drm/i915: 830M doesn't have an LVDS port
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
85208be0
ED
29#include "i915_drv.h"
30#include "intel_drv.h"
eb48eb00
DV
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
f9dcb0df 33#include <linux/vgaarb.h>
f4db9321 34#include <drm/i915_powerwell.h>
8a187455 35#include <linux/pm_runtime.h>
85208be0 36
dc39fff7
BW
37/**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54#define INTEL_RC6_ENABLE (1<<0)
55#define INTEL_RC6p_ENABLE (1<<1)
56#define INTEL_RC6pp_ENABLE (1<<2)
57
f6750b3c
ED
58/* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
85208be0 61 *
f6750b3c
ED
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
85208be0 64 *
f6750b3c
ED
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
85208be0
ED
67 */
68
1fa61106 69static void i8xx_disable_fbc(struct drm_device *dev)
85208be0
ED
70{
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89}
90
993495ae 91static void i8xx_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
92{
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->fb;
96 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97 struct drm_i915_gem_object *obj = intel_fb->obj;
98 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99 int cfb_pitch;
100 int plane, i;
159f9875 101 u32 fbc_ctl;
85208be0 102
5c3fe8b0 103 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
85208be0
ED
104 if (fb->pitches[0] < cfb_pitch)
105 cfb_pitch = fb->pitches[0];
106
42a430f5
VS
107 /* FBC_CTL wants 32B or 64B units */
108 if (IS_GEN2(dev))
109 cfb_pitch = (cfb_pitch / 32) - 1;
110 else
111 cfb_pitch = (cfb_pitch / 64) - 1;
85208be0
ED
112 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
113
114 /* Clear old tags */
115 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
116 I915_WRITE(FBC_TAG + (i * 4), 0);
117
159f9875
VS
118 if (IS_GEN4(dev)) {
119 u32 fbc_ctl2;
120
121 /* Set it up... */
122 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
123 fbc_ctl2 |= plane;
124 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
125 I915_WRITE(FBC_FENCE_OFF, crtc->y);
126 }
85208be0
ED
127
128 /* enable it... */
993495ae
VS
129 fbc_ctl = I915_READ(FBC_CONTROL);
130 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
131 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
85208be0
ED
132 if (IS_I945GM(dev))
133 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
134 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
85208be0
ED
135 fbc_ctl |= obj->fence_reg;
136 I915_WRITE(FBC_CONTROL, fbc_ctl);
137
84f44ce7
VS
138 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
139 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
85208be0
ED
140}
141
1fa61106 142static bool i8xx_fbc_enabled(struct drm_device *dev)
85208be0
ED
143{
144 struct drm_i915_private *dev_priv = dev->dev_private;
145
146 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
147}
148
993495ae 149static void g4x_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
150{
151 struct drm_device *dev = crtc->dev;
152 struct drm_i915_private *dev_priv = dev->dev_private;
153 struct drm_framebuffer *fb = crtc->fb;
154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
155 struct drm_i915_gem_object *obj = intel_fb->obj;
156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
157 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
85208be0
ED
158 u32 dpfc_ctl;
159
160 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
161 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
163
85208be0
ED
164 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
165
166 /* enable it... */
167 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
168
84f44ce7 169 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
170}
171
1fa61106 172static void g4x_disable_fbc(struct drm_device *dev)
85208be0
ED
173{
174 struct drm_i915_private *dev_priv = dev->dev_private;
175 u32 dpfc_ctl;
176
177 /* Disable compression */
178 dpfc_ctl = I915_READ(DPFC_CONTROL);
179 if (dpfc_ctl & DPFC_CTL_EN) {
180 dpfc_ctl &= ~DPFC_CTL_EN;
181 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
182
183 DRM_DEBUG_KMS("disabled FBC\n");
184 }
185}
186
1fa61106 187static bool g4x_fbc_enabled(struct drm_device *dev)
85208be0
ED
188{
189 struct drm_i915_private *dev_priv = dev->dev_private;
190
191 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
192}
193
194static void sandybridge_blit_fbc_update(struct drm_device *dev)
195{
196 struct drm_i915_private *dev_priv = dev->dev_private;
197 u32 blt_ecoskpd;
198
199 /* Make sure blitter notifies FBC of writes */
940aece4
D
200
201 /* Blitter is part of Media powerwell on VLV. No impact of
202 * his param in other platforms for now */
203 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
