drm/i915: Change WARN to ERROR in CSB count
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
17ee950d 226#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 227
8ba319da 228static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
229static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
73e4d07f
OM
266/**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
84b790f8
BW
278u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279{
d1675198
AD
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286}
287
5af05fef
MT
288static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289{
290 struct drm_device *dev = ring->dev;
291
e87a005d 292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
5af05fef
MT
294 (ring->id == VCS || ring->id == VCS2);
295}
296
919f1f55
DG
297uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
84b790f8 299{
919f1f55 300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 301 uint64_t desc;
d1675198
AD
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
306
307 desc = GEN8_CTX_VALID;
2dba3239 308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
203a571b 319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
ec72d588 320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
5af05fef 321 if (disable_lite_restore_wa(ring))
203a571b
NH
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
84b790f8
BW
324 return desc;
325}
326
cc3c4253
MK
327static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
84b790f8 329{
cc3c4253
MK
330
331 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 334 uint64_t desc[2];
84b790f8 335
1cff8cc3 336 if (rq1) {
919f1f55 337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
84b790f8 342
919f1f55 343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 344 rq0->elsp_submitted++;
84b790f8 345
1cff8cc3 346 /* You must always write both descriptors in the order below. */
a6111f7b
CW
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 351
1cff8cc3 352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 353 /* The context is automatically loaded after the following */
1cff8cc3 354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 355
1cff8cc3 356 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
360}
361
05d9824b 362static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
05d9824b
MK
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
368 struct page *page;
369 uint32_t *reg_state;
370
05d9824b
MK
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
033908ae 375 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
376 reg_state = kmap_atomic(page);
377
05d9824b
MK
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 380
2dba3239
MT
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
d7b2633d
MT
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
ae1250b9
OM
393 kunmap_atomic(reg_state);
394
395 return 0;
396}
397
d8cb8875
MK
398static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
84b790f8 400{
05d9824b 401 execlists_update_context(rq0);
d8cb8875 402
cc3c4253 403 if (rq1)
05d9824b 404 execlists_update_context(rq1);
84b790f8 405
cc3c4253 406 execlists_elsp_write(rq0, rq1);
84b790f8
BW
407}
408
acdd884a
MT
409static void execlists_context_unqueue(struct intel_engine_cs *ring)
410{
6d3d8274
NH
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
413
414 assert_spin_locked(&ring->execlist_lock);
acdd884a 415
779949f4
PA
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
acdd884a
MT
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
6d3d8274 430 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
e1fee72c 433 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 434 list_del(&req0->execlist_link);
c86ee3a9
TD
435 list_add_tail(&req0->execlist_link,
436 &ring->execlist_retired_req_list);
acdd884a
MT
437 req0 = cursor;
438 } else {
439 req1 = cursor;
440 break;
441 }
442 }
443
53292cdb
MT
444 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445 /*
446 * WaIdleLiteRestore: make sure we never cause a lite
447 * restore with HEAD==TAIL
448 */
d63f820f 449 if (req0->elsp_submitted) {
53292cdb
MT
450 /*
451 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452 * as we resubmit the request. See gen8_emit_request()
453 * for where we prepare the padding after the end of the
454 * request.
455 */
456 struct intel_ringbuffer *ringbuf;
457
458 ringbuf = req0->ctx->engine[ring->id].ringbuf;
459 req0->tail += 8;
460 req0->tail &= ringbuf->size - 1;
461 }
462 }
463
e1fee72c
OM
464 WARN_ON(req1 && req1->elsp_submitted);
465
d8cb8875 466 execlists_submit_requests(req0, req1);
acdd884a
MT
467}
468
e981e7b1
TD
469static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470 u32 request_id)
471{
6d3d8274 472 struct drm_i915_gem_request *head_req;
e981e7b1
TD
473
474 assert_spin_locked(&ring->execlist_lock);
475
476 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 477 struct drm_i915_gem_request,
e981e7b1
TD
478 execlist_link);
479
480 if (head_req != NULL) {
481 struct drm_i915_gem_object *ctx_obj =
6d3d8274 482 head_req->ctx->engine[ring->id].state;
e981e7b1 483 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
484 WARN(head_req->elsp_submitted == 0,
485 "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted <= 0) {
488 list_del(&head_req->execlist_link);
c86ee3a9
TD
489 list_add_tail(&head_req->execlist_link,
490 &ring->execlist_retired_req_list);
e1fee72c
OM
491 return true;
492 }
e981e7b1
TD
493 }
494 }
495
496 return false;
497}
498
73e4d07f 499/**
3f7531c3 500 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
501 * @ring: Engine Command Streamer to handle.
502 *
503 * Check the unread Context Status Buffers and manage the submission of new
504 * contexts to the ELSP accordingly.
505 */
3f7531c3 506void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
507{
508 struct drm_i915_private *dev_priv = ring->dev->dev_private;
509 u32 status_pointer;
510 u8 read_pointer;
511 u8 write_pointer;
5af05fef 512 u32 status = 0;
e981e7b1
TD
513 u32 status_id;
514 u32 submit_contexts = 0;
515
516 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518 read_pointer = ring->next_context_status_buffer;
5590a5f0 519 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 520 if (read_pointer > write_pointer)
dfc53c5e 521 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1
TD
522
523 spin_lock(&ring->execlist_lock);
524
525 while (read_pointer < write_pointer) {
526 read_pointer++;
48f87dd1
DA
527 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
528 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
e981e7b1 529
031a8936
MK
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 continue;
532
e1fee72c
OM
533 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535 if (execlists_check_remove_request(ring, status_id))
536 WARN(1, "Lite Restored request removed from queue\n");
537 } else
538 WARN(1, "Preemption without Lite Restore\n");
539 }
540
eba51190
BW
541 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
543 if (execlists_check_remove_request(ring, status_id))
544 submit_contexts++;
545 }
546 }
547
5af05fef
MT
548 if (disable_lite_restore_wa(ring)) {
549 /* Prevent a ctx to preempt itself */
550 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551 (submit_contexts != 0))
552 execlists_context_unqueue(ring);
553 } else if (submit_contexts != 0) {
e981e7b1 554 execlists_context_unqueue(ring);
5af05fef 555 }
e981e7b1
TD
556
557 spin_unlock(&ring->execlist_lock);
558
f764a8b1
BW
559 if (unlikely(submit_contexts > 2))
560 DRM_ERROR("More than two context complete events?\n");
561
dfc53c5e 562 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 563
5590a5f0
BW
564 /* Update the read pointer to the old write pointer. Manual ringbuffer
565 * management ftw </sarcasm> */
e981e7b1 566 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
5590a5f0
BW
567 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
568 ring->next_context_status_buffer << 8));
e981e7b1
TD
569}
570
ae70797d 571static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 572{
ae70797d 573 struct intel_engine_cs *ring = request->ring;
6d3d8274 574 struct drm_i915_gem_request *cursor;
f1ad5a1f 575 int num_elements = 0;
acdd884a 576
af3302b9
DV
577 if (request->ctx != ring->default_context)
578 intel_lr_context_pin(request);
579
9bb1af44
JH
580 i915_gem_request_reference(request);
581
b5eba372 582 spin_lock_irq(&ring->execlist_lock);
acdd884a 583
f1ad5a1f
OM
584 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
585 if (++num_elements > 2)
586 break;
587
588 if (num_elements > 2) {
6d3d8274 589 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
590
591 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 592 struct drm_i915_gem_request,
f1ad5a1f
OM
593 execlist_link);
594
ae70797d 595 if (request->ctx == tail_req->ctx) {
f1ad5a1f 596 WARN(tail_req->elsp_submitted != 0,
7ba717cf 597 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 598 list_del(&tail_req->execlist_link);
c86ee3a9
TD
599 list_add_tail(&tail_req->execlist_link,
600 &ring->execlist_retired_req_list);
f1ad5a1f
OM
601 }
602 }
603
6d3d8274 604 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 605 if (num_elements == 0)
acdd884a
MT
606 execlists_context_unqueue(ring);
607
b5eba372 608 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
609
610 return 0;
611}
612
2f20055d 613static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 614{
2f20055d 615 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
616 uint32_t flush_domains;
617 int ret;
618
619 flush_domains = 0;
620 if (ring->gpu_caches_dirty)
621 flush_domains = I915_GEM_GPU_DOMAINS;
622
7deb4d39 623 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
624 if (ret)
625 return ret;
626
627 ring->gpu_caches_dirty = false;
628 return 0;
629}
630
535fbe82 631static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
632 struct list_head *vmas)
633{
535fbe82 634 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
635 struct i915_vma *vma;
636 uint32_t flush_domains = 0;
637 bool flush_chipset = false;
638 int ret;
639
640 list_for_each_entry(vma, vmas, exec_list) {
641 struct drm_i915_gem_object *obj = vma->obj;
642
03ade511 643 if (obj->active & other_rings) {
91af127f 644 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
645 if (ret)
646 return ret;
647 }
ba8b7ccb
OM
648
649 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
650 flush_chipset |= i915_gem_clflush_object(obj, false);
651
652 flush_domains |= obj->base.write_domain;
653 }
654
655 if (flush_domains & I915_GEM_DOMAIN_GTT)
656 wmb();
657
658 /* Unconditionally invalidate gpu caches and ensure that we do flush
659 * any residual writes from the previous batch.
