Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
85208be0
ED
29#include "i915_drv.h"
30#include "intel_drv.h"
eb48eb00
DV
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
f4db9321 33#include <drm/i915_powerwell.h>
85208be0 34
f6750b3c
ED
35/* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
85208be0 38 *
f6750b3c
ED
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
85208be0 41 *
f6750b3c
ED
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
85208be0
ED
44 */
45
3490ea5d
CW
46static bool intel_crtc_active(struct drm_crtc *crtc)
47{
48 /* Be paranoid as we can arrive here with only partial
49 * state retrieved from the hardware during setup.
50 */
51 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52}
53
1fa61106 54static void i8xx_disable_fbc(struct drm_device *dev)
85208be0
ED
55{
56 struct drm_i915_private *dev_priv = dev->dev_private;
57 u32 fbc_ctl;
58
59 /* Disable compression */
60 fbc_ctl = I915_READ(FBC_CONTROL);
61 if ((fbc_ctl & FBC_CTL_EN) == 0)
62 return;
63
64 fbc_ctl &= ~FBC_CTL_EN;
65 I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67 /* Wait for compressing bit to clear */
68 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69 DRM_DEBUG_KMS("FBC idle timed out\n");
70 return;
71 }
72
73 DRM_DEBUG_KMS("disabled FBC\n");
74}
75
1fa61106 76static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
77{
78 struct drm_device *dev = crtc->dev;
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct drm_framebuffer *fb = crtc->fb;
81 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82 struct drm_i915_gem_object *obj = intel_fb->obj;
83 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84 int cfb_pitch;
85 int plane, i;
86 u32 fbc_ctl, fbc_ctl2;
87
5c3fe8b0 88 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
85208be0
ED
89 if (fb->pitches[0] < cfb_pitch)
90 cfb_pitch = fb->pitches[0];
91
92 /* FBC_CTL wants 64B units */
93 cfb_pitch = (cfb_pitch / 64) - 1;
94 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96 /* Clear old tags */
97 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100 /* Set it up... */
101 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102 fbc_ctl2 |= plane;
103 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104 I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106 /* enable it... */
107 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108 if (IS_I945GM(dev))
109 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112 fbc_ctl |= obj->fence_reg;
113 I915_WRITE(FBC_CONTROL, fbc_ctl);
114
84f44ce7
VS
115 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
85208be0
ED
117}
118
1fa61106 119static bool i8xx_fbc_enabled(struct drm_device *dev)
85208be0
ED
120{
121 struct drm_i915_private *dev_priv = dev->dev_private;
122
123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124}
125
1fa61106 126static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
127{
128 struct drm_device *dev = crtc->dev;
129 struct drm_i915_private *dev_priv = dev->dev_private;
130 struct drm_framebuffer *fb = crtc->fb;
131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132 struct drm_i915_gem_object *obj = intel_fb->obj;
133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135 unsigned long stall_watermark = 200;
136 u32 dpfc_ctl;
137
138 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147 /* enable it... */
148 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
84f44ce7 150 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
151}
152
1fa61106 153static void g4x_disable_fbc(struct drm_device *dev)
85208be0
ED
154{
155 struct drm_i915_private *dev_priv = dev->dev_private;
156 u32 dpfc_ctl;
157
158 /* Disable compression */
159 dpfc_ctl = I915_READ(DPFC_CONTROL);
160 if (dpfc_ctl & DPFC_CTL_EN) {
161 dpfc_ctl &= ~DPFC_CTL_EN;
162 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164 DRM_DEBUG_KMS("disabled FBC\n");
165 }
166}
167
1fa61106 168static bool g4x_fbc_enabled(struct drm_device *dev)
85208be0
ED
169{
170 struct drm_i915_private *dev_priv = dev->dev_private;
171
172 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173}
174
175static void sandybridge_blit_fbc_update(struct drm_device *dev)
176{
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 u32 blt_ecoskpd;
179
180 /* Make sure blitter notifies FBC of writes */
181 gen6_gt_force_wake_get(dev_priv);
182 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184 GEN6_BLITTER_LOCK_SHIFT;
185 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189 GEN6_BLITTER_LOCK_SHIFT);
190 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191 POSTING_READ(GEN6_BLITTER_ECOSKPD);
192 gen6_gt_force_wake_put(dev_priv);
193}
194
1fa61106 195static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
196{
197 struct drm_device *dev = crtc->dev;
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 struct drm_framebuffer *fb = crtc->fb;
200 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201 struct drm_i915_gem_object *obj = intel_fb->obj;
202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204 unsigned long stall_watermark = 200;
205 u32 dpfc_ctl;
206
207 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208 dpfc_ctl &= DPFC_RESERVED;
209 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210 /* Set persistent mode for front-buffer rendering, ala X. */
211 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
f343c5f6 219 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
85208be0
ED
220 /* enable it... */
221 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223 if (IS_GEN6(dev)) {
224 I915_WRITE(SNB_DPFC_CTL_SA,
225 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227 sandybridge_blit_fbc_update(dev);
228 }
229
84f44ce7 230 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
231}
232
1fa61106 233static void ironlake_disable_fbc(struct drm_device *dev)
85208be0
ED
234{
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 u32 dpfc_ctl;
237
238 /* Disable compression */
239 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240 if (dpfc_ctl & DPFC_CTL_EN) {
241 dpfc_ctl &= ~DPFC_CTL_EN;
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
b74ea102 244 if (IS_IVYBRIDGE(dev))
7dd23ba0 245 /* WaFbcDisableDpfcClockGating:ivb */
b74ea102
RV
246 I915_WRITE(ILK_DSPCLK_GATE_D,
247 I915_READ(ILK_DSPCLK_GATE_D) &
248 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
249
d89f2071 250 if (IS_HASWELL(dev))
7dd23ba0 251 /* WaFbcDisableDpfcClockGating:hsw */
d89f2071
RV
252 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254 ~HSW_DPFC_GATING_DISABLE);
255
85208be0
ED
256 DRM_DEBUG_KMS("disabled FBC\n");
257 }
258}
259
1fa61106 260static bool ironlake_fbc_enabled(struct drm_device *dev)
85208be0
ED
261{
262 struct drm_i915_private *dev_priv = dev->dev_private;
263
264 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265}
266
abe959c7
RV
267static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
268{
269 struct drm_device *dev = crtc->dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 struct drm_framebuffer *fb = crtc->fb;
272 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273 struct drm_i915_gem_object *obj = intel_fb->obj;
274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
275
f343c5f6 276 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
abe959c7
RV
277
278 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279 IVB_DPFC_CTL_FENCE_EN |
280 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
281
891348b2 282 if (IS_IVYBRIDGE(dev)) {
7dd23ba0 283 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
891348b2 284 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
7dd23ba0 285 /* WaFbcDisableDpfcClockGating:ivb */
891348b2
RV
286 I915_WRITE(ILK_DSPCLK_GATE_D,
287 I915_READ(ILK_DSPCLK_GATE_D) |
288 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
28554164 289 } else {
7dd23ba0 290 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
28554164
RV
291 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292 HSW_BYPASS_FBC_QUEUE);
7dd23ba0 293 /* WaFbcDisableDpfcClockGating:hsw */
d89f2071
RV
294 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296 HSW_DPFC_GATING_DISABLE);
891348b2 297 }
b74ea102 298
abe959c7
RV
299 I915_WRITE(SNB_DPFC_CTL_SA,
300 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303 sandybridge_blit_fbc_update(dev);
304
305 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
306}
307
85208be0
ED
308bool intel_fbc_enabled(struct drm_device *dev)
309{
310 struct drm_i915_private *dev_priv = dev->dev_private;
311
312 if (!dev_priv->display.fbc_enabled)
313 return false;
314
315 return dev_priv->display.fbc_enabled(dev);
316}
317
318static void intel_fbc_work_fn(struct work_struct *__work)
319{
320 struct intel_fbc_work *work =
321 container_of(to_delayed_work(__work),
322 struct intel_fbc_work, work);
323 struct drm_device *dev = work->crtc->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 mutex_lock(&dev->struct_mutex);
5c3fe8b0 327 if (work == dev_priv->fbc.fbc_work) {
85208be0
ED
328 /* Double check that we haven't switched fb without cancelling
329 * the prior work.
330 */
331 if (work->crtc->fb == work->fb) {
332 dev_priv->display.enable_fbc(work->crtc,
333 work->interval);
334
5c3fe8b0
BW
335 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337 dev_priv->fbc.y = work->crtc->y;
85208be0
ED
338 }
339
5c3fe8b0 340 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
341 }
342 mutex_unlock(&dev->struct_mutex);
343
344 kfree(work);
345}
346
347static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348{
5c3fe8b0 349 if (dev_priv->fbc.fbc_work == NULL)
85208be0
ED
350 return;
351
352 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354 /* Synchronisation is provided by struct_mutex and checking of
5c3fe8b0 355 * dev_priv->fbc.fbc_work, so we can perform the cancellation
85208be0
ED
356 * entirely asynchronously.
357 */
5c3fe8b0 358 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
85208be0 359 /* tasklet was killed before being run, clean up */
5c3fe8b0 360 kfree(dev_priv->fbc.fbc_work);
85208be0
ED
361
362 /* Mark the work as no longer wanted so that if it does
363 * wake-up (because the work was already running and waiting
364 * for our mutex), it will discover that is no longer
365 * necessary to run.
366 */
5c3fe8b0 367 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
368}
369
b63fb44c 370static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
371{
372 struct intel_fbc_work *work;
373 struct drm_device *dev = crtc->dev;
374 struct drm_i915_private *dev_priv = dev->dev_private;
375
376 if (!dev_priv->display.enable_fbc)
377 return;
378
379 intel_cancel_fbc_work(dev_priv);
380
381 work = kzalloc(sizeof *work, GFP_KERNEL);
382 if (work == NULL) {
6cdcb5e7 383 DRM_ERROR("Failed to allocate FBC work structure\n");
85208be0
ED
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
386 }
387
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
5c3fe8b0 393 dev_priv->fbc.fbc_work = work;
85208be0 394
85208be0
ED
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
400 *
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
7457d617
DL
405 *
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
85208be0
ED
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409}
410
411void intel_disable_fbc(struct drm_device *dev)
412{
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
5c3fe8b0 421 dev_priv->fbc.plane = -1;
85208be0
ED
422}
423
29ebf90f
CW
424static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
426{
427 if (dev_priv->fbc.no_fbc_reason == reason)
428 return false;
429
430 dev_priv->fbc.no_fbc_reason = reason;
431 return true;
432}
433
85208be0
ED
434/**
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
437 *
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
443 * - no dual wide
f85da868 444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
85208be0
ED
445 *
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
449 * stolen memory.
450 *
451 * We need to enable/disable FBC on a global basis.
452 */
453void intel_update_fbc(struct drm_device *dev)
454{
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
f85da868 461 unsigned int max_hdisplay, max_vdisplay;
85208be0 462
29ebf90f
CW
463 if (!I915_HAS_FBC(dev)) {
464 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
85208be0 465 return;
29ebf90f 466 }
85208be0 467
29ebf90f
CW
468 if (!i915_powersave) {
469 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0 471 return;
29ebf90f 472 }
85208be0
ED
473
474 /*
475 * If FBC is already on, we just have to verify that we can
476 * keep it that way...
477 * Need to disable if:
478 * - more than one pipe is active
479 * - changing FBC params (stride, fence, mode)
480 * - new fb is too large to fit in compressed buffer
481 * - going to an unsupported config (interlace, pixel multiply, etc.)
482 */
483 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3490ea5d
CW
484 if (intel_crtc_active(tmp_crtc) &&
485 !to_intel_crtc(tmp_crtc)->primary_disabled) {
85208be0 486 if (crtc) {
29ebf90f
CW
487 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
85208be0
ED
489 goto out_disable;
490 }
491 crtc = tmp_crtc;
492 }
493 }
494
495 if (!crtc || crtc->fb == NULL) {
29ebf90f
CW
496 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497 DRM_DEBUG_KMS("no output, disabling\n");
85208be0
ED
498 goto out_disable;
499 }
500
501 intel_crtc = to_intel_crtc(crtc);
502 fb = crtc->fb;
503 intel_fb = to_intel_framebuffer(fb);
504 obj = intel_fb->obj;
505
8a5729a3
DL
506 if (i915_enable_fbc < 0 &&
507 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
29ebf90f
CW
508 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509 DRM_DEBUG_KMS("disabled per chip default\n");
8a5729a3 510 goto out_disable;
85208be0 511 }
8a5729a3 512 if (!i915_enable_fbc) {
29ebf90f
CW
513 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0
ED
515 goto out_disable;
516 }
85208be0
ED
517 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
29ebf90f
CW
519 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520 DRM_DEBUG_KMS("mode incompatible with compression, "
521 "disabling\n");
85208be0
ED
522 goto out_disable;
523 }
f85da868
PZ
524
525 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
526 max_hdisplay = 4096;
527 max_vdisplay = 2048;
528 } else {
529 max_hdisplay = 2048;
530 max_vdisplay = 1536;
531 }
532 if ((crtc->mode.hdisplay > max_hdisplay) ||
533 (crtc->mode.vdisplay > max_vdisplay)) {
29ebf90f
CW
534 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
85208be0
ED
536 goto out_disable;
537 }
891348b2
RV
538 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539 intel_crtc->plane != 0) {
29ebf90f
CW
540 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
85208be0
ED
542 goto out_disable;
543 }
544
545 /* The use of a CPU fence is mandatory in order to detect writes
546 * by the CPU to the scanout and trigger updates to the FBC.
547 */
548 if (obj->tiling_mode != I915_TILING_X ||
549 obj->fence_reg == I915_FENCE_REG_NONE) {
29ebf90f
CW
550 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
85208be0
ED
552 goto out_disable;
553 }
554
555 /* If the kernel debugger is active, always disable compression */
556 if (in_dbg_master())
557 goto out_disable;
558
11be49eb 559 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
29ebf90f
CW
560 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
11be49eb
CW
562 goto out_disable;
563 }
564
85208be0
ED
565 /* If the scanout has not changed, don't modify the FBC settings.
566 * Note that we make the fundamental assumption that the fb->obj
567 * cannot be unpinned (and have its GTT offset and fence revoked)
568 * without first being decoupled from the scanout and FBC disabled.
569 */
5c3fe8b0
BW
570 if (dev_priv->fbc.plane == intel_crtc->plane &&
571 dev_priv->fbc.fb_id == fb->base.id &&
572 dev_priv->fbc.y == crtc->y)
85208be0
ED
573 return;
574
575 if (intel_fbc_enabled(dev)) {
576 /* We update FBC along two paths, after changing fb/crtc
577 * configuration (modeswitching) and after page-flipping
578 * finishes. For the latter, we know that not only did
579 * we disable the FBC at the start of the page-flip
580 * sequence, but also more than one vblank has passed.
581 *
582 * For the former case of modeswitching, it is possible
583 * to switch between two FBC valid configurations
584 * instantaneously so we do need to disable the FBC
585 * before we can modify its control registers. We also
586 * have to wait for the next vblank for that to take
587 * effect. However, since we delay enabling FBC we can
588 * assume that a vblank has passed since disabling and
589 * that we can safely alter the registers in the deferred
590 * callback.
591 *
592 * In the scenario that we go from a valid to invalid
593 * and then back to valid FBC configuration we have
594 * no strict enforcement that a vblank occurred since
595 * disabling the FBC. However, along all current pipe
596 * disabling paths we do need to wait for a vblank at
597 * some point. And we wait before enabling FBC anyway.
598 */
599 DRM_DEBUG_KMS("disabling active FBC for update\n");
600 intel_disable_fbc(dev);
601 }
602
603 intel_enable_fbc(crtc, 500);
29ebf90f 604 dev_priv->fbc.no_fbc_reason = FBC_OK;
85208be0
ED
605 return;
606
607out_disable:
608 /* Multiple disables should be harmless */
609 if (intel_fbc_enabled(dev)) {
610 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611 intel_disable_fbc(dev);
612 }
11be49eb 613 i915_gem_stolen_cleanup_compression(dev);
85208be0
ED
614}
615
c921aba8
DV
616static void i915_pineview_get_mem_freq(struct drm_device *dev)
617{
618 drm_i915_private_t *dev_priv = dev->dev_private;
619 u32 tmp;
620
621 tmp = I915_READ(CLKCFG);
622
623 switch (tmp & CLKCFG_FSB_MASK) {
624 case CLKCFG_FSB_533:
625 dev_priv->fsb_freq = 533; /* 133*4 */
626 break;
627 case CLKCFG_FSB_800:
628 dev_priv->fsb_freq = 800; /* 200*4 */
629 break;
630 case CLKCFG_FSB_667:
631 dev_priv->fsb_freq = 667; /* 167*4 */
632 break;
633 case CLKCFG_FSB_400:
634 dev_priv->fsb_freq = 400; /* 100*4 */
635 break;
636 }
637
638 switch (tmp & CLKCFG_MEM_MASK) {
639 case CLKCFG_MEM_533:
640 dev_priv->mem_freq = 533;
641 break;
642 case CLKCFG_MEM_667:
643 dev_priv->mem_freq = 667;
644 break;
645 case CLKCFG_MEM_800:
646 dev_priv->mem_freq = 800;
647 break;
648 }
649
650 /* detect pineview DDR3 setting */
651 tmp = I915_READ(CSHRDDR3CTL);
652 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
653}
654
655static void i915_ironlake_get_mem_freq(struct drm_device *dev)
656{
657 drm_i915_private_t *dev_priv = dev->dev_private;
658 u16 ddrpll, csipll;
659
660 ddrpll = I915_READ16(DDRMPLL1);
661 csipll = I915_READ16(CSIPLL0);
662
663 switch (ddrpll & 0xff) {
664 case 0xc:
665 dev_priv->mem_freq = 800;
666 break;
667 case 0x10:
668 dev_priv->mem_freq = 1066;
669 break;
670 case 0x14:
671 dev_priv->mem_freq = 1333;
672 break;
673 case 0x18:
674 dev_priv->mem_freq = 1600;
675 break;
676 default:
677 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
678 ddrpll & 0xff);
679 dev_priv->mem_freq = 0;
680 break;
681 }
682
20e4d407 683 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
684
685 switch (csipll & 0x3ff) {
686 case 0x00c:
687 dev_priv->fsb_freq = 3200;
688 break;
689 case 0x00e:
690 dev_priv->fsb_freq = 3733;
691 break;
692 case 0x010:
693 dev_priv->fsb_freq = 4266;
694 break;
695 case 0x012:
696 dev_priv->fsb_freq = 4800;
697 break;
698 case 0x014:
699 dev_priv->fsb_freq = 5333;
700 break;
701 case 0x016:
702 dev_priv->fsb_freq = 5866;
703 break;
704 case 0x018:
705 dev_priv->fsb_freq = 6400;
706 break;
707 default:
708 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
709 csipll & 0x3ff);
710 dev_priv->fsb_freq = 0;
711 break;
712 }
713
714 if (dev_priv->fsb_freq == 3200) {
20e4d407 715 dev_priv->ips.c_m = 0;
c921aba8 716 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 717 dev_priv->ips.c_m = 1;
c921aba8 718 } else {
20e4d407 719 dev_priv->ips.c_m = 2;
c921aba8
DV
720 }
721}
722
b445e3b0
ED
723static const struct cxsr_latency cxsr_latency_table[] = {
724 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
725 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
726 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
727 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
728 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
729
730 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
731 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
732 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
733 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
734 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
735
736 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
737 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
738 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
739 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
740 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
741
742 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
743 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
744 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
745 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
746 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
747
748 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
749 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
750 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
751 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
752 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
753
754 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
755 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
756 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
757 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
758 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
759};
760
63c62275 761static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
b445e3b0
ED
762 int is_ddr3,
763 int fsb,
764 int mem)
765{
766 const struct cxsr_latency *latency;
767 int i;
768
769 if (fsb == 0 || mem == 0)
770 return NULL;
771
772 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773 latency = &cxsr_latency_table[i];
774 if (is_desktop == latency->is_desktop &&
775 is_ddr3 == latency->is_ddr3 &&
776 fsb == latency->fsb_freq && mem == latency->mem_freq)
777 return latency;
778 }
779
780 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
781
782 return NULL;
783}
784
1fa61106 785static void pineview_disable_cxsr(struct drm_device *dev)
b445e3b0
ED
786{
787 struct drm_i915_private *dev_priv = dev->dev_private;
788
789 /* deactivate cxsr */
790 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
791}
792
793/*
794 * Latency for FIFO fetches is dependent on several factors:
795 * - memory configuration (speed, channels)
796 * - chipset
797 * - current MCH state
798 * It can be fairly high in some situations, so here we assume a fairly
799 * pessimal value. It's a tradeoff between extra memory fetches (if we
800 * set this value too high, the FIFO will fetch frequently to stay full)
801 * and power consumption (set it too low to save power and we might see
802 * FIFO underruns and display "flicker").
803 *
804 * A value of 5us seems to be a good balance; safe for very low end
805 * platforms but not overly aggressive on lower latency configs.