c8d9a590 204
85208be0
ED
205 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
206 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
207 GEN6_BLITTER_LOCK_SHIFT;
208 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
209 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
210 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
211 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
212 GEN6_BLITTER_LOCK_SHIFT);
213 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
214 POSTING_READ(GEN6_BLITTER_ECOSKPD);
c8d9a590 215
940aece4 216 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
85208be0
ED
217}
218
993495ae 219static void ironlake_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
220{
221 struct drm_device *dev = crtc->dev;
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 struct drm_framebuffer *fb = crtc->fb;
224 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
225 struct drm_i915_gem_object *obj = intel_fb->obj;
226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
227 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
85208be0
ED
228 u32 dpfc_ctl;
229
230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231 dpfc_ctl &= DPFC_RESERVED;
232 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
233 /* Set persistent mode for front-buffer rendering, ala X. */
234 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
d629336b
VS
235 dpfc_ctl |= DPFC_CTL_FENCE_EN;
236 if (IS_GEN5(dev))
237 dpfc_ctl |= obj->fence_reg;
85208be0
ED
238 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
239
85208be0 240 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
f343c5f6 241 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
85208be0
ED
242 /* enable it... */
243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
244
245 if (IS_GEN6(dev)) {
246 I915_WRITE(SNB_DPFC_CTL_SA,
247 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
248 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
249 sandybridge_blit_fbc_update(dev);
250 }
251
84f44ce7 252 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
253}
254
1fa61106 255static void ironlake_disable_fbc(struct drm_device *dev)
85208be0
ED
256{
257 struct drm_i915_private *dev_priv = dev->dev_private;
258 u32 dpfc_ctl;
259
260 /* Disable compression */
261 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
262 if (dpfc_ctl & DPFC_CTL_EN) {
263 dpfc_ctl &= ~DPFC_CTL_EN;
264 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
265
266 DRM_DEBUG_KMS("disabled FBC\n");
267 }
268}
269
1fa61106 270static bool ironlake_fbc_enabled(struct drm_device *dev)
85208be0
ED
271{
272 struct drm_i915_private *dev_priv = dev->dev_private;
273
274 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
275}
276
993495ae 277static void gen7_enable_fbc(struct drm_crtc *crtc)
abe959c7
RV
278{
279 struct drm_device *dev = crtc->dev;
280 struct drm_i915_private *dev_priv = dev->dev_private;
281 struct drm_framebuffer *fb = crtc->fb;
282 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
283 struct drm_i915_gem_object *obj = intel_fb->obj;
284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
285
f343c5f6 286 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
abe959c7
RV
287
288 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
289 IVB_DPFC_CTL_FENCE_EN |
290 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
291
891348b2 292 if (IS_IVYBRIDGE(dev)) {
7dd23ba0 293 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
891348b2 294 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
28554164 295 } else {
7dd23ba0 296 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
28554164
RV
297 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
298 HSW_BYPASS_FBC_QUEUE);
891348b2 299 }
b74ea102 300
abe959c7
RV
301 I915_WRITE(SNB_DPFC_CTL_SA,
302 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305 sandybridge_blit_fbc_update(dev);
306
b19870ee 307 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
abe959c7
RV
308}
309
85208be0
ED
310bool intel_fbc_enabled(struct drm_device *dev)
311{
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 if (!dev_priv->display.fbc_enabled)
315 return false;
316
317 return dev_priv->display.fbc_enabled(dev);
318}
319
320static void intel_fbc_work_fn(struct work_struct *__work)
321{
322 struct intel_fbc_work *work =
323 container_of(to_delayed_work(__work),
324 struct intel_fbc_work, work);
325 struct drm_device *dev = work->crtc->dev;
326 struct drm_i915_private *dev_priv = dev->dev_private;
327
328 mutex_lock(&dev->struct_mutex);
5c3fe8b0 329 if (work == dev_priv->fbc.fbc_work) {
85208be0
ED
330 /* Double check that we haven't switched fb without cancelling
331 * the prior work.