660 */
2f20055d 661 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
662}
663
40e895ce 664int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 665{
bc0dce3f
JH
666 int ret;
667
f3cc01f0
MK
668 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
669
40e895ce 670 if (request->ctx != request->ring->default_context) {
8ba319da 671 ret = intel_lr_context_pin(request);
6689cb2b 672 if (ret)
bc0dce3f 673 return ret;
bc0dce3f
JH
674 }
675
a7e02199
AD
676 if (i915.enable_guc_submission) {
677 /*
678 * Check that the GuC has space for the request before
679 * going any further, as the i915_add_request() call
680 * later on mustn't fail ...
681 */
682 struct intel_guc *guc = &request->i915->guc;
683
684 ret = i915_guc_wq_check_space(guc->execbuf_client);
685 if (ret)
686 return ret;
687 }
688
bc0dce3f
JH
689 return 0;
690}
691
ae70797d 692static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 693 int bytes)
bc0dce3f 694{
ae70797d
JH
695 struct intel_ringbuffer *ringbuf = req->ringbuf;
696 struct intel_engine_cs *ring = req->ring;
697 struct drm_i915_gem_request *target;
b4716185
CW
698 unsigned space;
699 int ret;
bc0dce3f
JH
700
701 if (intel_ring_space(ringbuf) >= bytes)
702 return 0;
703
79bbcc29
JH
704 /* The whole point of reserving space is to not wait! */
705 WARN_ON(ringbuf->reserved_in_use);
706
ae70797d 707 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
708 /*
709 * The request queue is per-engine, so can contain requests
710 * from multiple ringbuffers. Here, we must ignore any that
711 * aren't from the ringbuffer we're considering.
712 */
ae70797d 713 if (target->ringbuf != ringbuf)
bc0dce3f
JH
714 continue;
715
716 /* Would completion of this request free enough space? */
ae70797d 717 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
718 ringbuf->size);
719 if (space >= bytes)
bc0dce3f 720 break;
bc0dce3f
JH
721 }
722
ae70797d 723 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
724 return -ENOSPC;
725
ae70797d 726 ret = i915_wait_request(target);
bc0dce3f
JH
727 if (ret)
728 return ret;
729
b4716185
CW
730 ringbuf->space = space;
731 return 0;
bc0dce3f
JH
732}
733
734/*
735 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 736 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
737 *
738 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
739 * really happens during submission is that the context and current tail will be placed
740 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
741 * point, the tail *inside* the context is updated and the ELSP written to.
742 */
743static void
ae70797d 744intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 745{
ae70797d 746 struct intel_engine_cs *ring = request->ring;
d1675198 747 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 748
ae70797d 749 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 750
d1675198
AD
751 request->tail = request->ringbuf->tail;
752
bc0dce3f
JH
753 if (intel_ring_stopped(ring))
754 return;
755
d1675198
AD
756 if (dev_priv->guc.execbuf_client)
757 i915_guc_submit(dev_priv->guc.execbuf_client, request);
758 else
759 execlists_context_queue(request);
bc0dce3f
JH
760}
761
79bbcc29 762static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
763{
764 uint32_t __iomem *virt;
765 int rem = ringbuf->size - ringbuf->tail;
766
bc0dce3f
JH
767 virt = ringbuf->virtual_start + ringbuf->tail;
768 rem /= 4;
769 while (rem--)
770 iowrite32(MI_NOOP, virt++);
771
772 ringbuf->tail = 0;
773 intel_ring_update_space(ringbuf);
bc0dce3f
JH
774}
775
ae70797d 776static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 777{
ae70797d 778 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
779 int remain_usable = ringbuf->effective_size - ringbuf->tail;
780 int remain_actual = ringbuf->size - ringbuf->tail;
781 int ret, total_bytes, wait_bytes = 0;
782 bool need_wrap = false;
29b1b415 783
79bbcc29
JH
784 if (ringbuf->reserved_in_use)
785 total_bytes = bytes;
786 else
787 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 788
79bbcc29
JH
789 if (unlikely(bytes > remain_usable)) {
790 /*
791 * Not enough space for the basic request. So need to flush
792 * out the remainder and then wait for base + reserved.
793 */
794 wait_bytes = remain_actual + total_bytes;
795 need_wrap = true;
796 } else {
797 if (unlikely(total_bytes > remain_usable)) {
798 /*
799 * The base request will fit but the reserved space
800 * falls off the end. So only need to to wait for the
801 * reserved size after flushing out the remainder.
802 */
803 wait_bytes = remain_actual + ringbuf->reserved_size;
804 need_wrap = true;
805 } else if (total_bytes > ringbuf->space) {
806 /* No wrapping required, just waiting. */
807 wait_bytes = total_bytes;
29b1b415 808 }
bc0dce3f
JH
809 }
810
79bbcc29
JH
811 if (wait_bytes) {
812 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
813 if (unlikely(ret))
814 return ret;
79bbcc29
JH
815
816 if (need_wrap)
817 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
818 }
819
820 return 0;
821}
822
823/**
824 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
825 *
374887ba 826 * @req: The request to start some new work for
bc0dce3f
JH
827 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
828 *
829 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
830 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
831 * and also preallocates a request (every workload submission is still mediated through
832 * requests, same as it did with legacy ringbuffer submission).
833 *
834 * Return: non-zero if the ringbuffer is not ready to be written to.
835 */
3bbaba0c 836int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 837{
4d616a29 838 struct drm_i915_private *dev_priv;
bc0dce3f
JH
839 int ret;
840
4d616a29
JH
841 WARN_ON(req == NULL);
842 dev_priv = req->ring->dev->dev_private;
843
bc0dce3f
JH
844 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
845 dev_priv->mm.interruptible);
846 if (ret)
847 return ret;
848
ae70797d 849 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
850 if (ret)
851 return ret;
852
4d616a29 853 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
854 return 0;
855}
856
ccd98fe4
JH
857int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
858{
859 /*
860 * The first call merely notes the reserve request and is common for
861 * all back ends. The subsequent localised _begin() call actually
862 * ensures that the reservation is available. Without the begin, if
863 * the request creator immediately submitted the request without
864 * adding any commands to it then there might not actually be
865 * sufficient room for the submission commands.
866 */
867 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
868
869 return intel_logical_ring_begin(request, 0);
870}
871
73e4d07f
OM
872/**
873 * execlists_submission() - submit a batchbuffer for execution, Execlists style
874 * @dev: DRM device.
875 * @file: DRM file.
876 * @ring: Engine Command Streamer to submit to.
877 * @ctx: Context to employ for this submission.
878 * @args: execbuffer call arguments.
879 * @vmas: list of vmas.
880 * @batch_obj: the batchbuffer to submit.
881 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 882 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
883 *
884 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
885 * away the submission details of the execbuffer ioctl call.
886 *
887 * Return: non-zero if the submission fails.
