drm/i915/guc: add enable_guc_loading parameter
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
0e93cdd4
CW
231/* Typical size of the average request (2 pipecontrols and a MI_BB) */
232#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
978f1e09
CW
234static int execlists_context_deferred_alloc(struct intel_context *ctx,
235 struct intel_engine_cs *engine);
e5292823
TU
236static int intel_lr_context_pin(struct intel_context *ctx,
237 struct intel_engine_cs *engine);
7ba717cf 238
73e4d07f
OM
239/**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev: DRM device.
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
27401d12 245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
c033666a 249int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 250{
a0bd6c31
ZL
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
c033666a 254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
255 return 1;
256
c033666a 257 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
258 return 1;
259
127f1003
OM
260 if (enable_execlists == 0)
261 return 0;
262
b8d2afae 263 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv))
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
c033666a 272 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 273
c033666a 274 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
c033666a
CW
277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
ca82580c 283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
c033666a 284 if (IS_GEN8(dev_priv))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c
TU
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 313 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
314 * bits 53-54: mbz, reserved for use by hardware
315 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 316 */
ca82580c
TU
317static void
318intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 319 struct intel_engine_cs *engine)
84b790f8 320{
7069b144 321 u64 desc;
84b790f8 322
7069b144 323 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 324
7069b144
CW
325 desc = engine->ctx_desc_template; /* bits 0-11 */
326 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
327 LRC_PPHWSP_PN * PAGE_SIZE;
328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
0bc40be8 330 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
331}
332
919f1f55 333uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
cc3c4253
MK
339static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340 struct drm_i915_gem_request *rq1)
84b790f8 341{
cc3c4253 342
4a570db5 343 struct intel_engine_cs *engine = rq0->engine;
c033666a 344 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 345 uint64_t desc[2];
84b790f8 346
1cff8cc3 347 if (rq1) {
4a570db5 348 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
349 rq1->elsp_submitted++;
350 } else {
351 desc[1] = 0;
352 }
84b790f8 353
4a570db5 354 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 355 rq0->elsp_submitted++;
84b790f8 356
1cff8cc3 357 /* You must always write both descriptors in the order below. */
e2f80391
TU
358 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
359 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 360
e2f80391 361 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 362 /* The context is automatically loaded after the following */
e2f80391 363 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 364
1cff8cc3 365 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 366 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
367}
368
c6a2ac71
TU
369static void
370execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
371{
372 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
376}
377
378static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 379{
4a570db5 380 struct intel_engine_cs *engine = rq->engine;
05d9824b 381 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 382 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 383
05d9824b 384 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 385
c6a2ac71
TU
386 /* True 32b PPGTT with dynamic page allocation: update PDP
387 * registers and point the unallocated PDPs to scratch page.
388 * PML4 is allocated during ppgtt init, so this is not needed
389 * in 48-bit mode.
390 */
391 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
392 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
393}
394
d8cb8875
MK
395static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
396 struct drm_i915_gem_request *rq1)
84b790f8 397{
26720ab9 398 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 399 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 400
05d9824b 401 execlists_update_context(rq0);
d8cb8875 402
cc3c4253 403 if (rq1)
05d9824b 404 execlists_update_context(rq1);
84b790f8 405
27af5eea 406 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 407 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 408
cc3c4253 409 execlists_elsp_write(rq0, rq1);
26720ab9 410
3756685a 411 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 412 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
413}
414
26720ab9 415static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 416{
6d3d8274 417 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 418 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 419
0bc40be8 420 assert_spin_locked(&engine->execlist_lock);
acdd884a 421
779949f4
PA
422 /*
423 * If irqs are not active generate a warning as batches that finish
424 * without the irqs may get lost and a GPU Hang may occur.
425 */
c033666a 426 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 427
acdd884a 428 /* Try to read in pairs */
0bc40be8 429 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
430 execlist_link) {
431 if (!req0) {
432 req0 = cursor;
6d3d8274 433 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
434 /* Same ctx: ignore first request, as second request
435 * will update tail past first request's workload */
e1fee72c 436 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
437 list_del(&req0->execlist_link);
438 i915_gem_request_unreference(req0);
acdd884a
MT
439 req0 = cursor;
440 } else {
441 req1 = cursor;
c6a2ac71 442 WARN_ON(req1->elsp_submitted);
acdd884a
MT
443 break;
444 }
445 }
446
c6a2ac71
TU
447 if (unlikely(!req0))
448 return;
449
0bc40be8 450 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 451 /*
c6a2ac71
TU
452 * WaIdleLiteRestore: make sure we never cause a lite restore
453 * with HEAD==TAIL.
454 *
455 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
456 * resubmit the request. See gen8_emit_request() for where we
457 * prepare the padding after the end of the request.
53292cdb 458 */
c6a2ac71 459 struct intel_ringbuffer *ringbuf;
53292cdb 460
0bc40be8 461 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
462 req0->tail += 8;
463 req0->tail &= ringbuf->size - 1;
53292cdb
MT
464 }
465
d8cb8875 466 execlists_submit_requests(req0, req1);
acdd884a
MT
467}
468
c6a2ac71 469static unsigned int
e39d42fa 470execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 471{
6d3d8274 472 struct drm_i915_gem_request *head_req;
e981e7b1 473
0bc40be8 474 assert_spin_locked(&engine->execlist_lock);
e981e7b1 475
0bc40be8 476 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 477 struct drm_i915_gem_request,
e981e7b1
TD
478 execlist_link);
479
e39d42fa
TU
480 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
481 return 0;
c6a2ac71
TU
482
483 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
484
485 if (--head_req->elsp_submitted > 0)
486 return 0;
487
e39d42fa
TU
488 list_del(&head_req->execlist_link);
489 i915_gem_request_unreference(head_req);
e981e7b1 490
c6a2ac71 491 return 1;
e981e7b1
TD
492}
493
c6a2ac71 494static u32
0bc40be8 495get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 496 u32 *context_id)
91a41032 497{
c033666a 498 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 499 u32 status;
91a41032 500
c6a2ac71
TU
501 read_pointer %= GEN8_CSB_ENTRIES;
502
0bc40be8 503 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
504
505 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
506 return 0;
91a41032 507
0bc40be8 508 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
509 read_pointer));
510
511 return status;
91a41032
BW
512}
513
73e4d07f 514/**
3f7531c3 515 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 516 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
517 *
518 * Check the unread Context Status Buffers and manage the submission of new
519 * contexts to the ELSP accordingly.
