return ret;
1101
1102unpin_ctx_obj:
1103 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1104
1105 return ret;
1106}
1107
1108static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1109{
1110 int ret = 0;
1111 struct intel_engine_cs *ring = rq->ring;
e84fe803
NH
1112
1113 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
ca82580c 1114 ret = intel_lr_context_do_pin(ring, rq->ctx);
e84fe803
NH
1115 if (ret)
1116 goto reset_pin_count;
1117 }
1118 return ret;
1119
a7cbedec 1120reset_pin_count:
8ba319da 1121 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1122 return ret;
1123}
1124
af3302b9 1125void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1126{
af3302b9
DV
1127 struct intel_engine_cs *ring = rq->ring;
1128 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1129 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1130
82352e90
TU
1131 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1132
1133 if (!ctx_obj)
1134 return;
1135
1136 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1137 kunmap(kmap_to_page(rq->ctx->engine[ring->id].lrc_reg_state));
1138 intel_unpin_ringbuffer_obj(ringbuf);
1139 i915_gem_object_ggtt_unpin(ctx_obj);
1140 rq->ctx->engine[ring->id].lrc_vma = NULL;
1141 rq->ctx->engine[ring->id].lrc_desc = 0;
1142 rq->ctx->engine[ring->id].lrc_reg_state = NULL;
dcb4c12a
OM
1143 }
1144}
1145
e2be4faf 1146static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1147{
1148 int ret, i;
e2be4faf
JH
1149 struct intel_engine_cs *ring = req->ring;
1150 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1151 struct drm_device *dev = ring->dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 struct i915_workarounds *w = &dev_priv->workarounds;
1154
cd7feaaa 1155 if (w->count == 0)
771b9a53
MT
1156 return 0;
1157
1158 ring->gpu_caches_dirty = true;
4866d729 1159 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1160 if (ret)
1161 return ret;
1162
4d616a29 1163 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1164 if (ret)
1165 return ret;
1166
1167 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1168 for (i = 0; i < w->count; i++) {
f92a9162 1169 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1170 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1171 }
1172 intel_logical_ring_emit(ringbuf, MI_NOOP);
1173
1174 intel_logical_ring_advance(ringbuf);
1175
1176 ring->gpu_caches_dirty = true;
4866d729 1177 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1178 if (ret)
1179 return ret;
1180
1181 return 0;
1182}
1183
83b8a982 1184#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1185 do { \
83b8a982
AS
1186 int __index = (index)++; \
1187 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1188 return -ENOSPC; \
1189 } \
83b8a982 1190 batch[__index] = (cmd); \
17ee950d
AS
1191 } while (0)
1192
8f40db77 1193#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1194 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1195
1196/*
1197 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1198 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1199 * but there is a slight complication as this is applied in WA batch where the
1200 * values are only initialized once so we cannot take register value at the
1201 * beginning and reuse it further; hence we save its value to memory, upload a
1202 * constant value with bit21 set and then we restore it back with the saved value.
1203 * To simplify the WA, a constant value is formed by using the default value
1204 * of this register. This shouldn't be a problem because we are only modifying
1205 * it for a short period and this batch in non-premptible. We can ofcourse
1206 * use additional instructions that read the actual value of the register
1207 * at that time and set our bit of interest but it makes the WA complicated.
1208 *
1209 * This WA is also required for Gen9 so extracting as a function avoids
1210 * code duplication.
1211 */
1212static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1213 uint32_t *const batch,
1214 uint32_t index)
1215{
1216 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1217
a4106a78
AS
1218 /*
1219 * WaDisableLSQCROPERFforOCL:skl
1220 * This WA is implemented in skl_init_clock_gating() but since
1221 * this batch updates GEN8_L3SQCREG4 with default value we need to
1222 * set this bit here to retain the WA during flush.
1223 */
e87a005d 1224 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1225 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1226
f1afe24f 1227 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1228 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1229 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1230 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1231 wa_ctx_emit(batch, index, 0);
1232
1233 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1234 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1235 wa_ctx_emit(batch, index, l3sqc4_flush);
1236
1237 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1238 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1239 PIPE_CONTROL_DC_FLUSH_ENABLE));
1240 wa_ctx_emit(batch, index, 0);
1241 wa_ctx_emit(batch, index, 0);
1242 wa_ctx_emit(batch, index, 0);
1243 wa_ctx_emit(batch, index, 0);
1244
f1afe24f 1245 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1246 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1247 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1248 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1249 wa_ctx_emit(batch, index, 0);
9e000847
AS
1250
1251 return index;
1252}
1253
17ee950d
AS
1254static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1255 uint32_t offset,
1256 uint32_t start_alignment)
1257{
1258 return wa_ctx->offset = ALIGN(offset, start_alignment);
1259}
1260
1261static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1262 uint32_t offset,
1263 uint32_t size_alignment)
1264{
1265 wa_ctx->size = offset - wa_ctx->offset;
1266
1267 WARN(wa_ctx->size % size_alignment,
1268 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1269 wa_ctx->size, size_alignment);
1270 return 0;
1271}
1272
1273/**
1274 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1275 *
1276 * @ring: only applicable for RCS
1277 * @wa_ctx: structure representing wa_ctx
1278 * offset: specifies start of the batch, should be cache-aligned. This is updated
1279 * with the offset value received as input.
1280 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1281 * @batch: page in which WA are loaded
1282 * @offset: This field specifies the start of the batch, it should be
1283 * cache-aligned otherwise it is adjusted accordingly.
1284 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1285 * initialized at the beginning and shared across all contexts but this field
1286 * helps us to have multiple batches at different offsets and select them based
1287 * on a criteria. At the moment this batch always start at the beginning of the page
1288 * and at this point we don't have multiple wa_ctx batch buffers.