888 */
5f19e2bf 889int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 890 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 891 struct list_head *vmas)
454afebd 892{
5f19e2bf
JH
893 struct drm_device *dev = params->dev;
894 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 895 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
896 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
897 u64 exec_start;
ba8b7ccb
OM
898 int instp_mode;
899 u32 instp_mask;
900 int ret;
901
902 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
903 instp_mask = I915_EXEC_CONSTANTS_MASK;
904 switch (instp_mode) {
905 case I915_EXEC_CONSTANTS_REL_GENERAL:
906 case I915_EXEC_CONSTANTS_ABSOLUTE:
907 case I915_EXEC_CONSTANTS_REL_SURFACE:
908 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
909 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
910 return -EINVAL;
911 }
912
913 if (instp_mode != dev_priv->relative_constants_mode) {
914 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
915 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
916 return -EINVAL;
917 }
918
919 /* The HW changed the meaning on this bit on gen6 */
920 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
921 }
922 break;
923 default:
924 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
925 return -EINVAL;
926 }
927
ba8b7ccb
OM
928 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
929 DRM_DEBUG("sol reset is gen7 only\n");
930 return -EINVAL;
931 }
932
535fbe82 933 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
934 if (ret)
935 return ret;
936
937 if (ring == &dev_priv->ring[RCS] &&
938 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 939 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
940 if (ret)
941 return ret;
942
943 intel_logical_ring_emit(ringbuf, MI_NOOP);
944 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 945 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
946 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
947 intel_logical_ring_advance(ringbuf);
948
949 dev_priv->relative_constants_mode = instp_mode;
950 }
951
5f19e2bf
JH
952 exec_start = params->batch_obj_vm_offset +
953 args->batch_start_offset;
954
be795fc1 955 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
956 if (ret)
957 return ret;
958
95c24161 959 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 960
8a8edb59 961 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 962 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 963
454afebd
OM
964 return 0;
965}
966
c86ee3a9
TD
967void intel_execlists_retire_requests(struct intel_engine_cs *ring)
968{
6d3d8274 969 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
970 struct list_head retired_list;
971
972 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
973 if (list_empty(&ring->execlist_retired_req_list))
974 return;
975
976 INIT_LIST_HEAD(&retired_list);
b5eba372 977 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 978 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 979 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
980
981 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
982 struct intel_context *ctx = req->ctx;
983 struct drm_i915_gem_object *ctx_obj =
984 ctx->engine[ring->id].state;
985
986 if (ctx_obj && (ctx != ring->default_context))
987 intel_lr_context_unpin(req);
c86ee3a9 988 list_del(&req->execlist_link);
f8210795 989 i915_gem_request_unreference(req);
c86ee3a9
TD
990 }
991}
992
454afebd
OM
993void intel_logical_ring_stop(struct intel_engine_cs *ring)
994{
9832b9da
OM
995 struct drm_i915_private *dev_priv = ring->dev->dev_private;
996 int ret;
997
998 if (!intel_ring_initialized(ring))
999 return;
1000
1001 ret = intel_ring_idle(ring);
1002 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1003 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1004 ring->name, ret);
1005
1006 /* TODO: Is this correct with Execlists enabled? */
1007 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1008 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1009 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1010 return;
1011 }
1012 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1013}
1014
4866d729 1015int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1016{
4866d729 1017 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1018 int ret;
1019
1020 if (!ring->gpu_caches_dirty)
1021 return 0;
1022
7deb4d39 1023 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1024 if (ret)
1025 return ret;
1026
1027 ring->gpu_caches_dirty = false;
1028 return 0;
1029}
1030
e84fe803
NH
1031static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1032 struct drm_i915_gem_object *ctx_obj,
1033 struct intel_ringbuffer *ringbuf)
dcb4c12a 1034{
e84fe803
NH
1035 struct drm_device *dev = ring->dev;
1036 struct drm_i915_private *dev_priv = dev->dev_private;
dcb4c12a
OM
1037 int ret = 0;
1038
1039 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
e84fe803
NH
1040 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1041 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1042 if (ret)
1043 return ret;
7ba717cf 1044
e84fe803
NH
1045 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1046 if (ret)
1047 goto unpin_ctx_obj;
d1675198 1048
e84fe803 1049 ctx_obj->dirty = true;
e93c28f3 1050
e84fe803
NH
1051 /* Invalidate GuC TLB. */
1052 if (i915.enable_guc_submission)
1053 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1054
7ba717cf
TD
1055 return ret;
1056
1057unpin_ctx_obj:
1058 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1059
1060 return ret;
1061}
1062
1063static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1064{
1065 int ret = 0;
1066 struct intel_engine_cs *ring = rq->ring;
1067 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1068 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1069
1070 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1071 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1072 if (ret)
1073 goto reset_pin_count;
1074 }
1075 return ret;
1076
a7cbedec 1077reset_pin_count:
8ba319da 1078 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1079 return ret;
1080}
1081
af3302b9 1082void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1083{
af3302b9
DV
1084 struct intel_engine_cs *ring = rq->ring;
1085 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1086 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1087
dcb4c12a
OM
1088 if (ctx_obj) {
1089 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
af3302b9 1090 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1091 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1092 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1093 }
dcb4c12a
OM
1094 }
1095}
1096
e2be4faf 1097static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1098{
1099 int ret, i;
e2be4faf
JH
1100 struct intel_engine_cs *ring = req->ring;
1101 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1102 struct drm_device *dev = ring->dev;
1103 struct drm_i915_private *dev_priv = dev->dev_private;
1104 struct i915_workarounds *w = &dev_priv->workarounds;
1105
e6c1abb7 1106 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1107 return 0;
1108
1109 ring->gpu_caches_dirty = true;
4866d729 1110 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1111 if (ret)
1112 return ret;
1113
4d616a29 1114 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1115 if (ret)
1116 return ret;
1117
1118 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1119 for (i = 0; i < w->count; i++) {
f92a9162 1120 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1121 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1122 }
1123 intel_logical_ring_emit(ringbuf, MI_NOOP);
1124
1125 intel_logical_ring_advance(ringbuf);
1126
1127 ring->gpu_caches_dirty = true;
4866d729 1128 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1129 if (ret)
1130 return ret;
1131
1132 return 0;
1133}
1134
83b8a982 1135#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1136 do { \
83b8a982
AS
1137 int __index = (index)++; \
1138 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1139 return -ENOSPC; \
1140 } \
83b8a982 1141 batch[__index] = (cmd); \
17ee950d
AS
1142 } while (0)
1143
8f40db77 1144#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1145 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1146
1147/*
1148 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1149 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1150 * but there is a slight complication as this is applied in WA batch where the
1151 * values are only initialized once so we cannot take register value at the
1152 * beginning and reuse it further; hence we save its value to memory, upload a
1153 * constant value with bit21 set and then we restore it back with the saved value.
1154 * To simplify the WA, a constant value is formed by using the default value
1155 * of this register. This shouldn't be a problem because we are only modifying
1156 * it for a short period and this batch in non-premptible. We can ofcourse
1157 * use additional instructions that read the actual value of the register
1158 * at that time and set our bit of interest but it makes the WA complicated.
1159 *
1160 * This WA is also required for Gen9 so extracting as a function avoids
1161 * code duplication.
1162 */
1163static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1164 uint32_t *const batch,
1165 uint32_t index)
1166{
1167 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1168
a4106a78
AS
1169 /*
1170 * WaDisableLSQCROPERFforOCL:skl
1171 * This WA is implemented in skl_init_clock_gating() but since
1172 * this batch updates GEN8_L3SQCREG4 with default value we need to
1173 * set this bit here to retain the WA during flush.