332 */
333 if (work->crtc->fb == work->fb) {
993495ae 334 dev_priv->display.enable_fbc(work->crtc);
85208be0 335
5c3fe8b0
BW
336 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
337 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
338 dev_priv->fbc.y = work->crtc->y;
85208be0
ED
339 }
340
5c3fe8b0 341 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
342 }
343 mutex_unlock(&dev->struct_mutex);
344
345 kfree(work);
346}
347
348static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349{
5c3fe8b0 350 if (dev_priv->fbc.fbc_work == NULL)
85208be0
ED
351 return;
352
353 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355 /* Synchronisation is provided by struct_mutex and checking of
5c3fe8b0 356 * dev_priv->fbc.fbc_work, so we can perform the cancellation
85208be0
ED
357 * entirely asynchronously.
358 */
5c3fe8b0 359 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
85208be0 360 /* tasklet was killed before being run, clean up */
5c3fe8b0 361 kfree(dev_priv->fbc.fbc_work);
85208be0
ED
362
363 /* Mark the work as no longer wanted so that if it does
364 * wake-up (because the work was already running and waiting
365 * for our mutex), it will discover that is no longer
366 * necessary to run.
367 */
5c3fe8b0 368 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
369}
370
993495ae 371static void intel_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
372{
373 struct intel_fbc_work *work;
374 struct drm_device *dev = crtc->dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 if (!dev_priv->display.enable_fbc)
378 return;
379
380 intel_cancel_fbc_work(dev_priv);
381
b14c5679 382 work = kzalloc(sizeof(*work), GFP_KERNEL);
85208be0 383 if (work == NULL) {
6cdcb5e7 384 DRM_ERROR("Failed to allocate FBC work structure\n");
993495ae 385 dev_priv->display.enable_fbc(crtc);
85208be0
ED
386 return;
387 }
388
389 work->crtc = crtc;
390 work->fb = crtc->fb;
85208be0
ED
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
5c3fe8b0 393 dev_priv->fbc.fbc_work = work;
85208be0 394
85208be0
ED
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
400 *
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
7457d617
DL
405 *
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
85208be0
ED
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409}
410
411void intel_disable_fbc(struct drm_device *dev)
412{
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
5c3fe8b0 421 dev_priv->fbc.plane = -1;
85208be0
ED
422}
423
29ebf90f
CW
424static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
426{
427 if (dev_priv->fbc.no_fbc_reason == reason)
428 return false;
429
430 dev_priv->fbc.no_fbc_reason = reason;
431 return true;
432}
433
85208be0
ED
434/**
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
437 *
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
443 * - no dual wide
f85da868 444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
85208be0
ED
445 *
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
449 * stolen memory.
450 *
451 * We need to enable/disable FBC on a global basis.
452 */
453void intel_update_fbc(struct drm_device *dev)
454{
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
ef644fda 461 const struct drm_display_mode *adjusted_mode;
37327abd 462 unsigned int max_width, max_height;
85208be0 463
3a77c4c4 464 if (!HAS_FBC(dev)) {
29ebf90f 465 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
85208be0 466 return;
29ebf90f 467 }
85208be0 468
29ebf90f
CW
469 if (!i915_powersave) {
470 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
471 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0 472 return;
29ebf90f 473 }
85208be0
ED
474
475 /*
476 * If FBC is already on, we just have to verify that we can
477 * keep it that way...
478 * Need to disable if:
479 * - more than one pipe is active
480 * - changing FBC params (stride, fence, mode)
481 * - new fb is too large to fit in compressed buffer
482 * - going to an unsupported config (interlace, pixel multiply, etc.)