806 */
807static const int latency_ns = 5000;
808
1fa61106 809static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
810{
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 uint32_t dsparb = I915_READ(DSPARB);
813 int size;
814
815 size = dsparb & 0x7f;
816 if (plane)
817 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
818
819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820 plane ? "B" : "A", size);
821
822 return size;
823}
824
1fa61106 825static int i85x_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
826{
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 uint32_t dsparb = I915_READ(DSPARB);
829 int size;
830
831 size = dsparb & 0x1ff;
832 if (plane)
833 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834 size >>= 1; /* Convert to cachelines */
835
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837 plane ? "B" : "A", size);
838
839 return size;
840}
841
1fa61106 842static int i845_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
843{
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 uint32_t dsparb = I915_READ(DSPARB);
846 int size;
847
848 size = dsparb & 0x7f;
849 size >>= 2; /* Convert to cachelines */
850
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852 plane ? "B" : "A",
853 size);
854
855 return size;
856}
857
1fa61106 858static int i830_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
859{
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dsparb = I915_READ(DSPARB);
862 int size;
863
864 size = dsparb & 0x7f;
865 size >>= 1; /* Convert to cachelines */
866
867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868 plane ? "B" : "A", size);
869
870 return size;
871}
872
873/* Pineview has different values for various configs */
874static const struct intel_watermark_params pineview_display_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
880};
881static const struct intel_watermark_params pineview_display_hplloff_wm = {
882 PINEVIEW_DISPLAY_FIFO,
883 PINEVIEW_MAX_WM,
884 PINEVIEW_DFT_HPLLOFF_WM,
885 PINEVIEW_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE
887};
888static const struct intel_watermark_params pineview_cursor_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE,
894};
895static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896 PINEVIEW_CURSOR_FIFO,
897 PINEVIEW_CURSOR_MAX_WM,
898 PINEVIEW_CURSOR_DFT_WM,
899 PINEVIEW_CURSOR_GUARD_WM,
900 PINEVIEW_FIFO_LINE_SIZE
901};
902static const struct intel_watermark_params g4x_wm_info = {
903 G4X_FIFO_SIZE,
904 G4X_MAX_WM,
905 G4X_MAX_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908};
909static const struct intel_watermark_params g4x_cursor_wm_info = {
910 I965_CURSOR_FIFO,
911 I965_CURSOR_MAX_WM,
912 I965_CURSOR_DFT_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915};
916static const struct intel_watermark_params valleyview_wm_info = {
917 VALLEYVIEW_FIFO_SIZE,
918 VALLEYVIEW_MAX_WM,
919 VALLEYVIEW_MAX_WM,
920 2,
921 G4X_FIFO_LINE_SIZE,
922};
923static const struct intel_watermark_params valleyview_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 VALLEYVIEW_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
927 2,
928 G4X_FIFO_LINE_SIZE,
929};
930static const struct intel_watermark_params i965_cursor_wm_info = {
931 I965_CURSOR_FIFO,
932 I965_CURSOR_MAX_WM,
933 I965_CURSOR_DFT_WM,
934 2,
935 I915_FIFO_LINE_SIZE,
936};
937static const struct intel_watermark_params i945_wm_info = {
938 I945_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I915_FIFO_LINE_SIZE
943};
944static const struct intel_watermark_params i915_wm_info = {
945 I915_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I915_FIFO_LINE_SIZE
950};
951static const struct intel_watermark_params i855_wm_info = {
952 I855GM_FIFO_SIZE,
953 I915_MAX_WM,
954 1,
955 2,
956 I830_FIFO_LINE_SIZE
957};
958static const struct intel_watermark_params i830_wm_info = {
959 I830_FIFO_SIZE,
960 I915_MAX_WM,
961 1,
962 2,
963 I830_FIFO_LINE_SIZE
964};
965
966static const struct intel_watermark_params ironlake_display_wm_info = {
967 ILK_DISPLAY_FIFO,
968 ILK_DISPLAY_MAXWM,
969 ILK_DISPLAY_DFTWM,
970 2,
971 ILK_FIFO_LINE_SIZE
972};
973static const struct intel_watermark_params ironlake_cursor_wm_info = {
974 ILK_CURSOR_FIFO,
975 ILK_CURSOR_MAXWM,
976 ILK_CURSOR_DFTWM,
977 2,
978 ILK_FIFO_LINE_SIZE
979};
980static const struct intel_watermark_params ironlake_display_srwm_info = {
981 ILK_DISPLAY_SR_FIFO,
982 ILK_DISPLAY_MAX_SRWM,
983 ILK_DISPLAY_DFT_SRWM,
984 2,
985 ILK_FIFO_LINE_SIZE
986};
987static const struct intel_watermark_params ironlake_cursor_srwm_info = {
988 ILK_CURSOR_SR_FIFO,
989 ILK_CURSOR_MAX_SRWM,
990 ILK_CURSOR_DFT_SRWM,
991 2,
992 ILK_FIFO_LINE_SIZE
993};
994
995static const struct intel_watermark_params sandybridge_display_wm_info = {
996 SNB_DISPLAY_FIFO,
997 SNB_DISPLAY_MAXWM,
998 SNB_DISPLAY_DFTWM,
999 2,
1000 SNB_FIFO_LINE_SIZE
1001};
1002static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1003 SNB_CURSOR_FIFO,
1004 SNB_CURSOR_MAXWM,
1005 SNB_CURSOR_DFTWM,
1006 2,
1007 SNB_FIFO_LINE_SIZE
1008};
1009static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010 SNB_DISPLAY_SR_FIFO,
1011 SNB_DISPLAY_MAX_SRWM,
1012 SNB_DISPLAY_DFT_SRWM,
1013 2,
1014 SNB_FIFO_LINE_SIZE
1015};
1016static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1017 SNB_CURSOR_SR_FIFO,
1018 SNB_CURSOR_MAX_SRWM,
1019 SNB_CURSOR_DFT_SRWM,
1020 2,
1021 SNB_FIFO_LINE_SIZE
1022};
1023
1024
1025/**
1026 * intel_calculate_wm - calculate watermark level
1027 * @clock_in_khz: pixel clock
1028 * @wm: chip FIFO params
1029 * @pixel_size: display pixel size
1030 * @latency_ns: memory latency for the platform
1031 *
1032 * Calculate the watermark level (the level at which the display plane will
1033 * start fetching from memory again). Each chip has a different display
1034 * FIFO size and allocation, so the caller needs to figure that out and pass
1035 * in the correct intel_watermark_params structure.
1036 *
1037 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038 * on the pixel size. When it reaches the watermark level, it'll start
1039 * fetching FIFO line sized based chunks from memory until the FIFO fills
1040 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1041 * will occur, and a display engine hang could result.
1042 */
1043static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044 const struct intel_watermark_params *wm,
1045 int fifo_size,
1046 int pixel_size,
1047 unsigned long latency_ns)
1048{
1049 long entries_required, wm_size;
1050
1051 /*
1052 * Note: we need to make sure we don't overflow for various clock &
1053 * latency values.
1054 * clocks go from a few thousand to several hundred thousand.
1055 * latency is usually a few thousand
1056 */
1057 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058 1000;
1059 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1060
1061 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1062
1063 wm_size = fifo_size - (entries_required + wm->guard_size);
1064
1065 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1066
1067 /* Don't promote wm_size to unsigned... */
1068 if (wm_size > (long)wm->max_wm)
1069 wm_size = wm->max_wm;
1070 if (wm_size <= 0)
1071 wm_size = wm->default_wm;
1072 return wm_size;
1073}
1074
1075static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1076{
1077 struct drm_crtc *crtc, *enabled = NULL;
1078
1079 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 1080 if (intel_crtc_active(crtc)) {
b445e3b0
ED
1081 if (enabled)
1082 return NULL;
1083 enabled = crtc;
1084 }
1085 }
1086
1087 return enabled;
1088}
1089
1fa61106 1090static void pineview_update_wm(struct drm_device *dev)
b445e3b0
ED
1091{
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 struct drm_crtc *crtc;
1094 const struct cxsr_latency *latency;
1095 u32 reg;
1096 unsigned long wm;
1097
1098 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099 dev_priv->fsb_freq, dev_priv->mem_freq);
1100 if (!latency) {
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev);
1103 return;
1104 }
1105
1106 crtc = single_enabled_crtc(dev);
1107 if (crtc) {
1108 int clock = crtc->mode.clock;
1109 int pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111 /* Display SR */
1112 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113 pineview_display_wm.fifo_size,
1114 pixel_size, latency->display_sr);
1115 reg = I915_READ(DSPFW1);
1116 reg &= ~DSPFW_SR_MASK;
1117 reg |= wm << DSPFW_SR_SHIFT;
1118 I915_WRITE(DSPFW1, reg);
1119 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1120
1121 /* cursor SR */
1122 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123 pineview_display_wm.fifo_size,
1124 pixel_size, latency->cursor_sr);
1125 reg = I915_READ(DSPFW3);
1126 reg &= ~DSPFW_CURSOR_SR_MASK;
1127 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128 I915_WRITE(DSPFW3, reg);
1129
1130 /* Display HPLL off SR */
1131 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132 pineview_display_hplloff_wm.fifo_size,
1133 pixel_size, latency->display_hpll_disable);
1134 reg = I915_READ(DSPFW3);
1135 reg &= ~DSPFW_HPLL_SR_MASK;
1136 reg |= wm & DSPFW_HPLL_SR_MASK;
1137 I915_WRITE(DSPFW3, reg);
1138
1139 /* cursor HPLL off SR */
1140 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141 pineview_display_hplloff_wm.fifo_size,
1142 pixel_size, latency->cursor_hpll_disable);
1143 reg = I915_READ(DSPFW3);
1144 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146 I915_WRITE(DSPFW3, reg);
1147 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1148
1149 /* activate cxsr */
1150 I915_WRITE(DSPFW3,
1151 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153 } else {
1154 pineview_disable_cxsr(dev);
1155 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1156 }
1157}
1158
1159static bool g4x_compute_wm0(struct drm_device *dev,
1160 int plane,
1161 const struct intel_watermark_params *display,
1162 int display_latency_ns,
1163 const struct intel_watermark_params *cursor,
1164 int cursor_latency_ns,
1165 int *plane_wm,
1166 int *cursor_wm)
1167{
1168 struct drm_crtc *crtc;
1169 int htotal, hdisplay, clock, pixel_size;
1170 int line_time_us, line_count;
1171 int entries, tlb_miss;
1172
1173 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1174 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
1175 *cursor_wm = cursor->guard_size;
1176 *plane_wm = display->guard_size;
1177 return false;
1178 }
1179
1180 htotal = crtc->mode.htotal;
1181 hdisplay = crtc->mode.hdisplay;
1182 clock = crtc->mode.clock;
1183 pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185 /* Use the small buffer method to calculate plane watermark */
1186 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1188 if (tlb_miss > 0)
1189 entries += tlb_miss;
1190 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191 *plane_wm = entries + display->guard_size;
1192 if (*plane_wm > (int)display->max_wm)
1193 *plane_wm = display->max_wm;
1194
1195 /* Use the large buffer method to calculate cursor watermark */
1196 line_time_us = ((htotal * 1000) / clock);
1197 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198 entries = line_count * 64 * pixel_size;
1199 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1200 if (tlb_miss > 0)
1201 entries += tlb_miss;
1202 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203 *cursor_wm = entries + cursor->guard_size;
1204 if (*cursor_wm > (int)cursor->max_wm)
1205 *cursor_wm = (int)cursor->max_wm;
1206
1207 return true;
1208}
1209
1210/*
1211 * Check the wm result.
1212 *
1213 * If any calculated watermark values is larger than the maximum value that
1214 * can be programmed into the associated watermark register, that watermark
1215 * must be disabled.
1216 */
1217static bool g4x_check_srwm(struct drm_device *dev,
1218 int display_wm, int cursor_wm,
1219 const struct intel_watermark_params *display,
1220 const struct intel_watermark_params *cursor)
1221{
1222 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223 display_wm, cursor_wm);
1224
1225 if (display_wm > display->max_wm) {
1226 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227 display_wm, display->max_wm);
1228 return false;
1229 }
1230
1231 if (cursor_wm > cursor->max_wm) {
1232 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233 cursor_wm, cursor->max_wm);
1234 return false;
1235 }
1236
1237 if (!(display_wm || cursor_wm)) {
1238 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1239 return false;
1240 }
1241
1242 return true;
1243}
1244
1245static bool g4x_compute_srwm(struct drm_device *dev,
1246 int plane,
1247 int latency_ns,
1248 const struct intel_watermark_params *display,
1249 const struct intel_watermark_params *cursor,
1250 int *display_wm, int *cursor_wm)
1251{
1252 struct drm_crtc *crtc;
1253 int hdisplay, htotal, pixel_size, clock;
1254 unsigned long line_time_us;
1255 int line_count, line_size;
1256 int small, large;
1257 int entries;
1258
1259 if (!latency_ns) {
1260 *display_wm = *cursor_wm = 0;
1261 return false;
1262 }
1263
1264 crtc = intel_get_crtc_for_plane(dev, plane);
1265 hdisplay = crtc->mode.hdisplay;
1266 htotal = crtc->mode.htotal;
1267 clock = crtc->mode.clock;
1268 pixel_size = crtc->fb->bits_per_pixel / 8;
1269
1270 line_time_us = (htotal * 1000) / clock;
1271 line_count = (latency_ns / line_time_us + 1000) / 1000;
1272 line_size = hdisplay * pixel_size;
1273
1274 /* Use the minimum of the small and large buffer method for primary */
1275 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276 large = line_count * line_size;
1277
1278 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279 *display_wm = entries + display->guard_size;
1280
1281 /* calculate the self-refresh watermark for display cursor */
1282 entries = line_count * pixel_size * 64;
1283 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284 *cursor_wm = entries + cursor->guard_size;
1285
1286 return g4x_check_srwm(dev,
1287 *display_wm, *cursor_wm,
1288 display, cursor);
1289}
1290
1291static bool vlv_compute_drain_latency(struct drm_device *dev,
1292 int plane,
1293 int *plane_prec_mult,
1294 int *plane_dl,
1295 int *cursor_prec_mult,
1296 int *cursor_dl)
1297{
1298 struct drm_crtc *crtc;
1299 int clock, pixel_size;
1300 int entries;
1301
1302 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1303 if (!intel_crtc_active(crtc))
b445e3b0
ED
1304 return false;
1305
1306 clock = crtc->mode.clock; /* VESA DOT Clock */
1307 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1308
1309 entries = (clock / 1000) * pixel_size;
1310 *plane_prec_mult = (entries > 256) ?
1311 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1313 pixel_size);
1314
1315 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1316 *cursor_prec_mult = (entries > 256) ?
1317 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1319
1320 return true;
1321}
1322
1323/*
1324 * Update drain latency registers of memory arbiter
1325 *
1326 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327 * to be programmed. Each plane has a drain latency multiplier and a drain
1328 * latency value.
1329 */
1330
1331static void vlv_update_drain_latency(struct drm_device *dev)
1332{
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1337 either 16 or 32 */
1338
1339 /* For plane A, Cursor A */
1340 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341 &cursor_prec_mult, &cursora_dl)) {
1342 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1346
1347 I915_WRITE(VLV_DDL1, cursora_prec |
1348 (cursora_dl << DDL_CURSORA_SHIFT) |
1349 planea_prec | planea_dl);
1350 }
1351
1352 /* For plane B, Cursor B */
1353 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354 &cursor_prec_mult, &cursorb_dl)) {
1355 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1359
1360 I915_WRITE(VLV_DDL2, cursorb_prec |
1361 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362 planeb_prec | planeb_dl);
1363 }
1364}
1365
1366#define single_plane_enabled(mask) is_power_of_2(mask)
1367
1fa61106 1368static void valleyview_update_wm(struct drm_device *dev)
b445e3b0
ED
1369{
1370 static const int sr_latency_ns = 12000;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373 int plane_sr, cursor_sr;
af6c4575 1374 int ignore_plane_sr, ignore_cursor_sr;
b445e3b0
ED
1375 unsigned int enabled = 0;
1376
1377 vlv_update_drain_latency(dev);
1378
51cea1f4 1379 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1380 &valleyview_wm_info, latency_ns,
1381 &valleyview_cursor_wm_info, latency_ns,
1382 &planea_wm, &cursora_wm))
51cea1f4 1383 enabled |= 1 << PIPE_A;
b445e3b0 1384
51cea1f4 1385 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1386 &valleyview_wm_info, latency_ns,
1387 &valleyview_cursor_wm_info, latency_ns,
1388 &planeb_wm, &cursorb_wm))
51cea1f4 1389 enabled |= 1 << PIPE_B;
b445e3b0 1390
b445e3b0
ED
1391 if (single_plane_enabled(enabled) &&
1392 g4x_compute_srwm(dev, ffs(enabled) - 1,
1393 sr_latency_ns,
1394 &valleyview_wm_info,
1395 &valleyview_cursor_wm_info,
af6c4575
CW
1396 &plane_sr, &ignore_cursor_sr) &&
1397 g4x_compute_srwm(dev, ffs(enabled) - 1,
1398 2*sr_latency_ns,
1399 &valleyview_wm_info,
1400 &valleyview_cursor_wm_info,
52bd02d8 1401 &ignore_plane_sr, &cursor_sr)) {
b445e3b0 1402 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
52bd02d8 1403 } else {
b445e3b0
ED
1404 I915_WRITE(FW_BLC_SELF_VLV,
1405 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
52bd02d8
CW
1406 plane_sr = cursor_sr = 0;
1407 }
b445e3b0
ED
1408
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410 planea_wm, cursora_wm,
1411 planeb_wm, cursorb_wm,
1412 plane_sr, cursor_sr);
1413
1414 I915_WRITE(DSPFW1,
1415 (plane_sr << DSPFW_SR_SHIFT) |
1416 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418 planea_wm);
1419 I915_WRITE(DSPFW2,
8c919b28 1420 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1421 (cursora_wm << DSPFW_CURSORA_SHIFT));
1422 I915_WRITE(DSPFW3,
8c919b28
CW
1423 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
b445e3b0
ED
1425}
1426
1fa61106 1427static void g4x_update_wm(struct drm_device *dev)
b445e3b0
ED
1428{
1429 static const int sr_latency_ns = 12000;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432 int plane_sr, cursor_sr;
1433 unsigned int enabled = 0;
1434
51cea1f4 1435 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1436 &g4x_wm_info, latency_ns,
1437 &g4x_cursor_wm_info, latency_ns,
1438 &planea_wm, &cursora_wm))
51cea1f4 1439 enabled |= 1 << PIPE_A;
b445e3b0 1440
51cea1f4 1441 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1442 &g4x_wm_info, latency_ns,
1443 &g4x_cursor_wm_info, latency_ns,
1444 &planeb_wm, &cursorb_wm))
51cea1f4 1445 enabled |= 1 << PIPE_B;
b445e3b0 1446
b445e3b0
ED
1447 if (single_plane_enabled(enabled) &&
1448 g4x_compute_srwm(dev, ffs(enabled) - 1,
1449 sr_latency_ns,
1450 &g4x_wm_info,
1451 &g4x_cursor_wm_info,
52bd02d8 1452 &plane_sr, &cursor_sr)) {
b445e3b0 1453 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
52bd02d8 1454 } else {
b445e3b0
ED
1455 I915_WRITE(FW_BLC_SELF,
1456 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
52bd02d8
CW
1457 plane_sr = cursor_sr = 0;
1458 }
b445e3b0
ED
1459
1460 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461 planea_wm, cursora_wm,
1462 planeb_wm, cursorb_wm,
1463 plane_sr, cursor_sr);
1464
1465 I915_WRITE(DSPFW1,
1466 (plane_sr << DSPFW_SR_SHIFT) |
1467 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1469 planea_wm);
1470 I915_WRITE(DSPFW2,
8c919b28 1471 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1472 (cursora_wm << DSPFW_CURSORA_SHIFT));
1473 /* HPLL off in SR has some issues on G4x... disable it */
1474 I915_WRITE(DSPFW3,
8c919b28 1475 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
b445e3b0
ED
1476 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1477}
1478
1fa61106 1479static void i965_update_wm(struct drm_device *dev)
b445e3b0
ED
1480{
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 struct drm_crtc *crtc;
1483 int srwm = 1;
1484 int cursor_sr = 16;
1485
1486 /* Calc sr entries for one plane configs */
1487 crtc = single_enabled_crtc(dev);
1488 if (crtc) {
1489 /* self-refresh has much higher latency */
1490 static const int sr_latency_ns = 12000;
1491 int clock = crtc->mode.clock;
1492 int htotal = crtc->mode.htotal;
1493 int hdisplay = crtc->mode.hdisplay;
1494 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495 unsigned long line_time_us;
1496 int entries;
1497
1498 line_time_us = ((htotal * 1000) / clock);
1499
1500 /* Use ns/us then divide to preserve precision */
1501 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502 pixel_size * hdisplay;
1503 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504 srwm = I965_FIFO_SIZE - entries;
1505 if (srwm < 0)
1506 srwm = 1;
1507 srwm &= 0x1ff;
1508 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1509 entries, srwm);
1510
1511 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512 pixel_size * 64;
1513 entries = DIV_ROUND_UP(entries,
1514 i965_cursor_wm_info.cacheline_size);
1515 cursor_sr = i965_cursor_wm_info.fifo_size -
1516 (entries + i965_cursor_wm_info.guard_size);
1517
1518 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519 cursor_sr = i965_cursor_wm_info.max_wm;
1520
1521 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522 "cursor %d\n", srwm, cursor_sr);
1523
1524 if (IS_CRESTLINE(dev))
1525 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1526 } else {
1527 /* Turn off self refresh if both pipes are enabled */
1528 if (IS_CRESTLINE(dev))
1529 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1530 & ~FW_BLC_SELF_EN);
1531 }
1532
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1534 srwm);
1535
1536 /* 965 has limitations... */
1537 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538 (8 << 16) | (8 << 8) | (8 << 0));
1539 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540 /* update cursor SR watermark */
1541 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1542}
1543
1fa61106 1544static void i9xx_update_wm(struct drm_device *dev)
b445e3b0
ED
1545{
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 const struct intel_watermark_params *wm_info;
1548 uint32_t fwater_lo;
1549 uint32_t fwater_hi;
1550 int cwm, srwm = 1;
1551 int fifo_size;
1552 int planea_wm, planeb_wm;
1553 struct drm_crtc *crtc, *enabled = NULL;
1554
1555 if (IS_I945GM(dev))
1556 wm_info = &i945_wm_info;
1557 else if (!IS_GEN2(dev))
1558 wm_info = &i915_wm_info;
1559 else
1560 wm_info = &i855_wm_info;
1561
1562 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563 crtc = intel_get_crtc_for_plane(dev, 0);
3490ea5d 1564 if (intel_crtc_active(crtc)) {
b9e0bda3
CW
1565 int cpp = crtc->fb->bits_per_pixel / 8;
1566 if (IS_GEN2(dev))
1567 cpp = 4;
1568
b445e3b0 1569 planea_wm = intel_calculate_wm(crtc->mode.clock,
b9e0bda3 1570 wm_info, fifo_size, cpp,
b445e3b0
ED
1571 latency_ns);
1572 enabled = crtc;
1573 } else
1574 planea_wm = fifo_size - wm_info->guard_size;
1575
1576 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577 crtc = intel_get_crtc_for_plane(dev, 1);
3490ea5d 1578 if (intel_crtc_active(crtc)) {
b9e0bda3
CW
1579 int cpp = crtc->fb->bits_per_pixel / 8;
1580 if (IS_GEN2(dev))
1581 cpp = 4;
1582
b445e3b0 1583 planeb_wm = intel_calculate_wm(crtc->mode.clock,
b9e0bda3 1584 wm_info, fifo_size, cpp,
b445e3b0
ED
1585 latency_ns);
1586 if (enabled == NULL)
1587 enabled = crtc;
1588 else
1589 enabled = NULL;
1590 } else
1591 planeb_wm = fifo_size - wm_info->guard_size;
1592
1593 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1594
1595 /*
1596 * Overlay gets an aggressive default since video jitter is bad.
