drm/i915: Only grab timestamps when needed
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
17ee950d 226#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 227
8ba319da 228static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
229static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
73e4d07f
OM
266/**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
84b790f8
BW
278u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279{
d1675198
AD
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286}
287
5af05fef
MT
288static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289{
290 struct drm_device *dev = ring->dev;
291
e87a005d 292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
5af05fef
MT
294 (ring->id == VCS || ring->id == VCS2);
295}
296
919f1f55
DG
297uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
84b790f8 299{
919f1f55 300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 301 uint64_t desc;
d1675198
AD
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
306
307 desc = GEN8_CTX_VALID;
2dba3239 308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
203a571b 319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
ec72d588 320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
5af05fef 321 if (disable_lite_restore_wa(ring))
203a571b
NH
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
84b790f8
BW
324 return desc;
325}
326
cc3c4253
MK
327static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
84b790f8 329{
cc3c4253
MK
330
331 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 334 uint64_t desc[2];
84b790f8 335
1cff8cc3 336 if (rq1) {
919f1f55 337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
84b790f8 342
919f1f55 343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 344 rq0->elsp_submitted++;
84b790f8 345
1cff8cc3 346 /* You must always write both descriptors in the order below. */
a6111f7b
CW
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 351
1cff8cc3 352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 353 /* The context is automatically loaded after the following */
1cff8cc3 354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 355
1cff8cc3 356 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
360}
361
05d9824b 362static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
05d9824b
MK
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
368 struct page *page;
369 uint32_t *reg_state;
370
05d9824b
MK
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
033908ae 375 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
376 reg_state = kmap_atomic(page);
377
05d9824b
MK
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 380
2dba3239
MT
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
d7b2633d
MT
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
ae1250b9
OM
393 kunmap_atomic(reg_state);
394
395 return 0;
396}
397
d8cb8875
MK
398static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
84b790f8 400{
05d9824b 401 execlists_update_context(rq0);
d8cb8875 402
cc3c4253 403 if (rq1)
05d9824b 404 execlists_update_context(rq1);
84b790f8 405
cc3c4253 406 execlists_elsp_write(rq0, rq1);
84b790f8
BW
407}
408
acdd884a
MT
409static void execlists_context_unqueue(struct intel_engine_cs *ring)
410{
6d3d8274
NH
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
413
414 assert_spin_locked(&ring->execlist_lock);
acdd884a 415
779949f4
PA
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
acdd884a
MT
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
6d3d8274 430 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
e1fee72c 433 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25
TU
434 list_move_tail(&req0->execlist_link,
435 &ring->execlist_retired_req_list);
acdd884a
MT
436 req0 = cursor;
437 } else {
438 req1 = cursor;
439 break;
440 }
441 }
442
53292cdb
MT
443 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
444 /*
445 * WaIdleLiteRestore: make sure we never cause a lite
446 * restore with HEAD==TAIL
447 */
d63f820f 448 if (req0->elsp_submitted) {
53292cdb
MT
449 /*
450 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
451 * as we resubmit the request. See gen8_emit_request()
452 * for where we prepare the padding after the end of the
453 * request.
454 */
455 struct intel_ringbuffer *ringbuf;
456
457 ringbuf = req0->ctx->engine[ring->id].ringbuf;
458 req0->tail += 8;
459 req0->tail &= ringbuf->size - 1;
460 }
461 }
462
e1fee72c
OM
463 WARN_ON(req1 && req1->elsp_submitted);
464
d8cb8875 465 execlists_submit_requests(req0, req1);
acdd884a
MT
466}
467
e981e7b1
TD
468static bool execlists_check_remove_request(struct intel_engine_cs *ring,
469 u32 request_id)
470{
6d3d8274 471 struct drm_i915_gem_request *head_req;
e981e7b1
TD
472
473 assert_spin_locked(&ring->execlist_lock);
474
475 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 476 struct drm_i915_gem_request,
e981e7b1
TD
477 execlist_link);
478
479 if (head_req != NULL) {
480 struct drm_i915_gem_object *ctx_obj =
6d3d8274 481 head_req->ctx->engine[ring->id].state;
e981e7b1 482 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
483 WARN(head_req->elsp_submitted == 0,
484 "Never submitted head request\n");
485
486 if (--head_req->elsp_submitted <= 0) {
7eb08a25
TU
487 list_move_tail(&head_req->execlist_link,
488 &ring->execlist_retired_req_list);
e1fee72c
OM
489 return true;
490 }
e981e7b1
TD
491 }
492 }
493
494 return false;
495}
496
91a41032
BW
497static void get_context_status(struct intel_engine_cs *ring,
498 u8 read_pointer,
499 u32 *status, u32 *context_id)
500{
501 struct drm_i915_private *dev_priv = ring->dev->dev_private;
502
503 if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
504 return;
505
506 *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
507 *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
508}
509
73e4d07f 510/**
3f7531c3 511 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
512 * @ring: Engine Command Streamer to handle.
513 *
514 * Check the unread Context Status Buffers and manage the submission of new
515 * contexts to the ELSP accordingly.
516 */
3f7531c3 517void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
518{
519 struct drm_i915_private *dev_priv = ring->dev->dev_private;
520 u32 status_pointer;
521 u8 read_pointer;
522 u8 write_pointer;
5af05fef 523 u32 status = 0;
e981e7b1
TD
524 u32 status_id;
525 u32 submit_contexts = 0;
526
527 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
528
529 read_pointer = ring->next_context_status_buffer;
5590a5f0 530 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 531 if (read_pointer > write_pointer)
dfc53c5e 532 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1
TD
533
534 spin_lock(&ring->execlist_lock);
535
536 while (read_pointer < write_pointer) {
91a41032
BW
537
538 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
539 &status, &status_id);
e981e7b1 540
031a8936
MK
541 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
542 continue;
543
e1fee72c
OM
544 if (status & GEN8_CTX_STATUS_PREEMPTED) {
545 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
546 if (execlists_check_remove_request(ring, status_id))
547 WARN(1, "Lite Restored request removed from queue\n");
548 } else
549 WARN(1, "Preemption without Lite Restore\n");
550 }
551
eba51190
BW
552 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
553 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
554 if (execlists_check_remove_request(ring, status_id))
555 submit_contexts++;
556 }
557 }
558
5af05fef
MT
559 if (disable_lite_restore_wa(ring)) {
560 /* Prevent a ctx to preempt itself */
561 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
562 (submit_contexts != 0))
563 execlists_context_unqueue(ring);
564 } else if (submit_contexts != 0) {
e981e7b1 565 execlists_context_unqueue(ring);
5af05fef 566 }
e981e7b1
TD
567
568 spin_unlock(&ring->execlist_lock);
569
f764a8b1
BW
570 if (unlikely(submit_contexts > 2))
571 DRM_ERROR("More than two context complete events?\n");
572
dfc53c5e 573 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 574
5590a5f0
BW
575 /* Update the read pointer to the old write pointer. Manual ringbuffer
576 * management ftw </sarcasm> */
e981e7b1 577 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
5590a5f0
BW
578 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579 ring->next_context_status_buffer << 8));
e981e7b1
TD
580}
581
ae70797d 582static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 583{
ae70797d 584 struct intel_engine_cs *ring = request->ring;
6d3d8274 585 struct drm_i915_gem_request *cursor;
f1ad5a1f 586 int num_elements = 0;
acdd884a 587
af3302b9
DV
588 if (request->ctx != ring->default_context)
589 intel_lr_context_pin(request);
590
9bb1af44
JH
591 i915_gem_request_reference(request);
592
b5eba372 593 spin_lock_irq(&ring->execlist_lock);
acdd884a 594
f1ad5a1f
OM
595 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
596 if (++num_elements > 2)
597 break;
598
599 if (num_elements > 2) {
6d3d8274 600 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
601
602 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 603 struct drm_i915_gem_request,
f1ad5a1f
OM
604 execlist_link);
605
ae70797d 606 if (request->ctx == tail_req->ctx) {
f1ad5a1f 607 WARN(tail_req->elsp_submitted != 0,
7ba717cf 608 "More than 2 already-submitted reqs queued\n");
7eb08a25
TU
609 list_move_tail(&tail_req->execlist_link,
610 &ring->execlist_retired_req_list);
f1ad5a1f
OM
611 }
612 }
613
6d3d8274 614 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 615 if (num_elements == 0)
acdd884a
MT
616 execlists_context_unqueue(ring);
617
b5eba372 618 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
619
620 return 0;
621}
622
2f20055d 623static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 624{
2f20055d 625 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
626 uint32_t flush_domains;
627 int ret;
628
629 flush_domains = 0;
630 if (ring->gpu_caches_dirty)
631 flush_domains = I915_GEM_GPU_DOMAINS;
632
7deb4d39 633 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
634 if (ret)
635 return ret;
636
637 ring->gpu_caches_dirty = false;
638 return 0;
639}
640
535fbe82 641static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
642 struct list_head *vmas)
643{
535fbe82 644 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
645 struct i915_vma *vma;
646 uint32_t flush_domains = 0;
647 bool flush_chipset = false;
648 int ret;
649
650 list_for_each_entry(vma, vmas, exec_list) {
651 struct drm_i915_gem_object *obj = vma->obj;
652
03ade511 653 if (obj->active & other_rings) {
91af127f 654 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
655 if (ret)
656 return ret;
657 }
ba8b7ccb
OM
658
659 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
660 flush_chipset |= i915_gem_clflush_object(obj, false);
661
662 flush_domains |= obj->base.write_domain;
663 }
664
665 if (flush_domains & I915_GEM_DOMAIN_GTT)
666 wmb();
667
668 /* Unconditionally invalidate gpu caches and ensure that we do flush
669 * any residual writes from the previous batch.