1174 */
e87a005d 1175 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1176 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1177
f1afe24f 1178 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1179 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1180 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1181 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1182 wa_ctx_emit(batch, index, 0);
1183
1184 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1185 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1186 wa_ctx_emit(batch, index, l3sqc4_flush);
1187
1188 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1189 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1190 PIPE_CONTROL_DC_FLUSH_ENABLE));
1191 wa_ctx_emit(batch, index, 0);
1192 wa_ctx_emit(batch, index, 0);
1193 wa_ctx_emit(batch, index, 0);
1194 wa_ctx_emit(batch, index, 0);
1195
f1afe24f 1196 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1197 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1198 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1199 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1200 wa_ctx_emit(batch, index, 0);
9e000847
AS
1201
1202 return index;
1203}
1204
17ee950d
AS
1205static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1206 uint32_t offset,
1207 uint32_t start_alignment)
1208{
1209 return wa_ctx->offset = ALIGN(offset, start_alignment);
1210}
1211
1212static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1213 uint32_t offset,
1214 uint32_t size_alignment)
1215{
1216 wa_ctx->size = offset - wa_ctx->offset;
1217
1218 WARN(wa_ctx->size % size_alignment,
1219 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1220 wa_ctx->size, size_alignment);
1221 return 0;
1222}
1223
1224/**
1225 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1226 *
1227 * @ring: only applicable for RCS
1228 * @wa_ctx: structure representing wa_ctx
1229 * offset: specifies start of the batch, should be cache-aligned. This is updated
1230 * with the offset value received as input.
1231 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1232 * @batch: page in which WA are loaded
1233 * @offset: This field specifies the start of the batch, it should be
1234 * cache-aligned otherwise it is adjusted accordingly.
1235 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1236 * initialized at the beginning and shared across all contexts but this field
1237 * helps us to have multiple batches at different offsets and select them based
1238 * on a criteria. At the moment this batch always start at the beginning of the page
1239 * and at this point we don't have multiple wa_ctx batch buffers.
1240 *
1241 * The number of WA applied are not known at the beginning; we use this field
1242 * to return the no of DWORDS written.
4d78c8dc 1243 *
17ee950d
AS
1244 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1245 * so it adds NOOPs as padding to make it cacheline aligned.
1246 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1247 * makes a complete batch buffer.
1248 *
1249 * Return: non-zero if we exceed the PAGE_SIZE limit.
1250 */
1251
1252static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1253 struct i915_wa_ctx_bb *wa_ctx,
1254 uint32_t *const batch,
1255 uint32_t *offset)
1256{
0160f055 1257 uint32_t scratch_addr;
17ee950d
AS
1258 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1259
7ad00d1a 1260 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1261 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1262
c82435bb
AS
1263 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1264 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1265 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1266 if (rc < 0)
1267 return rc;
1268 index = rc;
c82435bb
AS
1269 }
1270
0160f055
AS
1271 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1272 /* Actual scratch location is at 128 bytes offset */
1273 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1274
83b8a982
AS
1275 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1276 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1277 PIPE_CONTROL_GLOBAL_GTT_IVB |
1278 PIPE_CONTROL_CS_STALL |
1279 PIPE_CONTROL_QW_WRITE));
1280 wa_ctx_emit(batch, index, scratch_addr);
1281 wa_ctx_emit(batch, index, 0);
1282 wa_ctx_emit(batch, index, 0);
1283 wa_ctx_emit(batch, index, 0);
0160f055 1284
17ee950d
AS
1285 /* Pad to end of cacheline */
1286 while (index % CACHELINE_DWORDS)
83b8a982 1287 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1288
1289 /*
1290 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1291 * execution depends on the length specified in terms of cache lines
1292 * in the register CTX_RCS_INDIRECT_CTX
1293 */
1294
1295 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1296}
1297
1298/**
1299 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1300 *
1301 * @ring: only applicable for RCS
1302 * @wa_ctx: structure representing wa_ctx
1303 * offset: specifies start of the batch, should be cache-aligned.
1304 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1305 * @batch: page in which WA are loaded
17ee950d
AS
1306 * @offset: This field specifies the start of this batch.
1307 * This batch is started immediately after indirect_ctx batch. Since we ensure
1308 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1309 *
1310 * The number of DWORDS written are returned using this field.
1311 *
1312 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1313 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1314 */
1315static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1316 struct i915_wa_ctx_bb *wa_ctx,
1317 uint32_t *const batch,
1318 uint32_t *offset)
1319{
1320 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1321
7ad00d1a 1322 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1323 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1324
83b8a982 1325 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1326
1327 return wa_ctx_end(wa_ctx, *offset = index, 1);
1328}
1329
0504cffc
AS
1330static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1331 struct i915_wa_ctx_bb *wa_ctx,
1332 uint32_t *const batch,
1333 uint32_t *offset)
1334{
a4106a78 1335 int ret;
0907c8f7 1336 struct drm_device *dev = ring->dev;
0504cffc
AS
1337 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1338
0907c8f7 1339 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1340 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1341 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1342 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1343
a4106a78
AS
1344 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1345 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1346 if (ret < 0)
1347 return ret;
1348 index = ret;
1349
0504cffc
AS
1350 /* Pad to end of cacheline */
1351 while (index % CACHELINE_DWORDS)
1352 wa_ctx_emit(batch, index, MI_NOOP);
1353
1354 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1355}
1356
1357static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1358 struct i915_wa_ctx_bb *wa_ctx,
1359 uint32_t *const batch,
1360 uint32_t *offset)
1361{
0907c8f7 1362 struct drm_device *dev = ring->dev;
0504cffc
AS
1363 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1364
9b01435d 1365 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1366 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1367 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1368 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1369 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1370 wa_ctx_emit(batch, index,
1371 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1372 wa_ctx_emit(batch, index, MI_NOOP);
1373 }
1374
0907c8f7 1375 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1376 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1377 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1378 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1379
0504cffc
AS
1380 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1381
1382 return wa_ctx_end(wa_ctx, *offset = index, 1);
1383}
1384
17ee950d
AS
1385static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1386{
1387 int ret;
1388
1389 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1390 if (!ring->wa_ctx.obj) {
1391 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1392 return -ENOMEM;
1393 }
1394
1395 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1396 if (ret) {
1397 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1398 ret);
1399 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1400 return ret;
1401 }
1402
1403 return 0;
1404}
1405
1406static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1407{
1408 if (ring->wa_ctx.obj) {
1409 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1410 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1411 ring->wa_ctx.obj = NULL;
1412 }
1413}
1414
1415static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1416{
1417 int ret;
1418 uint32_t *batch;
1419 uint32_t offset;
1420 struct page *page;
1421 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1422
1423 WARN_ON(ring->id != RCS);
1424
5e60d790 1425 /* update this when WA for higher Gen are added */
0504cffc
AS
1426 if (INTEL_INFO(ring->dev)->gen > 9) {
1427 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1428 INTEL_INFO(ring->dev)->gen);
5e60d790 1429 return 0;
0504cffc 1430 }
5e60d790 1431
c4db7599
AS
1432 /* some WA perform writes to scratch page, ensure it is valid */
1433 if (ring->scratch.obj == NULL) {
1434 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1435 return -EINVAL;
1436 }
1437
17ee950d
AS
1438 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1439 if (ret) {
1440 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1441 return ret;
1442 }
1443
033908ae 1444 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1445 batch = kmap_atomic(page);
1446 offset = 0;
1447
1448 if (INTEL_INFO(ring->dev)->gen == 8) {
1449 ret = gen8_init_indirectctx_bb(ring,
1450 &wa_ctx->indirect_ctx,
1451 batch,
1452 &offset);
1453 if (ret)
1454 goto out;
1455
1456 ret = gen8_init_perctx_bb(ring,
1457 &wa_ctx->per_ctx,
1458 batch,
1459 &offset);
1460 if (ret)
1461 goto out;
0504cffc
AS
1462 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1463 ret = gen9_init_indirectctx_bb(ring,
1464 &wa_ctx->indirect_ctx,
1465 batch,
1466 &offset);
1467 if (ret)
1468 goto out;
1469
1470 ret = gen9_init_perctx_bb(ring,
1471 &wa_ctx->per_ctx,
1472 batch,
1473 &offset);
1474 if (ret)
1475 goto out;
17ee950d
AS
1476 }
1477
1478out:
1479 kunmap_atomic(batch);
1480 if (ret)
1481 lrc_destroy_wa_ctx_obj(ring);
1482
1483 return ret;
1484}
1485
9b1136d5
OM
1486static int gen8_init_common_ring(struct intel_engine_cs *ring)
1487{
1488 struct drm_device *dev = ring->dev;
1489 struct drm_i915_private *dev_priv = dev->dev_private;
dfc53c5e 1490 u8 next_context_status_buffer_hw;
9b1136d5 1491
e84fe803
NH
1492 lrc_setup_hardware_status_page(ring,
1493 ring->default_context->engine[ring->id].state);
1494
73d477f6
OM
1495 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1496 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1497
9b1136d5
OM
1498 I915_WRITE(RING_MODE_GEN7(ring),
1499 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1500 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1501 POSTING_READ(RING_MODE_GEN7(ring));
dfc53c5e
MT
1502
1503 /*
1504 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1505 * zero, we need to read the write pointer from hardware and use its
1506 * value because "this register is power context save restored".