1597 */
1598 cwm = 2;
1599
1600 /* Play safe and disable self-refresh before adjusting watermarks. */
1601 if (IS_I945G(dev) || IS_I945GM(dev))
1602 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1603 else if (IS_I915GM(dev))
1604 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1605
1606 /* Calc sr entries for one plane configs */
1607 if (HAS_FW_BLC(dev) && enabled) {
1608 /* self-refresh has much higher latency */
1609 static const int sr_latency_ns = 6000;
1610 int clock = enabled->mode.clock;
1611 int htotal = enabled->mode.htotal;
1612 int hdisplay = enabled->mode.hdisplay;
1613 int pixel_size = enabled->fb->bits_per_pixel / 8;
1614 unsigned long line_time_us;
1615 int entries;
1616
1617 line_time_us = (htotal * 1000) / clock;
1618
1619 /* Use ns/us then divide to preserve precision */
1620 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621 pixel_size * hdisplay;
1622 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1623 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1624 srwm = wm_info->fifo_size - entries;
1625 if (srwm < 0)
1626 srwm = 1;
1627
1628 if (IS_I945G(dev) || IS_I945GM(dev))
1629 I915_WRITE(FW_BLC_SELF,
1630 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631 else if (IS_I915GM(dev))
1632 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1633 }
1634
1635 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1636 planea_wm, planeb_wm, cwm, srwm);
1637
1638 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1639 fwater_hi = (cwm & 0x1f);
1640
1641 /* Set request length to 8 cachelines per fetch */
1642 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1643 fwater_hi = fwater_hi | (1 << 8);
1644
1645 I915_WRITE(FW_BLC, fwater_lo);
1646 I915_WRITE(FW_BLC2, fwater_hi);
1647
1648 if (HAS_FW_BLC(dev)) {
1649 if (enabled) {
1650 if (IS_I945G(dev) || IS_I945GM(dev))
1651 I915_WRITE(FW_BLC_SELF,
1652 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1653 else if (IS_I915GM(dev))
1654 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1655 DRM_DEBUG_KMS("memory self refresh enabled\n");
1656 } else
1657 DRM_DEBUG_KMS("memory self refresh disabled\n");
1658 }
1659}
1660
1fa61106 1661static void i830_update_wm(struct drm_device *dev)
b445e3b0
ED
1662{
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct drm_crtc *crtc;
1665 uint32_t fwater_lo;
1666 int planea_wm;
1667
1668 crtc = single_enabled_crtc(dev);
1669 if (crtc == NULL)
1670 return;
1671
1672 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1673 dev_priv->display.get_fifo_size(dev, 0),
b9e0bda3 1674 4, latency_ns);
b445e3b0
ED
1675 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1676 fwater_lo |= (3<<8) | planea_wm;
1677
1678 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1679
1680 I915_WRITE(FW_BLC, fwater_lo);
1681}
1682
b445e3b0
ED
1683/*
1684 * Check the wm result.
1685 *
1686 * If any calculated watermark values is larger than the maximum value that
1687 * can be programmed into the associated watermark register, that watermark
1688 * must be disabled.
1689 */
1690static bool ironlake_check_srwm(struct drm_device *dev, int level,
1691 int fbc_wm, int display_wm, int cursor_wm,
1692 const struct intel_watermark_params *display,
1693 const struct intel_watermark_params *cursor)
1694{
1695 struct drm_i915_private *dev_priv = dev->dev_private;
1696
1697 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1698 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1699
1700 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1701 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1702 fbc_wm, SNB_FBC_MAX_SRWM, level);
1703
1704 /* fbc has it's own way to disable FBC WM */
1705 I915_WRITE(DISP_ARB_CTL,
1706 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1707 return false;
615aaa5f
VS
1708 } else if (INTEL_INFO(dev)->gen >= 6) {
1709 /* enable FBC WM (except on ILK, where it must remain off) */
1710 I915_WRITE(DISP_ARB_CTL,
1711 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
b445e3b0
ED
1712 }
1713
1714 if (display_wm > display->max_wm) {
1715 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1716 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1717 return false;
1718 }
1719
1720 if (cursor_wm > cursor->max_wm) {
1721 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1722 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1723 return false;
1724 }
1725
1726 if (!(fbc_wm || display_wm || cursor_wm)) {
1727 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1728 return false;
1729 }
1730
1731 return true;
1732}
1733
1734/*
1735 * Compute watermark values of WM[1-3],
1736 */
1737static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1738 int latency_ns,
1739 const struct intel_watermark_params *display,
1740 const struct intel_watermark_params *cursor,
1741 int *fbc_wm, int *display_wm, int *cursor_wm)
1742{
1743 struct drm_crtc *crtc;
1744 unsigned long line_time_us;
1745 int hdisplay, htotal, pixel_size, clock;
1746 int line_count, line_size;
1747 int small, large;
1748 int entries;
1749
1750 if (!latency_ns) {
1751 *fbc_wm = *display_wm = *cursor_wm = 0;
1752 return false;
1753 }
1754
1755 crtc = intel_get_crtc_for_plane(dev, plane);
1756 hdisplay = crtc->mode.hdisplay;
1757 htotal = crtc->mode.htotal;
1758 clock = crtc->mode.clock;
1759 pixel_size = crtc->fb->bits_per_pixel / 8;
1760
1761 line_time_us = (htotal * 1000) / clock;
1762 line_count = (latency_ns / line_time_us + 1000) / 1000;
1763 line_size = hdisplay * pixel_size;
1764
1765 /* Use the minimum of the small and large buffer method for primary */
1766 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1767 large = line_count * line_size;
1768
1769 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1770 *display_wm = entries + display->guard_size;
1771
1772 /*
1773 * Spec says:
1774 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1775 */
1776 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1777
1778 /* calculate the self-refresh watermark for display cursor */
1779 entries = line_count * pixel_size * 64;
1780 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1781 *cursor_wm = entries + cursor->guard_size;
1782
1783 return ironlake_check_srwm(dev, level,
1784 *fbc_wm, *display_wm, *cursor_wm,
1785 display, cursor);
1786}
1787
1fa61106 1788static void ironlake_update_wm(struct drm_device *dev)
b445e3b0
ED
1789{
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 int fbc_wm, plane_wm, cursor_wm;
1792 unsigned int enabled;
1793
1794 enabled = 0;
51cea1f4 1795 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0 1796 &ironlake_display_wm_info,
b0aea5dc 1797 dev_priv->wm.pri_latency[0] * 100,
b445e3b0 1798 &ironlake_cursor_wm_info,
b0aea5dc 1799 dev_priv->wm.cur_latency[0] * 100,
b445e3b0
ED
1800 &plane_wm, &cursor_wm)) {
1801 I915_WRITE(WM0_PIPEA_ILK,
1802 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1803 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1804 " plane %d, " "cursor: %d\n",
1805 plane_wm, cursor_wm);
51cea1f4 1806 enabled |= 1 << PIPE_A;
b445e3b0
ED
1807 }
1808
51cea1f4 1809 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0 1810 &ironlake_display_wm_info,
b0aea5dc 1811 dev_priv->wm.pri_latency[0] * 100,
b445e3b0 1812 &ironlake_cursor_wm_info,
b0aea5dc 1813 dev_priv->wm.cur_latency[0] * 100,
b445e3b0
ED
1814 &plane_wm, &cursor_wm)) {
1815 I915_WRITE(WM0_PIPEB_ILK,
1816 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1817 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1818 " plane %d, cursor: %d\n",
1819 plane_wm, cursor_wm);
51cea1f4 1820 enabled |= 1 << PIPE_B;
b445e3b0
ED
1821 }
1822
1823 /*
1824 * Calculate and update the self-refresh watermark only when one
1825 * display plane is used.
1826 */
1827 I915_WRITE(WM3_LP_ILK, 0);
1828 I915_WRITE(WM2_LP_ILK, 0);
1829 I915_WRITE(WM1_LP_ILK, 0);
1830
1831 if (!single_plane_enabled(enabled))
1832 return;
1833 enabled = ffs(enabled) - 1;
1834
1835 /* WM1 */
1836 if (!ironlake_compute_srwm(dev, 1, enabled,
b0aea5dc 1837 dev_priv->wm.pri_latency[1] * 500,
b445e3b0
ED
1838 &ironlake_display_srwm_info,
1839 &ironlake_cursor_srwm_info,
1840 &fbc_wm, &plane_wm, &cursor_wm))
1841 return;
1842
1843 I915_WRITE(WM1_LP_ILK,
1844 WM1_LP_SR_EN |
b0aea5dc 1845 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
1846 (fbc_wm << WM1_LP_FBC_SHIFT) |
1847 (plane_wm << WM1_LP_SR_SHIFT) |
1848 cursor_wm);
1849
1850 /* WM2 */
1851 if (!ironlake_compute_srwm(dev, 2, enabled,
b0aea5dc 1852 dev_priv->wm.pri_latency[2] * 500,
b445e3b0
ED
1853 &ironlake_display_srwm_info,
1854 &ironlake_cursor_srwm_info,
1855 &fbc_wm, &plane_wm, &cursor_wm))
1856 return;
1857
1858 I915_WRITE(WM2_LP_ILK,
1859 WM2_LP_EN |
b0aea5dc 1860 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
1861 (fbc_wm << WM1_LP_FBC_SHIFT) |
1862 (plane_wm << WM1_LP_SR_SHIFT) |
1863 cursor_wm);
1864
1865 /*
1866 * WM3 is unsupported on ILK, probably because we don't have latency
1867 * data for that power state
1868 */
1869}
1870
1fa61106 1871static void sandybridge_update_wm(struct drm_device *dev)
b445e3b0
ED
1872{
1873 struct drm_i915_private *dev_priv = dev->dev_private;
b0aea5dc 1874 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
b445e3b0
ED
1875 u32 val;
1876 int fbc_wm, plane_wm, cursor_wm;
1877 unsigned int enabled;
1878
1879 enabled = 0;
51cea1f4 1880 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1881 &sandybridge_display_wm_info, latency,
1882 &sandybridge_cursor_wm_info, latency,
1883 &plane_wm, &cursor_wm)) {
1884 val = I915_READ(WM0_PIPEA_ILK);
1885 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1886 I915_WRITE(WM0_PIPEA_ILK, val |
1887 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1888 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1889 " plane %d, " "cursor: %d\n",
1890 plane_wm, cursor_wm);
51cea1f4 1891 enabled |= 1 << PIPE_A;
b445e3b0
ED
1892 }
1893
51cea1f4 1894 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1895 &sandybridge_display_wm_info, latency,
1896 &sandybridge_cursor_wm_info, latency,
1897 &plane_wm, &cursor_wm)) {
1898 val = I915_READ(WM0_PIPEB_ILK);
1899 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1900 I915_WRITE(WM0_PIPEB_ILK, val |
1901 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1902 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1903 " plane %d, cursor: %d\n",
1904 plane_wm, cursor_wm);
51cea1f4 1905 enabled |= 1 << PIPE_B;
b445e3b0
ED
1906 }
1907
c43d0188
CW
1908 /*
1909 * Calculate and update the self-refresh watermark only when one
1910 * display plane is used.
1911 *
1912 * SNB support 3 levels of watermark.
1913 *
1914 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1915 * and disabled in the descending order
1916 *
1917 */
1918 I915_WRITE(WM3_LP_ILK, 0);
1919 I915_WRITE(WM2_LP_ILK, 0);
1920 I915_WRITE(WM1_LP_ILK, 0);
1921
1922 if (!single_plane_enabled(enabled) ||
1923 dev_priv->sprite_scaling_enabled)
1924 return;
1925 enabled = ffs(enabled) - 1;
1926
1927 /* WM1 */
1928 if (!ironlake_compute_srwm(dev, 1, enabled,
b0aea5dc 1929 dev_priv->wm.pri_latency[1] * 500,
c43d0188
CW
1930 &sandybridge_display_srwm_info,
1931 &sandybridge_cursor_srwm_info,
1932 &fbc_wm, &plane_wm, &cursor_wm))
1933 return;
1934
1935 I915_WRITE(WM1_LP_ILK,
1936 WM1_LP_SR_EN |
b0aea5dc 1937 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
c43d0188
CW
1938 (fbc_wm << WM1_LP_FBC_SHIFT) |
1939 (plane_wm << WM1_LP_SR_SHIFT) |
1940 cursor_wm);
1941
1942 /* WM2 */
1943 if (!ironlake_compute_srwm(dev, 2, enabled,
b0aea5dc 1944 dev_priv->wm.pri_latency[2] * 500,
c43d0188
CW
1945 &sandybridge_display_srwm_info,
1946 &sandybridge_cursor_srwm_info,
1947 &fbc_wm, &plane_wm, &cursor_wm))
1948 return;
1949
1950 I915_WRITE(WM2_LP_ILK,
1951 WM2_LP_EN |
b0aea5dc 1952 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
c43d0188
CW
1953 (fbc_wm << WM1_LP_FBC_SHIFT) |
1954 (plane_wm << WM1_LP_SR_SHIFT) |
1955 cursor_wm);
1956
1957 /* WM3 */
1958 if (!ironlake_compute_srwm(dev, 3, enabled,
b0aea5dc 1959 dev_priv->wm.pri_latency[3] * 500,
c43d0188
CW
1960 &sandybridge_display_srwm_info,
1961 &sandybridge_cursor_srwm_info,
1962 &fbc_wm, &plane_wm, &cursor_wm))
1963 return;
1964
1965 I915_WRITE(WM3_LP_ILK,
1966 WM3_LP_EN |
b0aea5dc 1967 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
c43d0188
CW
1968 (fbc_wm << WM1_LP_FBC_SHIFT) |
1969 (plane_wm << WM1_LP_SR_SHIFT) |
1970 cursor_wm);
1971}
1972
1973static void ivybridge_update_wm(struct drm_device *dev)
1974{
1975 struct drm_i915_private *dev_priv = dev->dev_private;
b0aea5dc 1976 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
c43d0188
CW
1977 u32 val;
1978 int fbc_wm, plane_wm, cursor_wm;
1979 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1980 unsigned int enabled;
1981
1982 enabled = 0;
51cea1f4 1983 if (g4x_compute_wm0(dev, PIPE_A,
c43d0188
CW
1984 &sandybridge_display_wm_info, latency,
1985 &sandybridge_cursor_wm_info, latency,
1986 &plane_wm, &cursor_wm)) {
1987 val = I915_READ(WM0_PIPEA_ILK);
1988 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1989 I915_WRITE(WM0_PIPEA_ILK, val |
1990 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1991 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1992 " plane %d, " "cursor: %d\n",
1993 plane_wm, cursor_wm);
51cea1f4 1994 enabled |= 1 << PIPE_A;
c43d0188
CW
1995 }
1996
51cea1f4 1997 if (g4x_compute_wm0(dev, PIPE_B,
c43d0188
CW
1998 &sandybridge_display_wm_info, latency,
1999 &sandybridge_cursor_wm_info, latency,
2000 &plane_wm, &cursor_wm)) {
2001 val = I915_READ(WM0_PIPEB_ILK);
2002 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2003 I915_WRITE(WM0_PIPEB_ILK, val |
2004 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2005 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2006 " plane %d, cursor: %d\n",
2007 plane_wm, cursor_wm);
51cea1f4 2008 enabled |= 1 << PIPE_B;
c43d0188
CW
2009 }
2010
51cea1f4 2011 if (g4x_compute_wm0(dev, PIPE_C,
b445e3b0
ED
2012 &sandybridge_display_wm_info, latency,
2013 &sandybridge_cursor_wm_info, latency,
2014 &plane_wm, &cursor_wm)) {
2015 val = I915_READ(WM0_PIPEC_IVB);
2016 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2017 I915_WRITE(WM0_PIPEC_IVB, val |
2018 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2019 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2020 " plane %d, cursor: %d\n",
2021 plane_wm, cursor_wm);
51cea1f4 2022 enabled |= 1 << PIPE_C;
b445e3b0
ED
2023 }
2024
2025 /*
2026 * Calculate and update the self-refresh watermark only when one
2027 * display plane is used.
2028 *
2029 * SNB support 3 levels of watermark.
2030 *
2031 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2032 * and disabled in the descending order
2033 *
2034 */
2035 I915_WRITE(WM3_LP_ILK, 0);
2036 I915_WRITE(WM2_LP_ILK, 0);
2037 I915_WRITE(WM1_LP_ILK, 0);
2038
2039 if (!single_plane_enabled(enabled) ||
2040 dev_priv->sprite_scaling_enabled)
2041 return;
2042 enabled = ffs(enabled) - 1;
2043
2044 /* WM1 */
2045 if (!ironlake_compute_srwm(dev, 1, enabled,
b0aea5dc 2046 dev_priv->wm.pri_latency[1] * 500,
b445e3b0
ED
2047 &sandybridge_display_srwm_info,
2048 &sandybridge_cursor_srwm_info,
2049 &fbc_wm, &plane_wm, &cursor_wm))
2050 return;
2051
2052 I915_WRITE(WM1_LP_ILK,
2053 WM1_LP_SR_EN |
b0aea5dc 2054 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
2055 (fbc_wm << WM1_LP_FBC_SHIFT) |
2056 (plane_wm << WM1_LP_SR_SHIFT) |
2057 cursor_wm);
2058
2059 /* WM2 */
2060 if (!ironlake_compute_srwm(dev, 2, enabled,
b0aea5dc 2061 dev_priv->wm.pri_latency[2] * 500,
b445e3b0
ED
2062 &sandybridge_display_srwm_info,
2063 &sandybridge_cursor_srwm_info,
2064 &fbc_wm, &plane_wm, &cursor_wm))
2065 return;
2066
2067 I915_WRITE(WM2_LP_ILK,
2068 WM2_LP_EN |
b0aea5dc 2069 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
2070 (fbc_wm << WM1_LP_FBC_SHIFT) |
2071 (plane_wm << WM1_LP_SR_SHIFT) |
2072 cursor_wm);
2073
c43d0188 2074 /* WM3, note we have to correct the cursor latency */
b445e3b0 2075 if (!ironlake_compute_srwm(dev, 3, enabled,
b0aea5dc 2076 dev_priv->wm.pri_latency[3] * 500,
b445e3b0
ED
2077 &sandybridge_display_srwm_info,
2078 &sandybridge_cursor_srwm_info,
c43d0188
CW
2079 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2080 !ironlake_compute_srwm(dev, 3, enabled,
b0aea5dc 2081 dev_priv->wm.cur_latency[3] * 500,
c43d0188
CW
2082 &sandybridge_display_srwm_info,
2083 &sandybridge_cursor_srwm_info,
2084 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
b445e3b0
ED
2085 return;
2086
2087 I915_WRITE(WM3_LP_ILK,
2088 WM3_LP_EN |
b0aea5dc 2089 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
2090 (fbc_wm << WM1_LP_FBC_SHIFT) |
2091 (plane_wm << WM1_LP_SR_SHIFT) |
2092 cursor_wm);
2093}
2094
3658729a
VS
2095static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2096 struct drm_crtc *crtc)
801bcfff
PZ
2097{
2098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2099 uint32_t pixel_rate, pfit_size;
2100
ff9a6750 2101 pixel_rate = intel_crtc->config.adjusted_mode.clock;
801bcfff
PZ
2102
2103 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2104 * adjust the pixel_rate here. */
2105
2106 pfit_size = intel_crtc->config.pch_pfit.size;
2107 if (pfit_size) {
2108 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2109
2110 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2111 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2112 pfit_w = (pfit_size >> 16) & 0xFFFF;
2113 pfit_h = pfit_size & 0xFFFF;
2114 if (pipe_w < pfit_w)
2115 pipe_w = pfit_w;
2116 if (pipe_h < pfit_h)
2117 pipe_h = pfit_h;
2118
2119 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2120 pfit_w * pfit_h);
2121 }
2122
2123 return pixel_rate;
2124}
2125
37126462 2126/* latency must be in 0.1us units. */
23297044 2127static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
801bcfff
PZ
2128 uint32_t latency)
2129{
2130 uint64_t ret;
2131
3312ba65
VS
2132 if (WARN(latency == 0, "Latency value missing\n"))
2133 return UINT_MAX;
2134
801bcfff
PZ
2135 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2136 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2137
2138 return ret;
2139}
2140
37126462 2141/* latency must be in 0.1us units. */
23297044 2142static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
801bcfff
PZ
2143 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2144 uint32_t latency)
2145{
2146 uint32_t ret;
2147
3312ba65
VS
2148 if (WARN(latency == 0, "Latency value missing\n"))
2149 return UINT_MAX;
2150
801bcfff
PZ
2151 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2152 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2153 ret = DIV_ROUND_UP(ret, 64) + 2;
2154 return ret;
2155}
2156
23297044 2157static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
cca32e9a
PZ
2158 uint8_t bytes_per_pixel)
2159{
2160 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2161}
2162
801bcfff
PZ
2163struct hsw_pipe_wm_parameters {
2164 bool active;
801bcfff
PZ
2165 uint32_t pipe_htotal;
2166 uint32_t pixel_rate;
c35426d2
VS
2167 struct intel_plane_wm_parameters pri;
2168 struct intel_plane_wm_parameters spr;
2169 struct intel_plane_wm_parameters cur;
801bcfff
PZ
2170};
2171
cca32e9a
PZ
2172struct hsw_wm_maximums {
2173 uint16_t pri;
2174 uint16_t spr;
2175 uint16_t cur;
2176 uint16_t fbc;
2177};
2178
801bcfff
PZ
2179struct hsw_wm_values {
2180 uint32_t wm_pipe[3];
2181 uint32_t wm_lp[3];
2182 uint32_t wm_lp_spr[3];
2183 uint32_t wm_linetime[3];
cca32e9a 2184 bool enable_fbc_wm;
801bcfff
PZ
2185};
2186
240264f4
VS
2187/* used in computing the new watermarks state */
2188struct intel_wm_config {
2189 unsigned int num_pipes_active;
2190 bool sprites_enabled;
2191 bool sprites_scaled;
2192 bool fbc_wm_enabled;
2193};
2194
37126462
VS
2195/*
2196 * For both WM_PIPE and WM_LP.
2197 * mem_value must be in 0.1us units.
2198 */
23297044 2199static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
cca32e9a
PZ
2200 uint32_t mem_value,
2201 bool is_lp)
801bcfff 2202{
cca32e9a
PZ
2203 uint32_t method1, method2;
2204
c35426d2 2205 if (!params->active || !params->pri.enabled)
801bcfff
PZ
2206 return 0;
2207
23297044 2208 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 2209 params->pri.bytes_per_pixel,
cca32e9a
PZ
2210 mem_value);
2211
2212 if (!is_lp)
2213 return method1;
2214
23297044 2215 method2 = ilk_wm_method2(params->pixel_rate,
cca32e9a 2216 params->pipe_htotal,
c35426d2
VS
2217 params->pri.horiz_pixels,
2218 params->pri.bytes_per_pixel,
cca32e9a
PZ
2219 mem_value);
2220
2221 return min(method1, method2);
801bcfff
PZ
2222}
2223
37126462
VS
2224/*
2225 * For both WM_PIPE and WM_LP.
2226 * mem_value must be in 0.1us units.
2227 */
23297044 2228static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
801bcfff
PZ
2229 uint32_t mem_value)
2230{
2231 uint32_t method1, method2;
2232
c35426d2 2233 if (!params->active || !params->spr.enabled)
801bcfff
PZ
2234 return 0;
2235
23297044 2236 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 2237 params->spr.bytes_per_pixel,
801bcfff 2238 mem_value);
23297044 2239 method2 = ilk_wm_method2(params->pixel_rate,
801bcfff 2240 params->pipe_htotal,
c35426d2
VS
2241 params->spr.horiz_pixels,
2242 params->spr.bytes_per_pixel,
801bcfff
PZ
2243 mem_value);
2244 return min(method1, method2);
2245}
2246
37126462
VS
2247/*
2248 * For both WM_PIPE and WM_LP.
2249 * mem_value must be in 0.1us units.