670 */
2f20055d 671 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
672}
673
40e895ce 674int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 675{
bc0dce3f
JH
676 int ret;
677
f3cc01f0
MK
678 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
679
40e895ce 680 if (request->ctx != request->ring->default_context) {
8ba319da 681 ret = intel_lr_context_pin(request);
6689cb2b 682 if (ret)
bc0dce3f 683 return ret;
bc0dce3f
JH
684 }
685
a7e02199
AD
686 if (i915.enable_guc_submission) {
687 /*
688 * Check that the GuC has space for the request before
689 * going any further, as the i915_add_request() call
690 * later on mustn't fail ...
691 */
692 struct intel_guc *guc = &request->i915->guc;
693
694 ret = i915_guc_wq_check_space(guc->execbuf_client);
695 if (ret)
696 return ret;
697 }
698
bc0dce3f
JH
699 return 0;
700}
701
ae70797d 702static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 703 int bytes)
bc0dce3f 704{
ae70797d
JH
705 struct intel_ringbuffer *ringbuf = req->ringbuf;
706 struct intel_engine_cs *ring = req->ring;
707 struct drm_i915_gem_request *target;
b4716185
CW
708 unsigned space;
709 int ret;
bc0dce3f
JH
710
711 if (intel_ring_space(ringbuf) >= bytes)
712 return 0;
713
79bbcc29
JH
714 /* The whole point of reserving space is to not wait! */
715 WARN_ON(ringbuf->reserved_in_use);
716
ae70797d 717 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
718 /*
719 * The request queue is per-engine, so can contain requests
720 * from multiple ringbuffers. Here, we must ignore any that
721 * aren't from the ringbuffer we're considering.
722 */
ae70797d 723 if (target->ringbuf != ringbuf)
bc0dce3f
JH
724 continue;
725
726 /* Would completion of this request free enough space? */
ae70797d 727 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
728 ringbuf->size);
729 if (space >= bytes)
bc0dce3f 730 break;
bc0dce3f
JH
731 }
732
ae70797d 733 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
734 return -ENOSPC;
735
ae70797d 736 ret = i915_wait_request(target);
bc0dce3f
JH
737 if (ret)
738 return ret;
739
b4716185
CW
740 ringbuf->space = space;
741 return 0;
bc0dce3f
JH
742}
743
744/*
745 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 746 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
747 *
748 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
749 * really happens during submission is that the context and current tail will be placed
750 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
751 * point, the tail *inside* the context is updated and the ELSP written to.
752 */
753static void
ae70797d 754intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 755{
ae70797d 756 struct intel_engine_cs *ring = request->ring;
d1675198 757 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 758
ae70797d 759 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 760
d1675198
AD
761 request->tail = request->ringbuf->tail;
762
bc0dce3f
JH
763 if (intel_ring_stopped(ring))
764 return;
765
d1675198
AD
766 if (dev_priv->guc.execbuf_client)
767 i915_guc_submit(dev_priv->guc.execbuf_client, request);
768 else
769 execlists_context_queue(request);
bc0dce3f
JH
770}
771
79bbcc29 772static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
773{
774 uint32_t __iomem *virt;
775 int rem = ringbuf->size - ringbuf->tail;
776
bc0dce3f
JH
777 virt = ringbuf->virtual_start + ringbuf->tail;
778 rem /= 4;
779 while (rem--)
780 iowrite32(MI_NOOP, virt++);
781
782 ringbuf->tail = 0;
783 intel_ring_update_space(ringbuf);
bc0dce3f
JH
784}
785
ae70797d 786static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 787{
ae70797d 788 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
789 int remain_usable = ringbuf->effective_size - ringbuf->tail;
790 int remain_actual = ringbuf->size - ringbuf->tail;
791 int ret, total_bytes, wait_bytes = 0;
792 bool need_wrap = false;
29b1b415 793
79bbcc29
JH
794 if (ringbuf->reserved_in_use)
795 total_bytes = bytes;
796 else
797 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 798
79bbcc29
JH
799 if (unlikely(bytes > remain_usable)) {
800 /*
801 * Not enough space for the basic request. So need to flush
802 * out the remainder and then wait for base + reserved.
803 */
804 wait_bytes = remain_actual + total_bytes;
805 need_wrap = true;
806 } else {
807 if (unlikely(total_bytes > remain_usable)) {
808 /*
809 * The base request will fit but the reserved space
810 * falls off the end. So only need to to wait for the
811 * reserved size after flushing out the remainder.
812 */
813 wait_bytes = remain_actual + ringbuf->reserved_size;
814 need_wrap = true;
815 } else if (total_bytes > ringbuf->space) {
816 /* No wrapping required, just waiting. */
817 wait_bytes = total_bytes;
29b1b415 818 }
bc0dce3f
JH
819 }
820
79bbcc29
JH
821 if (wait_bytes) {
822 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
823 if (unlikely(ret))
824 return ret;
79bbcc29
JH
825
826 if (need_wrap)
827 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
828 }
829
830 return 0;
831}
832
833/**
834 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
835 *
374887ba 836 * @req: The request to start some new work for
bc0dce3f
JH
837 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
838 *
839 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
840 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
841 * and also preallocates a request (every workload submission is still mediated through
842 * requests, same as it did with legacy ringbuffer submission).
843 *
844 * Return: non-zero if the ringbuffer is not ready to be written to.
845 */
3bbaba0c 846int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 847{
4d616a29 848 struct drm_i915_private *dev_priv;
bc0dce3f
JH
849 int ret;
850
4d616a29
JH
851 WARN_ON(req == NULL);
852 dev_priv = req->ring->dev->dev_private;
853
bc0dce3f
JH
854 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
855 dev_priv->mm.interruptible);
856 if (ret)
857 return ret;
858
ae70797d 859 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
860 if (ret)
861 return ret;
862
4d616a29 863 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
864 return 0;
865}
866
ccd98fe4
JH
867int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
868{
869 /*
870 * The first call merely notes the reserve request and is common for
871 * all back ends. The subsequent localised _begin() call actually
872 * ensures that the reservation is available. Without the begin, if
873 * the request creator immediately submitted the request without
874 * adding any commands to it then there might not actually be
875 * sufficient room for the submission commands.
876 */
877 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
878
879 return intel_logical_ring_begin(request, 0);
880}
881
73e4d07f
OM
882/**
883 * execlists_submission() - submit a batchbuffer for execution, Execlists style
884 * @dev: DRM device.