1507 * Effectively, these states have been observed:
1508 *
1509 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1510 * BDW | CSB regs not reset | CSB regs reset |
1511 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1512 * SKL | ? | ? |
1513 * BXT | ? | ? |
dfc53c5e 1514 */
5590a5f0
BW
1515 next_context_status_buffer_hw =
1516 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
dfc53c5e
MT
1517
1518 /*
1519 * When the CSB registers are reset (also after power-up / gpu reset),
1520 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1521 * this special case, so the first element read is CSB[0].
1522 */
1523 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1524 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1525
1526 ring->next_context_status_buffer = next_context_status_buffer_hw;
9b1136d5
OM
1527 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1528
1529 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1530
1531 return 0;
1532}
1533
1534static int gen8_init_render_ring(struct intel_engine_cs *ring)
1535{
1536 struct drm_device *dev = ring->dev;
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 int ret;
1539
1540 ret = gen8_init_common_ring(ring);
1541 if (ret)
1542 return ret;
1543
1544 /* We need to disable the AsyncFlip performance optimisations in order
1545 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1546 * programmed to '1' on all products.
1547 *
1548 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1549 */
1550 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1551
9b1136d5
OM
1552 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1553
771b9a53 1554 return init_workarounds_ring(ring);
9b1136d5
OM
1555}
1556
82ef822e
DL
1557static int gen9_init_render_ring(struct intel_engine_cs *ring)
1558{
1559 int ret;
1560
1561 ret = gen8_init_common_ring(ring);
1562 if (ret)
1563 return ret;
1564
1565 return init_workarounds_ring(ring);
1566}
1567
7a01a0a2
MT
1568static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1569{
1570 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1571 struct intel_engine_cs *ring = req->ring;
1572 struct intel_ringbuffer *ringbuf = req->ringbuf;
1573 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1574 int i, ret;
1575
1576 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1577 if (ret)
1578 return ret;
1579
1580 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1581 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1582 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1583
f92a9162 1584 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
7a01a0a2 1585 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
f92a9162 1586 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
7a01a0a2
MT
1587 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1588 }
1589
1590 intel_logical_ring_emit(ringbuf, MI_NOOP);
1591 intel_logical_ring_advance(ringbuf);
1592
1593 return 0;
1594}
1595
be795fc1 1596static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1597 u64 offset, unsigned dispatch_flags)
15648585 1598{
be795fc1 1599 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1600 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1601 int ret;
1602
7a01a0a2
MT
1603 /* Don't rely in hw updating PDPs, specially in lite-restore.
1604 * Ideally, we should set Force PD Restore in ctx descriptor,
1605 * but we can't. Force Restore would be a second option, but
1606 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1607 * not idle). PML4 is allocated during ppgtt init so this is
1608 * not needed in 48-bit.*/
7a01a0a2
MT
1609 if (req->ctx->ppgtt &&
1610 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1611 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1612 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1613 ret = intel_logical_ring_emit_pdps(req);
1614 if (ret)
1615 return ret;
1616 }
7a01a0a2
MT
1617
1618 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1619 }
1620
4d616a29 1621 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1622 if (ret)
1623 return ret;
1624
1625 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1626 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1627 (ppgtt<<8) |
1628 (dispatch_flags & I915_DISPATCH_RS ?
1629 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1630 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1631 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1632 intel_logical_ring_emit(ringbuf, MI_NOOP);
1633 intel_logical_ring_advance(ringbuf);
1634
1635 return 0;
1636}
1637
73d477f6
OM
1638static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1639{
1640 struct drm_device *dev = ring->dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 unsigned long flags;
1643
7cd512f1 1644 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1645 return false;
1646
1647 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1648 if (ring->irq_refcount++ == 0) {
1649 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1650 POSTING_READ(RING_IMR(ring->mmio_base));
1651 }
1652 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1653
1654 return true;
1655}
1656
1657static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1658{
1659 struct drm_device *dev = ring->dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 unsigned long flags;
1662
1663 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1664 if (--ring->irq_refcount == 0) {
1665 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1666 POSTING_READ(RING_IMR(ring->mmio_base));
1667 }
1668 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1669}
1670
7deb4d39 1671static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1672 u32 invalidate_domains,
1673 u32 unused)
1674{
7deb4d39 1675 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1676 struct intel_engine_cs *ring = ringbuf->ring;
1677 struct drm_device *dev = ring->dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679 uint32_t cmd;
1680 int ret;
1681
4d616a29 1682 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1683 if (ret)
1684 return ret;
1685
1686 cmd = MI_FLUSH_DW + 1;
1687
f0a1fb10
CW
1688 /* We always require a command barrier so that subsequent
1689 * commands, such as breadcrumb interrupts, are strictly ordered
1690 * wrt the contents of the write cache being flushed to memory
1691 * (and thus being coherent from the CPU).
1692 */
1693 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1694
1695 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1696 cmd |= MI_INVALIDATE_TLB;
1697 if (ring == &dev_priv->ring[VCS])
1698 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1699 }
1700
1701 intel_logical_ring_emit(ringbuf, cmd);
1702 intel_logical_ring_emit(ringbuf,
1703 I915_GEM_HWS_SCRATCH_ADDR |
1704 MI_FLUSH_DW_USE_GTT);
1705 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1706 intel_logical_ring_emit(ringbuf, 0); /* value */
1707 intel_logical_ring_advance(ringbuf);
1708
1709 return 0;
1710}
1711
7deb4d39 1712static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1713 u32 invalidate_domains,
1714 u32 flush_domains)
1715{
7deb4d39 1716 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1717 struct intel_engine_cs *ring = ringbuf->ring;
1718 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1719 bool vf_flush_wa = false;
4712274c
OM
1720 u32 flags = 0;
1721 int ret;
1722
1723 flags |= PIPE_CONTROL_CS_STALL;
1724
1725 if (flush_domains) {
1726 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1727 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
40a24488 1728 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1729 }
1730
1731 if (invalidate_domains) {
1732 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1733 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1734 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1735 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1736 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1737 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1738 flags |= PIPE_CONTROL_QW_WRITE;
1739 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1740
1a5a9ce7
BW
1741 /*
1742 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1743 * pipe control.
1744 */
1745 if (IS_GEN9(ring->dev))
1746 vf_flush_wa = true;
1747 }
9647ff36 1748
4d616a29 1749 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1750 if (ret)
1751 return ret;
1752
9647ff36
ID
1753 if (vf_flush_wa) {
1754 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 intel_logical_ring_emit(ringbuf, 0);
1759 intel_logical_ring_emit(ringbuf, 0);
1760 }
1761
4712274c
OM
1762 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1763 intel_logical_ring_emit(ringbuf, flags);
1764 intel_logical_ring_emit(ringbuf, scratch_addr);
1765 intel_logical_ring_emit(ringbuf, 0);
1766 intel_logical_ring_emit(ringbuf, 0);
1767 intel_logical_ring_emit(ringbuf, 0);
1768 intel_logical_ring_advance(ringbuf);
1769
1770 return 0;
1771}
1772
e94e37ad
OM
1773static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1774{
1775 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1776}
1777
1778static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1779{
1780 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1781}
1782
319404df
ID
1783static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1784{
1785
1786 /*
1787 * On BXT A steppings there is a HW coherency issue whereby the
1788 * MI_STORE_DATA_IMM storing the completed request's seqno
1789 * occasionally doesn't invalidate the CPU cache. Work around this by
1790 * clflushing the corresponding cacheline whenever the caller wants
1791 * the coherency to be guaranteed. Note that this cacheline is known
1792 * to be clean at this point, since we only write it in
1793 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1794 * this clflush in practice becomes an invalidate operation.