2250 */
23297044 2251static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
801bcfff
PZ
2252 uint32_t mem_value)
2253{
c35426d2 2254 if (!params->active || !params->cur.enabled)
801bcfff
PZ
2255 return 0;
2256
23297044 2257 return ilk_wm_method2(params->pixel_rate,
801bcfff 2258 params->pipe_htotal,
c35426d2
VS
2259 params->cur.horiz_pixels,
2260 params->cur.bytes_per_pixel,
801bcfff
PZ
2261 mem_value);
2262}
2263
cca32e9a 2264/* Only for WM_LP. */
23297044 2265static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
1fda9882 2266 uint32_t pri_val)
cca32e9a 2267{
c35426d2 2268 if (!params->active || !params->pri.enabled)
cca32e9a
PZ
2269 return 0;
2270
23297044 2271 return ilk_wm_fbc(pri_val,
c35426d2
VS
2272 params->pri.horiz_pixels,
2273 params->pri.bytes_per_pixel);
cca32e9a
PZ
2274}
2275
158ae64f
VS
2276static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2277{
2278 if (INTEL_INFO(dev)->gen >= 7)
2279 return 768;
2280 else
2281 return 512;
2282}
2283
2284/* Calculate the maximum primary/sprite plane watermark */
2285static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2286 int level,
240264f4 2287 const struct intel_wm_config *config,
158ae64f
VS
2288 enum intel_ddb_partitioning ddb_partitioning,
2289 bool is_sprite)
2290{
2291 unsigned int fifo_size = ilk_display_fifo_size(dev);
2292 unsigned int max;
2293
2294 /* if sprites aren't enabled, sprites get nothing */
240264f4 2295 if (is_sprite && !config->sprites_enabled)
158ae64f
VS
2296 return 0;
2297
2298 /* HSW allows LP1+ watermarks even with multiple pipes */
240264f4 2299 if (level == 0 || config->num_pipes_active > 1) {
158ae64f
VS
2300 fifo_size /= INTEL_INFO(dev)->num_pipes;
2301
2302 /*
2303 * For some reason the non self refresh
2304 * FIFO size is only half of the self
2305 * refresh FIFO size on ILK/SNB.
2306 */
2307 if (INTEL_INFO(dev)->gen <= 6)
2308 fifo_size /= 2;
2309 }
2310
240264f4 2311 if (config->sprites_enabled) {
158ae64f
VS
2312 /* level 0 is always calculated with 1:1 split */
2313 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2314 if (is_sprite)
2315 fifo_size *= 5;
2316 fifo_size /= 6;
2317 } else {
2318 fifo_size /= 2;
2319 }
2320 }
2321
2322 /* clamp to max that the registers can hold */
2323 if (INTEL_INFO(dev)->gen >= 7)
2324 /* IVB/HSW primary/sprite plane watermarks */
2325 max = level == 0 ? 127 : 1023;
2326 else if (!is_sprite)
2327 /* ILK/SNB primary plane watermarks */
2328 max = level == 0 ? 127 : 511;
2329 else
2330 /* ILK/SNB sprite plane watermarks */
2331 max = level == 0 ? 63 : 255;
2332
2333 return min(fifo_size, max);
2334}
2335
2336/* Calculate the maximum cursor plane watermark */
2337static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
240264f4
VS
2338 int level,
2339 const struct intel_wm_config *config)
158ae64f
VS
2340{
2341 /* HSW LP1+ watermarks w/ multiple pipes */
240264f4 2342 if (level > 0 && config->num_pipes_active > 1)
158ae64f
VS
2343 return 64;
2344
2345 /* otherwise just report max that registers can hold */
2346 if (INTEL_INFO(dev)->gen >= 7)
2347 return level == 0 ? 63 : 255;
2348 else
2349 return level == 0 ? 31 : 63;
2350}
2351
2352/* Calculate the maximum FBC watermark */
2353static unsigned int ilk_fbc_wm_max(void)
2354{
2355 /* max that registers can hold */
2356 return 15;
2357}
2358
2359static void ilk_wm_max(struct drm_device *dev,
2360 int level,
240264f4 2361 const struct intel_wm_config *config,
158ae64f
VS
2362 enum intel_ddb_partitioning ddb_partitioning,
2363 struct hsw_wm_maximums *max)
2364{
240264f4
VS
2365 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2366 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2367 max->cur = ilk_cursor_wm_max(dev, level, config);
158ae64f
VS
2368 max->fbc = ilk_fbc_wm_max();
2369}
2370
a9786a11
VS
2371static bool ilk_check_wm(int level,
2372 const struct hsw_wm_maximums *max,
1fd527cc 2373 struct intel_wm_level *result)
a9786a11
VS
2374{
2375 bool ret;
2376
2377 /* already determined to be invalid? */
2378 if (!result->enable)
2379 return false;
2380
2381 result->enable = result->pri_val <= max->pri &&
2382 result->spr_val <= max->spr &&
2383 result->cur_val <= max->cur;
2384
2385 ret = result->enable;
2386
2387 /*
2388 * HACK until we can pre-compute everything,
2389 * and thus fail gracefully if LP0 watermarks
2390 * are exceeded...
2391 */
2392 if (level == 0 && !result->enable) {
2393 if (result->pri_val > max->pri)
2394 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2395 level, result->pri_val, max->pri);
2396 if (result->spr_val > max->spr)
2397 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2398 level, result->spr_val, max->spr);
2399 if (result->cur_val > max->cur)
2400 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2401 level, result->cur_val, max->cur);
2402
2403 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2404 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2405 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2406 result->enable = true;
2407 }
2408
2409 DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2410
2411 return ret;
2412}
2413
6f5ddd17
VS
2414static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2415 int level,
2416 struct hsw_pipe_wm_parameters *p,
1fd527cc 2417 struct intel_wm_level *result)
6f5ddd17
VS
2418{
2419 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2420 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2421 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2422
2423 /* WM1+ latency values stored in 0.5us units */
2424 if (level > 0) {
2425 pri_latency *= 5;
2426 spr_latency *= 5;
2427 cur_latency *= 5;
2428 }
2429
2430 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2431 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2432 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2433 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2434 result->enable = true;
2435}
2436
5b77da33
VS
2437static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
2438 int level, struct hsw_wm_maximums *max,
cca32e9a 2439 struct hsw_pipe_wm_parameters *params,
1fd527cc 2440 struct intel_wm_level *result)
cca32e9a
PZ
2441{
2442 enum pipe pipe;
1fd527cc 2443 struct intel_wm_level res[3];
6f5ddd17
VS
2444
2445 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
2446 ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
cca32e9a 2447
6f5ddd17
VS
2448 result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
2449 result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
2450 result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
2451 result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
2452 result->enable = true;
cca32e9a 2453
a9786a11 2454 return ilk_check_wm(level, max, result);
cca32e9a
PZ
2455}
2456
801bcfff 2457static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
5b77da33 2458 enum pipe pipe,
801bcfff
PZ
2459 struct hsw_pipe_wm_parameters *params)
2460{
2461 uint32_t pri_val, cur_val, spr_val;
5b77da33
VS
2462 /* WM0 latency values stored in 0.1us units */
2463 uint16_t pri_latency = dev_priv->wm.pri_latency[0];
2464 uint16_t spr_latency = dev_priv->wm.spr_latency[0];
2465 uint16_t cur_latency = dev_priv->wm.cur_latency[0];
801bcfff 2466
5b77da33
VS
2467 pri_val = ilk_compute_pri_wm(params, pri_latency, false);
2468 spr_val = ilk_compute_spr_wm(params, spr_latency);
2469 cur_val = ilk_compute_cur_wm(params, cur_latency);
801bcfff
PZ
2470
2471 WARN(pri_val > 127,
2472 "Primary WM error, mode not supported for pipe %c\n",
2473 pipe_name(pipe));
2474 WARN(spr_val > 127,
2475 "Sprite WM error, mode not supported for pipe %c\n",
2476 pipe_name(pipe));
2477 WARN(cur_val > 63,
2478 "Cursor WM error, mode not supported for pipe %c\n",
2479 pipe_name(pipe));
2480
2481 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2482 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2483 cur_val;
2484}
2485
2486static uint32_t
2487hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1f8eeabf
ED
2488{
2489 struct drm_i915_private *dev_priv = dev->dev_private;
1011d8c4 2490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011d8c4 2491 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
85a02deb 2492 u32 linetime, ips_linetime;
1f8eeabf 2493
801bcfff
PZ
2494 if (!intel_crtc_active(crtc))
2495 return 0;
1011d8c4 2496
1f8eeabf
ED
2497 /* The WM are computed with base on how long it takes to fill a single
2498 * row at the given clock rate, multiplied by 8.
2499 * */
85a02deb
PZ
2500 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2501 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2502 intel_ddi_get_cdclk_freq(dev_priv));
1f8eeabf 2503
801bcfff
PZ
2504 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2505 PIPE_WM_LINETIME_TIME(linetime);
1f8eeabf
ED
2506}
2507
12b134df
VS
2508static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2509{
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2511
2512 if (IS_HASWELL(dev)) {
2513 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2514
2515 wm[0] = (sskpd >> 56) & 0xFF;
2516 if (wm[0] == 0)
2517 wm[0] = sskpd & 0xF;
e5d5019e
VS
2518 wm[1] = (sskpd >> 4) & 0xFF;
2519 wm[2] = (sskpd >> 12) & 0xFF;
2520 wm[3] = (sskpd >> 20) & 0x1FF;
2521 wm[4] = (sskpd >> 32) & 0x1FF;
63cf9a13
VS
2522 } else if (INTEL_INFO(dev)->gen >= 6) {
2523 uint32_t sskpd = I915_READ(MCH_SSKPD);
2524
2525 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2526 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2527 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2528 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
3a88d0ac
VS
2529 } else if (INTEL_INFO(dev)->gen >= 5) {
2530 uint32_t mltr = I915_READ(MLTR_ILK);
2531
2532 /* ILK primary LP0 latency is 700 ns */
2533 wm[0] = 7;
2534 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2535 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
12b134df
VS
2536 }
2537}
2538
53615a5e
VS
2539static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2540{
2541 /* ILK sprite LP0 latency is 1300 ns */
2542 if (INTEL_INFO(dev)->gen == 5)
2543 wm[0] = 13;
2544}
2545
2546static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2547{
2548 /* ILK cursor LP0 latency is 1300 ns */
2549 if (INTEL_INFO(dev)->gen == 5)
2550 wm[0] = 13;
2551
2552 /* WaDoubleCursorLP3Latency:ivb */
2553 if (IS_IVYBRIDGE(dev))
2554 wm[3] *= 2;
2555}
2556
26ec971e
VS
2557static void intel_print_wm_latency(struct drm_device *dev,
2558 const char *name,
2559 const uint16_t wm[5])
2560{
2561 int level, max_level;
2562
2563 /* how many WM levels are we expecting */
2564 if (IS_HASWELL(dev))
2565 max_level = 4;
2566 else if (INTEL_INFO(dev)->gen >= 6)
2567 max_level = 3;
2568 else
2569 max_level = 2;
2570
2571 for (level = 0; level <= max_level; level++) {
2572 unsigned int latency = wm[level];
2573
2574 if (latency == 0) {
2575 DRM_ERROR("%s WM%d latency not provided\n",
2576 name, level);
2577 continue;
2578 }
2579
2580 /* WM1+ latency values in 0.5us units */
2581 if (level > 0)
2582 latency *= 5;
2583
2584 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2585 name, level, wm[level],
2586 latency / 10, latency % 10);
2587 }
2588}
2589
53615a5e
VS
2590static void intel_setup_wm_latency(struct drm_device *dev)
2591{
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593
2594 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2595
2596 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2597 sizeof(dev_priv->wm.pri_latency));
2598 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2599 sizeof(dev_priv->wm.pri_latency));
2600
2601 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2602 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
26ec971e
VS
2603
2604 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2605 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2606 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
53615a5e
VS
2607}
2608
801bcfff
PZ
2609static void hsw_compute_wm_parameters(struct drm_device *dev,
2610 struct hsw_pipe_wm_parameters *params,
861f3389
PZ
2611 struct hsw_wm_maximums *lp_max_1_2,
2612 struct hsw_wm_maximums *lp_max_5_6)
1011d8c4 2613{
1011d8c4 2614 struct drm_crtc *crtc;
801bcfff 2615 struct drm_plane *plane;
1011d8c4 2616 enum pipe pipe;
240264f4 2617 struct intel_wm_config config = {};
1011d8c4 2618
801bcfff
PZ
2619 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2621 struct hsw_pipe_wm_parameters *p;
2622
2623 pipe = intel_crtc->pipe;
2624 p = &params[pipe];
2625
2626 p->active = intel_crtc_active(crtc);
2627 if (!p->active)
2628 continue;
2629
240264f4 2630 config.num_pipes_active++;
cca32e9a 2631
801bcfff 2632 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
3658729a 2633 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
c35426d2
VS
2634 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2635 p->cur.bytes_per_pixel = 4;
2636 p->pri.horiz_pixels =
801bcfff 2637 intel_crtc->config.requested_mode.hdisplay;
c35426d2
VS
2638 p->cur.horiz_pixels = 64;
2639 /* TODO: for now, assume primary and cursor planes are always enabled. */
2640 p->pri.enabled = true;
2641 p->cur.enabled = true;
801bcfff
PZ
2642 }
2643
2644 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2645 struct intel_plane *intel_plane = to_intel_plane(plane);
2646 struct hsw_pipe_wm_parameters *p;
2647
2648 pipe = intel_plane->pipe;
2649 p = &params[pipe];
2650
c35426d2 2651 p->spr = intel_plane->wm;
cca32e9a 2652
c35426d2
VS
2653 config.sprites_enabled |= p->spr.enabled;
2654 config.sprites_scaled |= p->spr.scaled;
cca32e9a
PZ
2655 }
2656
240264f4 2657 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
158ae64f
VS
2658
2659 /* 5/6 split only in single pipe config on IVB+ */
240264f4
VS
2660 if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
2661 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
158ae64f
VS
2662 else
2663 *lp_max_5_6 = *lp_max_1_2;
801bcfff
PZ
2664}
2665
2666static void hsw_compute_wm_results(struct drm_device *dev,
2667 struct hsw_pipe_wm_parameters *params,
cca32e9a 2668 struct hsw_wm_maximums *lp_maximums,
801bcfff
PZ
2669 struct hsw_wm_values *results)
2670{
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct drm_crtc *crtc;
1fd527cc 2673 struct intel_wm_level lp_results[4] = {};
801bcfff 2674 enum pipe pipe;
cca32e9a
PZ
2675 int level, max_level, wm_lp;
2676
2677 for (level = 1; level <= 4; level++)
5b77da33
VS
2678 if (!hsw_compute_lp_wm(dev_priv, level,
2679 lp_maximums, params,
cca32e9a
PZ
2680 &lp_results[level - 1]))
2681 break;
2682 max_level = level - 1;
2683
5c536613
VS
2684 memset(results, 0, sizeof(*results));
2685
cca32e9a
PZ
2686 /* The spec says it is preferred to disable FBC WMs instead of disabling
2687 * a WM level. */
2688 results->enable_fbc_wm = true;
2689 for (level = 1; level <= max_level; level++) {
16e54061 2690 if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
cca32e9a 2691 results->enable_fbc_wm = false;
71fff20f 2692 lp_results[level - 1].fbc_val = 0;
cca32e9a
PZ
2693 }
2694 }
2695
cca32e9a 2696 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
1fd527cc 2697 const struct intel_wm_level *r;
801bcfff 2698
cca32e9a
PZ
2699 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2700 if (level > max_level)
2701 break;
2702
2703 r = &lp_results[level - 1];
2704 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2705 r->fbc_val,
2706 r->pri_val,
2707 r->cur_val);
2708 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2709 }
801bcfff
PZ
2710
2711 for_each_pipe(pipe)
5b77da33 2712 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, pipe,
801bcfff 2713 &params[pipe]);
1011d8c4
PZ
2714
2715 for_each_pipe(pipe) {
2716 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
801bcfff
PZ
2717 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2718 }
2719}
2720
861f3389
PZ
2721/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2722 * case both are at the same level. Prefer r1 in case they're the same. */
f4db9321
DL
2723static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2724 struct hsw_wm_values *r2)
861f3389
PZ
2725{
2726 int i, val_r1 = 0, val_r2 = 0;
2727
2728 for (i = 0; i < 3; i++) {
2729 if (r1->wm_lp[i] & WM3_LP_EN)
2730 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2731 if (r2->wm_lp[i] & WM3_LP_EN)
2732 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2733 }
2734
2735 if (val_r1 == val_r2) {
2736 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2737 return r2;
2738 else
2739 return r1;
2740 } else if (val_r1 > val_r2) {
2741 return r1;
2742 } else {
2743 return r2;
2744 }
2745}
2746
801bcfff
PZ
2747/*
2748 * The spec says we shouldn't write when we don't need, because every write
2749 * causes WMs to be re-evaluated, expending some power.
2750 */
2751static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2752 struct hsw_wm_values *results,
77c122bc 2753 enum intel_ddb_partitioning partitioning)
801bcfff
PZ
2754{
2755 struct hsw_wm_values previous;
2756 uint32_t val;
77c122bc 2757 enum intel_ddb_partitioning prev_partitioning;
cca32e9a 2758 bool prev_enable_fbc_wm;
801bcfff
PZ
2759
2760 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2761 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2762 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2763 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2764 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2765 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2766 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2767 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2768 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2769 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2770 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2771 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2772
2773 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
77c122bc 2774 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
801bcfff 2775
cca32e9a
PZ
2776 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2777
801bcfff
PZ
2778 if (memcmp(results->wm_pipe, previous.wm_pipe,
2779 sizeof(results->wm_pipe)) == 0 &&
2780 memcmp(results->wm_lp, previous.wm_lp,
2781 sizeof(results->wm_lp)) == 0 &&
2782 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2783 sizeof(results->wm_lp_spr)) == 0 &&
2784 memcmp(results->wm_linetime, previous.wm_linetime,
2785 sizeof(results->wm_linetime)) == 0 &&
cca32e9a
PZ
2786 partitioning == prev_partitioning &&
2787 results->enable_fbc_wm == prev_enable_fbc_wm)
801bcfff
PZ
2788 return;
2789
2790 if (previous.wm_lp[2] != 0)
2791 I915_WRITE(WM3_LP_ILK, 0);
2792 if (previous.wm_lp[1] != 0)
2793 I915_WRITE(WM2_LP_ILK, 0);
2794 if (previous.wm_lp[0] != 0)
2795 I915_WRITE(WM1_LP_ILK, 0);
2796
2797 if (previous.wm_pipe[0] != results->wm_pipe[0])
2798 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2799 if (previous.wm_pipe[1] != results->wm_pipe[1])
2800 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2801 if (previous.wm_pipe[2] != results->wm_pipe[2])
2802 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2803
2804 if (previous.wm_linetime[0] != results->wm_linetime[0])
2805 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2806 if (previous.wm_linetime[1] != results->wm_linetime[1])
2807 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2808 if (previous.wm_linetime[2] != results->wm_linetime[2])
2809 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2810
2811 if (prev_partitioning != partitioning) {
2812 val = I915_READ(WM_MISC);
77c122bc 2813 if (partitioning == INTEL_DDB_PART_1_2)
801bcfff
PZ
2814 val &= ~WM_MISC_DATA_PARTITION_5_6;
2815 else
2816 val |= WM_MISC_DATA_PARTITION_5_6;
2817 I915_WRITE(WM_MISC, val);
1011d8c4
PZ
2818 }
2819
cca32e9a
PZ
2820 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2821 val = I915_READ(DISP_ARB_CTL);
2822 if (results->enable_fbc_wm)
2823 val &= ~DISP_FBC_WM_DIS;
2824 else
2825 val |= DISP_FBC_WM_DIS;
2826 I915_WRITE(DISP_ARB_CTL, val);
2827 }
2828
801bcfff
PZ
2829 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2830 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2831 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2832 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2833 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2834 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2835
2836 if (results->wm_lp[0] != 0)
2837 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2838 if (results->wm_lp[1] != 0)
2839 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2840 if (results->wm_lp[2] != 0)
2841 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2842}
2843
2844static void haswell_update_wm(struct drm_device *dev)
2845{
2846 struct drm_i915_private *dev_priv = dev->dev_private;
861f3389 2847 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
801bcfff 2848 struct hsw_pipe_wm_parameters params[3];
861f3389 2849 struct hsw_wm_values results_1_2, results_5_6, *best_results;
77c122bc 2850 enum intel_ddb_partitioning partitioning;
861f3389 2851
12b134df 2852 hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
861f3389 2853
53615a5e 2854 hsw_compute_wm_results(dev, params,
53615a5e 2855 &lp_max_1_2, &results_1_2);
861f3389 2856 if (lp_max_1_2.pri != lp_max_5_6.pri) {
53615a5e 2857 hsw_compute_wm_results(dev, params,
53615a5e 2858 &lp_max_5_6, &results_5_6);
861f3389
PZ
2859 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2860 } else {
2861 best_results = &results_1_2;
2862 }
2863
2864 partitioning = (best_results == &results_1_2) ?