520 */
27af5eea 521static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 522{
27af5eea 523 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 524 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 525 u32 status_pointer;
c6a2ac71 526 unsigned int read_pointer, write_pointer;
26720ab9
TU
527 u32 csb[GEN8_CSB_ENTRIES][2];
528 unsigned int csb_read = 0, i;
c6a2ac71
TU
529 unsigned int submit_contexts = 0;
530
3756685a 531 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 532
0bc40be8 533 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 534
0bc40be8 535 read_pointer = engine->next_context_status_buffer;
5590a5f0 536 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 537 if (read_pointer > write_pointer)
dfc53c5e 538 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 539
e981e7b1 540 while (read_pointer < write_pointer) {
26720ab9
TU
541 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
542 break;
543 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
544 &csb[csb_read][1]);
545 csb_read++;
546 }
91a41032 547
26720ab9
TU
548 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
549
550 /* Update the read pointer to the old write pointer. Manual ringbuffer
551 * management ftw </sarcasm> */
552 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
553 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
554 engine->next_context_status_buffer << 8));
555
3756685a 556 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
557
558 spin_lock(&engine->execlist_lock);
559
560 for (i = 0; i < csb_read; i++) {
561 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
562 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
563 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
564 WARN(1, "Lite Restored request removed from queue\n");
565 } else
566 WARN(1, "Preemption without Lite Restore\n");
567 }
568
26720ab9 569 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
570 GEN8_CTX_STATUS_ELEMENT_SWITCH))
571 submit_contexts +=
26720ab9 572 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
573 }
574
c6a2ac71 575 if (submit_contexts) {
0bc40be8 576 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
577 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
578 execlists_context_unqueue(engine);
5af05fef 579 }
e981e7b1 580
0bc40be8 581 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
582
583 if (unlikely(submit_contexts > 2))
584 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
585}
586
c6a2ac71 587static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 588{
4a570db5 589 struct intel_engine_cs *engine = request->engine;
6d3d8274 590 struct drm_i915_gem_request *cursor;
f1ad5a1f 591 int num_elements = 0;
acdd884a 592
27af5eea 593 spin_lock_bh(&engine->execlist_lock);
acdd884a 594
e2f80391 595 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
596 if (++num_elements > 2)
597 break;
598
599 if (num_elements > 2) {
6d3d8274 600 struct drm_i915_gem_request *tail_req;
f1ad5a1f 601
e2f80391 602 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 603 struct drm_i915_gem_request,
f1ad5a1f
OM
604 execlist_link);
605
ae70797d 606 if (request->ctx == tail_req->ctx) {
f1ad5a1f 607 WARN(tail_req->elsp_submitted != 0,
7ba717cf 608 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
609 list_del(&tail_req->execlist_link);
610 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
611 }
612 }
613
e39d42fa 614 i915_gem_request_reference(request);
e2f80391 615 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 616 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 617 if (num_elements == 0)
e2f80391 618 execlists_context_unqueue(engine);
acdd884a 619
27af5eea 620 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
621}
622
2f20055d 623static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 624{
4a570db5 625 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
626 uint32_t flush_domains;
627 int ret;
628
629 flush_domains = 0;
e2f80391 630 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
631 flush_domains = I915_GEM_GPU_DOMAINS;
632
e2f80391 633 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
634 if (ret)
635 return ret;
636
e2f80391 637 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
638 return 0;
639}
640
535fbe82 641static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
642 struct list_head *vmas)
643{
666796da 644 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
645 struct i915_vma *vma;
646 uint32_t flush_domains = 0;
647 bool flush_chipset = false;
648 int ret;
649
650 list_for_each_entry(vma, vmas, exec_list) {
651 struct drm_i915_gem_object *obj = vma->obj;
652
03ade511 653 if (obj->active & other_rings) {
4a570db5 654 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
655 if (ret)
656 return ret;
657 }
ba8b7ccb
OM
658
659 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
660 flush_chipset |= i915_gem_clflush_object(obj, false);
661
662 flush_domains |= obj->base.write_domain;
663 }
664
665 if (flush_domains & I915_GEM_DOMAIN_GTT)
666 wmb();
667
668 /* Unconditionally invalidate gpu caches and ensure that we do flush
669 * any residual writes from the previous batch.
670 */
2f20055d 671 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
672}
673
40e895ce 674int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 675{
24f1d3cc 676 struct intel_engine_cs *engine = request->engine;
bfa01200 677 int ret;
bc0dce3f 678
6310346e
CW
679 /* Flush enough space to reduce the likelihood of waiting after
680 * we start building the request - in which case we will just
681 * have to repeat work.
682 */
0e93cdd4 683 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 684
978f1e09
CW
685 if (request->ctx->engine[engine->id].state == NULL) {
686 ret = execlists_context_deferred_alloc(request->ctx, engine);
687 if (ret)
688 return ret;
689 }
690
24f1d3cc 691 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
f3cc01f0 692
a7e02199
AD
693 if (i915.enable_guc_submission) {
694 /*
695 * Check that the GuC has space for the request before
696 * going any further, as the i915_add_request() call
697 * later on mustn't fail ...
698 */
699 struct intel_guc *guc = &request->i915->guc;
700
701 ret = i915_guc_wq_check_space(guc->execbuf_client);
702 if (ret)
703 return ret;
704 }
705
24f1d3cc
CW
706 ret = intel_lr_context_pin(request->ctx, engine);
707 if (ret)
708 return ret;
e28e404c 709
bfa01200
CW
710 ret = intel_ring_begin(request, 0);
711 if (ret)
712 goto err_unpin;
713
24f1d3cc
CW
714 if (!request->ctx->engine[engine->id].initialised) {
715 ret = engine->init_context(request);
716 if (ret)
717 goto err_unpin;
718
719 request->ctx->engine[engine->id].initialised = true;
720 }
721
722 /* Note that after this point, we have committed to using
723 * this request as it is being used to both track the
724 * state of engine initialisation and liveness of the
725 * golden renderstate above. Think twice before you try
726 * to cancel/unwind this request now.
727 */
728
0e93cdd4 729 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
730 return 0;
731
732err_unpin:
24f1d3cc 733 intel_lr_context_unpin(request->ctx, engine);
e28e404c 734 return ret;
bc0dce3f
JH
735}
736
bc0dce3f
JH
737/*
738 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 739 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
740 *
741 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
742 * really happens during submission is that the context and current tail will be placed
743 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
744 * point, the tail *inside* the context is updated and the ELSP written to.
745 */
7c17d377 746static int
ae70797d 747intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 748{
7c17d377 749 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 750 struct drm_i915_private *dev_priv = request->i915;
4a570db5 751 struct intel_engine_cs *engine = request->engine;
bc0dce3f 752
7c17d377
CW
753 intel_logical_ring_advance(ringbuf);
754 request->tail = ringbuf->tail;
bc0dce3f 755
7c17d377
CW
756 /*
757 * Here we add two extra NOOPs as padding to avoid
758 * lite restore of a context with HEAD==TAIL.
759 *
760 * Caller must reserve WA_TAIL_DWORDS for us!
761 */
762 intel_logical_ring_emit(ringbuf, MI_NOOP);
763 intel_logical_ring_emit(ringbuf, MI_NOOP);
764 intel_logical_ring_advance(ringbuf);
d1675198 765
117897f4 766 if (intel_engine_stopped(engine))
7c17d377 767 return 0;
bc0dce3f 768
a16a4052
CW
769 /* We keep the previous context alive until we retire the following
770 * request. This ensures that any the context object is still pinned
771 * for any residual writes the HW makes into it on the context switch
772 * into the next object following the breadcrumb. Otherwise, we may
773 * retire the context too early.
774 */
775 request->previous_context = engine->last_context;
776 engine->last_context = request->ctx;
f4e2dece 777
d1675198
AD
778 if (dev_priv->guc.execbuf_client)
779 i915_guc_submit(dev_priv->guc.execbuf_client, request);
780 else
781 execlists_context_queue(request);
7c17d377
CW
782
783 return 0;
bc0dce3f
JH
784}
785
73e4d07f
OM
786/**
787 * execlists_submission() - submit a batchbuffer for execution, Execlists style
788 * @dev: DRM device.
789 * @file: DRM file.
790 * @ring: Engine Command Streamer to submit to.
791 * @ctx: Context to employ for this submission.
792 * @args: execbuffer call arguments.
793 * @vmas: list of vmas.
794 * @batch_obj: the batchbuffer to submit.
795 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 796 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
797 *
798 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
799 * away the submission details of the execbuffer ioctl call.
800 *
801 * Return: non-zero if the submission fails.