885 * @file: DRM file.
886 * @ring: Engine Command Streamer to submit to.
887 * @ctx: Context to employ for this submission.
888 * @args: execbuffer call arguments.
889 * @vmas: list of vmas.
890 * @batch_obj: the batchbuffer to submit.
891 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 892 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
893 *
894 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
895 * away the submission details of the execbuffer ioctl call.
896 *
897 * Return: non-zero if the submission fails.
898 */
5f19e2bf 899int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 900 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 901 struct list_head *vmas)
454afebd 902{
5f19e2bf
JH
903 struct drm_device *dev = params->dev;
904 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 905 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
906 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
907 u64 exec_start;
ba8b7ccb
OM
908 int instp_mode;
909 u32 instp_mask;
910 int ret;
911
912 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
913 instp_mask = I915_EXEC_CONSTANTS_MASK;
914 switch (instp_mode) {
915 case I915_EXEC_CONSTANTS_REL_GENERAL:
916 case I915_EXEC_CONSTANTS_ABSOLUTE:
917 case I915_EXEC_CONSTANTS_REL_SURFACE:
918 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
919 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
920 return -EINVAL;
921 }
922
923 if (instp_mode != dev_priv->relative_constants_mode) {
924 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
925 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
926 return -EINVAL;
927 }
928
929 /* The HW changed the meaning on this bit on gen6 */
930 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
931 }
932 break;
933 default:
934 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
935 return -EINVAL;
936 }
937
ba8b7ccb
OM
938 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
939 DRM_DEBUG("sol reset is gen7 only\n");
940 return -EINVAL;
941 }
942
535fbe82 943 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
944 if (ret)
945 return ret;
946
947 if (ring == &dev_priv->ring[RCS] &&
948 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 949 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
950 if (ret)
951 return ret;
952
953 intel_logical_ring_emit(ringbuf, MI_NOOP);
954 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 955 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
956 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
957 intel_logical_ring_advance(ringbuf);
958
959 dev_priv->relative_constants_mode = instp_mode;
960 }
961
5f19e2bf
JH
962 exec_start = params->batch_obj_vm_offset +
963 args->batch_start_offset;
964
be795fc1 965 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
966 if (ret)
967 return ret;
968
95c24161 969 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 970
8a8edb59 971 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 972 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 973
454afebd
OM
974 return 0;
975}
976
c86ee3a9
TD
977void intel_execlists_retire_requests(struct intel_engine_cs *ring)
978{
6d3d8274 979 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
980 struct list_head retired_list;
981
982 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
983 if (list_empty(&ring->execlist_retired_req_list))
984 return;
985
986 INIT_LIST_HEAD(&retired_list);
b5eba372 987 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 988 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 989 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
990
991 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
992 struct intel_context *ctx = req->ctx;
993 struct drm_i915_gem_object *ctx_obj =
994 ctx->engine[ring->id].state;
995
996 if (ctx_obj && (ctx != ring->default_context))
997 intel_lr_context_unpin(req);
c86ee3a9 998 list_del(&req->execlist_link);
f8210795 999 i915_gem_request_unreference(req);
c86ee3a9
TD
1000 }
1001}
1002
454afebd
OM
1003void intel_logical_ring_stop(struct intel_engine_cs *ring)
1004{
9832b9da
OM
1005 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1006 int ret;
1007
1008 if (!intel_ring_initialized(ring))
1009 return;
1010
1011 ret = intel_ring_idle(ring);
1012 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1013 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1014 ring->name, ret);
1015
1016 /* TODO: Is this correct with Execlists enabled? */
1017 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1018 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1019 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1020 return;
1021 }
1022 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1023}
1024
4866d729 1025int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1026{
4866d729 1027 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1028 int ret;
1029
1030 if (!ring->gpu_caches_dirty)
1031 return 0;
1032
7deb4d39 1033 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1034 if (ret)
1035 return ret;
1036
1037 ring->gpu_caches_dirty = false;
1038 return 0;
1039}
1040
e84fe803
NH
1041static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1042 struct drm_i915_gem_object *ctx_obj,
1043 struct intel_ringbuffer *ringbuf)
dcb4c12a 1044{
e84fe803
NH
1045 struct drm_device *dev = ring->dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
dcb4c12a
OM
1047 int ret = 0;
1048
1049 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
e84fe803
NH
1050 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1051 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1052 if (ret)
1053 return ret;
7ba717cf 1054
e84fe803
NH
1055 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1056 if (ret)
1057 goto unpin_ctx_obj;
d1675198 1058
e84fe803 1059 ctx_obj->dirty = true;
e93c28f3 1060
e84fe803
NH
1061 /* Invalidate GuC TLB. */
1062 if (i915.enable_guc_submission)
1063 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1064
7ba717cf
TD
1065 return ret;
1066
1067unpin_ctx_obj:
1068 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1069
1070 return ret;
1071}
1072
1073static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1074{
1075 int ret = 0;
1076 struct intel_engine_cs *ring = rq->ring;
1077 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1078 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1079
1080 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1081 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1082 if (ret)
1083 goto reset_pin_count;
1084 }
1085 return ret;
1086
a7cbedec 1087reset_pin_count:
8ba319da 1088 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1089 return ret;
1090}
1091
af3302b9 1092void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1093{
af3302b9
DV
1094 struct intel_engine_cs *ring = rq->ring;
1095 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1096 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1097
dcb4c12a
OM
1098 if (ctx_obj) {
1099 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
af3302b9 1100 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1101 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1102 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1103 }
dcb4c12a
OM
1104 }
1105}
1106
e2be4faf 1107static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1108{
1109 int ret, i;
e2be4faf
JH
1110 struct intel_engine_cs *ring = req->ring;
1111 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1112 struct drm_device *dev = ring->dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114 struct i915_workarounds *w = &dev_priv->workarounds;
1115
cd7feaaa 1116 if (w->count == 0)
771b9a53
MT
1117 return 0;
1118
1119 ring->gpu_caches_dirty = true;
4866d729 1120 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1121 if (ret)
1122 return ret;
1123
4d616a29 1124 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1125 if (ret)
1126 return ret;
1127
1128 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1129 for (i = 0; i < w->count; i++) {
f92a9162 1130 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1131 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1132 }
1133 intel_logical_ring_emit(ringbuf, MI_NOOP);
1134
1135 intel_logical_ring_advance(ringbuf);
1136
1137 ring->gpu_caches_dirty = true;
4866d729 1138 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1139 if (ret)
1140 return ret;
1141
1142 return 0;
1143}
1144
83b8a982 1145#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1146 do { \
83b8a982
AS
1147 int __index = (index)++; \
1148 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1149 return -ENOSPC; \
1150 } \
83b8a982 1151 batch[__index] = (cmd); \
17ee950d
AS
1152 } while (0)
1153
8f40db77 1154#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1155 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1156
1157/*
1158 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1159 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1160 * but there is a slight complication as this is applied in WA batch where the
1161 * values are only initialized once so we cannot take register value at the
1162 * beginning and reuse it further; hence we save its value to memory, upload a
1163 * constant value with bit21 set and then we restore it back with the saved value.
1164 * To simplify the WA, a constant value is formed by using the default value
1165 * of this register. This shouldn't be a problem because we are only modifying
1166 * it for a short period and this batch in non-premptible. We can ofcourse
1167 * use additional instructions that read the actual value of the register
1168 * at that time and set our bit of interest but it makes the WA complicated.
1169 *
1170 * This WA is also required for Gen9 so extracting as a function avoids
1171 * code duplication.
1172 */
1173static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1174 uint32_t *const batch,
1175 uint32_t index)
1176{
1177 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1178
a4106a78
AS
1179 /*
1180 * WaDisableLSQCROPERFforOCL:skl
1181 * This WA is implemented in skl_init_clock_gating() but since
1182 * this batch updates GEN8_L3SQCREG4 with default value we need to
1183 * set this bit here to retain the WA during flush.