1795 */
1796
1797 if (!lazy_coherency)
1798 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1799
1800 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1801}
1802
1803static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1804{
1805 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1806
1807 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1808 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1809}
1810
c4e76638 1811static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1812{
c4e76638 1813 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1814 struct intel_engine_cs *ring = ringbuf->ring;
1815 u32 cmd;
1816 int ret;
1817
53292cdb
MT
1818 /*
1819 * Reserve space for 2 NOOPs at the end of each request to be
1820 * used as a workaround for not being allowed to do lite
1821 * restore with HEAD==TAIL (WaIdleLiteRestore).
1822 */
4d616a29 1823 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1824 if (ret)
1825 return ret;
1826
8edfbb8b 1827 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1828 cmd |= MI_GLOBAL_GTT;
1829
1830 intel_logical_ring_emit(ringbuf, cmd);
1831 intel_logical_ring_emit(ringbuf,
1832 (ring->status_page.gfx_addr +
1833 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1834 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1835 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1836 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1837 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1838 intel_logical_ring_advance_and_submit(request);
4da46e1e 1839
53292cdb
MT
1840 /*
1841 * Here we add two extra NOOPs as padding to avoid
1842 * lite restore of a context with HEAD==TAIL.
1843 */
1844 intel_logical_ring_emit(ringbuf, MI_NOOP);
1845 intel_logical_ring_emit(ringbuf, MI_NOOP);
1846 intel_logical_ring_advance(ringbuf);
1847
4da46e1e
OM
1848 return 0;
1849}
1850
be01363f 1851static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1852{
cef437ad 1853 struct render_state so;
cef437ad
DL
1854 int ret;
1855
be01363f 1856 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1857 if (ret)
1858 return ret;
1859
1860 if (so.rodata == NULL)
1861 return 0;
1862
be795fc1 1863 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1864 I915_DISPATCH_SECURE);
cef437ad
DL
1865 if (ret)
1866 goto out;
1867
84e81020
AS
1868 ret = req->ring->emit_bb_start(req,
1869 (so.ggtt_offset + so.aux_batch_offset),
1870 I915_DISPATCH_SECURE);
1871 if (ret)
1872 goto out;
1873
b2af0376 1874 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1875
cef437ad
DL
1876out:
1877 i915_gem_render_state_fini(&so);
1878 return ret;
1879}
1880
8753181e 1881static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1882{
1883 int ret;
1884
e2be4faf 1885 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1886 if (ret)
1887 return ret;
1888
3bbaba0c
PA
1889 ret = intel_rcs_context_init_mocs(req);
1890 /*
1891 * Failing to program the MOCS is non-fatal.The system will not
1892 * run at peak performance. So generate an error and carry on.
1893 */
1894 if (ret)
1895 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1896
be01363f 1897 return intel_lr_context_render_state_init(req);
e7778be1
TD
1898}
1899
73e4d07f
OM
1900/**
1901 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1902 *
1903 * @ring: Engine Command Streamer.
1904 *
1905 */
454afebd
OM
1906void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1907{
6402c330 1908 struct drm_i915_private *dev_priv;
9832b9da 1909
48d82387
OM
1910 if (!intel_ring_initialized(ring))
1911 return;
1912
6402c330
JH
1913 dev_priv = ring->dev->dev_private;
1914
b0366a54
DG
1915 if (ring->buffer) {
1916 intel_logical_ring_stop(ring);
1917 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1918 }
48d82387
OM
1919
1920 if (ring->cleanup)
1921 ring->cleanup(ring);
1922
1923 i915_cmd_parser_fini_ring(ring);
06fbca71 1924 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1925
1926 if (ring->status_page.obj) {
1927 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1928 ring->status_page.obj = NULL;
1929 }
17ee950d
AS
1930
1931 lrc_destroy_wa_ctx_obj(ring);
b0366a54 1932 ring->dev = NULL;
454afebd
OM
1933}
1934
1935static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1936{
48d82387 1937 int ret;
48d82387
OM
1938
1939 /* Intentionally left blank. */
1940 ring->buffer = NULL;
1941
1942 ring->dev = dev;
1943 INIT_LIST_HEAD(&ring->active_list);
1944 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1945 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1946 init_waitqueue_head(&ring->irq_queue);
1947
608c1a52 1948 INIT_LIST_HEAD(&ring->buffers);
acdd884a 1949 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1950 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1951 spin_lock_init(&ring->execlist_lock);
1952
48d82387
OM
1953 ret = i915_cmd_parser_init_ring(ring);
1954 if (ret)
b0366a54 1955 goto error;
48d82387 1956
e84fe803
NH
1957 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1958 if (ret)
b0366a54 1959 goto error;
e84fe803
NH
1960
1961 /* As this is the default context, always pin it */
1962 ret = intel_lr_context_do_pin(
1963 ring,
1964 ring->default_context->engine[ring->id].state,
1965 ring->default_context->engine[ring->id].ringbuf);
1966 if (ret) {
1967 DRM_ERROR(
1968 "Failed to pin and map ringbuffer %s: %d\n",
1969 ring->name, ret);
b0366a54 1970 goto error;
e84fe803 1971 }
564ddb2f 1972
b0366a54
DG
1973 return 0;
1974
1975error:
1976 intel_logical_ring_cleanup(ring);
564ddb2f 1977 return ret;
454afebd
OM
1978}
1979
1980static int logical_render_ring_init(struct drm_device *dev)
1981{
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1984 int ret;
454afebd
OM
1985
1986 ring->name = "render ring";
1987 ring->id = RCS;
1988 ring->mmio_base = RENDER_RING_BASE;
1989 ring->irq_enable_mask =
1990 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1991 ring->irq_keep_mask =
1992 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1993 if (HAS_L3_DPF(dev))
1994 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1995
82ef822e
DL
1996 if (INTEL_INFO(dev)->gen >= 9)
1997 ring->init_hw = gen9_init_render_ring;
1998 else
1999 ring->init_hw = gen8_init_render_ring;
e7778be1 2000 ring->init_context = gen8_init_rcs_context;
9b1136d5 2001 ring->cleanup = intel_fini_pipe_control;
e87a005d 2002 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2003 ring->get_seqno = bxt_a_get_seqno;
2004 ring->set_seqno = bxt_a_set_seqno;
2005 } else {
2006 ring->get_seqno = gen8_get_seqno;
2007 ring->set_seqno = gen8_set_seqno;
2008 }
4da46e1e 2009 ring->emit_request = gen8_emit_request;
4712274c 2010 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
2011 ring->irq_get = gen8_logical_ring_get_irq;
2012 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2013 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2014
99be1dfe 2015 ring->dev = dev;
c4db7599
AS
2016
2017 ret = intel_init_pipe_control(ring);
99be1dfe
DV
2018 if (ret)
2019 return ret;
2020
17ee950d
AS
2021 ret = intel_init_workaround_bb(ring);
2022 if (ret) {
2023 /*
2024 * We continue even if we fail to initialize WA batch
2025 * because we only expect rare glitches but nothing
2026 * critical to prevent us from using GPU
2027 */
2028 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2029 ret);
2030 }
2031
c4db7599
AS
2032 ret = logical_ring_init(dev, ring);
2033 if (ret) {
17ee950d 2034 lrc_destroy_wa_ctx_obj(ring);
c4db7599 2035 }
17ee950d
AS
2036
2037 return ret;
454afebd
OM
2038}
2039
2040static int logical_bsd_ring_init(struct drm_device *dev)
2041{
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2044
2045 ring->name = "bsd ring";
2046 ring->id = VCS;
2047 ring->mmio_base = GEN6_BSD_RING_BASE;
2048 ring->irq_enable_mask =
2049 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
2050 ring->irq_keep_mask =
2051 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 2052
ecfe00d8 2053 ring->init_hw = gen8_init_common_ring;
e87a005d 2054 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2055 ring->get_seqno = bxt_a_get_seqno;
2056 ring->set_seqno = bxt_a_set_seqno;
2057 } else {
2058 ring->get_seqno = gen8_get_seqno;
2059 ring->set_seqno = gen8_set_seqno;
2060 }
4da46e1e 2061 ring->emit_request = gen8_emit_request;
4712274c 2062 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2063 ring->irq_get = gen8_logical_ring_get_irq;
2064 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2065 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2066
454afebd
OM
2067 return logical_ring_init(dev, ring);
2068}
2069
2070static int logical_bsd2_ring_init(struct drm_device *dev)
2071{
2072 struct drm_i915_private *dev_priv = dev->dev_private;
2073 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2074
2075 ring->name = "bds2 ring";
2076 ring->id = VCS2;
2077 ring->mmio_base = GEN8_BSD2_RING_BASE;
2078 ring->irq_enable_mask =
2079 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
2080 ring->irq_keep_mask =
2081 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 2082
ecfe00d8 2083 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
2084 ring->get_seqno = gen8_get_seqno;
2085 ring->set_seqno = gen8_set_seqno;
4da46e1e 2086 ring->emit_request = gen8_emit_request;