802 */
5f19e2bf 803int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 804 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 805 struct list_head *vmas)
454afebd 806{
5f19e2bf 807 struct drm_device *dev = params->dev;
4a570db5 808 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 809 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 810 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 811 u64 exec_start;
ba8b7ccb
OM
812 int instp_mode;
813 u32 instp_mask;
814 int ret;
815
816 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
817 instp_mask = I915_EXEC_CONSTANTS_MASK;
818 switch (instp_mode) {
819 case I915_EXEC_CONSTANTS_REL_GENERAL:
820 case I915_EXEC_CONSTANTS_ABSOLUTE:
821 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 822 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
823 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
824 return -EINVAL;
825 }
826
827 if (instp_mode != dev_priv->relative_constants_mode) {
828 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
829 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
830 return -EINVAL;
831 }
832
833 /* The HW changed the meaning on this bit on gen6 */
834 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
835 }
836 break;
837 default:
838 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
839 return -EINVAL;
840 }
841
ba8b7ccb
OM
842 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
843 DRM_DEBUG("sol reset is gen7 only\n");
844 return -EINVAL;
845 }
846
535fbe82 847 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
848 if (ret)
849 return ret;
850
4a570db5 851 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 852 instp_mode != dev_priv->relative_constants_mode) {
987046ad 853 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
854 if (ret)
855 return ret;
856
857 intel_logical_ring_emit(ringbuf, MI_NOOP);
858 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 859 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
860 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
861 intel_logical_ring_advance(ringbuf);
862
863 dev_priv->relative_constants_mode = instp_mode;
864 }
865
5f19e2bf
JH
866 exec_start = params->batch_obj_vm_offset +
867 args->batch_start_offset;
868
e2f80391 869 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
870 if (ret)
871 return ret;
872
95c24161 873 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 874
8a8edb59 875 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 876
454afebd
OM
877 return 0;
878}
879
e39d42fa 880void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 881{
6d3d8274 882 struct drm_i915_gem_request *req, *tmp;
e39d42fa 883 LIST_HEAD(cancel_list);
c86ee3a9 884
c033666a 885 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
c86ee3a9 886
27af5eea 887 spin_lock_bh(&engine->execlist_lock);
e39d42fa 888 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 889 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 890
e39d42fa 891 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 892 list_del(&req->execlist_link);
f8210795 893 i915_gem_request_unreference(req);
c86ee3a9
TD
894 }
895}
896
0bc40be8 897void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 898{
c033666a 899 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
900 int ret;
901
117897f4 902 if (!intel_engine_initialized(engine))
9832b9da
OM
903 return;
904
666796da 905 ret = intel_engine_idle(engine);
f4457ae7 906 if (ret)
9832b9da 907 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 908 engine->name, ret);
9832b9da
OM
909
910 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
911 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
912 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
913 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
914 return;
915 }
0bc40be8 916 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
917}
918
4866d729 919int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 920{
4a570db5 921 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
922 int ret;
923
e2f80391 924 if (!engine->gpu_caches_dirty)
48e29f55
OM
925 return 0;
926
e2f80391 927 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
928 if (ret)
929 return ret;
930
e2f80391 931 engine->gpu_caches_dirty = false;
48e29f55
OM
932 return 0;
933}
934
24f1d3cc
CW
935static int intel_lr_context_pin(struct intel_context *ctx,
936 struct intel_engine_cs *engine)
dcb4c12a 937{
24f1d3cc
CW
938 struct drm_i915_private *dev_priv = ctx->i915;
939 struct drm_i915_gem_object *ctx_obj;
940 struct intel_ringbuffer *ringbuf;
7d774cac
TU
941 void *vaddr;
942 u32 *lrc_reg_state;
ca82580c 943 int ret;
dcb4c12a 944
24f1d3cc 945 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 946
24f1d3cc
CW
947 if (ctx->engine[engine->id].pin_count++)
948 return 0;
949
950 ctx_obj = ctx->engine[engine->id].state;
e84fe803
NH
951 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
952 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
953 if (ret)
24f1d3cc 954 goto err;
7ba717cf 955
7d774cac
TU
956 vaddr = i915_gem_object_pin_map(ctx_obj);
957 if (IS_ERR(vaddr)) {
958 ret = PTR_ERR(vaddr);
82352e90
TU
959 goto unpin_ctx_obj;
960 }
961
7d774cac
TU
962 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
963
24f1d3cc 964 ringbuf = ctx->engine[engine->id].ringbuf;
c033666a 965 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
e84fe803 966 if (ret)
7d774cac 967 goto unpin_map;
d1675198 968
24f1d3cc 969 i915_gem_context_reference(ctx);
0bc40be8
TU
970 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
971 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 972 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 973 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 974 ctx_obj->dirty = true;
e93c28f3 975
e84fe803
NH
976 /* Invalidate GuC TLB. */
977 if (i915.enable_guc_submission)
978 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 979
24f1d3cc 980 return 0;
7ba717cf 981
7d774cac
TU
982unpin_map:
983 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
984unpin_ctx_obj:
985 i915_gem_object_ggtt_unpin(ctx_obj);
24f1d3cc
CW
986err:
987 ctx->engine[engine->id].pin_count = 0;
e84fe803
NH
988 return ret;
989}
990
24f1d3cc
CW
991void intel_lr_context_unpin(struct intel_context *ctx,
992 struct intel_engine_cs *engine)
e84fe803 993{
24f1d3cc 994 struct drm_i915_gem_object *ctx_obj;
e84fe803 995
24f1d3cc
CW
996 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
997 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
321fe304 998
24f1d3cc
CW
999 if (--ctx->engine[engine->id].pin_count)
1000 return;
e84fe803 1001
24f1d3cc 1002 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
dcb4c12a 1003
24f1d3cc
CW
1004 ctx_obj = ctx->engine[engine->id].state;
1005 i915_gem_object_unpin_map(ctx_obj);
1006 i915_gem_object_ggtt_unpin(ctx_obj);
af3302b9 1007
24f1d3cc
CW
1008 ctx->engine[engine->id].lrc_vma = NULL;
1009 ctx->engine[engine->id].lrc_desc = 0;
1010 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304 1011
24f1d3cc 1012 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1013}
1014
e2be4faf 1015static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1016{
1017 int ret, i;
4a570db5 1018 struct intel_engine_cs *engine = req->engine;
e2be4faf 1019 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1020 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1021
cd7feaaa 1022 if (w->count == 0)
771b9a53
MT
1023 return 0;
1024
e2f80391 1025 engine->gpu_caches_dirty = true;
4866d729 1026 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1027 if (ret)
1028 return ret;
1029
987046ad 1030 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1031 if (ret)
1032 return ret;
1033
1034 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1035 for (i = 0; i < w->count; i++) {
f92a9162 1036 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1037 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1038 }
1039 intel_logical_ring_emit(ringbuf, MI_NOOP);
1040
1041 intel_logical_ring_advance(ringbuf);
1042
e2f80391 1043 engine->gpu_caches_dirty = true;
4866d729 1044 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1045 if (ret)
1046 return ret;
1047
1048 return 0;
1049}
1050
83b8a982 1051#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1052 do { \
83b8a982
AS
1053 int __index = (index)++; \
1054 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1055 return -ENOSPC; \
1056 } \
83b8a982 1057 batch[__index] = (cmd); \
17ee950d
AS
1058 } while (0)
1059
8f40db77 1060#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1061 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1062
1063/*
1064 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1065 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1066 * but there is a slight complication as this is applied in WA batch where the
1067 * values are only initialized once so we cannot take register value at the
1068 * beginning and reuse it further; hence we save its value to memory, upload a
1069 * constant value with bit21 set and then we restore it back with the saved value.
1070 * To simplify the WA, a constant value is formed by using the default value
1071 * of this register. This shouldn't be a problem because we are only modifying
1072 * it for a short period and this batch in non-premptible. We can ofcourse
1073 * use additional instructions that read the actual value of the register
1074 * at that time and set our bit of interest but it makes the WA complicated.
1075 *
1076 * This WA is also required for Gen9 so extracting as a function avoids
1077 * code duplication.
1078 */
0bc40be8 1079static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1080 uint32_t *const batch,
1081 uint32_t index)
1082{
1083 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1084
a4106a78
AS
1085 /*
1086 * WaDisableLSQCROPERFforOCL:skl
1087 * This WA is implemented in skl_init_clock_gating() but since
1088 * this batch updates GEN8_L3SQCREG4 with default value we need to
1089 * set this bit here to retain the WA during flush.
1090 */
c033666a 1091 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
a4106a78
AS
1092 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1093
f1afe24f 1094 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1095 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1096 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1097 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1098 wa_ctx_emit(batch, index, 0);
1099
1100 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1101 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1102 wa_ctx_emit(batch, index, l3sqc4_flush);
1103
1104 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1105 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1106 PIPE_CONTROL_DC_FLUSH_ENABLE));
1107 wa_ctx_emit(batch, index, 0);
1108 wa_ctx_emit(batch, index, 0);
1109 wa_ctx_emit(batch, index, 0);
1110 wa_ctx_emit(batch, index, 0);
1111
f1afe24f 1112 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1113 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1114 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1115 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1116 wa_ctx_emit(batch, index, 0);
9e000847
AS
1117
1118 return index;
1119}
1120
17ee950d
AS
1121static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1122 uint32_t offset,
1123 uint32_t start_alignment)
1124{
1125 return wa_ctx->offset = ALIGN(offset, start_alignment);
1126}
1127
1128static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1129 uint32_t offset,
1130 uint32_t size_alignment)
1131{
1132 wa_ctx->size = offset - wa_ctx->offset;
1133
1134 WARN(wa_ctx->size % size_alignment,
1135 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1136 wa_ctx->size, size_alignment);
1137 return 0;
1138}
1139
1140/**
1141 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1142 *
1143 * @ring: only applicable for RCS
1144 * @wa_ctx: structure representing wa_ctx
1145 * offset: specifies start of the batch, should be cache-aligned. This is updated
1146 * with the offset value received as input.