483 */
484 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 485 if (intel_crtc_active(tmp_crtc) &&
4c445e0e 486 to_intel_crtc(tmp_crtc)->primary_enabled) {
85208be0 487 if (crtc) {
29ebf90f
CW
488 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
489 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
85208be0
ED
490 goto out_disable;
491 }
492 crtc = tmp_crtc;
493 }
494 }
495
496 if (!crtc || crtc->fb == NULL) {
29ebf90f
CW
497 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
498 DRM_DEBUG_KMS("no output, disabling\n");
85208be0
ED
499 goto out_disable;
500 }
501
502 intel_crtc = to_intel_crtc(crtc);
503 fb = crtc->fb;
504 intel_fb = to_intel_framebuffer(fb);
505 obj = intel_fb->obj;
ef644fda 506 adjusted_mode = &intel_crtc->config.adjusted_mode;
85208be0 507
8a5729a3
DL
508 if (i915_enable_fbc < 0 &&
509 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
29ebf90f
CW
510 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
511 DRM_DEBUG_KMS("disabled per chip default\n");
8a5729a3 512 goto out_disable;
85208be0 513 }
8a5729a3 514 if (!i915_enable_fbc) {
29ebf90f
CW
515 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
516 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0
ED
517 goto out_disable;
518 }
ef644fda
VS
519 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
520 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
29ebf90f
CW
521 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
522 DRM_DEBUG_KMS("mode incompatible with compression, "
523 "disabling\n");
85208be0
ED
524 goto out_disable;
525 }
f85da868
PZ
526
527 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
37327abd
VS
528 max_width = 4096;
529 max_height = 2048;
f85da868 530 } else {
37327abd
VS
531 max_width = 2048;
532 max_height = 1536;
f85da868 533 }
37327abd
VS
534 if (intel_crtc->config.pipe_src_w > max_width ||
535 intel_crtc->config.pipe_src_h > max_height) {
29ebf90f
CW
536 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
537 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
85208be0
ED
538 goto out_disable;
539 }
c5a44aa0
VS
540 if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
541 intel_crtc->plane != PLANE_A) {
29ebf90f 542 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
c5a44aa0 543 DRM_DEBUG_KMS("plane not A, disabling compression\n");
85208be0
ED
544 goto out_disable;
545 }
546
547 /* The use of a CPU fence is mandatory in order to detect writes
548 * by the CPU to the scanout and trigger updates to the FBC.
549 */
550 if (obj->tiling_mode != I915_TILING_X ||
551 obj->fence_reg == I915_FENCE_REG_NONE) {
29ebf90f
CW
552 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
553 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
85208be0
ED
554 goto out_disable;
555 }
556
557 /* If the kernel debugger is active, always disable compression */
558 if (in_dbg_master())
559 goto out_disable;
560
11be49eb 561 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
29ebf90f
CW
562 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
563 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
11be49eb
CW
564 goto out_disable;
565 }
566
85208be0
ED
567 /* If the scanout has not changed, don't modify the FBC settings.
568 * Note that we make the fundamental assumption that the fb->obj
569 * cannot be unpinned (and have its GTT offset and fence revoked)
570 * without first being decoupled from the scanout and FBC disabled.
571 */
5c3fe8b0
BW
572 if (dev_priv->fbc.plane == intel_crtc->plane &&
573 dev_priv->fbc.fb_id == fb->base.id &&
574 dev_priv->fbc.y == crtc->y)
85208be0
ED
575 return;
576
577 if (intel_fbc_enabled(dev)) {
578 /* We update FBC along two paths, after changing fb/crtc
579 * configuration (modeswitching) and after page-flipping
580 * finishes. For the latter, we know that not only did
581 * we disable the FBC at the start of the page-flip
582 * sequence, but also more than one vblank has passed.
583 *
584 * For the former case of modeswitching, it is possible
585 * to switch between two FBC valid configurations
586 * instantaneously so we do need to disable the FBC
587 * before we can modify its control registers. We also
588 * have to wait for the next vblank for that to take
589 * effect. However, since we delay enabling FBC we can
590 * assume that a vblank has passed since disabling and
591 * that we can safely alter the registers in the deferred
592 * callback.
593 *
594 * In the scenario that we go from a valid to invalid
595 * and then back to valid FBC configuration we have
596 * no strict enforcement that a vblank occurred since
597 * disabling the FBC. However, along all current pipe
598 * disabling paths we do need to wait for a vblank at
599 * some point. And we wait before enabling FBC anyway.