4712274c 2087 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2088 ring->irq_get = gen8_logical_ring_get_irq;
2089 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2090 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2091
454afebd
OM
2092 return logical_ring_init(dev, ring);
2093}
2094
2095static int logical_blt_ring_init(struct drm_device *dev)
2096{
2097 struct drm_i915_private *dev_priv = dev->dev_private;
2098 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2099
2100 ring->name = "blitter ring";
2101 ring->id = BCS;
2102 ring->mmio_base = BLT_RING_BASE;
2103 ring->irq_enable_mask =
2104 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2105 ring->irq_keep_mask =
2106 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2107
ecfe00d8 2108 ring->init_hw = gen8_init_common_ring;
e87a005d 2109 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2110 ring->get_seqno = bxt_a_get_seqno;
2111 ring->set_seqno = bxt_a_set_seqno;
2112 } else {
2113 ring->get_seqno = gen8_get_seqno;
2114 ring->set_seqno = gen8_set_seqno;
2115 }
4da46e1e 2116 ring->emit_request = gen8_emit_request;
4712274c 2117 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2118 ring->irq_get = gen8_logical_ring_get_irq;
2119 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2120 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2121
454afebd
OM
2122 return logical_ring_init(dev, ring);
2123}
2124
2125static int logical_vebox_ring_init(struct drm_device *dev)
2126{
2127 struct drm_i915_private *dev_priv = dev->dev_private;
2128 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2129
2130 ring->name = "video enhancement ring";
2131 ring->id = VECS;
2132 ring->mmio_base = VEBOX_RING_BASE;
2133 ring->irq_enable_mask =
2134 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2135 ring->irq_keep_mask =
2136 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2137
ecfe00d8 2138 ring->init_hw = gen8_init_common_ring;
e87a005d 2139 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
319404df
ID
2140 ring->get_seqno = bxt_a_get_seqno;
2141 ring->set_seqno = bxt_a_set_seqno;
2142 } else {
2143 ring->get_seqno = gen8_get_seqno;
2144 ring->set_seqno = gen8_set_seqno;
2145 }
4da46e1e 2146 ring->emit_request = gen8_emit_request;
4712274c 2147 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2148 ring->irq_get = gen8_logical_ring_get_irq;
2149 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2150 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2151
454afebd
OM
2152 return logical_ring_init(dev, ring);
2153}
2154
73e4d07f
OM
2155/**
2156 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2157 * @dev: DRM device.
2158 *
2159 * This function inits the engines for an Execlists submission style (the equivalent in the
2160 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2161 * those engines that are present in the hardware.
2162 *
2163 * Return: non-zero if the initialization failed.
2164 */
454afebd
OM
2165int intel_logical_rings_init(struct drm_device *dev)
2166{
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 int ret;
2169
2170 ret = logical_render_ring_init(dev);
2171 if (ret)
2172 return ret;
2173
2174 if (HAS_BSD(dev)) {
2175 ret = logical_bsd_ring_init(dev);
2176 if (ret)
2177 goto cleanup_render_ring;
2178 }
2179
2180 if (HAS_BLT(dev)) {
2181 ret = logical_blt_ring_init(dev);
2182 if (ret)
2183 goto cleanup_bsd_ring;
2184 }
2185
2186 if (HAS_VEBOX(dev)) {
2187 ret = logical_vebox_ring_init(dev);
2188 if (ret)
2189 goto cleanup_blt_ring;
2190 }
2191
2192 if (HAS_BSD2(dev)) {
2193 ret = logical_bsd2_ring_init(dev);
2194 if (ret)
2195 goto cleanup_vebox_ring;
2196 }
2197
454afebd
OM
2198 return 0;
2199
454afebd
OM
2200cleanup_vebox_ring:
2201 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2202cleanup_blt_ring:
2203 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2204cleanup_bsd_ring:
2205 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2206cleanup_render_ring:
2207 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2208
2209 return ret;
2210}
2211
0cea6502
JM
2212static u32
2213make_rpcs(struct drm_device *dev)
2214{
2215 u32 rpcs = 0;
2216
2217 /*
2218 * No explicit RPCS request is needed to ensure full
2219 * slice/subslice/EU enablement prior to Gen9.
2220 */
2221 if (INTEL_INFO(dev)->gen < 9)
2222 return 0;
2223
2224 /*
2225 * Starting in Gen9, render power gating can leave
2226 * slice/subslice/EU in a partially enabled state. We
2227 * must make an explicit request through RPCS for full
2228 * enablement.
2229 */
2230 if (INTEL_INFO(dev)->has_slice_pg) {
2231 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2232 rpcs |= INTEL_INFO(dev)->slice_total <<
2233 GEN8_RPCS_S_CNT_SHIFT;
2234 rpcs |= GEN8_RPCS_ENABLE;
2235 }
2236
2237 if (INTEL_INFO(dev)->has_subslice_pg) {
2238 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2239 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2240 GEN8_RPCS_SS_CNT_SHIFT;
2241 rpcs |= GEN8_RPCS_ENABLE;
2242 }
2243
2244 if (INTEL_INFO(dev)->has_eu_pg) {
2245 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2246 GEN8_RPCS_EU_MIN_SHIFT;
2247 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2248 GEN8_RPCS_EU_MAX_SHIFT;
2249 rpcs |= GEN8_RPCS_ENABLE;
2250 }
2251
2252 return rpcs;
2253}
2254
8670d6f9
OM
2255static int
2256populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2257 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2258{
2d965536
TD
2259 struct drm_device *dev = ring->dev;
2260 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2261 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2262 struct page *page;
2263 uint32_t *reg_state;
2264 int ret;
2265
2d965536
TD
2266 if (!ppgtt)
2267 ppgtt = dev_priv->mm.aliasing_ppgtt;
2268
8670d6f9
OM
2269 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2270 if (ret) {
2271 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2272 return ret;
2273 }
2274
2275 ret = i915_gem_object_get_pages(ctx_obj);
2276 if (ret) {
2277 DRM_DEBUG_DRIVER("Could not get object pages\n");
2278 return ret;
2279 }
2280
2281 i915_gem_object_pin_pages(ctx_obj);
2282
2283 /* The second page of the context object contains some fields which must
2284 * be set up prior to the first execution. */
033908ae 2285 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2286 reg_state = kmap_atomic(page);
2287
2288 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2289 * commands followed by (reg, value) pairs. The values we are setting here are
2290 * only for the first context restore: on a subsequent save, the GPU will
2291 * recreate this batchbuffer with new values (including all the missing
2292 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2293 reg_state[CTX_LRI_HEADER_0] =
2294 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2295 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2296 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2297 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2298 CTX_CTRL_RS_CTX_ENABLE));
2299 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2300 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2301 /* Ring buffer start address is not known until the buffer is pinned.
2302 * It is written to the context image in execlists_update_context()
2303 */
0d925ea0
VS
2304 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2305 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2306 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2307 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2308 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2309 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2310 RING_BB_PPGTT);
2311 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2312 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2313 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2314 if (ring->id == RCS) {
0d925ea0
VS
2315 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2316 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2317 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2318 if (ring->wa_ctx.obj) {
2319 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2320 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2321
2322 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2323 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2324 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2325
2326 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2327 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2328
2329 reg_state[CTX_BB_PER_CTX_PTR+1] =
2330 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2331 0x01;
2332 }
8670d6f9 2333 }
0d925ea0
VS
2334 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2335 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2336 /* PDP values well be assigned later if needed */
2337 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2338 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2343 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2345
2dba3239
MT
2346 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2347 /* 64b PPGTT (48bit canonical)
2348 * PDP0_DESCRIPTOR contains the base address to PML4 and
2349 * other PDP Descriptors are ignored.