77c122bc 2865 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
801bcfff 2866
861f3389 2867 hsw_write_wm_values(dev_priv, best_results, partitioning);
1011d8c4
PZ
2868}
2869
adf3d35e
VS
2870static void haswell_update_sprite_wm(struct drm_plane *plane,
2871 struct drm_crtc *crtc,
526682e9 2872 uint32_t sprite_width, int pixel_size,
bdd57d03 2873 bool enabled, bool scaled)
526682e9 2874{
adf3d35e 2875 struct intel_plane *intel_plane = to_intel_plane(plane);
526682e9 2876
adf3d35e
VS
2877 intel_plane->wm.enabled = enabled;
2878 intel_plane->wm.scaled = scaled;
2879 intel_plane->wm.horiz_pixels = sprite_width;
2880 intel_plane->wm.bytes_per_pixel = pixel_size;
526682e9 2881
adf3d35e 2882 haswell_update_wm(plane->dev);
526682e9
PZ
2883}
2884
b445e3b0
ED
2885static bool
2886sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2887 uint32_t sprite_width, int pixel_size,
2888 const struct intel_watermark_params *display,
2889 int display_latency_ns, int *sprite_wm)
2890{
2891 struct drm_crtc *crtc;
2892 int clock;
2893 int entries, tlb_miss;
2894
2895 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 2896 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
2897 *sprite_wm = display->guard_size;
2898 return false;
2899 }
2900
2901 clock = crtc->mode.clock;
2902
2903 /* Use the small buffer method to calculate the sprite watermark */
2904 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2905 tlb_miss = display->fifo_size*display->cacheline_size -
2906 sprite_width * 8;
2907 if (tlb_miss > 0)
2908 entries += tlb_miss;
2909 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2910 *sprite_wm = entries + display->guard_size;
2911 if (*sprite_wm > (int)display->max_wm)
2912 *sprite_wm = display->max_wm;
2913
2914 return true;
2915}
2916
2917static bool
2918sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2919 uint32_t sprite_width, int pixel_size,
2920 const struct intel_watermark_params *display,
2921 int latency_ns, int *sprite_wm)
2922{
2923 struct drm_crtc *crtc;
2924 unsigned long line_time_us;
2925 int clock;
2926 int line_count, line_size;
2927 int small, large;
2928 int entries;
2929
2930 if (!latency_ns) {
2931 *sprite_wm = 0;
2932 return false;
2933 }
2934
2935 crtc = intel_get_crtc_for_plane(dev, plane);
2936 clock = crtc->mode.clock;
2937 if (!clock) {
2938 *sprite_wm = 0;
2939 return false;
2940 }
2941
2942 line_time_us = (sprite_width * 1000) / clock;
2943 if (!line_time_us) {
2944 *sprite_wm = 0;
2945 return false;
2946 }
2947
2948 line_count = (latency_ns / line_time_us + 1000) / 1000;
2949 line_size = sprite_width * pixel_size;
2950
2951 /* Use the minimum of the small and large buffer method for primary */
2952 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2953 large = line_count * line_size;
2954
2955 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2956 *sprite_wm = entries + display->guard_size;
2957
2958 return *sprite_wm > 0x3ff ? false : true;
2959}
2960
adf3d35e
VS
2961static void sandybridge_update_sprite_wm(struct drm_plane *plane,
2962 struct drm_crtc *crtc,
4c4ff43a 2963 uint32_t sprite_width, int pixel_size,
39db4a4d 2964 bool enabled, bool scaled)
b445e3b0 2965{
adf3d35e 2966 struct drm_device *dev = plane->dev;
b445e3b0 2967 struct drm_i915_private *dev_priv = dev->dev_private;
adf3d35e 2968 int pipe = to_intel_plane(plane)->pipe;
b0aea5dc 2969 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
b445e3b0
ED
2970 u32 val;
2971 int sprite_wm, reg;
2972 int ret;
2973
39db4a4d 2974 if (!enabled)
4c4ff43a
PZ
2975 return;
2976
b445e3b0
ED
2977 switch (pipe) {
2978 case 0:
2979 reg = WM0_PIPEA_ILK;
2980 break;
2981 case 1:
2982 reg = WM0_PIPEB_ILK;
2983 break;
2984 case 2:
2985 reg = WM0_PIPEC_IVB;
2986 break;
2987 default:
2988 return; /* bad pipe */
2989 }
2990
2991 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2992 &sandybridge_display_wm_info,
2993 latency, &sprite_wm);
2994 if (!ret) {
84f44ce7
VS
2995 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2996 pipe_name(pipe));
b445e3b0
ED
2997 return;
2998 }
2999
3000 val = I915_READ(reg);
3001 val &= ~WM0_PIPE_SPRITE_MASK;
3002 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
84f44ce7 3003 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
b445e3b0
ED
3004
3005
3006 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3007 pixel_size,
3008 &sandybridge_display_srwm_info,
b0aea5dc 3009 dev_priv->wm.spr_latency[1] * 500,
b445e3b0
ED
3010 &sprite_wm);
3011 if (!ret) {
84f44ce7
VS
3012 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3013 pipe_name(pipe));
b445e3b0
ED
3014 return;
3015 }
3016 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3017
3018 /* Only IVB has two more LP watermarks for sprite */
3019 if (!IS_IVYBRIDGE(dev))
3020 return;
3021
3022 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3023 pixel_size,
3024 &sandybridge_display_srwm_info,
b0aea5dc 3025 dev_priv->wm.spr_latency[2] * 500,
b445e3b0
ED
3026 &sprite_wm);
3027 if (!ret) {
84f44ce7
VS
3028 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3029 pipe_name(pipe));
b445e3b0
ED
3030 return;
3031 }
3032 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3033
3034 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3035 pixel_size,
3036 &sandybridge_display_srwm_info,
b0aea5dc 3037 dev_priv->wm.spr_latency[3] * 500,
b445e3b0
ED
3038 &sprite_wm);
3039 if (!ret) {
84f44ce7
VS
3040 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3041 pipe_name(pipe));
b445e3b0
ED
3042 return;
3043 }
3044 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3045}
3046
3047/**
3048 * intel_update_watermarks - update FIFO watermark values based on current modes
3049 *
3050 * Calculate watermark values for the various WM regs based on current mode
3051 * and plane configuration.
3052 *
3053 * There are several cases to deal with here:
3054 * - normal (i.e. non-self-refresh)
3055 * - self-refresh (SR) mode
3056 * - lines are large relative to FIFO size (buffer can hold up to 2)
3057 * - lines are small relative to FIFO size (buffer can hold more than 2
3058 * lines), so need to account for TLB latency
3059 *
3060 * The normal calculation is:
3061 * watermark = dotclock * bytes per pixel * latency
3062 * where latency is platform & configuration dependent (we assume pessimal
3063 * values here).
3064 *
3065 * The SR calculation is:
3066 * watermark = (trunc(latency/line time)+1) * surface width *
3067 * bytes per pixel
3068 * where
3069 * line time = htotal / dotclock
3070 * surface width = hdisplay for normal plane and 64 for cursor
3071 * and latency is assumed to be high, as above.
3072 *
3073 * The final value programmed to the register should always be rounded up,
3074 * and include an extra 2 entries to account for clock crossings.
3075 *
3076 * We don't use the sprite, so we can ignore that. And on Crestline we have
3077 * to set the non-SR watermarks to 8.
3078 */
3079void intel_update_watermarks(struct drm_device *dev)
3080{
3081 struct drm_i915_private *dev_priv = dev->dev_private;
3082
3083 if (dev_priv->display.update_wm)
3084 dev_priv->display.update_wm(dev);
3085}
3086
adf3d35e
VS
3087void intel_update_sprite_watermarks(struct drm_plane *plane,
3088 struct drm_crtc *crtc,
4c4ff43a 3089 uint32_t sprite_width, int pixel_size,
39db4a4d 3090 bool enabled, bool scaled)
b445e3b0 3091{
adf3d35e 3092 struct drm_i915_private *dev_priv = plane->dev->dev_private;
b445e3b0
ED
3093
3094 if (dev_priv->display.update_sprite_wm)
adf3d35e 3095 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
39db4a4d 3096 pixel_size, enabled, scaled);
b445e3b0
ED
3097}
3098
2b4e57bd
ED
3099static struct drm_i915_gem_object *
3100intel_alloc_context_page(struct drm_device *dev)
3101{
3102 struct drm_i915_gem_object *ctx;
3103 int ret;
3104
3105 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3106
3107 ctx = i915_gem_alloc_object(dev, 4096);
3108 if (!ctx) {
3109 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3110 return NULL;
3111 }
3112
c37e2204 3113 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2b4e57bd
ED
3114 if (ret) {
3115 DRM_ERROR("failed to pin power context: %d\n", ret);
3116 goto err_unref;
3117 }
3118
3119 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3120 if (ret) {
3121 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3122 goto err_unpin;
3123 }
3124
3125 return ctx;
3126
3127err_unpin:
3128 i915_gem_object_unpin(ctx);
3129err_unref:
3130 drm_gem_object_unreference(&ctx->base);
2b4e57bd
ED
3131 return NULL;
3132}
3133
9270388e
DV
3134/**
3135 * Lock protecting IPS related data structures
9270388e
DV
3136 */
3137DEFINE_SPINLOCK(mchdev_lock);
3138
3139/* Global for IPS driver to get at the current i915 device. Protected by
3140 * mchdev_lock. */
3141static struct drm_i915_private *i915_mch_dev;
3142
2b4e57bd
ED
3143bool ironlake_set_drps(struct drm_device *dev, u8 val)
3144{
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 u16 rgvswctl;
3147
9270388e
DV
3148 assert_spin_locked(&mchdev_lock);
3149
2b4e57bd
ED
3150 rgvswctl = I915_READ16(MEMSWCTL);
3151 if (rgvswctl & MEMCTL_CMD_STS) {
3152 DRM_DEBUG("gpu busy, RCS change rejected\n");
3153 return false; /* still busy with another command */
3154 }
3155
3156 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3157 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3158 I915_WRITE16(MEMSWCTL, rgvswctl);
3159 POSTING_READ16(MEMSWCTL);
3160
3161 rgvswctl |= MEMCTL_CMD_STS;
3162 I915_WRITE16(MEMSWCTL, rgvswctl);
3163
3164 return true;
3165}
3166
8090c6b9 3167static void ironlake_enable_drps(struct drm_device *dev)
2b4e57bd
ED
3168{
3169 struct drm_i915_private *dev_priv = dev->dev_private;
3170 u32 rgvmodectl = I915_READ(MEMMODECTL);
3171 u8 fmax, fmin, fstart, vstart;
3172
9270388e
DV
3173 spin_lock_irq(&mchdev_lock);
3174
2b4e57bd
ED
3175 /* Enable temp reporting */
3176 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3177 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3178
3179 /* 100ms RC evaluation intervals */
3180 I915_WRITE(RCUPEI, 100000);
3181 I915_WRITE(RCDNEI, 100000);
3182
3183 /* Set max/min thresholds to 90ms and 80ms respectively */
3184 I915_WRITE(RCBMAXAVG, 90000);
3185 I915_WRITE(RCBMINAVG, 80000);
3186
3187 I915_WRITE(MEMIHYST, 1);
3188
3189 /* Set up min, max, and cur for interrupt handling */
3190 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3191 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3192 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3193 MEMMODE_FSTART_SHIFT;
3194
3195 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3196 PXVFREQ_PX_SHIFT;
3197
20e4d407
DV
3198 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3199 dev_priv->ips.fstart = fstart;
2b4e57bd 3200
20e4d407
DV
3201 dev_priv->ips.max_delay = fstart;
3202 dev_priv->ips.min_delay = fmin;
3203 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
3204
3205 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3206 fmax, fmin, fstart);
3207
3208 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3209
3210 /*
3211 * Interrupts will be enabled in ironlake_irq_postinstall
3212 */
3213
3214 I915_WRITE(VIDSTART, vstart);
3215 POSTING_READ(VIDSTART);
3216
3217 rgvmodectl |= MEMMODE_SWMODE_EN;
3218 I915_WRITE(MEMMODECTL, rgvmodectl);
3219
9270388e 3220 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 3221 DRM_ERROR("stuck trying to change perf mode\n");
9270388e 3222 mdelay(1);
2b4e57bd
ED
3223
3224 ironlake_set_drps(dev, fstart);
3225
20e4d407 3226 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2b4e57bd 3227 I915_READ(0x112e0);
20e4d407
DV
3228 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3229 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3230 getrawmonotonic(&dev_priv->ips.last_time2);
9270388e
DV
3231
3232 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
3233}
3234
8090c6b9 3235static void ironlake_disable_drps(struct drm_device *dev)
2b4e57bd
ED
3236{
3237 struct drm_i915_private *dev_priv = dev->dev_private;
9270388e
DV
3238 u16 rgvswctl;
3239
3240 spin_lock_irq(&mchdev_lock);
3241
3242 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
3243
3244 /* Ack interrupts, disable EFC interrupt */
3245 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3246 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3247 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3248 I915_WRITE(DEIIR, DE_PCU_EVENT);
3249 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3250
3251 /* Go back to the starting frequency */
20e4d407 3252 ironlake_set_drps(dev, dev_priv->ips.fstart);
9270388e 3253 mdelay(1);
2b4e57bd
ED
3254 rgvswctl |= MEMCTL_CMD_STS;
3255 I915_WRITE(MEMSWCTL, rgvswctl);
9270388e 3256 mdelay(1);
2b4e57bd 3257
9270388e 3258 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
3259}
3260
acbe9475
DV
3261/* There's a funny hw issue where the hw returns all 0 when reading from
3262 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3263 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3264 * all limits and the gpu stuck at whatever frequency it is at atm).
3265 */
65bccb5c 3266static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2b4e57bd 3267{
7b9e0ae6 3268 u32 limits;
2b4e57bd 3269
7b9e0ae6 3270 limits = 0;
c6a828d3
DV
3271
3272 if (*val >= dev_priv->rps.max_delay)
3273 *val = dev_priv->rps.max_delay;
3274 limits |= dev_priv->rps.max_delay << 24;
20b46e59
DV
3275
3276 /* Only set the down limit when we've reached the lowest level to avoid
3277 * getting more interrupts, otherwise leave this clear. This prevents a
3278 * race in the hw when coming out of rc6: There's a tiny window where
3279 * the hw runs at the minimal clock before selecting the desired
3280 * frequency, if the down threshold expires in that window we will not
3281 * receive a down interrupt. */
c6a828d3
DV
3282 if (*val <= dev_priv->rps.min_delay) {
3283 *val = dev_priv->rps.min_delay;
3284 limits |= dev_priv->rps.min_delay << 16;
20b46e59
DV
3285 }
3286
3287 return limits;
3288}
3289
3290void gen6_set_rps(struct drm_device *dev, u8 val)
3291{
3292 struct drm_i915_private *dev_priv = dev->dev_private;
65bccb5c 3293 u32 limits = gen6_rps_limits(dev_priv, &val);
7b9e0ae6 3294
4fc688ce 3295 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79249636
BW
3296 WARN_ON(val > dev_priv->rps.max_delay);
3297 WARN_ON(val < dev_priv->rps.min_delay);
004777cb 3298
c6a828d3 3299 if (val == dev_priv->rps.cur_delay)
7b9e0ae6
CW
3300 return;
3301
92bd1bf0
RV
3302 if (IS_HASWELL(dev))
3303 I915_WRITE(GEN6_RPNSWREQ,
3304 HSW_FREQUENCY(val));
3305 else
3306 I915_WRITE(GEN6_RPNSWREQ,
3307 GEN6_FREQUENCY(val) |
3308 GEN6_OFFSET(0) |
3309 GEN6_AGGRESSIVE_TURBO);
7b9e0ae6
CW
3310
3311 /* Make sure we continue to get interrupts
3312 * until we hit the minimum or maximum frequencies.
3313 */
3314 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3315
d5570a72
BW
3316 POSTING_READ(GEN6_RPNSWREQ);
3317
c6a828d3 3318 dev_priv->rps.cur_delay = val;
be2cde9a
DV
3319
3320 trace_intel_gpu_freq_change(val * 50);
2b4e57bd
ED
3321}
3322
80814ae4
VS
3323/*
3324 * Wait until the previous freq change has completed,
3325 * or the timeout elapsed, and then update our notion
3326 * of the current GPU frequency.
3327 */
3328static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3329{
80814ae4
VS
3330 u32 pval;
3331
3332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3333
e8474409
VS
3334 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3335 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
80814ae4
VS
3336
3337 pval >>= 8;
3338
3339 if (pval != dev_priv->rps.cur_delay)
3340 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3341 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3342 dev_priv->rps.cur_delay,
3343 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3344
3345 dev_priv->rps.cur_delay = pval;
3346}
3347
0a073b84
JB
3348void valleyview_set_rps(struct drm_device *dev, u8 val)
3349{
3350 struct drm_i915_private *dev_priv = dev->dev_private;
7a67092a
VS
3351
3352 gen6_rps_limits(dev_priv, &val);
0a073b84
JB
3353
3354 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3355 WARN_ON(val > dev_priv->rps.max_delay);
3356 WARN_ON(val < dev_priv->rps.min_delay);
3357
80814ae4
VS
3358 vlv_update_rps_cur_delay(dev_priv);
3359
73008b98 3360 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
0a073b84
JB
3361 vlv_gpu_freq(dev_priv->mem_freq,
3362 dev_priv->rps.cur_delay),
73008b98
VS
3363 dev_priv->rps.cur_delay,
3364 vlv_gpu_freq(dev_priv->mem_freq, val), val);
0a073b84
JB
3365
3366 if (val == dev_priv->rps.cur_delay)
3367 return;
3368
ae99258f 3369 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
0a073b84 3370
80814ae4 3371 dev_priv->rps.cur_delay = val;
0a073b84
JB
3372
3373 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3374}
3375
44fc7d5c 3376static void gen6_disable_rps_interrupts(struct drm_device *dev)
2b4e57bd
ED
3377{
3378 struct drm_i915_private *dev_priv = dev->dev_private;
3379
2b4e57bd 3380 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4848405c 3381 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3382 /* Complete PM interrupt masking here doesn't race with the rps work
3383 * item again unmasking PM interrupts because that is using a different
3384 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3385 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3386
59cdb63d 3387 spin_lock_irq(&dev_priv->irq_lock);
c6a828d3 3388 dev_priv->rps.pm_iir = 0;
59cdb63d 3389 spin_unlock_irq(&dev_priv->irq_lock);
2b4e57bd 3390
4848405c 3391 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3392}
3393
44fc7d5c 3394static void gen6_disable_rps(struct drm_device *dev)
d20d4f0c
JB
3395{
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3397
3398 I915_WRITE(GEN6_RC_CONTROL, 0);
44fc7d5c 3399 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
d20d4f0c 3400
44fc7d5c
DV
3401 gen6_disable_rps_interrupts(dev);
3402}
3403
3404static void valleyview_disable_rps(struct drm_device *dev)
3405{
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407
3408 I915_WRITE(GEN6_RC_CONTROL, 0);
d20d4f0c 3409
44fc7d5c 3410 gen6_disable_rps_interrupts(dev);
c9cddffc
JB
3411
3412 if (dev_priv->vlv_pctx) {
3413 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3414 dev_priv->vlv_pctx = NULL;
3415 }
d20d4f0c
JB
3416}
3417
2b4e57bd
ED
3418int intel_enable_rc6(const struct drm_device *dev)
3419{
eb4926e4
DL
3420 /* No RC6 before Ironlake */
3421 if (INTEL_INFO(dev)->gen < 5)
3422 return 0;
3423
456470eb 3424 /* Respect the kernel parameter if it is set */
2b4e57bd
ED
3425 if (i915_enable_rc6 >= 0)
3426 return i915_enable_rc6;
3427
6567d748
CW
3428 /* Disable RC6 on Ironlake */
3429 if (INTEL_INFO(dev)->gen == 5)
3430 return 0;
2b4e57bd 3431
456470eb
DV
3432 if (IS_HASWELL(dev)) {
3433 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
4a637c2c 3434 return INTEL_RC6_ENABLE;
456470eb 3435 }
2b4e57bd 3436
456470eb 3437 /* snb/ivb have more than one rc6 state. */
2b4e57bd
ED
3438 if (INTEL_INFO(dev)->gen == 6) {
3439 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3440 return INTEL_RC6_ENABLE;
3441 }
456470eb 3442
2b4e57bd
ED
3443 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3444 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3445}
3446
44fc7d5c
DV
3447static void gen6_enable_rps_interrupts(struct drm_device *dev)
3448{
3449 struct drm_i915_private *dev_priv = dev->dev_private;
a9c1f90c 3450 u32 enabled_intrs;
44fc7d5c
DV
3451
3452 spin_lock_irq(&dev_priv->irq_lock);
a0b3335a 3453 WARN_ON(dev_priv->rps.pm_iir);
edbfdb45 3454 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
44fc7d5c
DV
3455 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3456 spin_unlock_irq(&dev_priv->irq_lock);
a9c1f90c 3457
fd547d25 3458 /* only unmask PM interrupts we need. Mask all others. */
a9c1f90c
MK
3459 enabled_intrs = GEN6_PM_RPS_EVENTS;
3460
3461 /* IVB and SNB hard hangs on looping batchbuffer
3462 * if GEN6_PM_UP_EI_EXPIRED is masked.
3463 */
3464 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3465 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3466
3467 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
44fc7d5c
DV
3468}
3469
79f5b2c7 3470static void gen6_enable_rps(struct drm_device *dev)
2b4e57bd 3471{
79f5b2c7 3472 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 3473 struct intel_ring_buffer *ring;
7b9e0ae6
CW
3474 u32 rp_state_cap;
3475 u32 gt_perf_status;
31643d54 3476 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2b4e57bd 3477 u32 gtfifodbg;
2b4e57bd 3478 int rc6_mode;
42c0526c 3479 int i, ret;
2b4e57bd 3480
4fc688ce 3481 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3482
2b4e57bd
ED
3483 /* Here begins a magic sequence of register writes to enable
3484 * auto-downclocking.
3485 *
3486 * Perhaps there might be some value in exposing these to
3487 * userspace...
3488 */
3489 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
3490
3491 /* Clear the DBG now so we don't confuse earlier errors */
3492 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3493 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3494 I915_WRITE(GTFIFODBG, gtfifodbg);
3495 }
3496
3497 gen6_gt_force_wake_get(dev_priv);
3498
7b9e0ae6
CW
3499 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3500 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3501
31c77388
BW
3502 /* In units of 50MHz */
3503 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
c6a828d3
DV
3504 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3505 dev_priv->rps.cur_delay = 0;
7b9e0ae6 3506
2b4e57bd
ED
3507 /* disable the counters and set deterministic thresholds */
3508 I915_WRITE(GEN6_RC_CONTROL, 0);
3509
3510 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3511 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3512 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3513 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3514 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3515
b4519513
CW
3516 for_each_ring(ring, dev_priv, i)
3517 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2b4e57bd
ED
3518
3519 I915_WRITE(GEN6_RC_SLEEP, 0);
3520 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
351aa566
SM
3521 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3522 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3523 else
3524 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
0920a487 3525 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2b4e57bd
ED
3526 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3527
5a7dc92a 3528 /* Check if we are enabling RC6 */
2b4e57bd
ED
3529 rc6_mode = intel_enable_rc6(dev_priv->dev);
3530 if (rc6_mode & INTEL_RC6_ENABLE)
3531 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3532
5a7dc92a
ED
3533 /* We don't use those on Haswell */
3534 if (!IS_HASWELL(dev)) {
3535 if (rc6_mode & INTEL_RC6p_ENABLE)
3536 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 3537
5a7dc92a
ED
3538 if (rc6_mode & INTEL_RC6pp_ENABLE)
3539 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3540 }
2b4e57bd
ED
3541
3542 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
5a7dc92a
ED
3543 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3544 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3545 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2b4e57bd
ED
3546
3547 I915_WRITE(GEN6_RC_CONTROL,
3548 rc6_mask |
3549 GEN6_RC_CTL_EI_MODE(1) |
3550 GEN6_RC_CTL_HW_ENABLE);
3551
92bd1bf0
RV
3552 if (IS_HASWELL(dev)) {
3553 I915_WRITE(GEN6_RPNSWREQ,
3554 HSW_FREQUENCY(10));
3555 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3556 HSW_FREQUENCY(12));
3557 } else {
3558 I915_WRITE(GEN6_RPNSWREQ,
3559 GEN6_FREQUENCY(10) |
3560 GEN6_OFFSET(0) |
3561 GEN6_AGGRESSIVE_TURBO);
3562 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3563 GEN6_FREQUENCY(12));
3564 }
2b4e57bd
ED
3565
3566 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3567 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
c6a828d3
DV
3568 dev_priv->rps.max_delay << 24 |
3569 dev_priv->rps.min_delay << 16);
5a7dc92a 3570
1ee9ae32
DV
3571 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3572 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3573 I915_WRITE(GEN6_RP_UP_EI, 66000);
3574 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5a7dc92a 3575
2b4e57bd
ED
3576 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3577 I915_WRITE(GEN6_RP_CONTROL,
3578 GEN6_RP_MEDIA_TURBO |
89ba829e 3579 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2b4e57bd
ED
3580 GEN6_RP_MEDIA_IS_GFX |
3581 GEN6_RP_ENABLE |
3582 GEN6_RP_UP_BUSY_AVG |
5a7dc92a 3583 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2b4e57bd 3584
42c0526c 3585 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
988b36e5 3586 if (!ret) {
42c0526c
BW
3587 pcu_mbox = 0;
3588 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
a2b3fc01 3589 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
10e08497 3590 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
a2b3fc01
BW
3591 (dev_priv->rps.max_delay & 0xff) * 50,
3592 (pcu_mbox & 0xff) * 50);
31c77388 3593 dev_priv->rps.hw_max = pcu_mbox & 0xff;
42c0526c
BW
3594 }
3595 } else {
3596 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2b4e57bd
ED
3597 }
3598
7b9e0ae6 3599 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2b4e57bd 3600
44fc7d5c 3601 gen6_enable_rps_interrupts(dev);
2b4e57bd 3602
31643d54
BW
3603 rc6vids = 0;
3604 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3605 if (IS_GEN6(dev) && ret) {
3606 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3607 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3608 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3609 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3610 rc6vids &= 0xffff00;
3611 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3612 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3613 if (ret)
3614 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3615 }
3616
2b4e57bd 3617 gen6_gt_force_wake_put(dev_priv);
2b4e57bd
ED
3618}
3619
c67a470b 3620void gen6_update_ring_freq(struct drm_device *dev)
2b4e57bd 3621{
79f5b2c7 3622 struct drm_i915_private *dev_priv = dev->dev_private;
2b4e57bd 3623 int min_freq = 15;
3ebecd07
CW
3624 unsigned int gpu_freq;
3625 unsigned int max_ia_freq, min_ring_freq;
2b4e57bd
ED
3626 int scaling_factor = 180;
3627
4fc688ce 3628 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3629
2b4e57bd
ED
3630 max_ia_freq = cpufreq_quick_get_max(0);
3631 /*
3632 * Default to measured freq if none found, PCU will ensure we don't go
3633 * over
3634 */
3635 if (!max_ia_freq)
3636 max_ia_freq = tsc_khz;
3637
3638 /* Convert from kHz to MHz */
3639 max_ia_freq /= 1000;
3640
3ebecd07
CW
3641 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3642 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3643 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3644
2b4e57bd
ED
3645 /*
3646 * For each potential GPU frequency, load a ring frequency we'd like
3647 * to use for memory access. We do this by specifying the IA frequency
3648 * the PCU should use as a reference to determine the ring frequency.