600 */
601 DRM_DEBUG_KMS("disabling active FBC for update\n");
602 intel_disable_fbc(dev);
603 }
604
993495ae 605 intel_enable_fbc(crtc);
29ebf90f 606 dev_priv->fbc.no_fbc_reason = FBC_OK;
85208be0
ED
607 return;
608
609out_disable:
610 /* Multiple disables should be harmless */
611 if (intel_fbc_enabled(dev)) {
612 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
613 intel_disable_fbc(dev);
614 }
11be49eb 615 i915_gem_stolen_cleanup_compression(dev);
85208be0
ED
616}
617
c921aba8
DV
618static void i915_pineview_get_mem_freq(struct drm_device *dev)
619{
620 drm_i915_private_t *dev_priv = dev->dev_private;
621 u32 tmp;
622
623 tmp = I915_READ(CLKCFG);
624
625 switch (tmp & CLKCFG_FSB_MASK) {
626 case CLKCFG_FSB_533:
627 dev_priv->fsb_freq = 533; /* 133*4 */
628 break;
629 case CLKCFG_FSB_800:
630 dev_priv->fsb_freq = 800; /* 200*4 */
631 break;
632 case CLKCFG_FSB_667:
633 dev_priv->fsb_freq = 667; /* 167*4 */
634 break;
635 case CLKCFG_FSB_400:
636 dev_priv->fsb_freq = 400; /* 100*4 */
637 break;
638 }
639
640 switch (tmp & CLKCFG_MEM_MASK) {
641 case CLKCFG_MEM_533:
642 dev_priv->mem_freq = 533;
643 break;
644 case CLKCFG_MEM_667:
645 dev_priv->mem_freq = 667;
646 break;
647 case CLKCFG_MEM_800:
648 dev_priv->mem_freq = 800;
649 break;
650 }
651
652 /* detect pineview DDR3 setting */
653 tmp = I915_READ(CSHRDDR3CTL);
654 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655}
656
657static void i915_ironlake_get_mem_freq(struct drm_device *dev)
658{
659 drm_i915_private_t *dev_priv = dev->dev_private;
660 u16 ddrpll, csipll;
661
662 ddrpll = I915_READ16(DDRMPLL1);
663 csipll = I915_READ16(CSIPLL0);
664
665 switch (ddrpll & 0xff) {
666 case 0xc:
667 dev_priv->mem_freq = 800;
668 break;
669 case 0x10:
670 dev_priv->mem_freq = 1066;
671 break;
672 case 0x14:
673 dev_priv->mem_freq = 1333;
674 break;
675 case 0x18:
676 dev_priv->mem_freq = 1600;
677 break;
678 default:
679 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
680 ddrpll & 0xff);
681 dev_priv->mem_freq = 0;
682 break;
683 }
684
20e4d407 685 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
686
687 switch (csipll & 0x3ff) {
688 case 0x00c:
689 dev_priv->fsb_freq = 3200;
690 break;
691 case 0x00e:
692 dev_priv->fsb_freq = 3733;
693 break;
694 case 0x010:
695 dev_priv->fsb_freq = 4266;
696 break;
697 case 0x012:
698 dev_priv->fsb_freq = 4800;
699 break;
700 case 0x014:
701 dev_priv->fsb_freq = 5333;
702 break;
703 case 0x016:
704 dev_priv->fsb_freq = 5866;
705 break;
706 case 0x018:
707 dev_priv->fsb_freq = 6400;
708 break;
709 default:
710 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
711 csipll & 0x3ff);
712 dev_priv->fsb_freq = 0;
713 break;
714 }
715
716 if (dev_priv->fsb_freq == 3200) {
20e4d407 717 dev_priv->ips.c_m = 0;
c921aba8 718 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 719 dev_priv->ips.c_m = 1;
c921aba8 720 } else {
20e4d407 721 dev_priv->ips.c_m = 2;
c921aba8
DV
722 }
723}
724
b445e3b0
ED
725static const struct cxsr_latency cxsr_latency_table[] = {
726 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
727 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
728 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
729 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
730 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
731
732 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
733 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
734 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
735 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
736 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
737
738 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
739 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
740 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
741 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
742 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
743
744 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
745 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
746 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
747 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
748 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
749
750 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
751 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
752 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
753 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
754 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
755
756 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
757 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
758 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
759 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
760 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
761};
762
63c62275 763static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
b445e3b0
ED
764 int is_ddr3,
765 int fsb,
766 int mem)
767{
768 const struct cxsr_latency *latency;
769 int i;
770
771 if (fsb == 0 || mem == 0)
772 return NULL;
773
774 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
775 latency = &cxsr_latency_table[i];
776 if (is_desktop == latency->is_desktop &&
777 is_ddr3 == latency->is_ddr3 &&
778 fsb == latency->fsb_freq && mem == latency->mem_freq)
779 return latency;
780 }
781
782 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
783
784 return NULL;
785}
786
1fa61106 787static void pineview_disable_cxsr(struct drm_device *dev)
b445e3b0
ED
788{
789 struct drm_i915_private *dev_priv = dev->dev_private;
790
791 /* deactivate cxsr */
792 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
793}
794
795/*
796 * Latency for FIFO fetches is dependent on several factors:
797 * - memory configuration (speed, channels)
798 * - chipset
799 * - current MCH state
800 * It can be fairly high in some situations, so here we assume a fairly
801 * pessimal value. It's a tradeoff between extra memory fetches (if we
802 * set this value too high, the FIFO will fetch frequently to stay full)
803 * and power consumption (set it too low to save power and we might see
804 * FIFO underruns and display "flicker").