1147 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1148 * @batch: page in which WA are loaded
1149 * @offset: This field specifies the start of the batch, it should be
1150 * cache-aligned otherwise it is adjusted accordingly.
1151 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1152 * initialized at the beginning and shared across all contexts but this field
1153 * helps us to have multiple batches at different offsets and select them based
1154 * on a criteria. At the moment this batch always start at the beginning of the page
1155 * and at this point we don't have multiple wa_ctx batch buffers.
1156 *
1157 * The number of WA applied are not known at the beginning; we use this field
1158 * to return the no of DWORDS written.
4d78c8dc 1159 *
17ee950d
AS
1160 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1161 * so it adds NOOPs as padding to make it cacheline aligned.
1162 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1163 * makes a complete batch buffer.
1164 *
1165 * Return: non-zero if we exceed the PAGE_SIZE limit.
1166 */
1167
0bc40be8 1168static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1169 struct i915_wa_ctx_bb *wa_ctx,
1170 uint32_t *const batch,
1171 uint32_t *offset)
1172{
0160f055 1173 uint32_t scratch_addr;
17ee950d
AS
1174 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1175
7ad00d1a 1176 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1177 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1178
c82435bb 1179 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1180 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1181 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1182 if (rc < 0)
1183 return rc;
1184 index = rc;
c82435bb
AS
1185 }
1186
0160f055
AS
1187 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1188 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1189 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1190
83b8a982
AS
1191 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1192 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1193 PIPE_CONTROL_GLOBAL_GTT_IVB |
1194 PIPE_CONTROL_CS_STALL |
1195 PIPE_CONTROL_QW_WRITE));
1196 wa_ctx_emit(batch, index, scratch_addr);
1197 wa_ctx_emit(batch, index, 0);
1198 wa_ctx_emit(batch, index, 0);
1199 wa_ctx_emit(batch, index, 0);
0160f055 1200
17ee950d
AS
1201 /* Pad to end of cacheline */
1202 while (index % CACHELINE_DWORDS)
83b8a982 1203 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1204
1205 /*
1206 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1207 * execution depends on the length specified in terms of cache lines
1208 * in the register CTX_RCS_INDIRECT_CTX
1209 */
1210
1211 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1212}
1213
1214/**
1215 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1216 *
1217 * @ring: only applicable for RCS
1218 * @wa_ctx: structure representing wa_ctx
1219 * offset: specifies start of the batch, should be cache-aligned.
1220 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1221 * @batch: page in which WA are loaded
17ee950d
AS
1222 * @offset: This field specifies the start of this batch.
1223 * This batch is started immediately after indirect_ctx batch. Since we ensure
1224 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1225 *
1226 * The number of DWORDS written are returned using this field.
1227 *
1228 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1229 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1230 */
0bc40be8 1231static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1232 struct i915_wa_ctx_bb *wa_ctx,
1233 uint32_t *const batch,
1234 uint32_t *offset)
1235{
1236 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1237
7ad00d1a 1238 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1239 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1240
83b8a982 1241 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1242
1243 return wa_ctx_end(wa_ctx, *offset = index, 1);
1244}
1245
0bc40be8 1246static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1247 struct i915_wa_ctx_bb *wa_ctx,
1248 uint32_t *const batch,
1249 uint32_t *offset)
1250{
a4106a78 1251 int ret;
0504cffc
AS
1252 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1253
0907c8f7 1254 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1255 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1256 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1257 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1258
a4106a78 1259 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1260 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1261 if (ret < 0)
1262 return ret;
1263 index = ret;
1264
0504cffc
AS
1265 /* Pad to end of cacheline */
1266 while (index % CACHELINE_DWORDS)
1267 wa_ctx_emit(batch, index, MI_NOOP);
1268
1269 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1270}
1271
0bc40be8 1272static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1273 struct i915_wa_ctx_bb *wa_ctx,
1274 uint32_t *const batch,
1275 uint32_t *offset)
1276{
1277 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1278
9b01435d 1279 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1280 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1281 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1282 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1283 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1284 wa_ctx_emit(batch, index,
1285 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1286 wa_ctx_emit(batch, index, MI_NOOP);
1287 }
1288
b1e429fe 1289 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1290 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1291 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1292
1293 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1294 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1295
1296 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1297 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1298
1299 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1300 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1301
1302 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1303 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1304 wa_ctx_emit(batch, index, 0x0);
1305 wa_ctx_emit(batch, index, MI_NOOP);
1306 }
1307
0907c8f7 1308 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1309 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1310 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1311 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1312
0504cffc
AS
1313 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1314
1315 return wa_ctx_end(wa_ctx, *offset = index, 1);
1316}
1317
0bc40be8 1318static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1319{
1320 int ret;
1321
c033666a 1322 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
0bc40be8 1323 PAGE_ALIGN(size));
fe3db79b 1324 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1325 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1326 ret = PTR_ERR(engine->wa_ctx.obj);
1327 engine->wa_ctx.obj = NULL;
1328 return ret;
17ee950d
AS
1329 }
1330
0bc40be8 1331 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1332 if (ret) {
1333 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1334 ret);
0bc40be8 1335 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1336 return ret;
1337 }
1338
1339 return 0;
1340}
1341
0bc40be8 1342static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1343{
0bc40be8
TU
1344 if (engine->wa_ctx.obj) {
1345 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1346 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1347 engine->wa_ctx.obj = NULL;
17ee950d
AS
1348 }
1349}
1350
0bc40be8 1351static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1352{
1353 int ret;
1354 uint32_t *batch;
1355 uint32_t offset;
1356 struct page *page;
0bc40be8 1357 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1358
0bc40be8 1359 WARN_ON(engine->id != RCS);
17ee950d 1360
5e60d790 1361 /* update this when WA for higher Gen are added */
c033666a 1362 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1363 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1364 INTEL_GEN(engine->i915));
5e60d790 1365 return 0;
0504cffc 1366 }
5e60d790 1367
c4db7599 1368 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1369 if (engine->scratch.obj == NULL) {
1370 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1371 return -EINVAL;
1372 }
1373
0bc40be8 1374 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1375 if (ret) {
1376 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1377 return ret;
1378 }
1379
033908ae 1380 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1381 batch = kmap_atomic(page);
1382 offset = 0;
1383
c033666a 1384 if (IS_GEN8(engine->i915)) {
0bc40be8 1385 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1386 &wa_ctx->indirect_ctx,
1387 batch,
1388 &offset);
1389 if (ret)
1390 goto out;
1391
0bc40be8 1392 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1393 &wa_ctx->per_ctx,
1394 batch,
1395 &offset);
1396 if (ret)
1397 goto out;
c033666a 1398 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1399 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1400 &wa_ctx->indirect_ctx,
1401 batch,
1402 &offset);
1403 if (ret)
1404 goto out;
1405
0bc40be8 1406 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1407 &wa_ctx->per_ctx,
1408 batch,
1409 &offset);
1410 if (ret)
1411 goto out;
17ee950d
AS
1412 }
1413
1414out:
1415 kunmap_atomic(batch);
1416 if (ret)
0bc40be8 1417 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1418
1419 return ret;
1420}
1421
04794adb
TU
1422static void lrc_init_hws(struct intel_engine_cs *engine)
1423{
c033666a 1424 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1425
1426 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1427 (u32)engine->status_page.gfx_addr);
1428 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1429}
1430
0bc40be8 1431static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1432{
c033666a 1433 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1434 unsigned int next_context_status_buffer_hw;
9b1136d5 1435
04794adb 1436 lrc_init_hws(engine);
e84fe803 1437
0bc40be8
TU
1438 I915_WRITE_IMR(engine,
1439 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1440 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1441
0bc40be8 1442 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1443 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1444 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1445 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1446
1447 /*
1448 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1449 * zero, we need to read the write pointer from hardware and use its
1450 * value because "this register is power context save restored".
1451 * Effectively, these states have been observed:
1452 *
1453 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1454 * BDW | CSB regs not reset | CSB regs reset |
1455 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1456 * SKL | ? | ? |
1457 * BXT | ? | ? |
dfc53c5e 1458 */
5590a5f0 1459 next_context_status_buffer_hw =
0bc40be8 1460 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1461
1462 /*
1463 * When the CSB registers are reset (also after power-up / gpu reset),
1464 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1465 * this special case, so the first element read is CSB[0].