3649 */
c6a828d3 3650 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2b4e57bd 3651 gpu_freq--) {
c6a828d3 3652 int diff = dev_priv->rps.max_delay - gpu_freq;
3ebecd07
CW
3653 unsigned int ia_freq = 0, ring_freq = 0;
3654
3655 if (IS_HASWELL(dev)) {
3656 ring_freq = (gpu_freq * 5 + 3) / 4;
3657 ring_freq = max(min_ring_freq, ring_freq);
3658 /* leave ia_freq as the default, chosen by cpufreq */
3659 } else {
3660 /* On older processors, there is no separate ring
3661 * clock domain, so in order to boost the bandwidth
3662 * of the ring, we need to upclock the CPU (ia_freq).
3663 *
3664 * For GPU frequencies less than 750MHz,
3665 * just use the lowest ring freq.
3666 */
3667 if (gpu_freq < min_freq)
3668 ia_freq = 800;
3669 else
3670 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3671 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3672 }
2b4e57bd 3673
42c0526c
BW
3674 sandybridge_pcode_write(dev_priv,
3675 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3ebecd07
CW
3676 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3677 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3678 gpu_freq);
2b4e57bd 3679 }
2b4e57bd
ED
3680}
3681
0a073b84
JB
3682int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3683{
3684 u32 val, rp0;
3685
64936258 3686 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
0a073b84
JB
3687
3688 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3689 /* Clamp to max */
3690 rp0 = min_t(u32, rp0, 0xea);
3691
3692 return rp0;
3693}
3694
3695static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3696{
3697 u32 val, rpe;
3698
64936258 3699 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
0a073b84 3700 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
64936258 3701 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
0a073b84
JB
3702 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3703
3704 return rpe;
3705}
3706
3707int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3708{
64936258 3709 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
0a073b84
JB
3710}
3711
52ceb908
JB
3712static void vlv_rps_timer_work(struct work_struct *work)
3713{
3714 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3715 rps.vlv_work.work);
3716
3717 /*
3718 * Timer fired, we must be idle. Drop to min voltage state.
3719 * Note: we use RPe here since it should match the
3720 * Vmin we were shooting for. That should give us better
3721 * perf when we come back out of RC6 than if we used the
3722 * min freq available.
3723 */
3724 mutex_lock(&dev_priv->rps.hw_lock);
6dc58488
VS
3725 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3726 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
52ceb908
JB
3727 mutex_unlock(&dev_priv->rps.hw_lock);
3728}
3729
c9cddffc
JB
3730static void valleyview_setup_pctx(struct drm_device *dev)
3731{
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 struct drm_i915_gem_object *pctx;
3734 unsigned long pctx_paddr;
3735 u32 pcbr;
3736 int pctx_size = 24*1024;
3737
3738 pcbr = I915_READ(VLV_PCBR);
3739 if (pcbr) {
3740 /* BIOS set it up already, grab the pre-alloc'd space */
3741 int pcbr_offset;
3742
3743 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3744 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3745 pcbr_offset,
190d6cd5 3746 I915_GTT_OFFSET_NONE,
c9cddffc
JB
3747 pctx_size);
3748 goto out;
3749 }
3750
3751 /*
3752 * From the Gunit register HAS:
3753 * The Gfx driver is expected to program this register and ensure
3754 * proper allocation within Gfx stolen memory. For example, this
3755 * register should be programmed such than the PCBR range does not
3756 * overlap with other ranges, such as the frame buffer, protected
3757 * memory, or any other relevant ranges.
3758 */
3759 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3760 if (!pctx) {
3761 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3762 return;
3763 }
3764
3765 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3766 I915_WRITE(VLV_PCBR, pctx_paddr);
3767
3768out:
3769 dev_priv->vlv_pctx = pctx;
3770}
3771
0a073b84
JB
3772static void valleyview_enable_rps(struct drm_device *dev)
3773{
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775 struct intel_ring_buffer *ring;
73008b98 3776 u32 gtfifodbg, val;
0a073b84
JB
3777 int i;
3778
3779 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3780
3781 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3782 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3783 I915_WRITE(GTFIFODBG, gtfifodbg);
3784 }
3785
c9cddffc
JB
3786 valleyview_setup_pctx(dev);
3787
0a073b84
JB
3788 gen6_gt_force_wake_get(dev_priv);
3789
3790 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3791 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3792 I915_WRITE(GEN6_RP_UP_EI, 66000);
3793 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3794
3795 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3796
3797 I915_WRITE(GEN6_RP_CONTROL,
3798 GEN6_RP_MEDIA_TURBO |
3799 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3800 GEN6_RP_MEDIA_IS_GFX |
3801 GEN6_RP_ENABLE |
3802 GEN6_RP_UP_BUSY_AVG |
3803 GEN6_RP_DOWN_IDLE_CONT);
3804
3805 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3806 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3807 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3808
3809 for_each_ring(ring, dev_priv, i)
3810 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3811
3812 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3813
3814 /* allows RC6 residency counter to work */
3815 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3816 I915_WRITE(GEN6_RC_CONTROL,
3817 GEN7_RC_CTL_TO_MODE);
3818
64936258 3819 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
2445966e
JB
3820 switch ((val >> 6) & 3) {
3821 case 0:
3822 case 1:
3823 dev_priv->mem_freq = 800;
3824 break;
3825 case 2:
3826 dev_priv->mem_freq = 1066;
3827 break;
3828 case 3:
3829 dev_priv->mem_freq = 1333;
3830 break;
3831 }
0a073b84
JB
3832 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3833
3834 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3835 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3836
0a073b84 3837 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
73008b98
VS
3838 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3839 vlv_gpu_freq(dev_priv->mem_freq,
3840 dev_priv->rps.cur_delay),
3841 dev_priv->rps.cur_delay);
0a073b84
JB
3842
3843 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3844 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
73008b98
VS
3845 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3846 vlv_gpu_freq(dev_priv->mem_freq,
3847 dev_priv->rps.max_delay),
3848 dev_priv->rps.max_delay);
0a073b84 3849
73008b98
VS
3850 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3851 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3852 vlv_gpu_freq(dev_priv->mem_freq,
3853 dev_priv->rps.rpe_delay),
3854 dev_priv->rps.rpe_delay);
0a073b84 3855
73008b98
VS
3856 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3857 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3858 vlv_gpu_freq(dev_priv->mem_freq,
3859 dev_priv->rps.min_delay),
3860 dev_priv->rps.min_delay);
0a073b84 3861
73008b98
VS
3862 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3863 vlv_gpu_freq(dev_priv->mem_freq,
3864 dev_priv->rps.rpe_delay),
3865 dev_priv->rps.rpe_delay);
0a073b84 3866
52ceb908
JB
3867 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3868
73008b98 3869 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
0a073b84 3870
44fc7d5c 3871 gen6_enable_rps_interrupts(dev);
0a073b84
JB
3872
3873 gen6_gt_force_wake_put(dev_priv);
3874}
3875
930ebb46 3876void ironlake_teardown_rc6(struct drm_device *dev)
2b4e57bd
ED
3877{
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879
3e373948
DV
3880 if (dev_priv->ips.renderctx) {
3881 i915_gem_object_unpin(dev_priv->ips.renderctx);
3882 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3883 dev_priv->ips.renderctx = NULL;
2b4e57bd
ED
3884 }
3885
3e373948
DV
3886 if (dev_priv->ips.pwrctx) {
3887 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3888 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3889 dev_priv->ips.pwrctx = NULL;
2b4e57bd
ED
3890 }
3891}
3892
930ebb46 3893static void ironlake_disable_rc6(struct drm_device *dev)
2b4e57bd
ED
3894{
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896
3897 if (I915_READ(PWRCTXA)) {
3898 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3899 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3900 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3901 50);
3902
3903 I915_WRITE(PWRCTXA, 0);
3904 POSTING_READ(PWRCTXA);
3905
3906 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3907 POSTING_READ(RSTDBYCTL);
3908 }
2b4e57bd
ED
3909}
3910
3911static int ironlake_setup_rc6(struct drm_device *dev)
3912{
3913 struct drm_i915_private *dev_priv = dev->dev_private;
3914
3e373948
DV
3915 if (dev_priv->ips.renderctx == NULL)
3916 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3917 if (!dev_priv->ips.renderctx)
2b4e57bd
ED
3918 return -ENOMEM;
3919
3e373948
DV
3920 if (dev_priv->ips.pwrctx == NULL)
3921 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3922 if (!dev_priv->ips.pwrctx) {
2b4e57bd
ED
3923 ironlake_teardown_rc6(dev);
3924 return -ENOMEM;
3925 }
3926
3927 return 0;
3928}
3929
930ebb46 3930static void ironlake_enable_rc6(struct drm_device *dev)
2b4e57bd
ED
3931{
3932 struct drm_i915_private *dev_priv = dev->dev_private;
6d90c952 3933 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3e960501 3934 bool was_interruptible;
2b4e57bd
ED
3935 int ret;
3936
3937 /* rc6 disabled by default due to repeated reports of hanging during
3938 * boot and resume.
3939 */
3940 if (!intel_enable_rc6(dev))
3941 return;
3942
79f5b2c7
DV
3943 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3944
2b4e57bd 3945 ret = ironlake_setup_rc6(dev);
79f5b2c7 3946 if (ret)
2b4e57bd 3947 return;
2b4e57bd 3948
3e960501
CW
3949 was_interruptible = dev_priv->mm.interruptible;
3950 dev_priv->mm.interruptible = false;
3951
2b4e57bd
ED
3952 /*
3953 * GPU can automatically power down the render unit if given a page
3954 * to save state.
3955 */
6d90c952 3956 ret = intel_ring_begin(ring, 6);
2b4e57bd
ED
3957 if (ret) {
3958 ironlake_teardown_rc6(dev);
3e960501 3959 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
3960 return;
3961 }
3962
6d90c952
DV
3963 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3964 intel_ring_emit(ring, MI_SET_CONTEXT);
f343c5f6 3965 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
6d90c952
DV
3966 MI_MM_SPACE_GTT |
3967 MI_SAVE_EXT_STATE_EN |
3968 MI_RESTORE_EXT_STATE_EN |
3969 MI_RESTORE_INHIBIT);
3970 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3971 intel_ring_emit(ring, MI_NOOP);
3972 intel_ring_emit(ring, MI_FLUSH);
3973 intel_ring_advance(ring);
2b4e57bd
ED
3974
3975 /*
3976 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3977 * does an implicit flush, combined with MI_FLUSH above, it should be
3978 * safe to assume that renderctx is valid
3979 */
3e960501
CW
3980 ret = intel_ring_idle(ring);
3981 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd 3982 if (ret) {
def27a58 3983 DRM_ERROR("failed to enable ironlake power savings\n");
2b4e57bd 3984 ironlake_teardown_rc6(dev);
2b4e57bd
ED
3985 return;
3986 }
3987
f343c5f6 3988 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
2b4e57bd 3989 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2b4e57bd
ED
3990}
3991
dde18883
ED
3992static unsigned long intel_pxfreq(u32 vidfreq)
3993{
3994 unsigned long freq;
3995 int div = (vidfreq & 0x3f0000) >> 16;
3996 int post = (vidfreq & 0x3000) >> 12;
3997 int pre = (vidfreq & 0x7);
3998
3999 if (!pre)
4000 return 0;
4001
4002 freq = ((div * 133333) / ((1<<post) * pre));
4003
4004 return freq;
4005}
4006
eb48eb00
DV
4007static const struct cparams {
4008 u16 i;
4009 u16 t;
4010 u16 m;
4011 u16 c;
4012} cparams[] = {
4013 { 1, 1333, 301, 28664 },
4014 { 1, 1066, 294, 24460 },
4015 { 1, 800, 294, 25192 },
4016 { 0, 1333, 276, 27605 },
4017 { 0, 1066, 276, 27605 },
4018 { 0, 800, 231, 23784 },
4019};
4020
f531dcb2 4021static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4022{
4023 u64 total_count, diff, ret;
4024 u32 count1, count2, count3, m = 0, c = 0;
4025 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4026 int i;
4027
02d71956
DV
4028 assert_spin_locked(&mchdev_lock);
4029
20e4d407 4030 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
4031
4032 /* Prevent division-by-zero if we are asking too fast.
4033 * Also, we don't get interesting results if we are polling
4034 * faster than once in 10ms, so just return the saved value
4035 * in such cases.
4036 */
4037 if (diff1 <= 10)
20e4d407 4038 return dev_priv->ips.chipset_power;
eb48eb00
DV
4039
4040 count1 = I915_READ(DMIEC);
4041 count2 = I915_READ(DDREC);
4042 count3 = I915_READ(CSIEC);
4043
4044 total_count = count1 + count2 + count3;
4045
4046 /* FIXME: handle per-counter overflow */
20e4d407
DV
4047 if (total_count < dev_priv->ips.last_count1) {
4048 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
4049 diff += total_count;
4050 } else {
20e4d407 4051 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
4052 }
4053
4054 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
4055 if (cparams[i].i == dev_priv->ips.c_m &&
4056 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
4057 m = cparams[i].m;
4058 c = cparams[i].c;
4059 break;
4060 }
4061 }
4062
4063 diff = div_u64(diff, diff1);
4064 ret = ((m * diff) + c);
4065 ret = div_u64(ret, 10);
4066
20e4d407
DV
4067 dev_priv->ips.last_count1 = total_count;
4068 dev_priv->ips.last_time1 = now;
eb48eb00 4069
20e4d407 4070 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
4071
4072 return ret;
4073}
4074
f531dcb2
CW
4075unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4076{
4077 unsigned long val;
4078
4079 if (dev_priv->info->gen != 5)
4080 return 0;
4081
4082 spin_lock_irq(&mchdev_lock);
4083
4084 val = __i915_chipset_val(dev_priv);
4085
4086 spin_unlock_irq(&mchdev_lock);
4087
4088 return val;
4089}
4090
eb48eb00
DV
4091unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4092{
4093 unsigned long m, x, b;
4094 u32 tsfs;
4095
4096 tsfs = I915_READ(TSFS);
4097
4098 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4099 x = I915_READ8(TR1);
4100
4101 b = tsfs & TSFS_INTR_MASK;
4102
4103 return ((m * x) / 127) - b;
4104}
4105
4106static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4107{
4108 static const struct v_table {
4109 u16 vd; /* in .1 mil */
4110 u16 vm; /* in .1 mil */
4111 } v_table[] = {
4112 { 0, 0, },
4113 { 375, 0, },
4114 { 500, 0, },
4115 { 625, 0, },
4116 { 750, 0, },
4117 { 875, 0, },
4118 { 1000, 0, },
4119 { 1125, 0, },
4120 { 4125, 3000, },
4121 { 4125, 3000, },
4122 { 4125, 3000, },
4123 { 4125, 3000, },
4124 { 4125, 3000, },
4125 { 4125, 3000, },
4126 { 4125, 3000, },
4127 { 4125, 3000, },
4128 { 4125, 3000, },
4129 { 4125, 3000, },
4130 { 4125, 3000, },
4131 { 4125, 3000, },
4132 { 4125, 3000, },
4133 { 4125, 3000, },
4134 { 4125, 3000, },
4135 { 4125, 3000, },
4136 { 4125, 3000, },
4137 { 4125, 3000, },
4138 { 4125, 3000, },
4139 { 4125, 3000, },
4140 { 4125, 3000, },
4141 { 4125, 3000, },
4142 { 4125, 3000, },
4143 { 4125, 3000, },
4144 { 4250, 3125, },
4145 { 4375, 3250, },
4146 { 4500, 3375, },
4147 { 4625, 3500, },
4148 { 4750, 3625, },
4149 { 4875, 3750, },
4150 { 5000, 3875, },
4151 { 5125, 4000, },
4152 { 5250, 4125, },
4153 { 5375, 4250, },
4154 { 5500, 4375, },
4155 { 5625, 4500, },
4156 { 5750, 4625, },
4157 { 5875, 4750, },
4158 { 6000, 4875, },
4159 { 6125, 5000, },
4160 { 6250, 5125, },
4161 { 6375, 5250, },
4162 { 6500, 5375, },
4163 { 6625, 5500, },
4164 { 6750, 5625, },
4165 { 6875, 5750, },
4166 { 7000, 5875, },
4167 { 7125, 6000, },
4168 { 7250, 6125, },
4169 { 7375, 6250, },
4170 { 7500, 6375, },
4171 { 7625, 6500, },
4172 { 7750, 6625, },
4173 { 7875, 6750, },
4174 { 8000, 6875, },
4175 { 8125, 7000, },
4176 { 8250, 7125, },
4177 { 8375, 7250, },
4178 { 8500, 7375, },
4179 { 8625, 7500, },
4180 { 8750, 7625, },
4181 { 8875, 7750, },
4182 { 9000, 7875, },
4183 { 9125, 8000, },
4184 { 9250, 8125, },
4185 { 9375, 8250, },
4186 { 9500, 8375, },
4187 { 9625, 8500, },
4188 { 9750, 8625, },
4189 { 9875, 8750, },
4190 { 10000, 8875, },
4191 { 10125, 9000, },
4192 { 10250, 9125, },
4193 { 10375, 9250, },
4194 { 10500, 9375, },
4195 { 10625, 9500, },
4196 { 10750, 9625, },
4197 { 10875, 9750, },
4198 { 11000, 9875, },
4199 { 11125, 10000, },
4200 { 11250, 10125, },
4201 { 11375, 10250, },
4202 { 11500, 10375, },
4203 { 11625, 10500, },
4204 { 11750, 10625, },
4205 { 11875, 10750, },
4206 { 12000, 10875, },
4207 { 12125, 11000, },
4208 { 12250, 11125, },
4209 { 12375, 11250, },
4210 { 12500, 11375, },
4211 { 12625, 11500, },
4212 { 12750, 11625, },
4213 { 12875, 11750, },
4214 { 13000, 11875, },
4215 { 13125, 12000, },
4216 { 13250, 12125, },
4217 { 13375, 12250, },
4218 { 13500, 12375, },
4219 { 13625, 12500, },
4220 { 13750, 12625, },
4221 { 13875, 12750, },
4222 { 14000, 12875, },
4223 { 14125, 13000, },
4224 { 14250, 13125, },
4225 { 14375, 13250, },
4226 { 14500, 13375, },
4227 { 14625, 13500, },
4228 { 14750, 13625, },
4229 { 14875, 13750, },
4230 { 15000, 13875, },
4231 { 15125, 14000, },
4232 { 15250, 14125, },
4233 { 15375, 14250, },
4234 { 15500, 14375, },
4235 { 15625, 14500, },
4236 { 15750, 14625, },
4237 { 15875, 14750, },
4238 { 16000, 14875, },
4239 { 16125, 15000, },
4240 };
4241 if (dev_priv->info->is_mobile)
4242 return v_table[pxvid].vm;
4243 else
4244 return v_table[pxvid].vd;
4245}
4246
02d71956 4247static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4248{
4249 struct timespec now, diff1;
4250 u64 diff;
4251 unsigned long diffms;
4252 u32 count;
4253
02d71956 4254 assert_spin_locked(&mchdev_lock);
eb48eb00
DV
4255
4256 getrawmonotonic(&now);
20e4d407 4257 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
eb48eb00
DV
4258
4259 /* Don't divide by 0 */
4260 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4261 if (!diffms)
4262 return;
4263
4264 count = I915_READ(GFXEC);
4265
20e4d407
DV
4266 if (count < dev_priv->ips.last_count2) {
4267 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
4268 diff += count;
4269 } else {
20e4d407 4270 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
4271 }
4272
20e4d407
DV
4273 dev_priv->ips.last_count2 = count;
4274 dev_priv->ips.last_time2 = now;
eb48eb00
DV
4275
4276 /* More magic constants... */
4277 diff = diff * 1181;
4278 diff = div_u64(diff, diffms * 10);
20e4d407 4279 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
4280}
4281
02d71956
DV
4282void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4283{
4284 if (dev_priv->info->gen != 5)
4285 return;
4286
9270388e 4287 spin_lock_irq(&mchdev_lock);
02d71956
DV
4288
4289 __i915_update_gfx_val(dev_priv);
4290
9270388e 4291 spin_unlock_irq(&mchdev_lock);
02d71956
DV
4292}
4293
f531dcb2 4294static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4295{
4296 unsigned long t, corr, state1, corr2, state2;
4297 u32 pxvid, ext_v;
4298
02d71956
DV
4299 assert_spin_locked(&mchdev_lock);
4300
c6a828d3 4301 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
eb48eb00
DV
4302 pxvid = (pxvid >> 24) & 0x7f;
4303 ext_v = pvid_to_extvid(dev_priv, pxvid);
4304
4305 state1 = ext_v;
4306
4307 t = i915_mch_val(dev_priv);
4308
4309 /* Revel in the empirically derived constants */
4310
4311 /* Correction factor in 1/100000 units */
4312 if (t > 80)
4313 corr = ((t * 2349) + 135940);
4314 else if (t >= 50)
4315 corr = ((t * 964) + 29317);
4316 else /* < 50 */
4317 corr = ((t * 301) + 1004);
4318
4319 corr = corr * ((150142 * state1) / 10000 - 78642);
4320 corr /= 100000;
20e4d407 4321 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
4322
4323 state2 = (corr2 * state1) / 10000;
4324 state2 /= 100; /* convert to mW */
4325
02d71956 4326 __i915_update_gfx_val(dev_priv);
eb48eb00 4327
20e4d407 4328 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
4329}
4330
f531dcb2
CW
4331unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4332{
4333 unsigned long val;
4334
4335 if (dev_priv->info->gen != 5)
4336 return 0;
4337
4338 spin_lock_irq(&mchdev_lock);
4339
4340 val = __i915_gfx_val(dev_priv);
4341
4342 spin_unlock_irq(&mchdev_lock);
4343
4344 return val;
4345}
4346
eb48eb00
DV
4347/**
4348 * i915_read_mch_val - return value for IPS use
4349 *
4350 * Calculate and return a value for the IPS driver to use when deciding whether
4351 * we have thermal and power headroom to increase CPU or GPU power budget.