1184 */
e87a005d 1185 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1186 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1187
f1afe24f 1188 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1189 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1190 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1191 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1192 wa_ctx_emit(batch, index, 0);
1193
1194 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1195 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1196 wa_ctx_emit(batch, index, l3sqc4_flush);
1197
1198 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1199 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1200 PIPE_CONTROL_DC_FLUSH_ENABLE));
1201 wa_ctx_emit(batch, index, 0);
1202 wa_ctx_emit(batch, index, 0);
1203 wa_ctx_emit(batch, index, 0);
1204 wa_ctx_emit(batch, index, 0);
1205
f1afe24f 1206 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1207 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1208 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1209 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1210 wa_ctx_emit(batch, index, 0);
9e000847
AS
1211
1212 return index;
1213}
1214
17ee950d
AS
1215static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1216 uint32_t offset,
1217 uint32_t start_alignment)
1218{
1219 return wa_ctx->offset = ALIGN(offset, start_alignment);
1220}
1221
1222static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1223 uint32_t offset,
1224 uint32_t size_alignment)
1225{
1226 wa_ctx->size = offset - wa_ctx->offset;
1227
1228 WARN(wa_ctx->size % size_alignment,
1229 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1230 wa_ctx->size, size_alignment);
1231 return 0;
1232}
1233
1234/**
1235 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1236 *
1237 * @ring: only applicable for RCS
1238 * @wa_ctx: structure representing wa_ctx
1239 * offset: specifies start of the batch, should be cache-aligned. This is updated
1240 * with the offset value received as input.
1241 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1242 * @batch: page in which WA are loaded
1243 * @offset: This field specifies the start of the batch, it should be
1244 * cache-aligned otherwise it is adjusted accordingly.
1245 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1246 * initialized at the beginning and shared across all contexts but this field
1247 * helps us to have multiple batches at different offsets and select them based
1248 * on a criteria. At the moment this batch always start at the beginning of the page
1249 * and at this point we don't have multiple wa_ctx batch buffers.
1250 *
1251 * The number of WA applied are not known at the beginning; we use this field
1252 * to return the no of DWORDS written.
4d78c8dc 1253 *
17ee950d
AS
1254 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1255 * so it adds NOOPs as padding to make it cacheline aligned.
1256 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1257 * makes a complete batch buffer.
1258 *
1259 * Return: non-zero if we exceed the PAGE_SIZE limit.
1260 */
1261
1262static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1263 struct i915_wa_ctx_bb *wa_ctx,
1264 uint32_t *const batch,
1265 uint32_t *offset)
1266{
0160f055 1267 uint32_t scratch_addr;
17ee950d
AS
1268 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1269
7ad00d1a 1270 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1271 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1272
c82435bb
AS
1273 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1274 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1275 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1276 if (rc < 0)
1277 return rc;
1278 index = rc;
c82435bb
AS
1279 }
1280
0160f055
AS
1281 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1282 /* Actual scratch location is at 128 bytes offset */
1283 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1284
83b8a982
AS
1285 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1286 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1287 PIPE_CONTROL_GLOBAL_GTT_IVB |
1288 PIPE_CONTROL_CS_STALL |
1289 PIPE_CONTROL_QW_WRITE));
1290 wa_ctx_emit(batch, index, scratch_addr);
1291 wa_ctx_emit(batch, index, 0);
1292 wa_ctx_emit(batch, index, 0);
1293 wa_ctx_emit(batch, index, 0);
0160f055 1294
17ee950d
AS
1295 /* Pad to end of cacheline */
1296 while (index % CACHELINE_DWORDS)
83b8a982 1297 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1298
1299 /*
1300 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1301 * execution depends on the length specified in terms of cache lines
1302 * in the register CTX_RCS_INDIRECT_CTX
1303 */
1304
1305 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1306}
1307
1308/**
1309 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1310 *
1311 * @ring: only applicable for RCS
1312 * @wa_ctx: structure representing wa_ctx
1313 * offset: specifies start of the batch, should be cache-aligned.
1314 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1315 * @batch: page in which WA are loaded
17ee950d
AS
1316 * @offset: This field specifies the start of this batch.
1317 * This batch is started immediately after indirect_ctx batch. Since we ensure
1318 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1319 *
1320 * The number of DWORDS written are returned using this field.
1321 *
1322 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1323 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1324 */
1325static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1326 struct i915_wa_ctx_bb *wa_ctx,
1327 uint32_t *const batch,
1328 uint32_t *offset)
1329{
1330 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1331
7ad00d1a 1332 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1333 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1334
83b8a982 1335 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1336
1337 return wa_ctx_end(wa_ctx, *offset = index, 1);
1338}
1339
0504cffc
AS
1340static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1341 struct i915_wa_ctx_bb *wa_ctx,
1342 uint32_t *const batch,
1343 uint32_t *offset)
1344{
a4106a78 1345 int ret;
0907c8f7 1346 struct drm_device *dev = ring->dev;
0504cffc
AS
1347 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1348
0907c8f7 1349 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1350 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1351 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1352 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1353
a4106a78
AS
1354 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1355 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1356 if (ret < 0)
1357 return ret;
1358 index = ret;
1359
0504cffc
AS
1360 /* Pad to end of cacheline */
1361 while (index % CACHELINE_DWORDS)
1362 wa_ctx_emit(batch, index, MI_NOOP);
1363
1364 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1365}
1366
1367static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1368 struct i915_wa_ctx_bb *wa_ctx,
1369 uint32_t *const batch,
1370 uint32_t *offset)
1371{
0907c8f7 1372 struct drm_device *dev = ring->dev;
0504cffc
AS
1373 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1374
9b01435d 1375 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1376 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1377 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1378 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1379 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1380 wa_ctx_emit(batch, index,
1381 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1382 wa_ctx_emit(batch, index, MI_NOOP);
1383 }
1384
0907c8f7 1385 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1386 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1387 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1388 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1389
0504cffc
AS
1390 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1391
1392 return wa_ctx_end(wa_ctx, *offset = index, 1);
1393}
1394
17ee950d
AS
1395static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1396{
1397 int ret;
1398
1399 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1400 if (!ring->wa_ctx.obj) {
1401 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1402 return -ENOMEM;
1403 }
1404
1405 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1406 if (ret) {
1407 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1408 ret);
1409 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1410 return ret;
1411 }
1412
1413 return 0;
1414}
1415
1416static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1417{
1418 if (ring->wa_ctx.obj) {
1419 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1420 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1421 ring->wa_ctx.obj = NULL;
1422 }
1423}
1424
1425static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1426{
1427 int ret;
1428 uint32_t *batch;
1429 uint32_t offset;
1430 struct page *page;
1431 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1432
1433 WARN_ON(ring->id != RCS);
1434
5e60d790 1435 /* update this when WA for higher Gen are added */
0504cffc
AS
1436 if (INTEL_INFO(ring->dev)->gen > 9) {
1437 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1438 INTEL_INFO(ring->dev)->gen);
5e60d790 1439 return 0;
0504cffc 1440 }
5e60d790 1441
c4db7599
AS
1442 /* some WA perform writes to scratch page, ensure it is valid */
1443 if (ring->scratch.obj == NULL) {
1444 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1445 return -EINVAL;
1446 }
1447
17ee950d
AS
1448 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1449 if (ret) {
1450 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1451 return ret;
1452 }
1453
033908ae 1454 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1455 batch = kmap_atomic(page);
1456 offset = 0;
1457
1458 if (INTEL_INFO(ring->dev)->gen == 8) {
1459 ret = gen8_init_indirectctx_bb(ring,
1460 &wa_ctx->indirect_ctx,
1461 batch,
1462 &offset);
1463 if (ret)
1464 goto out;
1465
1466 ret = gen8_init_perctx_bb(ring,
1467 &wa_ctx->per_ctx,
1468 batch,
1469 &offset);
1470 if (ret)
1471 goto out;
0504cffc
AS
1472 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1473 ret = gen9_init_indirectctx_bb(ring,
1474 &wa_ctx->indirect_ctx,
1475 batch,
1476 &offset);
1477 if (ret)
1478 goto out;
1479
1480 ret = gen9_init_perctx_bb(ring,
1481 &wa_ctx->per_ctx,
1482 batch,
1483 &offset);
1484 if (ret)
1485 goto out;
17ee950d
AS
1486 }
1487
1488out:
1489 kunmap_atomic(batch);
1490 if (ret)
1491 lrc_destroy_wa_ctx_obj(ring);
1492
1493 return ret;
1494}
1495
9b1136d5
OM
1496static int gen8_init_common_ring(struct intel_engine_cs *ring)
1497{
1498 struct drm_device *dev = ring->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
dfc53c5e 1500 u8 next_context_status_buffer_hw;
9b1136d5 1501
e84fe803
NH
1502 lrc_setup_hardware_status_page(ring,
1503 ring->default_context->engine[ring->id].state);
1504
73d477f6
OM
1505 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1506 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1507
9b1136d5
OM
1508 I915_WRITE(RING_MODE_GEN7(ring),
1509 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1510 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1511 POSTING_READ(RING_MODE_GEN7(ring));
dfc53c5e
MT
1512
1513 /*
1514 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1515 * zero, we need to read the write pointer from hardware and use its
1516 * value because "this register is power context save restored".