1466 */
1467 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1468 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1469
0bc40be8
TU
1470 engine->next_context_status_buffer = next_context_status_buffer_hw;
1471 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1472
fc0768ce 1473 intel_engine_init_hangcheck(engine);
9b1136d5 1474
0ccdacf6 1475 return intel_mocs_init_engine(engine);
9b1136d5
OM
1476}
1477
0bc40be8 1478static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1479{
c033666a 1480 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1481 int ret;
1482
0bc40be8 1483 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1484 if (ret)
1485 return ret;
1486
1487 /* We need to disable the AsyncFlip performance optimisations in order
1488 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1489 * programmed to '1' on all products.
1490 *
1491 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1492 */
1493 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1494
9b1136d5
OM
1495 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1496
0bc40be8 1497 return init_workarounds_ring(engine);
9b1136d5
OM
1498}
1499
0bc40be8 1500static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1501{
1502 int ret;
1503
0bc40be8 1504 ret = gen8_init_common_ring(engine);
82ef822e
DL
1505 if (ret)
1506 return ret;
1507
0bc40be8 1508 return init_workarounds_ring(engine);
82ef822e
DL
1509}
1510
7a01a0a2
MT
1511static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1512{
1513 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1514 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1515 struct intel_ringbuffer *ringbuf = req->ringbuf;
1516 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1517 int i, ret;
1518
987046ad 1519 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1520 if (ret)
1521 return ret;
1522
1523 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1524 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1525 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1526
e2f80391
TU
1527 intel_logical_ring_emit_reg(ringbuf,
1528 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1529 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1530 intel_logical_ring_emit_reg(ringbuf,
1531 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1532 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1533 }
1534
1535 intel_logical_ring_emit(ringbuf, MI_NOOP);
1536 intel_logical_ring_advance(ringbuf);
1537
1538 return 0;
1539}
1540
be795fc1 1541static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1542 u64 offset, unsigned dispatch_flags)
15648585 1543{
be795fc1 1544 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1545 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1546 int ret;
1547
7a01a0a2
MT
1548 /* Don't rely in hw updating PDPs, specially in lite-restore.
1549 * Ideally, we should set Force PD Restore in ctx descriptor,
1550 * but we can't. Force Restore would be a second option, but
1551 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1552 * not idle). PML4 is allocated during ppgtt init so this is
1553 * not needed in 48-bit.*/
7a01a0a2 1554 if (req->ctx->ppgtt &&
666796da 1555 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1556 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1557 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1558 ret = intel_logical_ring_emit_pdps(req);
1559 if (ret)
1560 return ret;
1561 }
7a01a0a2 1562
666796da 1563 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1564 }
1565
987046ad 1566 ret = intel_ring_begin(req, 4);
15648585
OM
1567 if (ret)
1568 return ret;
1569
1570 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1571 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1572 (ppgtt<<8) |
1573 (dispatch_flags & I915_DISPATCH_RS ?
1574 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1575 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1576 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1577 intel_logical_ring_emit(ringbuf, MI_NOOP);
1578 intel_logical_ring_advance(ringbuf);
1579
1580 return 0;
1581}
1582
0bc40be8 1583static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1584{
c033666a 1585 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1586 unsigned long flags;
1587
7cd512f1 1588 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1589 return false;
1590
1591 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1592 if (engine->irq_refcount++ == 0) {
1593 I915_WRITE_IMR(engine,
1594 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1595 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1596 }
1597 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1598
1599 return true;
1600}
1601
0bc40be8 1602static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1603{
c033666a 1604 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1605 unsigned long flags;
1606
1607 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1608 if (--engine->irq_refcount == 0) {
1609 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1610 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1611 }
1612 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613}
1614
7deb4d39 1615static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1616 u32 invalidate_domains,
1617 u32 unused)
1618{
7deb4d39 1619 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1620 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1621 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1622 uint32_t cmd;
1623 int ret;
1624
987046ad 1625 ret = intel_ring_begin(request, 4);
4712274c
OM
1626 if (ret)
1627 return ret;
1628
1629 cmd = MI_FLUSH_DW + 1;
1630
f0a1fb10
CW
1631 /* We always require a command barrier so that subsequent
1632 * commands, such as breadcrumb interrupts, are strictly ordered
1633 * wrt the contents of the write cache being flushed to memory
1634 * (and thus being coherent from the CPU).
1635 */
1636 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1637
1638 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1639 cmd |= MI_INVALIDATE_TLB;
4a570db5 1640 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1641 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1642 }
1643
1644 intel_logical_ring_emit(ringbuf, cmd);
1645 intel_logical_ring_emit(ringbuf,
1646 I915_GEM_HWS_SCRATCH_ADDR |
1647 MI_FLUSH_DW_USE_GTT);
1648 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1649 intel_logical_ring_emit(ringbuf, 0); /* value */
1650 intel_logical_ring_advance(ringbuf);
1651
1652 return 0;
1653}
1654
7deb4d39 1655static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1656 u32 invalidate_domains,
1657 u32 flush_domains)
1658{
7deb4d39 1659 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1660 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1661 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1662 bool vf_flush_wa = false;
4712274c
OM
1663 u32 flags = 0;
1664 int ret;
1665
1666 flags |= PIPE_CONTROL_CS_STALL;
1667
1668 if (flush_domains) {
1669 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1670 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1671 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1672 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1673 }
1674
1675 if (invalidate_domains) {
1676 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1677 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1678 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1679 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1680 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1681 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1682 flags |= PIPE_CONTROL_QW_WRITE;
1683 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1684
1a5a9ce7
BW
1685 /*
1686 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1687 * pipe control.
1688 */
c033666a 1689 if (IS_GEN9(request->i915))
1a5a9ce7
BW
1690 vf_flush_wa = true;
1691 }
9647ff36 1692
987046ad 1693 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1694 if (ret)
1695 return ret;
1696
9647ff36
ID
1697 if (vf_flush_wa) {
1698 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1699 intel_logical_ring_emit(ringbuf, 0);
1700 intel_logical_ring_emit(ringbuf, 0);
1701 intel_logical_ring_emit(ringbuf, 0);
1702 intel_logical_ring_emit(ringbuf, 0);
1703 intel_logical_ring_emit(ringbuf, 0);
1704 }
1705
4712274c
OM
1706 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1707 intel_logical_ring_emit(ringbuf, flags);
1708 intel_logical_ring_emit(ringbuf, scratch_addr);
1709 intel_logical_ring_emit(ringbuf, 0);
1710 intel_logical_ring_emit(ringbuf, 0);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_advance(ringbuf);
1713
1714 return 0;
1715}
1716
c04e0f3b 1717static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1718{
0bc40be8 1719 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1720}
1721
0bc40be8 1722static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1723{
0bc40be8 1724 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1725}
1726
c04e0f3b 1727static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1728{
319404df
ID
1729 /*
1730 * On BXT A steppings there is a HW coherency issue whereby the
1731 * MI_STORE_DATA_IMM storing the completed request's seqno
1732 * occasionally doesn't invalidate the CPU cache. Work around this by
1733 * clflushing the corresponding cacheline whenever the caller wants
1734 * the coherency to be guaranteed. Note that this cacheline is known
1735 * to be clean at this point, since we only write it in
1736 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1737 * this clflush in practice becomes an invalidate operation.
1738 */
c04e0f3b 1739 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1740}
1741
0bc40be8 1742static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1743{
0bc40be8 1744 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1745
1746 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1747 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1748}
1749
7c17d377
CW
1750/*
1751 * Reserve space for 2 NOOPs at the end of each request to be
1752 * used as a workaround for not being allowed to do lite
1753 * restore with HEAD==TAIL (WaIdleLiteRestore).
1754 */
1755#define WA_TAIL_DWORDS 2
1756
c4e76638 1757static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1758{
c4e76638 1759 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1760 int ret;
1761
987046ad 1762 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1763 if (ret)
1764 return ret;
1765
7c17d377
CW
1766 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1767 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1768
4da46e1e 1769 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1770 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1771 intel_logical_ring_emit(ringbuf,
a58c01aa 1772 intel_hws_seqno_address(request->engine) |
7c17d377 1773 MI_FLUSH_DW_USE_GTT);
4da46e1e 1774 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1775 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1776 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1777 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1778 return intel_logical_ring_advance_and_submit(request);
1779}
4da46e1e 1780
7c17d377
CW
1781static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1782{
1783 struct intel_ringbuffer *ringbuf = request->ringbuf;
1784 int ret;
53292cdb 1785
987046ad 1786 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1787 if (ret)
1788 return ret;
1789
ce81a65c
MW
1790 /* We're using qword write, seqno should be aligned to 8 bytes. */
1791 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1792
7c17d377
CW
1793 /* w/a for post sync ops following a GPGPU operation we
1794 * need a prior CS_STALL, which is emitted by the flush
1795 * following the batch.