2350 */
2351 ASSIGN_CTX_PML4(ppgtt, reg_state);
2352 } else {
2353 /* 32b PPGTT
2354 * PDP*_DESCRIPTOR contains the base address of space supported.
2355 * With dynamic page allocation, PDPs may not be allocated at
2356 * this point. Point the unallocated PDPs to the scratch page
2357 */
2358 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2359 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2360 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2361 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2362 }
2363
8670d6f9
OM
2364 if (ring->id == RCS) {
2365 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2366 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2367 make_rpcs(dev));
8670d6f9
OM
2368 }
2369
2370 kunmap_atomic(reg_state);
8670d6f9
OM
2371 i915_gem_object_unpin_pages(ctx_obj);
2372
2373 return 0;
2374}
2375
73e4d07f
OM
2376/**
2377 * intel_lr_context_free() - free the LRC specific bits of a context
2378 * @ctx: the LR context to free.
2379 *
2380 * The real context freeing is done in i915_gem_context_free: this only
2381 * takes care of the bits that are LRC related: the per-engine backing
2382 * objects and the logical ringbuffer.
2383 */
ede7d42b
OM
2384void intel_lr_context_free(struct intel_context *ctx)
2385{
8c857917
OM
2386 int i;
2387
af3302b9 2388 for (i = 0; i < I915_NUM_RINGS; i++) {
8c857917 2389 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2390
8c857917 2391 if (ctx_obj) {
dcb4c12a
OM
2392 struct intel_ringbuffer *ringbuf =
2393 ctx->engine[i].ringbuf;
2394 struct intel_engine_cs *ring = ringbuf->ring;
2395
af3302b9
DV
2396 if (ctx == ring->default_context) {
2397 intel_unpin_ringbuffer_obj(ringbuf);
2398 i915_gem_object_ggtt_unpin(ctx_obj);
2399 }
2400 WARN_ON(ctx->engine[ring->id].pin_count);
2401 intel_ringbuffer_free(ringbuf);
2402 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2403 }
2404 }
2405}
2406
c5d46ee2
DG
2407/**
2408 * intel_lr_context_size() - return the size of the context for an engine
2409 * @ring: which engine to find the context size for
2410 *
2411 * Each engine may require a different amount of space for a context image,
2412 * so when allocating (or copying) an image, this function can be used to
2413 * find the right size for the specific engine.
2414 *
2415 * Return: size (in bytes) of an engine-specific context image
2416 *
2417 * Note: this size includes the HWSP, which is part of the context image
2418 * in LRC mode, but does not include the "shared data page" used with
2419 * GuC submission. The caller should account for this if using the GuC.
2420 */
95a66f7e 2421uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
8c857917
OM
2422{
2423 int ret = 0;
2424
468c6816 2425 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2426
2427 switch (ring->id) {
2428 case RCS:
468c6816
MN
2429 if (INTEL_INFO(ring->dev)->gen >= 9)
2430 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2431 else
2432 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2433 break;
2434 case VCS:
2435 case BCS:
2436 case VECS:
2437 case VCS2:
2438 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2439 break;
2440 }
2441
2442 return ret;
ede7d42b
OM
2443}
2444
70b0ea86 2445static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2446 struct drm_i915_gem_object *default_ctx_obj)
2447{
2448 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2449 struct page *page;
1df06b75 2450
d1675198
AD
2451 /* The HWSP is part of the default context object in LRC mode. */
2452 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2453 + LRC_PPHWSP_PN * PAGE_SIZE;
2454 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2455 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2456 ring->status_page.obj = default_ctx_obj;
2457
2458 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2459 (u32)ring->status_page.gfx_addr);
2460 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2461}
2462
73e4d07f 2463/**
e84fe803 2464 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2465 * @ctx: LR context to create.
2466 * @ring: engine to be used with the context.
2467 *
2468 * This function can be called more than once, with different engines, if we plan
2469 * to use the context with them. The context backing objects and the ringbuffers
2470 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2471 * the creation is a deferred call: it's better to make sure first that we need to use
2472 * a given ring with the context.
2473 *
32197aab 2474 * Return: non-zero on error.
73e4d07f 2475 */
e84fe803
NH
2476
2477int intel_lr_context_deferred_alloc(struct intel_context *ctx,
ede7d42b
OM
2478 struct intel_engine_cs *ring)
2479{
8c857917
OM
2480 struct drm_device *dev = ring->dev;
2481 struct drm_i915_gem_object *ctx_obj;
2482 uint32_t context_size;
84c2377f 2483 struct intel_ringbuffer *ringbuf;
8c857917
OM
2484 int ret;
2485
ede7d42b 2486 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2487 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2488
95a66f7e 2489 context_size = round_up(intel_lr_context_size(ring), 4096);
8c857917 2490
d1675198
AD
2491 /* One extra page as the sharing data between driver and GuC */
2492 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2493
149c86e7 2494 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2495 if (!ctx_obj) {
2496 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2497 return -ENOMEM;
8c857917
OM
2498 }
2499
01101fa7
CW
2500 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2501 if (IS_ERR(ringbuf)) {
2502 ret = PTR_ERR(ringbuf);
e84fe803 2503 goto error_deref_obj;
8670d6f9
OM
2504 }
2505
2506 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2507 if (ret) {
2508 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2509 goto error_ringbuf;
84c2377f
OM
2510 }
2511
2512 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2513 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2514
e84fe803
NH
2515 if (ctx != ring->default_context && ring->init_context) {
2516 struct drm_i915_gem_request *req;
76c39168 2517
e84fe803
NH
2518 ret = i915_gem_request_alloc(ring,
2519 ctx, &req);
2520 if (ret) {
2521 DRM_ERROR("ring create req: %d\n",
2522 ret);
e84fe803 2523 goto error_ringbuf;
771b9a53
MT
2524 }
2525
e84fe803
NH
2526 ret = ring->init_context(req);
2527 if (ret) {
2528 DRM_ERROR("ring init context: %d\n",
2529 ret);
2530 i915_gem_request_cancel(req);
2531 goto error_ringbuf;
2532 }
2533 i915_add_request_no_flush(req);
564ddb2f 2534 }
ede7d42b 2535 return 0;
8670d6f9 2536
01101fa7
CW
2537error_ringbuf:
2538 intel_ringbuffer_free(ringbuf);
e84fe803 2539error_deref_obj:
8670d6f9 2540 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2541 ctx->engine[ring->id].ringbuf = NULL;
2542 ctx->engine[ring->id].state = NULL;
8670d6f9 2543 return ret;
ede7d42b 2544}
3e5b6f05
TD
2545
2546void intel_lr_context_reset(struct drm_device *dev,
2547 struct intel_context *ctx)
2548{
2549 struct drm_i915_private *dev_priv = dev->dev_private;
2550 struct intel_engine_cs *ring;
2551 int i;
2552
2553 for_each_ring(ring, dev_priv, i) {
2554 struct drm_i915_gem_object *ctx_obj =
2555 ctx->engine[ring->id].state;
2556 struct intel_ringbuffer *ringbuf =
2557 ctx->engine[ring->id].ringbuf;
2558 uint32_t *reg_state;
2559 struct page *page;
2560
2561 if (!ctx_obj)
2562 continue;
2563
2564 if (i915_gem_object_get_pages(ctx_obj)) {
2565 WARN(1, "Failed get_pages for context obj\n");
2566 continue;
2567 }
033908ae 2568 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2569 reg_state = kmap_atomic(page);
2570
2571 reg_state[CTX_RING_HEAD+1] = 0;
2572 reg_state[CTX_RING_TAIL+1] = 0;
2573
2574 kunmap_atomic(reg_state);
2575
2576 ringbuf->head = 0;
2577 ringbuf->tail = 0;
2578 }
2579}
This page took 0.310114 seconds and 5 git commands to generate.