1517 * Effectively, these states have been observed:
1518 *
1519 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1520 * BDW | CSB regs not reset | CSB regs reset |
1521 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1522 * SKL | ? | ? |
1523 * BXT | ? | ? |
dfc53c5e 1524 */
5590a5f0
BW
1525 next_context_status_buffer_hw =
1526 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
dfc53c5e
MT
1527
1528 /*
1529 * When the CSB registers are reset (also after power-up / gpu reset),
1530 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1531 * this special case, so the first element read is CSB[0].
1532 */
1533 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1534 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1535
1536 ring->next_context_status_buffer = next_context_status_buffer_hw;
9b1136d5
OM
1537 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1538
1539 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1540
1541 return 0;
1542}
1543
1544static int gen8_init_render_ring(struct intel_engine_cs *ring)
1545{
1546 struct drm_device *dev = ring->dev;
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 int ret;
1549
1550 ret = gen8_init_common_ring(ring);
1551 if (ret)
1552 return ret;
1553
1554 /* We need to disable the AsyncFlip performance optimisations in order
1555 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1556 * programmed to '1' on all products.
1557 *
1558 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1559 */
1560 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1561
9b1136d5
OM
1562 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1563
771b9a53 1564 return init_workarounds_ring(ring);
9b1136d5
OM
1565}
1566
82ef822e
DL
1567static int gen9_init_render_ring(struct intel_engine_cs *ring)
1568{
1569 int ret;
1570
1571 ret = gen8_init_common_ring(ring);
1572 if (ret)
1573 return ret;
1574
1575 return init_workarounds_ring(ring);
1576}
1577
7a01a0a2
MT
1578static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1579{
1580 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1581 struct intel_engine_cs *ring = req->ring;
1582 struct intel_ringbuffer *ringbuf = req->ringbuf;
1583 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1584 int i, ret;
1585
1586 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1587 if (ret)
1588 return ret;
1589
1590 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1591 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1592 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1593
f92a9162 1594 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
7a01a0a2 1595 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
f92a9162 1596 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
7a01a0a2
MT
1597 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1598 }
1599
1600 intel_logical_ring_emit(ringbuf, MI_NOOP);
1601 intel_logical_ring_advance(ringbuf);
1602
1603 return 0;
1604}
1605
be795fc1 1606static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1607 u64 offset, unsigned dispatch_flags)
15648585 1608{
be795fc1 1609 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1610 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1611 int ret;
1612
7a01a0a2
MT
1613 /* Don't rely in hw updating PDPs, specially in lite-restore.
1614 * Ideally, we should set Force PD Restore in ctx descriptor,
1615 * but we can't. Force Restore would be a second option, but
1616 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1617 * not idle). PML4 is allocated during ppgtt init so this is
1618 * not needed in 48-bit.*/
7a01a0a2
MT
1619 if (req->ctx->ppgtt &&
1620 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1621 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1622 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1623 ret = intel_logical_ring_emit_pdps(req);
1624 if (ret)
1625 return ret;
1626 }
7a01a0a2
MT
1627
1628 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1629 }
1630
4d616a29 1631 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1632 if (ret)
1633 return ret;
1634
1635 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1636 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1637 (ppgtt<<8) |
1638 (dispatch_flags & I915_DISPATCH_RS ?
1639 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1640 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1641 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1642 intel_logical_ring_emit(ringbuf, MI_NOOP);
1643 intel_logical_ring_advance(ringbuf);
1644
1645 return 0;
1646}
1647
73d477f6
OM
1648static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1649{
1650 struct drm_device *dev = ring->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 unsigned long flags;
1653
7cd512f1 1654 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1655 return false;
1656
1657 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1658 if (ring->irq_refcount++ == 0) {
1659 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1660 POSTING_READ(RING_IMR(ring->mmio_base));
1661 }
1662 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1663
1664 return true;
1665}
1666
1667static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1668{
1669 struct drm_device *dev = ring->dev;
1670 struct drm_i915_private *dev_priv = dev->dev_private;
1671 unsigned long flags;
1672
1673 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1674 if (--ring->irq_refcount == 0) {
1675 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1676 POSTING_READ(RING_IMR(ring->mmio_base));
1677 }
1678 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1679}
1680
7deb4d39 1681static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1682 u32 invalidate_domains,
1683 u32 unused)
1684{
7deb4d39 1685 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1686 struct intel_engine_cs *ring = ringbuf->ring;
1687 struct drm_device *dev = ring->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 uint32_t cmd;
1690 int ret;
1691
4d616a29 1692 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1693 if (ret)
1694 return ret;
1695
1696 cmd = MI_FLUSH_DW + 1;
1697
f0a1fb10
CW
1698 /* We always require a command barrier so that subsequent
1699 * commands, such as breadcrumb interrupts, are strictly ordered
1700 * wrt the contents of the write cache being flushed to memory
1701 * (and thus being coherent from the CPU).
1702 */
1703 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1704
1705 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1706 cmd |= MI_INVALIDATE_TLB;
1707 if (ring == &dev_priv->ring[VCS])
1708 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1709 }
1710
1711 intel_logical_ring_emit(ringbuf, cmd);
1712 intel_logical_ring_emit(ringbuf,
1713 I915_GEM_HWS_SCRATCH_ADDR |
1714 MI_FLUSH_DW_USE_GTT);
1715 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1716 intel_logical_ring_emit(ringbuf, 0); /* value */
1717 intel_logical_ring_advance(ringbuf);
1718
1719 return 0;
1720}
1721
7deb4d39 1722static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1723 u32 invalidate_domains,
1724 u32 flush_domains)
1725{
7deb4d39 1726 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1727 struct intel_engine_cs *ring = ringbuf->ring;
1728 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1729 bool vf_flush_wa = false;
4712274c
OM
1730 u32 flags = 0;
1731 int ret;
1732
1733 flags |= PIPE_CONTROL_CS_STALL;
1734
1735 if (flush_domains) {
1736 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1737 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1738 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1739 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1740 }
1741
1742 if (invalidate_domains) {
1743 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1744 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1745 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1746 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1747 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1748 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1749 flags |= PIPE_CONTROL_QW_WRITE;
1750 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1751
1a5a9ce7
BW
1752 /*
1753 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1754 * pipe control.