1796 */
ce81a65c 1797 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1798 intel_logical_ring_emit(ringbuf,
1799 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1800 PIPE_CONTROL_CS_STALL |
1801 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1802 intel_logical_ring_emit(ringbuf,
1803 intel_hws_seqno_address(request->engine));
7c17d377
CW
1804 intel_logical_ring_emit(ringbuf, 0);
1805 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1806 /* We're thrashing one dword of HWS. */
1807 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1808 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1809 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1810 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1811}
1812
be01363f 1813static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1814{
cef437ad 1815 struct render_state so;
cef437ad
DL
1816 int ret;
1817
4a570db5 1818 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1819 if (ret)
1820 return ret;
1821
1822 if (so.rodata == NULL)
1823 return 0;
1824
4a570db5 1825 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1826 I915_DISPATCH_SECURE);
cef437ad
DL
1827 if (ret)
1828 goto out;
1829
4a570db5 1830 ret = req->engine->emit_bb_start(req,
84e81020
AS
1831 (so.ggtt_offset + so.aux_batch_offset),
1832 I915_DISPATCH_SECURE);
1833 if (ret)
1834 goto out;
1835
b2af0376 1836 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1837
cef437ad
DL
1838out:
1839 i915_gem_render_state_fini(&so);
1840 return ret;
1841}
1842
8753181e 1843static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1844{
1845 int ret;
1846
e2be4faf 1847 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1848 if (ret)
1849 return ret;
1850
3bbaba0c
PA
1851 ret = intel_rcs_context_init_mocs(req);
1852 /*
1853 * Failing to program the MOCS is non-fatal.The system will not
1854 * run at peak performance. So generate an error and carry on.
1855 */
1856 if (ret)
1857 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1858
be01363f 1859 return intel_lr_context_render_state_init(req);
e7778be1
TD
1860}
1861
73e4d07f
OM
1862/**
1863 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1864 *
1865 * @ring: Engine Command Streamer.
1866 *
1867 */
0bc40be8 1868void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1869{
6402c330 1870 struct drm_i915_private *dev_priv;
9832b9da 1871
117897f4 1872 if (!intel_engine_initialized(engine))
48d82387
OM
1873 return;
1874
27af5eea
TU
1875 /*
1876 * Tasklet cannot be active at this point due intel_mark_active/idle
1877 * so this is just for documentation.
1878 */
1879 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1880 tasklet_kill(&engine->irq_tasklet);
1881
c033666a 1882 dev_priv = engine->i915;
6402c330 1883
0bc40be8
TU
1884 if (engine->buffer) {
1885 intel_logical_ring_stop(engine);
1886 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1887 }
48d82387 1888
0bc40be8
TU
1889 if (engine->cleanup)
1890 engine->cleanup(engine);
48d82387 1891
0bc40be8
TU
1892 i915_cmd_parser_fini_ring(engine);
1893 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1894
0bc40be8 1895 if (engine->status_page.obj) {
7d774cac 1896 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1897 engine->status_page.obj = NULL;
48d82387 1898 }
24f1d3cc 1899 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1900
0bc40be8
TU
1901 engine->idle_lite_restore_wa = 0;
1902 engine->disable_lite_restore_wa = false;
1903 engine->ctx_desc_template = 0;
ca82580c 1904
0bc40be8 1905 lrc_destroy_wa_ctx_obj(engine);
c033666a 1906 engine->i915 = NULL;
454afebd
OM
1907}
1908
c9cacf93 1909static void
e1382efb 1910logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1911{
1912 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1913 engine->init_hw = gen8_init_common_ring;
1914 engine->emit_request = gen8_emit_request;
1915 engine->emit_flush = gen8_emit_flush;
1916 engine->irq_get = gen8_logical_ring_get_irq;
1917 engine->irq_put = gen8_logical_ring_put_irq;
1918 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1919 engine->get_seqno = gen8_get_seqno;
1920 engine->set_seqno = gen8_set_seqno;
c033666a 1921 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
c04e0f3b 1922 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1923 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1924 }
1925}
1926
d9f3af96 1927static inline void
0bc40be8 1928logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1929{
0bc40be8
TU
1930 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1931 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
e1382efb 1932 init_waitqueue_head(&engine->irq_queue);
d9f3af96
TU
1933}
1934
7d774cac 1935static int
04794adb
TU
1936lrc_setup_hws(struct intel_engine_cs *engine,
1937 struct drm_i915_gem_object *dctx_obj)
1938{
7d774cac 1939 void *hws;
04794adb
TU
1940
1941 /* The HWSP is part of the default context object in LRC mode. */
1942 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1943 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1944 hws = i915_gem_object_pin_map(dctx_obj);
1945 if (IS_ERR(hws))
1946 return PTR_ERR(hws);
1947 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1948 engine->status_page.obj = dctx_obj;
7d774cac
TU
1949
1950 return 0;
04794adb
TU
1951}
1952
e1382efb
CW
1953static const struct logical_ring_info {
1954 const char *name;
1955 unsigned exec_id;
1956 unsigned guc_id;
1957 u32 mmio_base;
1958 unsigned irq_shift;
1959} logical_rings[] = {
1960 [RCS] = {
1961 .name = "render ring",
1962 .exec_id = I915_EXEC_RENDER,
1963 .guc_id = GUC_RENDER_ENGINE,
1964 .mmio_base = RENDER_RING_BASE,
1965 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1966 },
1967 [BCS] = {
1968 .name = "blitter ring",
1969 .exec_id = I915_EXEC_BLT,
1970 .guc_id = GUC_BLITTER_ENGINE,
1971 .mmio_base = BLT_RING_BASE,
1972 .irq_shift = GEN8_BCS_IRQ_SHIFT,
1973 },
1974 [VCS] = {
1975 .name = "bsd ring",
1976 .exec_id = I915_EXEC_BSD,
1977 .guc_id = GUC_VIDEO_ENGINE,
1978 .mmio_base = GEN6_BSD_RING_BASE,
1979 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
1980 },
1981 [VCS2] = {
1982 .name = "bsd2 ring",
1983 .exec_id = I915_EXEC_BSD,
1984 .guc_id = GUC_VIDEO_ENGINE2,
1985 .mmio_base = GEN8_BSD2_RING_BASE,
1986 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
1987 },
1988 [VECS] = {
1989 .name = "video enhancement ring",
1990 .exec_id = I915_EXEC_VEBOX,
1991 .guc_id = GUC_VIDEOENHANCE_ENGINE,
1992 .mmio_base = VEBOX_RING_BASE,
1993 .irq_shift = GEN8_VECS_IRQ_SHIFT,
1994 },
1995};
1996
1997static struct intel_engine_cs *
1998logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
454afebd 1999{
e1382efb 2000 const struct logical_ring_info *info = &logical_rings[id];
3756685a 2001 struct drm_i915_private *dev_priv = to_i915(dev);
e1382efb 2002 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 2003 enum forcewake_domains fw_domains;
48d82387 2004
e1382efb
CW
2005 engine->id = id;
2006 engine->name = info->name;
2007 engine->exec_id = info->exec_id;
2008 engine->guc_id = info->guc_id;
2009 engine->mmio_base = info->mmio_base;
48d82387 2010
c033666a 2011 engine->i915 = dev_priv;
acdd884a 2012
e1382efb
CW
2013 /* Intentionally left blank. */
2014 engine->buffer = NULL;
ca82580c 2015
3756685a
TU
2016 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2017 RING_ELSP(engine),
2018 FW_REG_WRITE);
2019
2020 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2021 RING_CONTEXT_STATUS_PTR(engine),
2022 FW_REG_READ | FW_REG_WRITE);
2023
2024 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2025 RING_CONTEXT_STATUS_BUF_BASE(engine),
2026 FW_REG_READ);
2027
2028 engine->fw_domains = fw_domains;
2029
e1382efb
CW
2030 INIT_LIST_HEAD(&engine->active_list);
2031 INIT_LIST_HEAD(&engine->request_list);
2032 INIT_LIST_HEAD(&engine->buffers);
2033 INIT_LIST_HEAD(&engine->execlist_queue);
2034 spin_lock_init(&engine->execlist_lock);
2035
2036 tasklet_init(&engine->irq_tasklet,
2037 intel_lrc_irq_handler, (unsigned long)engine);
2038
2039 logical_ring_init_platform_invariants(engine);
2040 logical_ring_default_vfuncs(engine);
2041 logical_ring_default_irqs(engine, info->irq_shift);
2042
2043 intel_engine_init_hangcheck(engine);
c033666a 2044 i915_gem_batch_pool_init(dev, &engine->batch_pool);
e1382efb
CW
2045
2046 return engine;
2047}
2048
2049static int
2050logical_ring_init(struct intel_engine_cs *engine)
2051{
c033666a 2052 struct intel_context *dctx = engine->i915->kernel_context;
e1382efb
CW
2053 int ret;
2054
0bc40be8 2055 ret = i915_cmd_parser_init_ring(engine);
48d82387 2056 if (ret)
b0366a54 2057 goto error;
48d82387 2058
978f1e09 2059 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2060 if (ret)