4352 */
4353unsigned long i915_read_mch_val(void)
4354{
4355 struct drm_i915_private *dev_priv;
4356 unsigned long chipset_val, graphics_val, ret = 0;
4357
9270388e 4358 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4359 if (!i915_mch_dev)
4360 goto out_unlock;
4361 dev_priv = i915_mch_dev;
4362
f531dcb2
CW
4363 chipset_val = __i915_chipset_val(dev_priv);
4364 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
4365
4366 ret = chipset_val + graphics_val;
4367
4368out_unlock:
9270388e 4369 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4370
4371 return ret;
4372}
4373EXPORT_SYMBOL_GPL(i915_read_mch_val);
4374
4375/**
4376 * i915_gpu_raise - raise GPU frequency limit
4377 *
4378 * Raise the limit; IPS indicates we have thermal headroom.
4379 */
4380bool i915_gpu_raise(void)
4381{
4382 struct drm_i915_private *dev_priv;
4383 bool ret = true;
4384
9270388e 4385 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4386 if (!i915_mch_dev) {
4387 ret = false;
4388 goto out_unlock;
4389 }
4390 dev_priv = i915_mch_dev;
4391
20e4d407
DV
4392 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4393 dev_priv->ips.max_delay--;
eb48eb00
DV
4394
4395out_unlock:
9270388e 4396 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4397
4398 return ret;
4399}
4400EXPORT_SYMBOL_GPL(i915_gpu_raise);
4401
4402/**
4403 * i915_gpu_lower - lower GPU frequency limit
4404 *
4405 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4406 * frequency maximum.
4407 */
4408bool i915_gpu_lower(void)
4409{
4410 struct drm_i915_private *dev_priv;
4411 bool ret = true;
4412
9270388e 4413 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4414 if (!i915_mch_dev) {
4415 ret = false;
4416 goto out_unlock;
4417 }
4418 dev_priv = i915_mch_dev;
4419
20e4d407
DV
4420 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4421 dev_priv->ips.max_delay++;
eb48eb00
DV
4422
4423out_unlock:
9270388e 4424 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4425
4426 return ret;
4427}
4428EXPORT_SYMBOL_GPL(i915_gpu_lower);
4429
4430/**
4431 * i915_gpu_busy - indicate GPU business to IPS
4432 *
4433 * Tell the IPS driver whether or not the GPU is busy.
4434 */
4435bool i915_gpu_busy(void)
4436{
4437 struct drm_i915_private *dev_priv;
f047e395 4438 struct intel_ring_buffer *ring;
eb48eb00 4439 bool ret = false;
f047e395 4440 int i;
eb48eb00 4441
9270388e 4442 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4443 if (!i915_mch_dev)
4444 goto out_unlock;
4445 dev_priv = i915_mch_dev;
4446
f047e395
CW
4447 for_each_ring(ring, dev_priv, i)
4448 ret |= !list_empty(&ring->request_list);
eb48eb00
DV
4449
4450out_unlock:
9270388e 4451 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4452
4453 return ret;
4454}
4455EXPORT_SYMBOL_GPL(i915_gpu_busy);
4456
4457/**
4458 * i915_gpu_turbo_disable - disable graphics turbo
4459 *
4460 * Disable graphics turbo by resetting the max frequency and setting the
4461 * current frequency to the default.
4462 */
4463bool i915_gpu_turbo_disable(void)
4464{
4465 struct drm_i915_private *dev_priv;
4466 bool ret = true;
4467
9270388e 4468 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4469 if (!i915_mch_dev) {
4470 ret = false;
4471 goto out_unlock;
4472 }
4473 dev_priv = i915_mch_dev;
4474
20e4d407 4475 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 4476
20e4d407 4477 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
eb48eb00
DV
4478 ret = false;
4479
4480out_unlock:
9270388e 4481 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4482
4483 return ret;
4484}
4485EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4486
4487/**
4488 * Tells the intel_ips driver that the i915 driver is now loaded, if
4489 * IPS got loaded first.
4490 *
4491 * This awkward dance is so that neither module has to depend on the
4492 * other in order for IPS to do the appropriate communication of
4493 * GPU turbo limits to i915.
4494 */
4495static void
4496ips_ping_for_i915_load(void)
4497{
4498 void (*link)(void);
4499
4500 link = symbol_get(ips_link_to_i915_driver);
4501 if (link) {
4502 link();
4503 symbol_put(ips_link_to_i915_driver);
4504 }
4505}
4506
4507void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4508{
02d71956
DV
4509 /* We only register the i915 ips part with intel-ips once everything is
4510 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 4511 spin_lock_irq(&mchdev_lock);
eb48eb00 4512 i915_mch_dev = dev_priv;
9270388e 4513 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4514
4515 ips_ping_for_i915_load();
4516}
4517
4518void intel_gpu_ips_teardown(void)
4519{
9270388e 4520 spin_lock_irq(&mchdev_lock);
eb48eb00 4521 i915_mch_dev = NULL;
9270388e 4522 spin_unlock_irq(&mchdev_lock);
eb48eb00 4523}
8090c6b9 4524static void intel_init_emon(struct drm_device *dev)
dde18883
ED
4525{
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 u32 lcfuse;
4528 u8 pxw[16];
4529 int i;
4530
4531 /* Disable to program */
4532 I915_WRITE(ECR, 0);
4533 POSTING_READ(ECR);
4534
4535 /* Program energy weights for various events */
4536 I915_WRITE(SDEW, 0x15040d00);
4537 I915_WRITE(CSIEW0, 0x007f0000);
4538 I915_WRITE(CSIEW1, 0x1e220004);
4539 I915_WRITE(CSIEW2, 0x04000004);
4540
4541 for (i = 0; i < 5; i++)
4542 I915_WRITE(PEW + (i * 4), 0);
4543 for (i = 0; i < 3; i++)
4544 I915_WRITE(DEW + (i * 4), 0);
4545
4546 /* Program P-state weights to account for frequency power adjustment */
4547 for (i = 0; i < 16; i++) {
4548 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4549 unsigned long freq = intel_pxfreq(pxvidfreq);
4550 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4551 PXVFREQ_PX_SHIFT;
4552 unsigned long val;
4553
4554 val = vid * vid;
4555 val *= (freq / 1000);
4556 val *= 255;
4557 val /= (127*127*900);
4558 if (val > 0xff)
4559 DRM_ERROR("bad pxval: %ld\n", val);
4560 pxw[i] = val;
4561 }
4562 /* Render standby states get 0 weight */
4563 pxw[14] = 0;
4564 pxw[15] = 0;
4565
4566 for (i = 0; i < 4; i++) {
4567 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4568 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4569 I915_WRITE(PXW + (i * 4), val);
4570 }
4571
4572 /* Adjust magic regs to magic values (more experimental results) */
4573 I915_WRITE(OGW0, 0);
4574 I915_WRITE(OGW1, 0);
4575 I915_WRITE(EG0, 0x00007f00);
4576 I915_WRITE(EG1, 0x0000000e);
4577 I915_WRITE(EG2, 0x000e0000);
4578 I915_WRITE(EG3, 0x68000300);
4579 I915_WRITE(EG4, 0x42000000);
4580 I915_WRITE(EG5, 0x00140031);
4581 I915_WRITE(EG6, 0);
4582 I915_WRITE(EG7, 0);
4583
4584 for (i = 0; i < 8; i++)
4585 I915_WRITE(PXWL + (i * 4), 0);
4586
4587 /* Enable PMON + select events */
4588 I915_WRITE(ECR, 0x80000019);
4589
4590 lcfuse = I915_READ(LCFUSE02);
4591
20e4d407 4592 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
4593}
4594
8090c6b9
DV
4595void intel_disable_gt_powersave(struct drm_device *dev)
4596{
1a01ab3b
JB
4597 struct drm_i915_private *dev_priv = dev->dev_private;
4598
fd0c0642
DV
4599 /* Interrupts should be disabled already to avoid re-arming. */
4600 WARN_ON(dev->irq_enabled);
4601
930ebb46 4602 if (IS_IRONLAKE_M(dev)) {
8090c6b9 4603 ironlake_disable_drps(dev);
930ebb46 4604 ironlake_disable_rc6(dev);
0a073b84 4605 } else if (INTEL_INFO(dev)->gen >= 6) {
1a01ab3b 4606 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
250848ca 4607 cancel_work_sync(&dev_priv->rps.work);
52ceb908
JB
4608 if (IS_VALLEYVIEW(dev))
4609 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4fc688ce 4610 mutex_lock(&dev_priv->rps.hw_lock);
d20d4f0c
JB
4611 if (IS_VALLEYVIEW(dev))
4612 valleyview_disable_rps(dev);
4613 else
4614 gen6_disable_rps(dev);
4fc688ce 4615 mutex_unlock(&dev_priv->rps.hw_lock);
930ebb46 4616 }
8090c6b9
DV
4617}
4618
1a01ab3b
JB
4619static void intel_gen6_powersave_work(struct work_struct *work)
4620{
4621 struct drm_i915_private *dev_priv =
4622 container_of(work, struct drm_i915_private,
4623 rps.delayed_resume_work.work);
4624 struct drm_device *dev = dev_priv->dev;
4625
4fc688ce 4626 mutex_lock(&dev_priv->rps.hw_lock);
0a073b84
JB
4627
4628 if (IS_VALLEYVIEW(dev)) {
4629 valleyview_enable_rps(dev);
4630 } else {
4631 gen6_enable_rps(dev);
4632 gen6_update_ring_freq(dev);
4633 }
4fc688ce 4634 mutex_unlock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
4635}
4636
8090c6b9
DV
4637void intel_enable_gt_powersave(struct drm_device *dev)
4638{
1a01ab3b
JB
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640
8090c6b9
DV
4641 if (IS_IRONLAKE_M(dev)) {
4642 ironlake_enable_drps(dev);
4643 ironlake_enable_rc6(dev);
4644 intel_init_emon(dev);
0a073b84 4645 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1a01ab3b
JB
4646 /*
4647 * PCU communication is slow and this doesn't need to be
4648 * done at any specific time, so do this out of our fast path
4649 * to make resume and init faster.
4650 */
4651 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4652 round_jiffies_up_relative(HZ));
8090c6b9
DV
4653 }
4654}
4655
3107bd48
DV
4656static void ibx_init_clock_gating(struct drm_device *dev)
4657{
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659
4660 /*
4661 * On Ibex Peak and Cougar Point, we need to disable clock
4662 * gating for the panel power sequencer or it will fail to
4663 * start up when no ports are active.
4664 */
4665 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4666}
4667
0e088b8f
VS
4668static void g4x_disable_trickle_feed(struct drm_device *dev)
4669{
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671 int pipe;
4672
4673 for_each_pipe(pipe) {
4674 I915_WRITE(DSPCNTR(pipe),
4675 I915_READ(DSPCNTR(pipe)) |
4676 DISPPLANE_TRICKLE_FEED_DISABLE);
4677 intel_flush_display_plane(dev_priv, pipe);
4678 }
4679}
4680
1fa61106 4681static void ironlake_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4682{
4683 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4684 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4685
f1e8fa56
DL
4686 /*
4687 * Required for FBC
4688 * WaFbcDisableDpfcClockGating:ilk
4689 */
4d47e4f5
DL
4690 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4691 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4692 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4693
4694 I915_WRITE(PCH_3DCGDIS0,
4695 MARIUNIT_CLOCK_GATE_DISABLE |
4696 SVSMUNIT_CLOCK_GATE_DISABLE);
4697 I915_WRITE(PCH_3DCGDIS1,
4698 VFMUNIT_CLOCK_GATE_DISABLE);
4699
6f1d69b0
ED
4700 /*
4701 * According to the spec the following bits should be set in
4702 * order to enable memory self-refresh
4703 * The bit 22/21 of 0x42004
4704 * The bit 5 of 0x42020
4705 * The bit 15 of 0x45000
4706 */
4707 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4708 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4709 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 4710 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4711 I915_WRITE(DISP_ARB_CTL,
4712 (I915_READ(DISP_ARB_CTL) |
4713 DISP_FBC_WM_DIS));
4714 I915_WRITE(WM3_LP_ILK, 0);
4715 I915_WRITE(WM2_LP_ILK, 0);
4716 I915_WRITE(WM1_LP_ILK, 0);
4717
4718 /*
4719 * Based on the document from hardware guys the following bits
4720 * should be set unconditionally in order to enable FBC.
4721 * The bit 22 of 0x42000
4722 * The bit 22 of 0x42004
4723 * The bit 7,8,9 of 0x42020.
4724 */
4725 if (IS_IRONLAKE_M(dev)) {
4bb35334 4726 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6f1d69b0
ED
4727 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4728 I915_READ(ILK_DISPLAY_CHICKEN1) |
4729 ILK_FBCQ_DIS);
4730 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4731 I915_READ(ILK_DISPLAY_CHICKEN2) |
4732 ILK_DPARB_GATE);
6f1d69b0
ED
4733 }
4734
4d47e4f5
DL
4735 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4736
6f1d69b0
ED
4737 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4738 I915_READ(ILK_DISPLAY_CHICKEN2) |
4739 ILK_ELPIN_409_SELECT);
4740 I915_WRITE(_3D_CHICKEN2,
4741 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4742 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374 4743
ecdb4eb7 4744 /* WaDisableRenderCachePipelinedFlush:ilk */
4358a374
DV
4745 I915_WRITE(CACHE_MODE_0,
4746 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48 4747
0e088b8f 4748 g4x_disable_trickle_feed(dev);
bdad2b2f 4749
3107bd48
DV
4750 ibx_init_clock_gating(dev);
4751}
4752
4753static void cpt_init_clock_gating(struct drm_device *dev)
4754{
4755 struct drm_i915_private *dev_priv = dev->dev_private;
4756 int pipe;
3f704fa2 4757 uint32_t val;
3107bd48
DV
4758
4759 /*
4760 * On Ibex Peak and Cougar Point, we need to disable clock
4761 * gating for the panel power sequencer or it will fail to
4762 * start up when no ports are active.
4763 */
4764 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4765 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4766 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
4767 /* The below fixes the weird display corruption, a few pixels shifted
4768 * downward, on (only) LVDS of some HP laptops with IVY.
4769 */
3f704fa2 4770 for_each_pipe(pipe) {
dc4bd2d1
PZ
4771 val = I915_READ(TRANS_CHICKEN2(pipe));
4772 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4773 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
41aa3448 4774 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3f704fa2 4775 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
dc4bd2d1
PZ
4776 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4777 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4778 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3f704fa2
PZ
4779 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4780 }
3107bd48
DV
4781 /* WADP0ClockGatingDisable */
4782 for_each_pipe(pipe) {
4783 I915_WRITE(TRANS_CHICKEN1(pipe),
4784 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4785 }
6f1d69b0
ED
4786}
4787
1d7aaa0c
DV
4788static void gen6_check_mch_setup(struct drm_device *dev)
4789{
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791 uint32_t tmp;
4792
4793 tmp = I915_READ(MCH_SSKPD);
4794 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4795 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4796 DRM_INFO("This can cause pipe underruns and display issues.\n");
4797 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4798 }
4799}
4800
1fa61106 4801static void gen6_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4802{
4803 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4804 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4805
231e54f6 4806 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
4807
4808 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4809 I915_READ(ILK_DISPLAY_CHICKEN2) |
4810 ILK_ELPIN_409_SELECT);
4811
ecdb4eb7 4812 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4283908e
DV
4813 I915_WRITE(_3D_CHICKEN,
4814 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4815
ecdb4eb7 4816 /* WaSetupGtModeTdRowDispatch:snb */
6547fbdb
DV
4817 if (IS_SNB_GT1(dev))
4818 I915_WRITE(GEN6_GT_MODE,
4819 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4820
6f1d69b0
ED
4821 I915_WRITE(WM3_LP_ILK, 0);
4822 I915_WRITE(WM2_LP_ILK, 0);
4823 I915_WRITE(WM1_LP_ILK, 0);
4824
6f1d69b0 4825 I915_WRITE(CACHE_MODE_0,
50743298 4826 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
4827
4828 I915_WRITE(GEN6_UCGCTL1,
4829 I915_READ(GEN6_UCGCTL1) |
4830 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4831 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4832
4833 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4834 * gating disable must be set. Failure to set it results in
4835 * flickering pixels due to Z write ordering failures after
4836 * some amount of runtime in the Mesa "fire" demo, and Unigine
4837 * Sanctuary and Tropics, and apparently anything else with
4838 * alpha test or pixel discard.
4839 *
4840 * According to the spec, bit 11 (RCCUNIT) must also be set,
4841 * but we didn't debug actual testcases to find it out.
0f846f81 4842 *
ecdb4eb7
DL
4843 * Also apply WaDisableVDSUnitClockGating:snb and
4844 * WaDisableRCPBUnitClockGating:snb.
6f1d69b0
ED
4845 */
4846 I915_WRITE(GEN6_UCGCTL2,
0f846f81 4847 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6f1d69b0
ED
4848 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4849 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4850
4851 /* Bspec says we need to always set all mask bits. */
26b6e44a
KG
4852 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4853 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
6f1d69b0
ED
4854
4855 /*
4856 * According to the spec the following bits should be
4857 * set in order to enable memory self-refresh and fbc:
4858 * The bit21 and bit22 of 0x42000
4859 * The bit21 and bit22 of 0x42004
4860 * The bit5 and bit7 of 0x42020
4861 * The bit14 of 0x70180
4862 * The bit14 of 0x71180
4bb35334
DL
4863 *
4864 * WaFbcAsynchFlipDisableFbcQueue:snb
6f1d69b0
ED
4865 */
4866 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4867 I915_READ(ILK_DISPLAY_CHICKEN1) |
4868 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4869 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4870 I915_READ(ILK_DISPLAY_CHICKEN2) |
4871 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
4872 I915_WRITE(ILK_DSPCLK_GATE_D,
4873 I915_READ(ILK_DSPCLK_GATE_D) |
4874 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4875 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 4876
0e088b8f 4877 g4x_disable_trickle_feed(dev);
f8f2ac9a
BW
4878
4879 /* The default value should be 0x200 according to docs, but the two
4880 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4881 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4882 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3107bd48
DV
4883
4884 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4885
4886 gen6_check_mch_setup(dev);
6f1d69b0
ED
4887}
4888
4889static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4890{
4891 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4892
4893 reg &= ~GEN7_FF_SCHED_MASK;
4894 reg |= GEN7_FF_TS_SCHED_HW;
4895 reg |= GEN7_FF_VS_SCHED_HW;
4896 reg |= GEN7_FF_DS_SCHED_HW;
4897
41c0b3a8
BW
4898 if (IS_HASWELL(dev_priv->dev))
4899 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4900
6f1d69b0
ED
4901 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4902}
4903
17a303ec
PZ
4904static void lpt_init_clock_gating(struct drm_device *dev)
4905{
4906 struct drm_i915_private *dev_priv = dev->dev_private;
4907
4908 /*
4909 * TODO: this bit should only be enabled when really needed, then
4910 * disabled when not needed anymore in order to save power.
4911 */
4912 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4913 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4914 I915_READ(SOUTH_DSPCLK_GATE_D) |
4915 PCH_LP_PARTITION_LEVEL_DISABLE);
0a790cdb
PZ
4916
4917 /* WADPOClockGatingDisable:hsw */
4918 I915_WRITE(_TRANSA_CHICKEN1,
4919 I915_READ(_TRANSA_CHICKEN1) |
4920 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
17a303ec
PZ
4921}
4922
7d708ee4
ID
4923static void lpt_suspend_hw(struct drm_device *dev)
4924{
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4928 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4929
4930 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4931 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4932 }
4933}
4934
cad2a2d7
ED
4935static void haswell_init_clock_gating(struct drm_device *dev)
4936{
4937 struct drm_i915_private *dev_priv = dev->dev_private;
cad2a2d7
ED
4938
4939 I915_WRITE(WM3_LP_ILK, 0);
4940 I915_WRITE(WM2_LP_ILK, 0);
4941 I915_WRITE(WM1_LP_ILK, 0);
4942
4943 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4944 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
cad2a2d7
ED
4945 */
4946 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4947
ecdb4eb7 4948 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
cad2a2d7
ED
4949 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4950 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4951
ecdb4eb7 4952 /* WaApplyL3ControlAndL3ChickenMode:hsw */
cad2a2d7
ED
4953 I915_WRITE(GEN7_L3CNTLREG1,
4954 GEN7_WA_FOR_GEN7_L3_CONTROL);
4955 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4956 GEN7_WA_L3_CHICKEN_MODE);
4957
ecdb4eb7 4958 /* This is required by WaCatErrorRejectionIssue:hsw */
cad2a2d7
ED
4959 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4960 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4961 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4962
ecdb4eb7 4963 /* WaVSRefCountFullforceMissDisable:hsw */
cad2a2d7
ED
4964 gen7_setup_fixed_func_scheduler(dev_priv);
4965
ecdb4eb7 4966 /* WaDisable4x2SubspanOptimization:hsw */
cad2a2d7
ED
4967 I915_WRITE(CACHE_MODE_1,
4968 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 4969
ecdb4eb7 4970 /* WaSwitchSolVfFArbitrationPriority:hsw */
e3dff585
BW
4971 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4972
90a88643
PZ
4973 /* WaRsPkgCStateDisplayPMReq:hsw */
4974 I915_WRITE(CHICKEN_PAR1_1,
4975 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
1544d9d5 4976
17a303ec 4977 lpt_init_clock_gating(dev);
cad2a2d7
ED
4978}
4979
1fa61106 4980static void ivybridge_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4981{
4982 struct drm_i915_private *dev_priv = dev->dev_private;
20848223 4983 uint32_t snpcr;
6f1d69b0 4984
6f1d69b0
ED
4985 I915_WRITE(WM3_LP_ILK, 0);
4986 I915_WRITE(WM2_LP_ILK, 0);
4987 I915_WRITE(WM1_LP_ILK, 0);
4988
231e54f6 4989 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4990
ecdb4eb7 4991 /* WaDisableEarlyCull:ivb */
87f8020e
JB
4992 I915_WRITE(_3D_CHICKEN3,
4993 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4994
ecdb4eb7 4995 /* WaDisableBackToBackFlipFix:ivb */
6f1d69b0
ED
4996 I915_WRITE(IVB_CHICKEN3,
4997 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4998 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4999
ecdb4eb7 5000 /* WaDisablePSDDualDispatchEnable:ivb */
12f3382b
JB
5001 if (IS_IVB_GT1(dev))
5002 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5003 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5004 else
5005 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5006 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5007
ecdb4eb7 5008 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6f1d69b0
ED
5009 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5010 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5011
ecdb4eb7 5012 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6f1d69b0
ED
5013 I915_WRITE(GEN7_L3CNTLREG1,
5014 GEN7_WA_FOR_GEN7_L3_CONTROL);
5015 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976
JB
5016 GEN7_WA_L3_CHICKEN_MODE);
5017 if (IS_IVB_GT1(dev))
5018 I915_WRITE(GEN7_ROW_CHICKEN2,
5019 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5020 else
5021 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5022 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5023
6f1d69b0 5024
ecdb4eb7 5025 /* WaForceL3Serialization:ivb */
61939d97
JB
5026 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5027 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5028
0f846f81
JB
5029 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5030 * gating disable must be set. Failure to set it results in
5031 * flickering pixels due to Z write ordering failures after
5032 * some amount of runtime in the Mesa "fire" demo, and Unigine
5033 * Sanctuary and Tropics, and apparently anything else with
5034 * alpha test or pixel discard.