1755 */
1756 if (IS_GEN9(ring->dev))
1757 vf_flush_wa = true;
1758 }
9647ff36 1759
4d616a29 1760 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1761 if (ret)
1762 return ret;
1763
9647ff36
ID
1764 if (vf_flush_wa) {
1765 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1766 intel_logical_ring_emit(ringbuf, 0);
1767 intel_logical_ring_emit(ringbuf, 0);
1768 intel_logical_ring_emit(ringbuf, 0);
1769 intel_logical_ring_emit(ringbuf, 0);
1770 intel_logical_ring_emit(ringbuf, 0);
1771 }
1772
4712274c
OM
1773 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1774 intel_logical_ring_emit(ringbuf, flags);
1775 intel_logical_ring_emit(ringbuf, scratch_addr);
1776 intel_logical_ring_emit(ringbuf, 0);
1777 intel_logical_ring_emit(ringbuf, 0);
1778 intel_logical_ring_emit(ringbuf, 0);
1779 intel_logical_ring_advance(ringbuf);
1780
1781 return 0;
1782}
1783
e94e37ad
OM
1784static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1785{
1786 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1787}
1788
1789static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1790{
1791 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1792}
1793
319404df
ID
1794static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1795{
1796
1797 /*
1798 * On BXT A steppings there is a HW coherency issue whereby the
1799 * MI_STORE_DATA_IMM storing the completed request's seqno
1800 * occasionally doesn't invalidate the CPU cache. Work around this by
1801 * clflushing the corresponding cacheline whenever the caller wants
1802 * the coherency to be guaranteed. Note that this cacheline is known
1803 * to be clean at this point, since we only write it in
1804 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1805 * this clflush in practice becomes an invalidate operation.
1806 */
1807
1808 if (!lazy_coherency)
1809 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1810
1811 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1812}
1813
1814static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1815{
1816 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1817
1818 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1819 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1820}
1821
c4e76638 1822static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1823{
c4e76638 1824 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1825 struct intel_engine_cs *ring = ringbuf->ring;
1826 u32 cmd;
1827 int ret;
1828
53292cdb
MT
1829 /*
1830 * Reserve space for 2 NOOPs at the end of each request to be
1831 * used as a workaround for not being allowed to do lite
1832 * restore with HEAD==TAIL (WaIdleLiteRestore).
1833 */
4d616a29 1834 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1835 if (ret)
1836 return ret;
1837
8edfbb8b 1838 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1839 cmd |= MI_GLOBAL_GTT;
1840
1841 intel_logical_ring_emit(ringbuf, cmd);
1842 intel_logical_ring_emit(ringbuf,
1843 (ring->status_page.gfx_addr +
1844 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1845 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1846 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1847 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1848 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1849 intel_logical_ring_advance_and_submit(request);
4da46e1e 1850
53292cdb
MT
1851 /*
1852 * Here we add two extra NOOPs as padding to avoid
1853 * lite restore of a context with HEAD==TAIL.
1854 */
1855 intel_logical_ring_emit(ringbuf, MI_NOOP);
1856 intel_logical_ring_emit(ringbuf, MI_NOOP);
1857 intel_logical_ring_advance(ringbuf);
1858
4da46e1e
OM
1859 return 0;
1860}
1861
be01363f 1862static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1863{
cef437ad 1864 struct render_state so;
cef437ad
DL
1865 int ret;
1866
be01363f 1867 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1868 if (ret)
1869 return ret;
1870
1871 if (so.rodata == NULL)
1872 return 0;
1873
be795fc1 1874 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1875 I915_DISPATCH_SECURE);
cef437ad
DL
1876 if (ret)
1877 goto out;
1878
84e81020
AS
1879 ret = req->ring->emit_bb_start(req,
1880 (so.ggtt_offset + so.aux_batch_offset),
1881 I915_DISPATCH_SECURE);
1882 if (ret)
1883 goto out;
1884
b2af0376 1885 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1886
cef437ad
DL
1887out:
1888 i915_gem_render_state_fini(&so);
1889 return ret;
1890}
1891
8753181e 1892static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1893{
1894 int ret;
1895
e2be4faf 1896 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1897 if (ret)
1898 return ret;
1899
3bbaba0c
PA
1900 ret = intel_rcs_context_init_mocs(req);
1901 /*
1902 * Failing to program the MOCS is non-fatal.The system will not
1903 * run at peak performance. So generate an error and carry on.
1904 */
1905 if (ret)
1906 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1907
be01363f 1908 return intel_lr_context_render_state_init(req);
e7778be1
TD
1909}
1910
73e4d07f
OM
1911/**
1912 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1913 *
1914 * @ring: Engine Command Streamer.
1915 *
1916 */
454afebd
OM
1917void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1918{
6402c330 1919 struct drm_i915_private *dev_priv;
9832b9da 1920
48d82387
OM
1921 if (!intel_ring_initialized(ring))
1922 return;
1923
6402c330
JH
1924 dev_priv = ring->dev->dev_private;
1925
b0366a54
DG
1926 if (ring->buffer) {
1927 intel_logical_ring_stop(ring);
1928 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1929 }
48d82387
OM
1930
1931 if (ring->cleanup)
1932 ring->cleanup(ring);
1933
1934 i915_cmd_parser_fini_ring(ring);
06fbca71 1935 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1936
1937 if (ring->status_page.obj) {
1938 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1939 ring->status_page.obj = NULL;
1940 }
17ee950d
AS
1941
1942 lrc_destroy_wa_ctx_obj(ring);
b0366a54 1943 ring->dev = NULL;
454afebd
OM
1944}
1945
c9cacf93
TU
1946static void
1947logical_ring_default_vfuncs(struct drm_device *dev,
1948 struct intel_engine_cs *ring)
1949{
1950 /* Default vfuncs which can be overriden by each engine. */
1951 ring->init_hw = gen8_init_common_ring;
1952 ring->emit_request = gen8_emit_request;
1953 ring->emit_flush = gen8_emit_flush;
1954 ring->irq_get = gen8_logical_ring_get_irq;
1955 ring->irq_put = gen8_logical_ring_put_irq;
1956 ring->emit_bb_start = gen8_emit_bb_start;
1957 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1958 ring->get_seqno = bxt_a_get_seqno;
1959 ring->set_seqno = bxt_a_set_seqno;
1960 } else {
1961 ring->get_seqno = gen8_get_seqno;
1962 ring->set_seqno = gen8_set_seqno;
1963 }
1964}
1965
d9f3af96
TU
1966static inline void
1967logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
1968{
1969 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1970 ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1971}
1972
c9cacf93
TU
1973static int
1974logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
454afebd 1975{
48d82387 1976 int ret;
48d82387
OM
1977
1978 /* Intentionally left blank. */
1979 ring->buffer = NULL;
1980
1981 ring->dev = dev;
1982 INIT_LIST_HEAD(&ring->active_list);
1983 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1984 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1985 init_waitqueue_head(&ring->irq_queue);
1986
608c1a52 1987 INIT_LIST_HEAD(&ring->buffers);
acdd884a 1988 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1989 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1990 spin_lock_init(&ring->execlist_lock);
1991
48d82387
OM
1992 ret = i915_cmd_parser_init_ring(ring);
1993 if (ret)
b0366a54 1994 goto error;
48d82387 1995
e84fe803
NH
1996 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1997 if (ret)
b0366a54 1998 goto error;
e84fe803
NH
1999
2000 /* As this is the default context, always pin it */
2001 ret = intel_lr_context_do_pin(
2002 ring,
2003 ring->default_context->engine[ring->id].state,
2004 ring->default_context->engine[ring->id].ringbuf);
2005 if (ret) {
2006 DRM_ERROR(
2007 "Failed to pin and map ringbuffer %s: %d\n",
2008 ring->name, ret);
b0366a54 2009 goto error;
e84fe803 2010 }
564ddb2f 2011
b0366a54
DG
2012 return 0;
2013
2014error:
2015 intel_logical_ring_cleanup(ring);
564ddb2f 2016 return ret;
454afebd
OM
2017}
2018
2019static int logical_render_ring_init(struct drm_device *dev)
2020{
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 2023 int ret;
454afebd
OM
2024
2025 ring->name = "render ring";
2026 ring->id = RCS;
2027 ring->mmio_base = RENDER_RING_BASE;
d9f3af96
TU
2028
2029 logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
73d477f6
OM
2030 if (HAS_L3_DPF(dev))
2031 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2032
c9cacf93
TU
2033 logical_ring_default_vfuncs(dev, ring);
2034
2035 /* Override some for render ring. */
82ef822e
DL
2036 if (INTEL_INFO(dev)->gen >= 9)
2037 ring->init_hw = gen9_init_render_ring;
2038 else
2039 ring->init_hw = gen8_init_render_ring;
e7778be1 2040 ring->init_context = gen8_init_rcs_context;
9b1136d5 2041 ring->cleanup = intel_fini_pipe_control;
4712274c 2042 ring->emit_flush = gen8_emit_flush_render;
9b1136d5 2043
99be1dfe 2044 ring->dev = dev;
c4db7599
AS
2045
2046 ret = intel_init_pipe_control(ring);
99be1dfe
DV
2047 if (ret)
2048 return ret;
2049
17ee950d
AS
2050 ret = intel_init_workaround_bb(ring);