b0366a54 2061 goto error;
e84fe803
NH
2062
2063 /* As this is the default context, always pin it */
24f1d3cc 2064 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2065 if (ret) {
24f1d3cc
CW
2066 DRM_ERROR("Failed to pin context for %s: %d\n",
2067 engine->name, ret);
b0366a54 2068 goto error;
e84fe803 2069 }
564ddb2f 2070
04794adb 2071 /* And setup the hardware status page. */
7d774cac
TU
2072 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2073 if (ret) {
2074 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2075 goto error;
2076 }
04794adb 2077
b0366a54
DG
2078 return 0;
2079
2080error:
0bc40be8 2081 intel_logical_ring_cleanup(engine);
564ddb2f 2082 return ret;
454afebd
OM
2083}
2084
2085static int logical_render_ring_init(struct drm_device *dev)
2086{
e1382efb 2087 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
99be1dfe 2088 int ret;
454afebd 2089
73d477f6 2090 if (HAS_L3_DPF(dev))
e2f80391 2091 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2092
c9cacf93 2093 /* Override some for render ring. */
82ef822e 2094 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2095 engine->init_hw = gen9_init_render_ring;
82ef822e 2096 else
e2f80391
TU
2097 engine->init_hw = gen8_init_render_ring;
2098 engine->init_context = gen8_init_rcs_context;
2099 engine->cleanup = intel_fini_pipe_control;
2100 engine->emit_flush = gen8_emit_flush_render;
2101 engine->emit_request = gen8_emit_request_render;
9b1136d5 2102
e2f80391 2103 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2104 if (ret)
2105 return ret;
2106
e2f80391 2107 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2108 if (ret) {
2109 /*
2110 * We continue even if we fail to initialize WA batch
2111 * because we only expect rare glitches but nothing
2112 * critical to prevent us from using GPU
2113 */
2114 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2115 ret);
2116 }
2117
e1382efb 2118 ret = logical_ring_init(engine);
c4db7599 2119 if (ret) {
e2f80391 2120 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2121 }
17ee950d
AS
2122
2123 return ret;
454afebd
OM
2124}
2125
2126static int logical_bsd_ring_init(struct drm_device *dev)
2127{
e1382efb 2128 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
454afebd 2129
e1382efb 2130 return logical_ring_init(engine);
454afebd
OM
2131}
2132
2133static int logical_bsd2_ring_init(struct drm_device *dev)
2134{
e1382efb 2135 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
454afebd 2136
e1382efb 2137 return logical_ring_init(engine);
454afebd
OM
2138}
2139
2140static int logical_blt_ring_init(struct drm_device *dev)
2141{
e1382efb 2142 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
9b1136d5 2143
e1382efb 2144 return logical_ring_init(engine);
454afebd
OM
2145}
2146
2147static int logical_vebox_ring_init(struct drm_device *dev)
2148{
e1382efb 2149 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
9b1136d5 2150
e1382efb 2151 return logical_ring_init(engine);
454afebd
OM
2152}
2153
73e4d07f
OM
2154/**
2155 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2156 * @dev: DRM device.
2157 *
2158 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2159 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2160 * those engines that are present in the hardware.
2161 *
2162 * Return: non-zero if the initialization failed.
2163 */
454afebd
OM
2164int intel_logical_rings_init(struct drm_device *dev)
2165{
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2167 int ret;
2168
2169 ret = logical_render_ring_init(dev);
2170 if (ret)
2171 return ret;
2172
2173 if (HAS_BSD(dev)) {
2174 ret = logical_bsd_ring_init(dev);
2175 if (ret)
2176 goto cleanup_render_ring;
2177 }
2178
2179 if (HAS_BLT(dev)) {
2180 ret = logical_blt_ring_init(dev);
2181 if (ret)
2182 goto cleanup_bsd_ring;
2183 }
2184
2185 if (HAS_VEBOX(dev)) {
2186 ret = logical_vebox_ring_init(dev);
2187 if (ret)
2188 goto cleanup_blt_ring;
2189 }
2190
2191 if (HAS_BSD2(dev)) {
2192 ret = logical_bsd2_ring_init(dev);
2193 if (ret)
2194 goto cleanup_vebox_ring;
2195 }
2196
454afebd
OM
2197 return 0;
2198
454afebd 2199cleanup_vebox_ring:
4a570db5 2200 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2201cleanup_blt_ring:
4a570db5 2202 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2203cleanup_bsd_ring:
4a570db5 2204 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2205cleanup_render_ring:
4a570db5 2206 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2207
2208 return ret;
2209}
2210
0cea6502 2211static u32
c033666a 2212make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2213{
2214 u32 rpcs = 0;
2215
2216 /*
2217 * No explicit RPCS request is needed to ensure full
2218 * slice/subslice/EU enablement prior to Gen9.
2219 */
c033666a 2220 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2221 return 0;
2222
2223 /*
2224 * Starting in Gen9, render power gating can leave
2225 * slice/subslice/EU in a partially enabled state. We
2226 * must make an explicit request through RPCS for full
2227 * enablement.
2228 */
c033666a 2229 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2230 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2231 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2232 GEN8_RPCS_S_CNT_SHIFT;
2233 rpcs |= GEN8_RPCS_ENABLE;
2234 }
2235
c033666a 2236 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2237 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2238 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2239 GEN8_RPCS_SS_CNT_SHIFT;
2240 rpcs |= GEN8_RPCS_ENABLE;
2241 }
2242
c033666a
CW
2243 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2244 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2245 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2246 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2247 GEN8_RPCS_EU_MAX_SHIFT;
2248 rpcs |= GEN8_RPCS_ENABLE;
2249 }
2250
2251 return rpcs;
2252}
2253
0bc40be8 2254static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2255{
2256 u32 indirect_ctx_offset;
2257
c033666a 2258 switch (INTEL_GEN(engine->i915)) {
71562919 2259 default:
c033666a 2260 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2261 /* fall through */
2262 case 9:
2263 indirect_ctx_offset =
2264 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2265 break;
2266 case 8:
2267 indirect_ctx_offset =
2268 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2269 break;
2270 }
2271
2272 return indirect_ctx_offset;
2273}
2274
8670d6f9 2275static int
7d774cac
TU
2276populate_lr_context(struct intel_context *ctx,
2277 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2278 struct intel_engine_cs *engine,
2279 struct intel_ringbuffer *ringbuf)
8670d6f9 2280{
c033666a 2281 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2282 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2283 void *vaddr;
2284 u32 *reg_state;
8670d6f9
OM
2285 int ret;
2286
2d965536
TD
2287 if (!ppgtt)
2288 ppgtt = dev_priv->mm.aliasing_ppgtt;
2289
8670d6f9
OM
2290 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2291 if (ret) {
2292 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2293 return ret;
2294 }
2295
7d774cac
TU
2296 vaddr = i915_gem_object_pin_map(ctx_obj);
2297 if (IS_ERR(vaddr)) {
2298 ret = PTR_ERR(vaddr);
2299 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2300 return ret;
2301 }
7d774cac 2302 ctx_obj->dirty = true;
8670d6f9
OM
2303
2304 /* The second page of the context object contains some fields which must
2305 * be set up prior to the first execution. */
7d774cac 2306 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2307
2308 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2309 * commands followed by (reg, value) pairs. The values we are setting here are
2310 * only for the first context restore: on a subsequent save, the GPU will
2311 * recreate this batchbuffer with new values (including all the missing
2312 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2313 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2314 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2315 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2316 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2317 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2318 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2319 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2320 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2321 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2322 0);
2323 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2324 0);
7ba717cf
TD
2325 /* Ring buffer start address is not known until the buffer is pinned.