5035 *
5036 * According to the spec, bit 11 (RCCUNIT) must also be set,
5037 * but we didn't debug actual testcases to find it out.
5038 *
5039 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 5040 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
0f846f81
JB
5041 */
5042 I915_WRITE(GEN6_UCGCTL2,
5043 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5044 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5045
ecdb4eb7 5046 /* This is required by WaCatErrorRejectionIssue:ivb */
6f1d69b0
ED
5047 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5048 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5049 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5050
0e088b8f 5051 g4x_disable_trickle_feed(dev);
6f1d69b0 5052
ecdb4eb7 5053 /* WaVSRefCountFullforceMissDisable:ivb */
6f1d69b0 5054 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f 5055
ecdb4eb7 5056 /* WaDisable4x2SubspanOptimization:ivb */
97e1930f
DV
5057 I915_WRITE(CACHE_MODE_1,
5058 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223
BW
5059
5060 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5061 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5062 snpcr |= GEN6_MBC_SNPCR_MED;
5063 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48 5064
ab5c608b
BW
5065 if (!HAS_PCH_NOP(dev))
5066 cpt_init_clock_gating(dev);
1d7aaa0c
DV
5067
5068 gen6_check_mch_setup(dev);
6f1d69b0
ED
5069}
5070
1fa61106 5071static void valleyview_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5072{
5073 struct drm_i915_private *dev_priv = dev->dev_private;
6f1d69b0 5074
d7fe0cc0 5075 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 5076
ecdb4eb7 5077 /* WaDisableEarlyCull:vlv */
87f8020e
JB
5078 I915_WRITE(_3D_CHICKEN3,
5079 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5080
ecdb4eb7 5081 /* WaDisableBackToBackFlipFix:vlv */
6f1d69b0
ED
5082 I915_WRITE(IVB_CHICKEN3,
5083 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5084 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5085
ecdb4eb7 5086 /* WaDisablePSDDualDispatchEnable:vlv */
12f3382b 5087 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
d3bc0303
JB
5088 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5089 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 5090
ecdb4eb7 5091 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
6f1d69b0
ED
5092 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5093 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5094
ecdb4eb7 5095 /* WaApplyL3ControlAndL3ChickenMode:vlv */
d0cf5ead 5096 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
6f1d69b0
ED
5097 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5098
ecdb4eb7 5099 /* WaForceL3Serialization:vlv */
61939d97
JB
5100 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5101 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5102
ecdb4eb7 5103 /* WaDisableDopClockGating:vlv */
8ab43976
JB
5104 I915_WRITE(GEN7_ROW_CHICKEN2,
5105 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5106
ecdb4eb7 5107 /* This is required by WaCatErrorRejectionIssue:vlv */
6f1d69b0
ED
5108 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5109 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5110 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5111
0f846f81
JB
5112 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5113 * gating disable must be set. Failure to set it results in
5114 * flickering pixels due to Z write ordering failures after
5115 * some amount of runtime in the Mesa "fire" demo, and Unigine
5116 * Sanctuary and Tropics, and apparently anything else with
5117 * alpha test or pixel discard.
5118 *
5119 * According to the spec, bit 11 (RCCUNIT) must also be set,
5120 * but we didn't debug actual testcases to find it out.
5121 *
5122 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 5123 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
0f846f81 5124 *
ecdb4eb7
DL
5125 * Also apply WaDisableVDSUnitClockGating:vlv and
5126 * WaDisableRCPBUnitClockGating:vlv.
0f846f81
JB
5127 */
5128 I915_WRITE(GEN6_UCGCTL2,
5129 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6edaa7fc 5130 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
0f846f81
JB
5131 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5132 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5133 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5134
e3f33d46
JB
5135 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5136
e0d8d59b 5137 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6f1d69b0 5138
6b26c86d
DV
5139 I915_WRITE(CACHE_MODE_1,
5140 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f 5141
2d809570 5142 /*
ecdb4eb7 5143 * WaDisableVLVClockGating_VBIIssue:vlv
2d809570
JB
5144 * Disable clock gating on th GCFG unit to prevent a delay
5145 * in the reporting of vblank events.
5146 */
4e8c84a5
JB
5147 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5148
5149 /* Conservative clock gating settings for now */
5150 I915_WRITE(0x9400, 0xffffffff);
5151 I915_WRITE(0x9404, 0xffffffff);
5152 I915_WRITE(0x9408, 0xffffffff);
5153 I915_WRITE(0x940c, 0xffffffff);
5154 I915_WRITE(0x9410, 0xffffffff);
5155 I915_WRITE(0x9414, 0xffffffff);
5156 I915_WRITE(0x9418, 0xffffffff);
6f1d69b0
ED
5157}
5158
1fa61106 5159static void g4x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5160{
5161 struct drm_i915_private *dev_priv = dev->dev_private;
5162 uint32_t dspclk_gate;
5163
5164 I915_WRITE(RENCLK_GATE_D1, 0);
5165 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5166 GS_UNIT_CLOCK_GATE_DISABLE |
5167 CL_UNIT_CLOCK_GATE_DISABLE);
5168 I915_WRITE(RAMCLK_GATE_D, 0);
5169 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5170 OVRUNIT_CLOCK_GATE_DISABLE |
5171 OVCUNIT_CLOCK_GATE_DISABLE;
5172 if (IS_GM45(dev))
5173 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5174 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
5175
5176 /* WaDisableRenderCachePipelinedFlush */
5177 I915_WRITE(CACHE_MODE_0,
5178 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
de1aa629 5179
0e088b8f 5180 g4x_disable_trickle_feed(dev);
6f1d69b0
ED
5181}
5182
1fa61106 5183static void crestline_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5184{
5185 struct drm_i915_private *dev_priv = dev->dev_private;
5186
5187 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5188 I915_WRITE(RENCLK_GATE_D2, 0);
5189 I915_WRITE(DSPCLK_GATE_D, 0);
5190 I915_WRITE(RAMCLK_GATE_D, 0);
5191 I915_WRITE16(DEUC, 0);
20f94967
VS
5192 I915_WRITE(MI_ARB_STATE,
5193 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5194}
5195
1fa61106 5196static void broadwater_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5197{
5198 struct drm_i915_private *dev_priv = dev->dev_private;
5199
5200 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5201 I965_RCC_CLOCK_GATE_DISABLE |
5202 I965_RCPB_CLOCK_GATE_DISABLE |
5203 I965_ISC_CLOCK_GATE_DISABLE |
5204 I965_FBC_CLOCK_GATE_DISABLE);
5205 I915_WRITE(RENCLK_GATE_D2, 0);
20f94967
VS
5206 I915_WRITE(MI_ARB_STATE,
5207 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5208}
5209
1fa61106 5210static void gen3_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5211{
5212 struct drm_i915_private *dev_priv = dev->dev_private;
5213 u32 dstate = I915_READ(D_STATE);
5214
5215 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5216 DSTATE_DOT_CLOCK_GATING;
5217 I915_WRITE(D_STATE, dstate);
13a86b85
CW
5218
5219 if (IS_PINEVIEW(dev))
5220 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
5221
5222 /* IIR "flip pending" means done if this bit is set */
5223 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6f1d69b0
ED
5224}
5225
1fa61106 5226static void i85x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5227{
5228 struct drm_i915_private *dev_priv = dev->dev_private;
5229
5230 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5231}
5232
1fa61106 5233static void i830_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5234{
5235 struct drm_i915_private *dev_priv = dev->dev_private;
5236
5237 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5238}
5239
6f1d69b0
ED
5240void intel_init_clock_gating(struct drm_device *dev)
5241{
5242 struct drm_i915_private *dev_priv = dev->dev_private;
5243
5244 dev_priv->display.init_clock_gating(dev);
6f1d69b0
ED
5245}
5246
7d708ee4
ID
5247void intel_suspend_hw(struct drm_device *dev)
5248{
5249 if (HAS_PCH_LPT(dev))
5250 lpt_suspend_hw(dev);
5251}
5252
15d199ea
PZ
5253/**
5254 * We should only use the power well if we explicitly asked the hardware to
5255 * enable it, so check if it's enabled and also check if we've requested it to
5256 * be enabled.
5257 */
b97186f0
PZ
5258bool intel_display_power_enabled(struct drm_device *dev,
5259 enum intel_display_power_domain domain)
15d199ea
PZ
5260{
5261 struct drm_i915_private *dev_priv = dev->dev_private;
5262
b97186f0
PZ
5263 if (!HAS_POWER_WELL(dev))
5264 return true;
5265
5266 switch (domain) {
5267 case POWER_DOMAIN_PIPE_A:
5268 case POWER_DOMAIN_TRANSCODER_EDP:
5269 return true;
5270 case POWER_DOMAIN_PIPE_B:
5271 case POWER_DOMAIN_PIPE_C:
5272 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5273 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5274 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5275 case POWER_DOMAIN_TRANSCODER_A:
5276 case POWER_DOMAIN_TRANSCODER_B:
5277 case POWER_DOMAIN_TRANSCODER_C:
15d199ea 5278 return I915_READ(HSW_PWR_WELL_DRIVER) ==
6aedd1f5 5279 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
b97186f0
PZ
5280 default:
5281 BUG();
5282 }
15d199ea
PZ
5283}
5284
a38911a3 5285static void __intel_set_power_well(struct drm_device *dev, bool enable)
d0d3e513
ED
5286{
5287 struct drm_i915_private *dev_priv = dev->dev_private;
fa42e23c
PZ
5288 bool is_enabled, enable_requested;
5289 uint32_t tmp;
d0d3e513 5290
fa42e23c 5291 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6aedd1f5
PZ
5292 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5293 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
d0d3e513 5294
fa42e23c
PZ
5295 if (enable) {
5296 if (!enable_requested)
6aedd1f5
PZ
5297 I915_WRITE(HSW_PWR_WELL_DRIVER,
5298 HSW_PWR_WELL_ENABLE_REQUEST);
d0d3e513 5299
fa42e23c
PZ
5300 if (!is_enabled) {
5301 DRM_DEBUG_KMS("Enabling power well\n");
5302 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6aedd1f5 5303 HSW_PWR_WELL_STATE_ENABLED), 20))
fa42e23c
PZ
5304 DRM_ERROR("Timeout enabling power well\n");
5305 }
5306 } else {
5307 if (enable_requested) {
9dbd8feb
PZ
5308 unsigned long irqflags;
5309 enum pipe p;
5310
fa42e23c 5311 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
9dbd8feb 5312 POSTING_READ(HSW_PWR_WELL_DRIVER);
fa42e23c 5313 DRM_DEBUG_KMS("Requesting to disable the power well\n");
9dbd8feb
PZ
5314
5315 /*
5316 * After this, the registers on the pipes that are part
5317 * of the power well will become zero, so we have to
5318 * adjust our counters according to that.
5319 *
5320 * FIXME: Should we do this in general in
5321 * drm_vblank_post_modeset?
5322 */
5323 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5324 for_each_pipe(p)
5325 if (p != PIPE_A)
5326 dev->last_vblank[p] = 0;
5327 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
d0d3e513
ED
5328 }
5329 }
fa42e23c 5330}
d0d3e513 5331
a38911a3
WX
5332static struct i915_power_well *hsw_pwr;
5333
5334/* Display audio driver power well request */
5335void i915_request_power_well(void)
5336{
5337 if (WARN_ON(!hsw_pwr))
5338 return;
5339
5340 spin_lock_irq(&hsw_pwr->lock);
5341 if (!hsw_pwr->count++ &&
5342 !hsw_pwr->i915_request)
5343 __intel_set_power_well(hsw_pwr->device, true);
5344 spin_unlock_irq(&hsw_pwr->lock);
5345}
5346EXPORT_SYMBOL_GPL(i915_request_power_well);
5347
5348/* Display audio driver power well release */
5349void i915_release_power_well(void)
5350{
5351 if (WARN_ON(!hsw_pwr))
5352 return;
5353
5354 spin_lock_irq(&hsw_pwr->lock);
5355 WARN_ON(!hsw_pwr->count);
5356 if (!--hsw_pwr->count &&
5357 !hsw_pwr->i915_request)
5358 __intel_set_power_well(hsw_pwr->device, false);
5359 spin_unlock_irq(&hsw_pwr->lock);
5360}
5361EXPORT_SYMBOL_GPL(i915_release_power_well);
5362
5363int i915_init_power_well(struct drm_device *dev)
5364{
5365 struct drm_i915_private *dev_priv = dev->dev_private;
5366
5367 hsw_pwr = &dev_priv->power_well;
5368
5369 hsw_pwr->device = dev;
5370 spin_lock_init(&hsw_pwr->lock);
5371 hsw_pwr->count = 0;
5372
5373 return 0;
5374}
5375
5376void i915_remove_power_well(struct drm_device *dev)
5377{
5378 hsw_pwr = NULL;
5379}
5380
5381void intel_set_power_well(struct drm_device *dev, bool enable)
5382{
5383 struct drm_i915_private *dev_priv = dev->dev_private;
5384 struct i915_power_well *power_well = &dev_priv->power_well;
5385
5386 if (!HAS_POWER_WELL(dev))
5387 return;
5388
5389 if (!i915_disable_power_well && !enable)
5390 return;
5391
5392 spin_lock_irq(&power_well->lock);
5393 power_well->i915_request = enable;
5394
5395 /* only reject "disable" power well request */
5396 if (power_well->count && !enable) {
5397 spin_unlock_irq(&power_well->lock);
5398 return;
5399 }
5400
5401 __intel_set_power_well(dev, enable);
5402 spin_unlock_irq(&power_well->lock);
5403}
5404
fa42e23c
PZ
5405/*
5406 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5407 * when not needed anymore. We have 4 registers that can request the power well
5408 * to be enabled, and it will only be disabled if none of the registers is
5409 * requesting it to be enabled.
d0d3e513 5410 */
fa42e23c 5411void intel_init_power_well(struct drm_device *dev)
d0d3e513
ED
5412{
5413 struct drm_i915_private *dev_priv = dev->dev_private;
d0d3e513 5414
86d52df6 5415 if (!HAS_POWER_WELL(dev))
d0d3e513
ED
5416 return;
5417
fa42e23c
PZ
5418 /* For now, we need the power well to be always enabled. */
5419 intel_set_power_well(dev, true);
d0d3e513 5420
fa42e23c
PZ
5421 /* We're taking over the BIOS, so clear any requests made by it since
5422 * the driver is in charge now. */
6aedd1f5 5423 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
fa42e23c 5424 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
d0d3e513
ED
5425}
5426
c67a470b
PZ
5427/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5428void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5429{
5430 hsw_disable_package_c8(dev_priv);
5431}
5432
5433void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5434{
5435 hsw_enable_package_c8(dev_priv);
5436}
5437
1fa61106
ED
5438/* Set up chip specific power management-related functions */
5439void intel_init_pm(struct drm_device *dev)
5440{
5441 struct drm_i915_private *dev_priv = dev->dev_private;
5442
5443 if (I915_HAS_FBC(dev)) {
5444 if (HAS_PCH_SPLIT(dev)) {
5445 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
891348b2 5446 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
abe959c7
RV
5447 dev_priv->display.enable_fbc =
5448 gen7_enable_fbc;
5449 else
5450 dev_priv->display.enable_fbc =
5451 ironlake_enable_fbc;
1fa61106
ED
5452 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5453 } else if (IS_GM45(dev)) {
5454 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5455 dev_priv->display.enable_fbc = g4x_enable_fbc;
5456 dev_priv->display.disable_fbc = g4x_disable_fbc;
5457 } else if (IS_CRESTLINE(dev)) {
5458 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5459 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5460 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5461 }
5462 /* 855GM needs testing */
5463 }
5464
c921aba8
DV
5465 /* For cxsr */
5466 if (IS_PINEVIEW(dev))
5467 i915_pineview_get_mem_freq(dev);
5468 else if (IS_GEN5(dev))
5469 i915_ironlake_get_mem_freq(dev);
5470
1fa61106
ED
5471 /* For FIFO watermark updates */
5472 if (HAS_PCH_SPLIT(dev)) {
53615a5e
VS
5473 intel_setup_wm_latency(dev);
5474
1fa61106 5475 if (IS_GEN5(dev)) {
53615a5e
VS
5476 if (dev_priv->wm.pri_latency[1] &&
5477 dev_priv->wm.spr_latency[1] &&
5478 dev_priv->wm.cur_latency[1])
1fa61106
ED
5479 dev_priv->display.update_wm = ironlake_update_wm;
5480 else {
5481 DRM_DEBUG_KMS("Failed to get proper latency. "
5482 "Disable CxSR\n");
5483 dev_priv->display.update_wm = NULL;
5484 }
5485 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5486 } else if (IS_GEN6(dev)) {
53615a5e
VS
5487 if (dev_priv->wm.pri_latency[0] &&
5488 dev_priv->wm.spr_latency[0] &&
5489 dev_priv->wm.cur_latency[0]) {
1fa61106
ED
5490 dev_priv->display.update_wm = sandybridge_update_wm;
5491 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5492 } else {
5493 DRM_DEBUG_KMS("Failed to read display plane latency. "
5494 "Disable CxSR\n");
5495 dev_priv->display.update_wm = NULL;
5496 }
5497 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5498 } else if (IS_IVYBRIDGE(dev)) {
53615a5e
VS
5499 if (dev_priv->wm.pri_latency[0] &&
5500 dev_priv->wm.spr_latency[0] &&
5501 dev_priv->wm.cur_latency[0]) {
c43d0188 5502 dev_priv->display.update_wm = ivybridge_update_wm;
1fa61106
ED
5503 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5504 } else {
5505 DRM_DEBUG_KMS("Failed to read display plane latency. "
5506 "Disable CxSR\n");
5507 dev_priv->display.update_wm = NULL;
5508 }
5509 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6b8a5eeb 5510 } else if (IS_HASWELL(dev)) {
53615a5e
VS
5511 if (dev_priv->wm.pri_latency[0] &&
5512 dev_priv->wm.spr_latency[0] &&
5513 dev_priv->wm.cur_latency[0]) {
1011d8c4 5514 dev_priv->display.update_wm = haswell_update_wm;
526682e9
PZ
5515 dev_priv->display.update_sprite_wm =
5516 haswell_update_sprite_wm;
6b8a5eeb
ED
5517 } else {
5518 DRM_DEBUG_KMS("Failed to read display plane latency. "
5519 "Disable CxSR\n");
5520 dev_priv->display.update_wm = NULL;
5521 }
cad2a2d7 5522 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
1fa61106
ED
5523 } else
5524 dev_priv->display.update_wm = NULL;
5525 } else if (IS_VALLEYVIEW(dev)) {
5526 dev_priv->display.update_wm = valleyview_update_wm;
5527 dev_priv->display.init_clock_gating =
5528 valleyview_init_clock_gating;
1fa61106
ED
5529 } else if (IS_PINEVIEW(dev)) {
5530 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5531 dev_priv->is_ddr3,
5532 dev_priv->fsb_freq,
5533 dev_priv->mem_freq)) {
5534 DRM_INFO("failed to find known CxSR latency "
5535 "(found ddr%s fsb freq %d, mem freq %d), "
5536 "disabling CxSR\n",
5537 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5538 dev_priv->fsb_freq, dev_priv->mem_freq);
5539 /* Disable CxSR and never update its watermark again */
5540 pineview_disable_cxsr(dev);
5541 dev_priv->display.update_wm = NULL;
5542 } else
5543 dev_priv->display.update_wm = pineview_update_wm;
5544 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5545 } else if (IS_G4X(dev)) {
5546 dev_priv->display.update_wm = g4x_update_wm;
5547 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5548 } else if (IS_GEN4(dev)) {
5549 dev_priv->display.update_wm = i965_update_wm;
5550 if (IS_CRESTLINE(dev))
5551 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5552 else if (IS_BROADWATER(dev))
5553 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5554 } else if (IS_GEN3(dev)) {
5555 dev_priv->display.update_wm = i9xx_update_wm;
5556 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5557 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5558 } else if (IS_I865G(dev)) {
5559 dev_priv->display.update_wm = i830_update_wm;
5560 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5561 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5562 } else if (IS_I85X(dev)) {
5563 dev_priv->display.update_wm = i9xx_update_wm;
5564 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5565 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5566 } else {
5567 dev_priv->display.update_wm = i830_update_wm;
5568 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5569 if (IS_845G(dev))
5570 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5571 else
5572 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5573 }
5574}
5575
42c0526c
BW
5576int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5577{
4fc688ce 5578 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5579
5580 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5581 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5582 return -EAGAIN;
5583 }
5584
5585 I915_WRITE(GEN6_PCODE_DATA, *val);
5586 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5587
5588 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5589 500)) {
5590 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5591 return -ETIMEDOUT;
5592 }
5593
5594 *val = I915_READ(GEN6_PCODE_DATA);
5595 I915_WRITE(GEN6_PCODE_DATA, 0);
5596
5597 return 0;
5598}
5599
5600int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5601{
4fc688ce 5602 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5603
5604 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5605 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5606 return -EAGAIN;
5607 }
5608
5609 I915_WRITE(GEN6_PCODE_DATA, val);
5610 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5611
5612 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5613 500)) {
5614 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5615 return -ETIMEDOUT;
5616 }
5617
5618 I915_WRITE(GEN6_PCODE_DATA, 0);
5619
5620 return 0;
5621}
a0e4e199 5622
855ba3be
JB
5623int vlv_gpu_freq(int ddr_freq, int val)
5624{
5625 int mult, base;
5626
5627 switch (ddr_freq) {
5628 case 800:
5629 mult = 20;
5630 base = 120;
5631 break;
5632 case 1066:
5633 mult = 22;
5634 base = 133;
5635 break;
5636 case 1333:
5637 mult = 21;
5638 base = 125;
5639 break;
5640 default:
5641 return -1;
5642 }
5643
5644 return ((val - 0xbd) * mult) + base;
5645}
5646
5647int vlv_freq_opcode(int ddr_freq, int val)
5648{
5649 int mult, base;
5650
5651 switch (ddr_freq) {
5652 case 800:
5653 mult = 20;
5654 base = 120;
5655 break;
5656 case 1066:
5657 mult = 22;
5658 base = 133;
5659 break;
5660 case 1333:
5661 mult = 21;
5662 base = 125;
5663 break;
5664 default:
5665 return -1;
5666 }
5667
5668 val /= mult;
5669 val -= base / mult;
5670 val += 0xbd;
5671
5672 if (val > 0xea)
5673 val = 0xea;
5674
5675 return val;
5676}
5677
907b28c5
CW
5678void intel_pm_init(struct drm_device *dev)
5679{
5680 struct drm_i915_private *dev_priv = dev->dev_private;
5681
5682 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5683 intel_gen6_powersave_work);
5684}
5685
This page took 0.499708 seconds and 5 git commands to generate.