1289 *
1290 * The number of WA applied are not known at the beginning; we use this field
1291 * to return the no of DWORDS written.
4d78c8dc 1292 *
17ee950d
AS
1293 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1294 * so it adds NOOPs as padding to make it cacheline aligned.
1295 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1296 * makes a complete batch buffer.
1297 *
1298 * Return: non-zero if we exceed the PAGE_SIZE limit.
1299 */
1300
1301static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1302 struct i915_wa_ctx_bb *wa_ctx,
1303 uint32_t *const batch,
1304 uint32_t *offset)
1305{
0160f055 1306 uint32_t scratch_addr;
17ee950d
AS
1307 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1308
7ad00d1a 1309 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1310 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1311
c82435bb
AS
1312 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1313 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1314 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1315 if (rc < 0)
1316 return rc;
1317 index = rc;
c82435bb
AS
1318 }
1319
0160f055
AS
1320 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1321 /* Actual scratch location is at 128 bytes offset */
1322 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1323
83b8a982
AS
1324 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1325 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1326 PIPE_CONTROL_GLOBAL_GTT_IVB |
1327 PIPE_CONTROL_CS_STALL |
1328 PIPE_CONTROL_QW_WRITE));
1329 wa_ctx_emit(batch, index, scratch_addr);
1330 wa_ctx_emit(batch, index, 0);
1331 wa_ctx_emit(batch, index, 0);
1332 wa_ctx_emit(batch, index, 0);
0160f055 1333
17ee950d
AS
1334 /* Pad to end of cacheline */
1335 while (index % CACHELINE_DWORDS)
83b8a982 1336 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1337
1338 /*
1339 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1340 * execution depends on the length specified in terms of cache lines
1341 * in the register CTX_RCS_INDIRECT_CTX
1342 */
1343
1344 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1345}
1346
1347/**
1348 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1349 *
1350 * @ring: only applicable for RCS
1351 * @wa_ctx: structure representing wa_ctx
1352 * offset: specifies start of the batch, should be cache-aligned.
1353 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1354 * @batch: page in which WA are loaded
17ee950d
AS
1355 * @offset: This field specifies the start of this batch.
1356 * This batch is started immediately after indirect_ctx batch. Since we ensure
1357 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1358 *
1359 * The number of DWORDS written are returned using this field.
1360 *
1361 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1362 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1363 */
1364static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1365 struct i915_wa_ctx_bb *wa_ctx,
1366 uint32_t *const batch,
1367 uint32_t *offset)
1368{
1369 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1370
7ad00d1a 1371 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1372 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1373
83b8a982 1374 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1375
1376 return wa_ctx_end(wa_ctx, *offset = index, 1);
1377}
1378
0504cffc
AS
1379static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1380 struct i915_wa_ctx_bb *wa_ctx,
1381 uint32_t *const batch,
1382 uint32_t *offset)
1383{
a4106a78 1384 int ret;
0907c8f7 1385 struct drm_device *dev = ring->dev;
0504cffc
AS
1386 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1387
0907c8f7 1388 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1389 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1390 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1391 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1392
a4106a78
AS
1393 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1394 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1395 if (ret < 0)
1396 return ret;
1397 index = ret;
1398
0504cffc
AS
1399 /* Pad to end of cacheline */
1400 while (index % CACHELINE_DWORDS)
1401 wa_ctx_emit(batch, index, MI_NOOP);
1402
1403 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1404}
1405
1406static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1407 struct i915_wa_ctx_bb *wa_ctx,
1408 uint32_t *const batch,
1409 uint32_t *offset)
1410{
0907c8f7 1411 struct drm_device *dev = ring->dev;
0504cffc
AS
1412 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1413
9b01435d 1414 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1415 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1416 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1417 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1418 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1419 wa_ctx_emit(batch, index,
1420 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1421 wa_ctx_emit(batch, index, MI_NOOP);
1422 }
1423
0907c8f7 1424 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1425 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1426 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1427 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1428
0504cffc
AS
1429 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1430
1431 return wa_ctx_end(wa_ctx, *offset = index, 1);
1432}
1433
17ee950d
AS
1434static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1435{
1436 int ret;
1437
1438 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1439 if (!ring->wa_ctx.obj) {
1440 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1441 return -ENOMEM;
1442 }
1443
1444 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1445 if (ret) {
1446 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1447 ret);
1448 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1449 return ret;
1450 }
1451
1452 return 0;
1453}
1454
1455static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1456{
1457 if (ring->wa_ctx.obj) {
1458 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1459 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1460 ring->wa_ctx.obj = NULL;
1461 }
1462}
1463
1464static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1465{
1466 int ret;
1467 uint32_t *batch;
1468 uint32_t offset;
1469 struct page *page;
1470 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1471
1472 WARN_ON(ring->id != RCS);
1473
5e60d790 1474 /* update this when WA for higher Gen are added */
0504cffc
AS
1475 if (INTEL_INFO(ring->dev)->gen > 9) {