805 *
806 * A value of 5us seems to be a good balance; safe for very low end
807 * platforms but not overly aggressive on lower latency configs.
808 */
809static const int latency_ns = 5000;
810
1fa61106 811static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
812{
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 uint32_t dsparb = I915_READ(DSPARB);
815 int size;
816
817 size = dsparb & 0x7f;
818 if (plane)
819 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
820
821 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
822 plane ? "B" : "A", size);
823
824 return size;
825}
826
feb56b93 827static int i830_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
828{
829 struct drm_i915_private *dev_priv = dev->dev_private;
830 uint32_t dsparb = I915_READ(DSPARB);
831 int size;
832
833 size = dsparb & 0x1ff;
834 if (plane)
835 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
836 size >>= 1; /* Convert to cachelines */
837
838 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839 plane ? "B" : "A", size);
840
841 return size;
842}
843
1fa61106 844static int i845_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
845{
846 struct drm_i915_private *dev_priv = dev->dev_private;
847 uint32_t dsparb = I915_READ(DSPARB);
848 int size;
849
850 size = dsparb & 0x7f;
851 size >>= 2; /* Convert to cachelines */
852
853 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854 plane ? "B" : "A",
855 size);
856
857 return size;
858}
859
b445e3b0
ED
860/* Pineview has different values for various configs */
861static const struct intel_watermark_params pineview_display_wm = {
862 PINEVIEW_DISPLAY_FIFO,
863 PINEVIEW_MAX_WM,
864 PINEVIEW_DFT_WM,
865 PINEVIEW_GUARD_WM,
866 PINEVIEW_FIFO_LINE_SIZE
867};
868static const struct intel_watermark_params pineview_display_hplloff_wm = {
869 PINEVIEW_DISPLAY_FIFO,
870 PINEVIEW_MAX_WM,
871 PINEVIEW_DFT_HPLLOFF_WM,
872 PINEVIEW_GUARD_WM,
873 PINEVIEW_FIFO_LINE_SIZE
874};
875static const struct intel_watermark_params pineview_cursor_wm = {
876 PINEVIEW_CURSOR_FIFO,
877 PINEVIEW_CURSOR_MAX_WM,
878 PINEVIEW_CURSOR_DFT_WM,
879 PINEVIEW_CURSOR_GUARD_WM,
880 PINEVIEW_FIFO_LINE_SIZE,
881};
882static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
883 PINEVIEW_CURSOR_FIFO,
884 PINEVIEW_CURSOR_MAX_WM,
885 PINEVIEW_CURSOR_DFT_WM,
886 PINEVIEW_CURSOR_GUARD_WM,
887 PINEVIEW_FIFO_LINE_SIZE
888};
889static const struct intel_watermark_params g4x_wm_info = {
890 G4X_FIFO_SIZE,
891 G4X_MAX_WM,
892 G4X_MAX_WM,
893 2,
894 G4X_FIFO_LINE_SIZE,
895};
896static const struct intel_watermark_params g4x_cursor_wm_info = {
897 I965_CURSOR_FIFO,
898 I965_CURSOR_MAX_WM,
899 I965_CURSOR_DFT_WM,
900 2,
901 G4X_FIFO_LINE_SIZE,
902};
903static const struct intel_watermark_params valleyview_wm_info = {
904 VALLEYVIEW_FIFO_SIZE,
905 VALLEYVIEW_MAX_WM,
906 VALLEYVIEW_MAX_WM,
907 2,
908 G4X_FIFO_LINE_SIZE,
909};
910static const struct intel_watermark_params valleyview_cursor_wm_info = {
911 I965_CURSOR_FIFO,
912 VALLEYVIEW_CURSOR_MAX_WM,
913 I965_CURSOR_DFT_WM,
914 2,
915 G4X_FIFO_LINE_SIZE,
916};
917static const struct intel_watermark_params i965_cursor_wm_info = {
918 I965_CURSOR_FIFO,
919 I965_CURSOR_MAX_WM,
920 I965_CURSOR_DFT_WM,
921 2,
922 I915_FIFO_LINE_SIZE,
923};
924static const struct intel_watermark_params i945_wm_info = {
925 I945_FIFO_SIZE,
926 I915_MAX_WM,
927 1,
928 2,
929 I915_FIFO_LINE_SIZE
930};
931static const struct intel_watermark_params i915_wm_info = {
932 I915_FIFO_SIZE,
933 I915_MAX_WM,
934 1,
935 2,
936 I915_FIFO_LINE_SIZE
937};
feb56b93 938static const struct intel_watermark_params i830_wm_info = {
b445e3b0
ED
939 I855GM_FIFO_SIZE,
940 I915_MAX_WM,
941 1,
942 2,
943 I830_FIFO_LINE_SIZE