2051 if (ret) {
2052 /*
2053 * We continue even if we fail to initialize WA batch
2054 * because we only expect rare glitches but nothing
2055 * critical to prevent us from using GPU
2056 */
2057 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2058 ret);
2059 }
2060
c4db7599
AS
2061 ret = logical_ring_init(dev, ring);
2062 if (ret) {
17ee950d 2063 lrc_destroy_wa_ctx_obj(ring);
c4db7599 2064 }
17ee950d
AS
2065
2066 return ret;
454afebd
OM
2067}
2068
2069static int logical_bsd_ring_init(struct drm_device *dev)
2070{
2071 struct drm_i915_private *dev_priv = dev->dev_private;
2072 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2073
2074 ring->name = "bsd ring";
2075 ring->id = VCS;
2076 ring->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2077
d9f3af96 2078 logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
c9cacf93 2079 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2080
454afebd
OM
2081 return logical_ring_init(dev, ring);
2082}
2083
2084static int logical_bsd2_ring_init(struct drm_device *dev)
2085{
2086 struct drm_i915_private *dev_priv = dev->dev_private;
2087 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2088
ec8a9776 2089 ring->name = "bsd2 ring";
454afebd
OM
2090 ring->id = VCS2;
2091 ring->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2092
d9f3af96 2093 logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
c9cacf93 2094 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2095
454afebd
OM
2096 return logical_ring_init(dev, ring);
2097}
2098
2099static int logical_blt_ring_init(struct drm_device *dev)
2100{
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2103
2104 ring->name = "blitter ring";
2105 ring->id = BCS;
2106 ring->mmio_base = BLT_RING_BASE;
454afebd 2107
d9f3af96 2108 logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
c9cacf93 2109 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2110
454afebd
OM
2111 return logical_ring_init(dev, ring);
2112}
2113
2114static int logical_vebox_ring_init(struct drm_device *dev)
2115{
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2118
2119 ring->name = "video enhancement ring";
2120 ring->id = VECS;
2121 ring->mmio_base = VEBOX_RING_BASE;
454afebd 2122
d9f3af96 2123 logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
c9cacf93 2124 logical_ring_default_vfuncs(dev, ring);
9b1136d5 2125
454afebd
OM
2126 return logical_ring_init(dev, ring);
2127}
2128
73e4d07f
OM
2129/**
2130 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2131 * @dev: DRM device.
2132 *
2133 * This function inits the engines for an Execlists submission style (the equivalent in the
2134 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2135 * those engines that are present in the hardware.
2136 *
2137 * Return: non-zero if the initialization failed.
2138 */
454afebd
OM
2139int intel_logical_rings_init(struct drm_device *dev)
2140{
2141 struct drm_i915_private *dev_priv = dev->dev_private;
2142 int ret;
2143
2144 ret = logical_render_ring_init(dev);
2145 if (ret)
2146 return ret;
2147
2148 if (HAS_BSD(dev)) {
2149 ret = logical_bsd_ring_init(dev);
2150 if (ret)
2151 goto cleanup_render_ring;
2152 }
2153
2154 if (HAS_BLT(dev)) {
2155 ret = logical_blt_ring_init(dev);
2156 if (ret)
2157 goto cleanup_bsd_ring;
2158 }
2159
2160 if (HAS_VEBOX(dev)) {
2161 ret = logical_vebox_ring_init(dev);
2162 if (ret)
2163 goto cleanup_blt_ring;
2164 }
2165
2166 if (HAS_BSD2(dev)) {
2167 ret = logical_bsd2_ring_init(dev);
2168 if (ret)
2169 goto cleanup_vebox_ring;
2170 }
2171
454afebd
OM
2172 return 0;
2173
454afebd
OM
2174cleanup_vebox_ring:
2175 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2176cleanup_blt_ring:
2177 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2178cleanup_bsd_ring:
2179 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2180cleanup_render_ring:
2181 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2182
2183 return ret;
2184}
2185
0cea6502
JM
2186static u32
2187make_rpcs(struct drm_device *dev)
2188{
2189 u32 rpcs = 0;
2190
2191 /*
2192 * No explicit RPCS request is needed to ensure full
2193 * slice/subslice/EU enablement prior to Gen9.
2194 */
2195 if (INTEL_INFO(dev)->gen < 9)
2196 return 0;
2197
2198 /*
2199 * Starting in Gen9, render power gating can leave
2200 * slice/subslice/EU in a partially enabled state. We
2201 * must make an explicit request through RPCS for full
2202 * enablement.
2203 */
2204 if (INTEL_INFO(dev)->has_slice_pg) {
2205 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2206 rpcs |= INTEL_INFO(dev)->slice_total <<
2207 GEN8_RPCS_S_CNT_SHIFT;
2208 rpcs |= GEN8_RPCS_ENABLE;
2209 }
2210
2211 if (INTEL_INFO(dev)->has_subslice_pg) {
2212 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2213 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2214 GEN8_RPCS_SS_CNT_SHIFT;
2215 rpcs |= GEN8_RPCS_ENABLE;
2216 }
2217
2218 if (INTEL_INFO(dev)->has_eu_pg) {
2219 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2220 GEN8_RPCS_EU_MIN_SHIFT;
2221 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2222 GEN8_RPCS_EU_MAX_SHIFT;
2223 rpcs |= GEN8_RPCS_ENABLE;
2224 }
2225
2226 return rpcs;
2227}
2228
8670d6f9
OM
2229static int
2230populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2231 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2232{
2d965536
TD
2233 struct drm_device *dev = ring->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2235 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2236 struct page *page;
2237 uint32_t *reg_state;
2238 int ret;
2239
2d965536
TD
2240 if (!ppgtt)
2241 ppgtt = dev_priv->mm.aliasing_ppgtt;
2242
8670d6f9
OM
2243 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2244 if (ret) {
2245 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2246 return ret;
2247 }
2248
2249 ret = i915_gem_object_get_pages(ctx_obj);
2250 if (ret) {
2251 DRM_DEBUG_DRIVER("Could not get object pages\n");
2252 return ret;
2253 }
2254
2255 i915_gem_object_pin_pages(ctx_obj);
2256
2257 /* The second page of the context object contains some fields which must
2258 * be set up prior to the first execution. */
033908ae 2259 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2260 reg_state = kmap_atomic(page);
2261
2262 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2263 * commands followed by (reg, value) pairs. The values we are setting here are
2264 * only for the first context restore: on a subsequent save, the GPU will
2265 * recreate this batchbuffer with new values (including all the missing
2266 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2267 reg_state[CTX_LRI_HEADER_0] =
2268 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2269 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2270 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2271 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2272 CTX_CTRL_RS_CTX_ENABLE));
2273 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2274 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2275 /* Ring buffer start address is not known until the buffer is pinned.
2276 * It is written to the context image in execlists_update_context()
2277 */
0d925ea0
VS
2278 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2279 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2280 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2281 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2282 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2283 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2284 RING_BB_PPGTT);
2285 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2286 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2287 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2288 if (ring->id == RCS) {
0d925ea0
VS
2289 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2290 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2291 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2292 if (ring->wa_ctx.obj) {
2293 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2294 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2295
2296 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2297 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2298 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2299
2300 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2301 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2302
2303 reg_state[CTX_BB_PER_CTX_PTR+1] =
2304 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2305 0x01;
2306 }
8670d6f9 2307 }
0d925ea0
VS
2308 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2309 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2310 /* PDP values well be assigned later if needed */
2311 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2312 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2313 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2314 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2315 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2316 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2317 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2318 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2319
2dba3239
MT
2320 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2321 /* 64b PPGTT (48bit canonical)
2322 * PDP0_DESCRIPTOR contains the base address to PML4 and
2323 * other PDP Descriptors are ignored.