1476 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1477 INTEL_INFO(ring->dev)->gen);
5e60d790 1478 return 0;
0504cffc 1479 }
5e60d790 1480
c4db7599
AS
1481 /* some WA perform writes to scratch page, ensure it is valid */
1482 if (ring->scratch.obj == NULL) {
1483 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1484 return -EINVAL;
1485 }
1486
17ee950d
AS
1487 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1488 if (ret) {
1489 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1490 return ret;
1491 }
1492
033908ae 1493 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1494 batch = kmap_atomic(page);
1495 offset = 0;
1496
1497 if (INTEL_INFO(ring->dev)->gen == 8) {
1498 ret = gen8_init_indirectctx_bb(ring,
1499 &wa_ctx->indirect_ctx,
1500 batch,
1501 &offset);
1502 if (ret)
1503 goto out;
1504
1505 ret = gen8_init_perctx_bb(ring,
1506 &wa_ctx->per_ctx,
1507 batch,
1508 &offset);
1509 if (ret)
1510 goto out;
0504cffc
AS
1511 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1512 ret = gen9_init_indirectctx_bb(ring,
1513 &wa_ctx->indirect_ctx,
1514 batch,
1515 &offset);
1516 if (ret)
1517 goto out;
1518
1519 ret = gen9_init_perctx_bb(ring,
1520 &wa_ctx->per_ctx,
1521 batch,
1522 &offset);
1523 if (ret)
1524 goto out;
17ee950d
AS
1525 }
1526
1527out:
1528 kunmap_atomic(batch);
1529 if (ret)
1530 lrc_destroy_wa_ctx_obj(ring);
1531
1532 return ret;
1533}
1534
9b1136d5
OM
1535static int gen8_init_common_ring(struct intel_engine_cs *ring)
1536{
1537 struct drm_device *dev = ring->dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
dfc53c5e 1539 u8 next_context_status_buffer_hw;
9b1136d5 1540
e84fe803 1541 lrc_setup_hardware_status_page(ring,
ed54c1a1 1542 dev_priv->kernel_context->engine[ring->id].state);
e84fe803 1543
73d477f6
OM
1544 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1545 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1546
9b1136d5
OM
1547 I915_WRITE(RING_MODE_GEN7(ring),
1548 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1549 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1550 POSTING_READ(RING_MODE_GEN7(ring));
dfc53c5e
MT
1551
1552 /*
1553 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1554 * zero, we need to read the write pointer from hardware and use its
1555 * value because "this register is power context save restored".
1556 * Effectively, these states have been observed:
1557 *
1558 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1559 * BDW | CSB regs not reset | CSB regs reset |
1560 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1561 * SKL | ? | ? |
1562 * BXT | ? | ? |
dfc53c5e 1563 */
5590a5f0
BW
1564 next_context_status_buffer_hw =
1565 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
dfc53c5e
MT
1566
1567 /*
1568 * When the CSB registers are reset (also after power-up / gpu reset),
1569 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1570 * this special case, so the first element read is CSB[0].
1571 */
1572 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1573 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1574
1575 ring->next_context_status_buffer = next_context_status_buffer_hw;
9b1136d5
OM
1576 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1577
1578 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1579
1580 return 0;
1581}
1582
1583static int gen8_init_render_ring(struct intel_engine_cs *ring)
1584{
1585 struct drm_device *dev = ring->dev;
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 int ret;
1588
1589 ret = gen8_init_common_ring(ring);
1590 if (ret)
1591 return ret;
1592
1593 /* We need to disable the AsyncFlip performance optimisations in order
1594 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1595 * programmed to '1' on all products.
1596 *
1597 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1598 */
1599 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1600
9b1136d5
OM
1601 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1602
771b9a53 1603 return init_workarounds_ring(ring);
9b1136d5
OM
1604}
1605
82ef822e
DL
1606static int gen9_init_render_ring(struct intel_engine_cs *ring)
1607{
1608 int ret;
1609
1610 ret = gen8_init_common_ring(ring);
1611 if (ret)
1612 return ret;
1613
1614 return init_workarounds_ring(ring);
1615}
1616
7a01a0a2
MT
1617static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1618{
1619 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1620 struct intel_engine_cs *ring = req->ring;
1621 struct intel_ringbuffer *ringbuf = req->ringbuf;
1622 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1623 int i, ret;
1624
1625 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1626 if (ret)
1627 return ret;
1628
1629 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1630 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1631 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1632
f92a9162 1633 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
7a01a0a2 1634 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
f92a9162 1635 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
7a01a0a2
MT
1636 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1637 }
1638
1639 intel_logical_ring_emit(ringbuf, MI_NOOP);
1640 intel_logical_ring_advance(ringbuf);
1641
1642 return 0;
1643}
1644
be795fc1 1645static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1646 u64 offset, unsigned dispatch_flags)
15648585 1647{
be795fc1 1648 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1649 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1650 int ret;
1651
7a01a0a2
MT
1652 /* Don't rely in hw updating PDPs, specially in lite-restore.
1653 * Ideally, we should set Force PD Restore in ctx descriptor,
1654 * but we can't. Force Restore would be a second option, but
1655 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1656 * not idle). PML4 is allocated during ppgtt init so this is
1657 * not needed in 48-bit.*/
7a01a0a2
MT
1658 if (req->ctx->ppgtt &&
1659 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1660 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1661 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1662 ret = intel_logical_ring_emit_pdps(req);
1663 if (ret)
1664 return ret;
1665 }
7a01a0a2
MT
1666
1667 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1668 }
1669
4d616a29 1670 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1671 if (ret)
1672 return ret;
1673
1674 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1675 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1676 (ppgtt<<8) |
1677 (dispatch_flags & I915_DISPATCH_RS ?