2326 * It is written to the context image in execlists_update_context()
2327 */
0bc40be8
TU
2328 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2329 RING_START(engine->mmio_base), 0);
2330 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2331 RING_CTL(engine->mmio_base),
0d925ea0 2332 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2333 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2334 RING_BBADDR_UDW(engine->mmio_base), 0);
2335 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2336 RING_BBADDR(engine->mmio_base), 0);
2337 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2338 RING_BBSTATE(engine->mmio_base),
0d925ea0 2339 RING_BB_PPGTT);
0bc40be8
TU
2340 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2341 RING_SBBADDR_UDW(engine->mmio_base), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2343 RING_SBBADDR(engine->mmio_base), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2345 RING_SBBSTATE(engine->mmio_base), 0);
2346 if (engine->id == RCS) {
2347 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2348 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2349 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2350 RING_INDIRECT_CTX(engine->mmio_base), 0);
2351 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2352 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2353 if (engine->wa_ctx.obj) {
2354 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2355 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2356
2357 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2358 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2359 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2360
2361 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2362 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2363
2364 reg_state[CTX_BB_PER_CTX_PTR+1] =
2365 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2366 0x01;
2367 }
8670d6f9 2368 }
0d925ea0 2369 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2370 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2371 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2372 /* PDP values well be assigned later if needed */
0bc40be8
TU
2373 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2374 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2376 0);
2377 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2378 0);
2379 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2380 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2382 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2388 0);
d7b2633d 2389
2dba3239
MT
2390 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2391 /* 64b PPGTT (48bit canonical)
2392 * PDP0_DESCRIPTOR contains the base address to PML4 and
2393 * other PDP Descriptors are ignored.
2394 */
2395 ASSIGN_CTX_PML4(ppgtt, reg_state);
2396 } else {
2397 /* 32b PPGTT
2398 * PDP*_DESCRIPTOR contains the base address of space supported.
2399 * With dynamic page allocation, PDPs may not be allocated at
2400 * this point. Point the unallocated PDPs to the scratch page
2401 */
c6a2ac71 2402 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2403 }
2404
0bc40be8 2405 if (engine->id == RCS) {
8670d6f9 2406 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2407 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2408 make_rpcs(dev_priv));
8670d6f9
OM
2409 }
2410
7d774cac 2411 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2412
2413 return 0;
2414}
2415
73e4d07f
OM
2416/**
2417 * intel_lr_context_free() - free the LRC specific bits of a context
2418 * @ctx: the LR context to free.
2419 *
2420 * The real context freeing is done in i915_gem_context_free: this only
2421 * takes care of the bits that are LRC related: the per-engine backing
2422 * objects and the logical ringbuffer.
2423 */
ede7d42b
OM
2424void intel_lr_context_free(struct intel_context *ctx)
2425{
8c857917
OM
2426 int i;
2427
666796da 2428 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2429 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2430 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2431
e28e404c
DG
2432 if (!ctx_obj)
2433 continue;
dcb4c12a 2434
e28e404c
DG
2435 WARN_ON(ctx->engine[i].pin_count);
2436 intel_ringbuffer_free(ringbuf);
2437 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2438 }
2439}
2440
c5d46ee2
DG
2441/**
2442 * intel_lr_context_size() - return the size of the context for an engine
2443 * @ring: which engine to find the context size for
2444 *
2445 * Each engine may require a different amount of space for a context image,
2446 * so when allocating (or copying) an image, this function can be used to
2447 * find the right size for the specific engine.
2448 *
2449 * Return: size (in bytes) of an engine-specific context image
2450 *
2451 * Note: this size includes the HWSP, which is part of the context image
2452 * in LRC mode, but does not include the "shared data page" used with
2453 * GuC submission. The caller should account for this if using the GuC.
2454 */
0bc40be8 2455uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2456{
2457 int ret = 0;
2458
c033666a 2459 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2460
0bc40be8 2461 switch (engine->id) {
8c857917 2462 case RCS:
c033666a 2463 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2464 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2465 else
2466 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2467 break;
2468 case VCS:
2469 case BCS:
2470 case VECS:
2471 case VCS2:
2472 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2473 break;
2474 }
2475
2476 return ret;
ede7d42b
OM
2477}
2478
73e4d07f 2479/**
978f1e09 2480 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2481 * @ctx: LR context to create.
978f1e09 2482 * @engine: engine to be used with the context.
73e4d07f
OM
2483 *
2484 * This function can be called more than once, with different engines, if we plan
2485 * to use the context with them. The context backing objects and the ringbuffers
2486 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2487 * the creation is a deferred call: it's better to make sure first that we need to use
2488 * a given ring with the context.
2489 *
32197aab 2490 * Return: non-zero on error.
73e4d07f 2491 */
978f1e09
CW
2492static int execlists_context_deferred_alloc(struct intel_context *ctx,
2493 struct intel_engine_cs *engine)
ede7d42b 2494{
8c857917
OM
2495 struct drm_i915_gem_object *ctx_obj;
2496 uint32_t context_size;
84c2377f 2497 struct intel_ringbuffer *ringbuf;
8c857917
OM
2498 int ret;
2499
ede7d42b 2500 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2501 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2502
0bc40be8 2503 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2504
d1675198
AD
2505 /* One extra page as the sharing data between driver and GuC */
2506 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2507
c033666a 2508 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
fe3db79b 2509 if (IS_ERR(ctx_obj)) {
3126a660 2510 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2511 return PTR_ERR(ctx_obj);
8c857917
OM
2512 }
2513
0bc40be8 2514 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2515 if (IS_ERR(ringbuf)) {
2516 ret = PTR_ERR(ringbuf);
e84fe803 2517 goto error_deref_obj;
8670d6f9
OM
2518 }
2519
0bc40be8 2520 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2521 if (ret) {
2522 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2523 goto error_ringbuf;
84c2377f
OM
2524 }
2525
0bc40be8
TU
2526 ctx->engine[engine->id].ringbuf = ringbuf;
2527 ctx->engine[engine->id].state = ctx_obj;
24f1d3cc 2528 ctx->engine[engine->id].initialised = engine->init_context == NULL;
ede7d42b
OM
2529
2530 return 0;
8670d6f9 2531
01101fa7
CW
2532error_ringbuf:
2533 intel_ringbuffer_free(ringbuf);
e84fe803 2534error_deref_obj:
8670d6f9 2535 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2536 ctx->engine[engine->id].ringbuf = NULL;
2537 ctx->engine[engine->id].state = NULL;
8670d6f9 2538 return ret;
ede7d42b 2539}
3e5b6f05 2540
7d774cac
TU
2541void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2542 struct intel_context *ctx)
3e5b6f05 2543{
e2f80391 2544 struct intel_engine_cs *engine;
3e5b6f05 2545
b4ac5afc 2546 for_each_engine(engine, dev_priv) {
3e5b6f05 2547 struct drm_i915_gem_object *ctx_obj =
e2f80391 2548 ctx->engine[engine->id].state;
3e5b6f05 2549 struct intel_ringbuffer *ringbuf =
e2f80391 2550 ctx->engine[engine->id].ringbuf;
7d774cac 2551 void *vaddr;
3e5b6f05 2552 uint32_t *reg_state;
3e5b6f05
TD
2553
2554 if (!ctx_obj)
2555 continue;
2556
7d774cac
TU
2557 vaddr = i915_gem_object_pin_map(ctx_obj);
2558 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2559 continue;
7d774cac
TU
2560
2561 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2562 ctx_obj->dirty = true;
3e5b6f05
TD
2563
2564 reg_state[CTX_RING_HEAD+1] = 0;
2565 reg_state[CTX_RING_TAIL+1] = 0;
2566
7d774cac 2567 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2568
2569 ringbuf->head = 0;
2570 ringbuf->tail = 0;
2571 }
2572}
This page took 0.361 seconds and 5 git commands to generate.