2324 */
2325 ASSIGN_CTX_PML4(ppgtt, reg_state);
2326 } else {
2327 /* 32b PPGTT
2328 * PDP*_DESCRIPTOR contains the base address of space supported.
2329 * With dynamic page allocation, PDPs may not be allocated at
2330 * this point. Point the unallocated PDPs to the scratch page
2331 */
2332 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2333 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2334 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2335 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2336 }
2337
8670d6f9
OM
2338 if (ring->id == RCS) {
2339 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2340 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2341 make_rpcs(dev));
8670d6f9
OM
2342 }
2343
2344 kunmap_atomic(reg_state);
8670d6f9
OM
2345 i915_gem_object_unpin_pages(ctx_obj);
2346
2347 return 0;
2348}
2349
73e4d07f
OM
2350/**
2351 * intel_lr_context_free() - free the LRC specific bits of a context
2352 * @ctx: the LR context to free.
2353 *
2354 * The real context freeing is done in i915_gem_context_free: this only
2355 * takes care of the bits that are LRC related: the per-engine backing
2356 * objects and the logical ringbuffer.
2357 */
ede7d42b
OM
2358void intel_lr_context_free(struct intel_context *ctx)
2359{
8c857917
OM
2360 int i;
2361
af3302b9 2362 for (i = 0; i < I915_NUM_RINGS; i++) {
8c857917 2363 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2364
8c857917 2365 if (ctx_obj) {
dcb4c12a
OM
2366 struct intel_ringbuffer *ringbuf =
2367 ctx->engine[i].ringbuf;
2368 struct intel_engine_cs *ring = ringbuf->ring;
2369
af3302b9
DV
2370 if (ctx == ring->default_context) {
2371 intel_unpin_ringbuffer_obj(ringbuf);
2372 i915_gem_object_ggtt_unpin(ctx_obj);
2373 }
2374 WARN_ON(ctx->engine[ring->id].pin_count);
2375 intel_ringbuffer_free(ringbuf);
2376 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2377 }
2378 }
2379}
2380
c5d46ee2
DG
2381/**
2382 * intel_lr_context_size() - return the size of the context for an engine
2383 * @ring: which engine to find the context size for
2384 *
2385 * Each engine may require a different amount of space for a context image,
2386 * so when allocating (or copying) an image, this function can be used to
2387 * find the right size for the specific engine.
2388 *
2389 * Return: size (in bytes) of an engine-specific context image
2390 *
2391 * Note: this size includes the HWSP, which is part of the context image
2392 * in LRC mode, but does not include the "shared data page" used with
2393 * GuC submission. The caller should account for this if using the GuC.
2394 */
95a66f7e 2395uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
8c857917
OM
2396{
2397 int ret = 0;
2398
468c6816 2399 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2400
2401 switch (ring->id) {
2402 case RCS:
468c6816
MN
2403 if (INTEL_INFO(ring->dev)->gen >= 9)
2404 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2405 else
2406 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2407 break;
2408 case VCS:
2409 case BCS:
2410 case VECS:
2411 case VCS2:
2412 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2413 break;
2414 }
2415
2416 return ret;
ede7d42b
OM
2417}
2418
70b0ea86 2419static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2420 struct drm_i915_gem_object *default_ctx_obj)
2421{
2422 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2423 struct page *page;
1df06b75 2424
d1675198
AD
2425 /* The HWSP is part of the default context object in LRC mode. */
2426 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2427 + LRC_PPHWSP_PN * PAGE_SIZE;
2428 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2429 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2430 ring->status_page.obj = default_ctx_obj;
2431
2432 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2433 (u32)ring->status_page.gfx_addr);
2434 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2435}
2436
73e4d07f 2437/**
e84fe803 2438 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2439 * @ctx: LR context to create.
2440 * @ring: engine to be used with the context.
2441 *
2442 * This function can be called more than once, with different engines, if we plan
2443 * to use the context with them. The context backing objects and the ringbuffers
2444 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2445 * the creation is a deferred call: it's better to make sure first that we need to use
2446 * a given ring with the context.
2447 *
32197aab 2448 * Return: non-zero on error.
73e4d07f 2449 */
e84fe803
NH
2450
2451int intel_lr_context_deferred_alloc(struct intel_context *ctx,
ede7d42b
OM
2452 struct intel_engine_cs *ring)
2453{
8c857917
OM
2454 struct drm_device *dev = ring->dev;
2455 struct drm_i915_gem_object *ctx_obj;
2456 uint32_t context_size;
84c2377f 2457 struct intel_ringbuffer *ringbuf;
8c857917
OM
2458 int ret;
2459
ede7d42b 2460 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2461 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2462
95a66f7e 2463 context_size = round_up(intel_lr_context_size(ring), 4096);
8c857917 2464
d1675198
AD
2465 /* One extra page as the sharing data between driver and GuC */
2466 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2467
149c86e7 2468 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2469 if (!ctx_obj) {
2470 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2471 return -ENOMEM;
8c857917
OM
2472 }
2473
01101fa7
CW
2474 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2475 if (IS_ERR(ringbuf)) {
2476 ret = PTR_ERR(ringbuf);
e84fe803 2477 goto error_deref_obj;
8670d6f9
OM
2478 }
2479
2480 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2481 if (ret) {
2482 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2483 goto error_ringbuf;
84c2377f
OM
2484 }
2485
2486 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2487 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2488
e84fe803
NH
2489 if (ctx != ring->default_context && ring->init_context) {
2490 struct drm_i915_gem_request *req;
76c39168 2491
e84fe803
NH
2492 ret = i915_gem_request_alloc(ring,
2493 ctx, &req);
2494 if (ret) {
2495 DRM_ERROR("ring create req: %d\n",
2496 ret);
e84fe803 2497 goto error_ringbuf;
771b9a53
MT
2498 }
2499
e84fe803
NH
2500 ret = ring->init_context(req);
2501 if (ret) {
2502 DRM_ERROR("ring init context: %d\n",
2503 ret);
2504 i915_gem_request_cancel(req);
2505 goto error_ringbuf;
2506 }
2507 i915_add_request_no_flush(req);
564ddb2f 2508 }
ede7d42b 2509 return 0;
8670d6f9 2510
01101fa7
CW
2511error_ringbuf:
2512 intel_ringbuffer_free(ringbuf);
e84fe803 2513error_deref_obj:
8670d6f9 2514 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2515 ctx->engine[ring->id].ringbuf = NULL;
2516 ctx->engine[ring->id].state = NULL;
8670d6f9 2517 return ret;
ede7d42b 2518}
3e5b6f05
TD
2519
2520void intel_lr_context_reset(struct drm_device *dev,
2521 struct intel_context *ctx)
2522{
2523 struct drm_i915_private *dev_priv = dev->dev_private;
2524 struct intel_engine_cs *ring;
2525 int i;
2526
2527 for_each_ring(ring, dev_priv, i) {
2528 struct drm_i915_gem_object *ctx_obj =
2529 ctx->engine[ring->id].state;
2530 struct intel_ringbuffer *ringbuf =
2531 ctx->engine[ring->id].ringbuf;
2532 uint32_t *reg_state;
2533 struct page *page;
2534
2535 if (!ctx_obj)
2536 continue;
2537
2538 if (i915_gem_object_get_pages(ctx_obj)) {
2539 WARN(1, "Failed get_pages for context obj\n");
2540 continue;
2541 }
033908ae 2542 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2543 reg_state = kmap_atomic(page);
2544
2545 reg_state[CTX_RING_HEAD+1] = 0;
2546 reg_state[CTX_RING_TAIL+1] = 0;
2547
2548 kunmap_atomic(reg_state);
2549
2550 ringbuf->head = 0;
2551 ringbuf->tail = 0;
2552 }
2553}
This page took 0.387884 seconds and 5 git commands to generate.