1678 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1679 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1680 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1681 intel_logical_ring_emit(ringbuf, MI_NOOP);
1682 intel_logical_ring_advance(ringbuf);
1683
1684 return 0;
1685}
1686
73d477f6
OM
1687static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1688{
1689 struct drm_device *dev = ring->dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 unsigned long flags;
1692
7cd512f1 1693 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1694 return false;
1695
1696 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1697 if (ring->irq_refcount++ == 0) {
1698 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1699 POSTING_READ(RING_IMR(ring->mmio_base));
1700 }
1701 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1702
1703 return true;
1704}
1705
1706static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1707{
1708 struct drm_device *dev = ring->dev;
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 unsigned long flags;
1711
1712 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1713 if (--ring->irq_refcount == 0) {
1714 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1715 POSTING_READ(RING_IMR(ring->mmio_base));
1716 }
1717 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1718}
1719
7deb4d39 1720static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1721 u32 invalidate_domains,
1722 u32 unused)
1723{
7deb4d39 1724 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1725 struct intel_engine_cs *ring = ringbuf->ring;
1726 struct drm_device *dev = ring->dev;
1727 struct drm_i915_private *dev_priv = dev->dev_private;
1728 uint32_t cmd;
1729 int ret;
1730
4d616a29 1731 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1732 if (ret)
1733 return ret;
1734
1735 cmd = MI_FLUSH_DW + 1;
1736
f0a1fb10
CW
1737 /* We always require a command barrier so that subsequent
1738 * commands, such as breadcrumb interrupts, are strictly ordered
1739 * wrt the contents of the write cache being flushed to memory
1740 * (and thus being coherent from the CPU).
1741 */
1742 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1743
1744 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1745 cmd |= MI_INVALIDATE_TLB;
1746 if (ring == &dev_priv->ring[VCS])
1747 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1748 }
1749
1750 intel_logical_ring_emit(ringbuf, cmd);
1751 intel_logical_ring_emit(ringbuf,
1752 I915_GEM_HWS_SCRATCH_ADDR |
1753 MI_FLUSH_DW_USE_GTT);
1754 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1755 intel_logical_ring_emit(ringbuf, 0); /* value */
1756 intel_logical_ring_advance(ringbuf);
1757
1758 return 0;
1759}
1760
7deb4d39 1761static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1762 u32 invalidate_domains,
1763 u32 flush_domains)
1764{
7deb4d39 1765 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1766 struct intel_engine_cs *ring = ringbuf->ring;
1767 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1768 bool vf_flush_wa = false;
4712274c
OM
1769 u32 flags = 0;
1770 int ret;
1771
1772 flags |= PIPE_CONTROL_CS_STALL;
1773
1774 if (flush_domains) {
1775 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1776 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1777 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1778 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1779 }
1780
1781 if (invalidate_domains) {
1782 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1783 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1784 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1785 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1786 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1787 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1788 flags |= PIPE_CONTROL_QW_WRITE;
1789 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1790
1a5a9ce7
BW
1791 /*
1792 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1793 * pipe control.
1794 */
1795 if (IS_GEN9(ring->dev))
1796 vf_flush_wa = true;
1797 }
9647ff36 1798
4d616a29 1799 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1800 if (ret)
1801 return ret;
1802
9647ff36
ID
1803 if (vf_flush_wa) {
1804 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1805 intel_logical_ring_emit(ringbuf, 0);
1806 intel_logical_ring_emit(ringbuf, 0);
1807 intel_logical_ring_emit(ringbuf, 0);
1808 intel_logical_ring_emit(ringbuf, 0);
1809 intel_logical_ring_emit(ringbuf, 0);
1810 }
1811
4712274c
OM
1812 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1813 intel_logical_ring_emit(ringbuf, flags);
1814 intel_logical_ring_emit(ringbuf, scratch_addr);
1815 intel_logical_ring_emit(ringbuf, 0);
1816 intel_logical_ring_emit(ringbuf, 0);
1817 intel_logical_ring_emit(ringbuf, 0);
1818 intel_logical_ring_advance(ringbuf);
1819
1820 return 0;
1821}
1822
e94e37ad
OM
1823static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1824{
1825 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1826}
1827
1828static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1829{
1830 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1831}
1832
319404df
ID
1833static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1834{
1835
1836 /*
1837 * On BXT A steppings there is a HW coherency issue whereby the
1838 * MI_STORE_DATA_IMM storing the completed request's seqno
1839 * occasionally doesn't invalidate the CPU cache. Work around this by
1840 * clflushing the corresponding cacheline whenever the caller wants
1841 * the coherency to be guaranteed. Note that this cacheline is known
1842 * to be clean at this point, since we only write it in
1843 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1844 * this clflush in practice becomes an invalidate operation.
1845 */
1846
1847 if (!lazy_coherency)
1848 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1849
1850 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1851}
1852
1853static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1854{
1855 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1856
1857 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1858 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1859}
1860
7c17d377
CW
1861/*
1862 * Reserve space for 2 NOOPs at the end of each request to be
1863 * used as a workaround for not being allowed to do lite
1864 * restore with HEAD==TAIL (WaIdleLiteRestore).
1865 */
1866#define WA_TAIL_DWORDS 2
1867
1868static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1869{
1870 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1871}
1872
c4e76638 1873static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1874{
c4e76638 1875 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1876 int ret;
1877
7c17d377 1878 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1879 if (ret)
1880 return ret;
1881
7c17d377
CW
1882 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1883 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1884
4da46e1e 1885 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1886 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1887 intel_logical_ring_emit(ringbuf,
1888 hws_seqno_address(request->ring) |
1889 MI_FLUSH_DW_USE_GTT);
4da46e1e 1890 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1891 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1892 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1893 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1894 return intel_logical_ring_advance_and_submit(request);
1895}
4da46e1e 1896
7c17d377
CW
1897static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1898{
1899 struct intel_ringbuffer *ringbuf = request->ringbuf;
1900 int ret;
53292cdb 1901
7c17d377
CW
1902 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1903 if (ret)
1904 return ret;
1905
1906 /* w/a for post sync ops following a GPGPU operation we
1907 * need a prior CS_STALL, which is emitted by the flush
1908 * following the batch.
1909 */
1910 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1911 intel_logical_ring_emit(ringbuf,
1912 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1913 PIPE_CONTROL_CS_STALL |
1914 PIPE_CONTROL_QW_WRITE));
1915 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
1916 intel_logical_ring_emit(ringbuf, 0);
1917 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1918 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1919 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1920}
1921
be01363f 1922static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1923{
cef437ad 1924 struct render_state so;
cef437ad
DL
1925 int ret;
1926
be01363f 1927 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1928 if (ret)
1929 return ret;
1930
1931 if (so.rodata == NULL)
1932 return 0;
1933
be795fc1 1934 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1935 I915_DISPATCH_SECURE);
cef437ad
DL
1936 if (ret)
1937 goto out;
1938
84e81020
AS
1939 ret = req->ring->emit_bb_start(req,
1940 (so.ggtt_offset + so.aux_batch_offset),
1941 I915_DISPATCH_SECURE);
1942 if (ret)
1943 goto out;
1944
b2af0376 1945 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1946
cef437ad
DL
1947out:
1948 i915_gem_render_state_fini(&so);
1949 return ret;
1950}
1951
8753181e 1952static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1953{
1954 int ret;
1955
e2be4faf 1956 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1957 if (ret)
1958 return ret;
1959
3bbaba0c
PA
1960 ret = intel_rcs_context_init_mocs(req);
1961 /*
1962 * Failing to program the MOCS is non-fatal.The system will not
1963 * run at peak performance. So generate an error and carry on.
1964 */
1965 if (ret)
1966 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1967
be01363f 1968 return intel_lr_context_render_state_init(req);
e7778be1
TD
1969}
1970
73e4d07f
OM
1971/**
1972 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1973 *
1974 * @ring: Engine Command Streamer.
1975 *
1976 */
454afebd
OM
1977void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1978{
6402c330 1979 struct drm_i915_private *dev_priv;
9832b9da 1980
48d82387
OM
1981 if (!intel_ring_initialized(ring))
1982 return;
1983
6402c330
JH
1984 dev_priv = ring->dev->dev_private;
1985
b0366a54
DG
1986 if (ring->buffer) {
1987 intel_logical_ring_stop(ring);
1988 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1989 }
48d82387
OM
1990
1991 if (ring->cleanup)
1992 ring->cleanup(ring);
1993
1994 i915_cmd_parser_fini_ring(ring);
06fbca71 1995 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1996
1997 if (ring->status_page.obj) {
1998 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1999 ring->status_page.obj = NULL;
2000 }
17ee950d 2001
ca82580c
TU
2002 ring->disable_lite_restore_wa = false;
2003 ring->ctx_desc_template = 0;
2004
17ee950d 2005 lrc_destroy_wa_ctx_obj(ring);
b0366a54 2006 ring->dev = NULL;
454afebd
OM
2007}
2008
c9cacf93
TU
2009static void
2010logical_ring_default_vfuncs(struct drm_device *dev,
2011 struct intel_engine_cs *ring)
2012{
2013 /* Default vfuncs which can be overriden by each engine. */
2014 ring->init_hw = gen8_init_common_ring;
2015 ring->emit_request = gen8_emit_request;
2016 ring->emit_flush = gen8_emit_flush;
2017 ring->irq_get = gen8_logical_ring_get_irq;
2018 ring->irq_put = gen8_logical_ring_put_irq;
2019 ring->emit_bb_start = gen8_emit_bb_start;
2020 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2021 ring->get_seqno = bxt_a_get_seqno;
2022 ring->set_seqno = bxt_a_set_seqno;
2023 } else {
2024 ring->get_seqno = gen8_get_seqno;
2025 ring->set_seqno = gen8_set_seqno;
2026 }
2027}
2028
d9f3af96
TU
2029static inline void
2030logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2031{
2032 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2033 ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2034}
2035
c9cacf93
TU
2036static int
2037logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
454afebd 2038{
ed54c1a1 2039 struct intel_context *dctx = to_i915(dev)->kernel_context;
48d82387 2040 int ret;
48d82387
OM
2041
2042 /* Intentionally left blank. */
2043 ring->buffer = NULL;
2044
2045 ring->dev = dev;
2046 INIT_LIST_HEAD(&ring->active_list);
2047 INIT_LIST_HEAD(&ring->request_list);
06fbca71 2048 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
2049 init_waitqueue_head(&ring->irq_queue);
2050
608c1a52 2051 INIT_LIST_HEAD(&ring->buffers);
acdd884a 2052 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 2053 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
2054 spin_lock_init(&ring->execlist_lock);
2055
ca82580c
TU
2056 logical_ring_init_platform_invariants(ring);
2057
48d82387
OM
2058 ret = i915_cmd_parser_init_ring(ring);
2059 if (ret)
b0366a54 2060 goto error;
48d82387 2061
ed54c1a1 2062 ret = intel_lr_context_deferred_alloc(dctx, ring);
e84fe803 2063 if (ret)
b0366a54 2064 goto error;
e84fe803
NH
2065
2066 /* As this is the default context, always pin it */
ed54c1a1 2067 ret = intel_lr_context_do_pin(ring, dctx);
e84fe803
NH
2068 if (ret) {
2069 DRM_ERROR(
2070 "Failed to pin and map ringbuffer %s: %d\n",
2071 ring->name, ret);
b0366a54 2072 goto error;
e84fe803 2073 }
564ddb2f 2074
b0366a54
DG
2075 return 0;
2076
2077error:
2078 intel_logical_ring_cleanup(ring);
564ddb2f 2079 return ret;
454afebd
OM
2080}
2081
2082static int logical_render_ring_init(struct drm_device *dev)
2083{
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 2086 int ret;
454afebd
OM
2087
2088 ring->name = "render ring";
2089 ring->id = RCS;
426960be 2090 ring->exec_id = I915_EXEC_RENDER;
397097b0 2091 ring->guc_id = GUC_RENDER_ENGINE;
454afebd 2092 ring->mmio_base = RENDER_RING_BASE;
d9f3af96
TU
2093
2094 logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
73d477f6
OM
2095 if (HAS_L3_DPF(dev))
2096 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2097
c9cacf93
TU
2098 logical_ring_default_vfuncs(dev, ring);
2099
2100 /* Override some for render ring. */
82ef822e
DL
2101 if (INTEL_INFO(dev)->gen >= 9)
2102 ring->init_hw = gen9_init_render_ring;
2103 else
2104 ring->init_hw = gen8_init_render_ring;
e7778be1 2105 ring->init_context = gen8_init_rcs_context;
9b1136d5 2106 ring->cleanup = intel_fini_pipe_control;
4712274c 2107 ring->emit_flush = gen8_emit_flush_render;
7c17d377 2108 ring->emit_request = gen8_emit_request_render;
9b1136d5 2109
99be1dfe 2110 ring->dev = dev;
c4db7599
AS
2111
2112 ret = intel_init_pipe_control(ring);
99be1dfe
DV
2113 if (ret)
2114 return ret;
2115
17ee950d
AS
2116 ret = intel_init_workaround_bb(ring);
2117 if (ret) {
2118 /*
2119 * We continue even if we fail to initialize WA batch
2120 * because we only expect rare glitches but nothing
2121 * critical to prevent us from using GPU
2122 */
2123 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2124 ret);
2125 }
2126
c4db7599
AS
2127 ret = logical_ring_init(dev, ring);
2128 if (ret) {
17ee950d 2129 lrc_destroy_wa_ctx_obj(ring);
c4db7599 2130 }
17ee950d
AS
2131
2132 return ret;
454afebd
OM
2133}
2134
2135static int logical_bsd_ring_init(struct drm_device *dev)
2136{
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2139
2140 ring->name = "bsd ring";
2141 ring->id = VCS;
426960be 2142 ring->exec_id = I915_EXEC_BSD;
397097b0 2143 ring->guc_id = GUC_VIDEO_ENGINE;
454afebd 2144 ring->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2145
d9f3af96 2146 logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
c9cacf93 2147 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2148
454afebd
OM
2149 return logical_ring_init(dev, ring);
2150}
2151
2152static int logical_bsd2_ring_init(struct drm_device *dev)
2153{
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2156
ec8a9776 2157 ring->name = "bsd2 ring";
454afebd 2158 ring->id = VCS2;
426960be 2159 ring->exec_id = I915_EXEC_BSD;
397097b0 2160 ring->guc_id = GUC_VIDEO_ENGINE2;
454afebd 2161 ring->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2162
d9f3af96 2163 logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
c9cacf93 2164 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2165
454afebd
OM
2166 return logical_ring_init(dev, ring);
2167}
2168
2169static int logical_blt_ring_init(struct drm_device *dev)
2170{
2171 struct drm_i915_private *dev_priv = dev->dev_private;
2172 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2173
2174 ring->name = "blitter ring";
2175 ring->id = BCS;
426960be 2176 ring->exec_id = I915_EXEC_BLT;
397097b0 2177 ring->guc_id = GUC_BLITTER_ENGINE;
454afebd 2178 ring->mmio_base = BLT_RING_BASE;
454afebd 2179
d9f3af96 2180 logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
c9cacf93 2181 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2182
454afebd
OM
2183 return logical_ring_init(dev, ring);
2184}
2185
2186static int logical_vebox_ring_init(struct drm_device *dev)
2187{
2188 struct drm_i915_private *dev_priv = dev->dev_private;
2189 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2190
2191 ring->name = "video enhancement ring";
2192 ring->id = VECS;
426960be 2193 ring->exec_id = I915_EXEC_VEBOX;
397097b0 2194 ring->guc_id = GUC_VIDEOENHANCE_ENGINE;
454afebd 2195 ring->mmio_base = VEBOX_RING_BASE;
454afebd 2196
d9f3af96 2197 logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
c9cacf93 2198 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2199
454afebd
OM
2200 return logical_ring_init(dev, ring);
2201}
2202
73e4d07f
OM
2203/**
2204 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2205 * @dev: DRM device.
2206 *
2207 * This function inits the engines for an Execlists submission style (the equivalent in the
2208 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2209 * those engines that are present in the hardware.
2210 *
2211 * Return: non-zero if the initialization failed.
2212 */
454afebd
OM
2213int intel_logical_rings_init(struct drm_device *dev)
2214{
2215 struct drm_i915_private *dev_priv = dev->dev_private;
2216 int ret;
2217
2218 ret = logical_render_ring_init(dev);
2219 if (ret)
2220 return ret;
2221
2222 if (HAS_BSD(dev)) {
2223 ret = logical_bsd_ring_init(dev);
2224 if (ret)
2225 goto cleanup_render_ring;
2226 }
2227
2228 if (HAS_BLT(dev)) {
2229 ret = logical_blt_ring_init(dev);
2230 if (ret)
2231 goto cleanup_bsd_ring;
2232 }
2233
2234 if (HAS_VEBOX(dev)) {
2235 ret = logical_vebox_ring_init(dev);
2236 if (ret)
2237 goto cleanup_blt_ring;
2238 }
2239
2240 if (HAS_BSD2(dev)) {
2241 ret = logical_bsd2_ring_init(dev);
2242 if (ret)
2243 goto cleanup_vebox_ring;
2244 }
2245
454afebd
OM
2246 return 0;
2247
454afebd
OM
2248cleanup_vebox_ring:
2249 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2250cleanup_blt_ring:
2251 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2252cleanup_bsd_ring:
2253 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2254cleanup_render_ring:
2255 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2256
2257 return ret;
2258}
2259
0cea6502
JM
2260static u32
2261make_rpcs(struct drm_device *dev)
2262{
2263 u32 rpcs = 0;
2264
2265 /*
2266 * No explicit RPCS request is needed to ensure full
2267 * slice/subslice/EU enablement prior to Gen9.
2268 */
2269 if (INTEL_INFO(dev)->gen < 9)
2270 return 0;
2271
2272 /*
2273 * Starting in Gen9, render power gating can leave
2274 * slice/subslice/EU in a partially enabled state. We
2275 * must make an explicit request through RPCS for full
2276 * enablement.
2277 */
2278 if (INTEL_INFO(dev)->has_slice_pg) {
2279 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2280 rpcs |= INTEL_INFO(dev)->slice_total <<
2281 GEN8_RPCS_S_CNT_SHIFT;
2282 rpcs |= GEN8_RPCS_ENABLE;
2283 }
2284
2285 if (INTEL_INFO(dev)->has_subslice_pg) {
2286 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2287 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2288 GEN8_RPCS_SS_CNT_SHIFT;
2289 rpcs |= GEN8_RPCS_ENABLE;
2290 }
2291
2292 if (INTEL_INFO(dev)->has_eu_pg) {
2293 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2294 GEN8_RPCS_EU_MIN_SHIFT;
2295 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2296 GEN8_RPCS_EU_MAX_SHIFT;
2297 rpcs |= GEN8_RPCS_ENABLE;
2298 }
2299
2300 return rpcs;
2301}
2302
8670d6f9
OM
2303static int
2304populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2305 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2306{
2d965536
TD
2307 struct drm_device *dev = ring->dev;
2308 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2309 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2310 struct page *page;
2311 uint32_t *reg_state;
2312 int ret;
2313
2d965536
TD
2314 if (!ppgtt)
2315 ppgtt = dev_priv->mm.aliasing_ppgtt;
2316
8670d6f9
OM
2317 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2318 if (ret) {
2319 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2320 return ret;
2321 }
2322
2323 ret = i915_gem_object_get_pages(ctx_obj);
2324 if (ret) {
2325 DRM_DEBUG_DRIVER("Could not get object pages\n");
2326 return ret;
2327 }
2328
2329 i915_gem_object_pin_pages(ctx_obj);
2330
2331 /* The second page of the context object contains some fields which must
2332 * be set up prior to the first execution. */
033908ae 2333 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2334 reg_state = kmap_atomic(page);
2335
2336 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2337 * commands followed by (reg, value) pairs. The values we are setting here are
2338 * only for the first context restore: on a subsequent save, the GPU will
2339 * recreate this batchbuffer with new values (including all the missing
2340 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2341 reg_state[CTX_LRI_HEADER_0] =
2342 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2343 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2344 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2345 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2346 CTX_CTRL_RS_CTX_ENABLE));
2347 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2348 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2349 /* Ring buffer start address is not known until the buffer is pinned.
2350 * It is written to the context image in execlists_update_context()
2351 */
0d925ea0
VS
2352 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2354 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2355 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2356 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2357 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2358 RING_BB_PPGTT);
2359 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2360 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2362 if (ring->id == RCS) {
0d925ea0
VS
2363 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2364 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2365 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2366 if (ring->wa_ctx.obj) {
2367 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2368 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2369
2370 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2371 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2372 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2373
2374 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2375 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2376
2377 reg_state[CTX_BB_PER_CTX_PTR+1] =
2378 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2379 0x01;
2380 }
8670d6f9 2381 }
0d925ea0
VS
2382 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2383 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2384 /* PDP values well be assigned later if needed */
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2391 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2393
2dba3239
MT
2394 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2395 /* 64b PPGTT (48bit canonical)
2396 * PDP0_DESCRIPTOR contains the base address to PML4 and
2397 * other PDP Descriptors are ignored.
2398 */
2399 ASSIGN_CTX_PML4(ppgtt, reg_state);
2400 } else {
2401 /* 32b PPGTT
2402 * PDP*_DESCRIPTOR contains the base address of space supported.
2403 * With dynamic page allocation, PDPs may not be allocated at
2404 * this point. Point the unallocated PDPs to the scratch page
2405 */
2406 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2407 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2408 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2409 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2410 }
2411
8670d6f9
OM
2412 if (ring->id == RCS) {
2413 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2414 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2415 make_rpcs(dev));
8670d6f9
OM
2416 }
2417
2418 kunmap_atomic(reg_state);
8670d6f9
OM
2419 i915_gem_object_unpin_pages(ctx_obj);
2420
2421 return 0;
2422}
2423
73e4d07f
OM
2424/**
2425 * intel_lr_context_free() - free the LRC specific bits of a context
2426 * @ctx: the LR context to free.
2427 *
2428 * The real context freeing is done in i915_gem_context_free: this only
2429 * takes care of the bits that are LRC related: the per-engine backing
2430 * objects and the logical ringbuffer.
2431 */
ede7d42b
OM
2432void intel_lr_context_free(struct intel_context *ctx)
2433{
8c857917
OM
2434 int i;
2435
e28e404c
DG
2436 for (i = I915_NUM_RINGS; --i >= 0; ) {
2437 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2438 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2439
e28e404c
DG
2440 if (!ctx_obj)
2441 continue;
dcb4c12a 2442
e28e404c
DG
2443 if (ctx == ctx->i915->kernel_context) {
2444 intel_unpin_ringbuffer_obj(ringbuf);
2445 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2446 }
e28e404c
DG
2447
2448 WARN_ON(ctx->engine[i].pin_count);
2449 intel_ringbuffer_free(ringbuf);
2450 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2451 }
2452}
2453
c5d46ee2
DG
2454/**
2455 * intel_lr_context_size() - return the size of the context for an engine
2456 * @ring: which engine to find the context size for
2457 *
2458 * Each engine may require a different amount of space for a context image,
2459 * so when allocating (or copying) an image, this function can be used to
2460 * find the right size for the specific engine.
2461 *
2462 * Return: size (in bytes) of an engine-specific context image
2463 *
2464 * Note: this size includes the HWSP, which is part of the context image
2465 * in LRC mode, but does not include the "shared data page" used with
2466 * GuC submission. The caller should account for this if using the GuC.
2467 */
95a66f7e 2468uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
8c857917
OM
2469{
2470 int ret = 0;
2471
468c6816 2472 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2473
2474 switch (ring->id) {
2475 case RCS:
468c6816
MN
2476 if (INTEL_INFO(ring->dev)->gen >= 9)
2477 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2478 else
2479 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2480 break;
2481 case VCS:
2482 case BCS:
2483 case VECS:
2484 case VCS2:
2485 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2486 break;
2487 }
2488
2489 return ret;
ede7d42b
OM
2490}
2491
70b0ea86 2492static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2493 struct drm_i915_gem_object *default_ctx_obj)
2494{
2495 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2496 struct page *page;
1df06b75 2497
d1675198
AD
2498 /* The HWSP is part of the default context object in LRC mode. */
2499 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2500 + LRC_PPHWSP_PN * PAGE_SIZE;
2501 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2502 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2503 ring->status_page.obj = default_ctx_obj;
2504
2505 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2506 (u32)ring->status_page.gfx_addr);
2507 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2508}
2509
73e4d07f 2510/**
e84fe803 2511 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2512 * @ctx: LR context to create.
2513 * @ring: engine to be used with the context.
2514 *
2515 * This function can be called more than once, with different engines, if we plan
2516 * to use the context with them. The context backing objects and the ringbuffers
2517 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2518 * the creation is a deferred call: it's better to make sure first that we need to use
2519 * a given ring with the context.
2520 *
32197aab 2521 * Return: non-zero on error.
73e4d07f 2522 */
e84fe803
NH
2523
2524int intel_lr_context_deferred_alloc(struct intel_context *ctx,
e28e404c 2525 struct intel_engine_cs *ring)
ede7d42b 2526{
8c857917
OM
2527 struct drm_device *dev = ring->dev;
2528 struct drm_i915_gem_object *ctx_obj;
2529 uint32_t context_size;
84c2377f 2530 struct intel_ringbuffer *ringbuf;
8c857917
OM
2531 int ret;
2532
ede7d42b 2533 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2534 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2535
95a66f7e 2536 context_size = round_up(intel_lr_context_size(ring), 4096);
8c857917 2537
d1675198
AD
2538 /* One extra page as the sharing data between driver and GuC */
2539 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2540
149c86e7 2541 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2542 if (!ctx_obj) {
2543 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2544 return -ENOMEM;
8c857917
OM
2545 }
2546
01101fa7
CW
2547 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2548 if (IS_ERR(ringbuf)) {
2549 ret = PTR_ERR(ringbuf);
e84fe803 2550 goto error_deref_obj;
8670d6f9
OM
2551 }
2552
2553 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2554 if (ret) {
2555 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2556 goto error_ringbuf;
84c2377f
OM
2557 }
2558
2559 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2560 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2561
ed54c1a1 2562 if (ctx != ctx->i915->kernel_context && ring->init_context) {
e84fe803 2563 struct drm_i915_gem_request *req;
76c39168 2564
26827088
DG
2565 req = i915_gem_request_alloc(ring, ctx);
2566 if (IS_ERR(req)) {
2567 ret = PTR_ERR(req);
2568 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2569 goto error_ringbuf;
771b9a53
MT
2570 }
2571
e84fe803
NH
2572 ret = ring->init_context(req);
2573 if (ret) {
2574 DRM_ERROR("ring init context: %d\n",
2575 ret);
2576 i915_gem_request_cancel(req);
2577 goto error_ringbuf;
2578 }
2579 i915_add_request_no_flush(req);
564ddb2f 2580 }
ede7d42b 2581 return 0;
8670d6f9 2582
01101fa7
CW
2583error_ringbuf:
2584 intel_ringbuffer_free(ringbuf);
e84fe803 2585error_deref_obj:
8670d6f9 2586 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2587 ctx->engine[ring->id].ringbuf = NULL;
2588 ctx->engine[ring->id].state = NULL;
8670d6f9 2589 return ret;
ede7d42b 2590}
3e5b6f05
TD
2591
2592void intel_lr_context_reset(struct drm_device *dev,
2593 struct intel_context *ctx)
2594{
2595 struct drm_i915_private *dev_priv = dev->dev_private;
2596 struct intel_engine_cs *ring;
2597 int i;
2598
2599 for_each_ring(ring, dev_priv, i) {
2600 struct drm_i915_gem_object *ctx_obj =
2601 ctx->engine[ring->id].state;
2602 struct intel_ringbuffer *ringbuf =
2603 ctx->engine[ring->id].ringbuf;
2604 uint32_t *reg_state;
2605 struct page *page;
2606
2607 if (!ctx_obj)
2608 continue;
2609
2610 if (i915_gem_object_get_pages(ctx_obj)) {
2611 WARN(1, "Failed get_pages for context obj\n");
2612 continue;
2613 }
033908ae 2614 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2615 reg_state = kmap_atomic(page);
2616
2617 reg_state[CTX_RING_HEAD+1] = 0;
2618 reg_state[CTX_RING_TAIL+1] = 0;
2619
2620 kunmap_atomic(reg_state);
2621
2622 ringbuf->head = 0;
2623 ringbuf->tail = 0;
2624 }
2625}
This page took 0.304435 seconds and 5 git commands to generate.