944};
feb56b93 945static const struct intel_watermark_params i845_wm_info = {
b445e3b0
ED
946 I830_FIFO_SIZE,
947 I915_MAX_WM,
948 1,
949 2,
950 I830_FIFO_LINE_SIZE
951};
952
b445e3b0
ED
953/**
954 * intel_calculate_wm - calculate watermark level
955 * @clock_in_khz: pixel clock
956 * @wm: chip FIFO params
957 * @pixel_size: display pixel size
958 * @latency_ns: memory latency for the platform
959 *
960 * Calculate the watermark level (the level at which the display plane will
961 * start fetching from memory again). Each chip has a different display
962 * FIFO size and allocation, so the caller needs to figure that out and pass
963 * in the correct intel_watermark_params structure.
964 *
965 * As the pixel clock runs, the FIFO will be drained at a rate that depends
966 * on the pixel size. When it reaches the watermark level, it'll start
967 * fetching FIFO line sized based chunks from memory until the FIFO fills
968 * past the watermark point. If the FIFO drains completely, a FIFO underrun
969 * will occur, and a display engine hang could result.
970 */
971static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
972 const struct intel_watermark_params *wm,
973 int fifo_size,
974 int pixel_size,
975 unsigned long latency_ns)
976{
977 long entries_required, wm_size;
978
979 /*
980 * Note: we need to make sure we don't overflow for various clock &
981 * latency values.
982 * clocks go from a few thousand to several hundred thousand.
983 * latency is usually a few thousand
984 */
985 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
986 1000;
987 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
988
989 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
990
991 wm_size = fifo_size - (entries_required + wm->guard_size);
992
993 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
994
995 /* Don't promote wm_size to unsigned... */
996 if (wm_size > (long)wm->max_wm)
997 wm_size = wm->max_wm;
998 if (wm_size <= 0)
999 wm_size = wm->default_wm;
1000 return wm_size;
1001}
1002
1003static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1004{
1005 struct drm_crtc *crtc, *enabled = NULL;
1006
1007 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 1008 if (intel_crtc_active(crtc)) {
b445e3b0
ED
1009 if (enabled)
1010 return NULL;
1011 enabled = crtc;
1012 }
1013 }
1014
1015 return enabled;
1016}
1017
46ba614c 1018static void pineview_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1019{
46ba614c 1020 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 struct drm_crtc *crtc;
1023 const struct cxsr_latency *latency;
1024 u32 reg;
1025 unsigned long wm;
1026
1027 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1028 dev_priv->fsb_freq, dev_priv->mem_freq);
1029 if (!latency) {
1030 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1031 pineview_disable_cxsr(dev);
1032 return;
1033 }
1034
1035 crtc = single_enabled_crtc(dev);
1036 if (crtc) {
241bfc38 1037 const struct drm_display_mode *adjusted_mode;
b445e3b0 1038 int pixel_size = crtc->fb->bits_per_pixel / 8;
241bfc38
DL
1039 int clock;
1040
1041 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1042 clock = adjusted_mode->crtc_clock;
b445e3b0
ED
1043
1044 /* Display SR */
1045 wm = intel_calculate_wm(clock, &pineview_display_wm,
1046 pineview_display_wm.fifo_size,
1047 pixel_size, latency->display_sr);
1048 reg = I915_READ(DSPFW1);
1049 reg &= ~DSPFW_SR_MASK;
1050 reg |= wm << DSPFW_SR_SHIFT;
1051 I915_WRITE(DSPFW1, reg);
1052 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1053
1054 /* cursor SR */
1055 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1056 pineview_display_wm.fifo_size,
1057 pixel_size, latency->cursor_sr);
1058 reg = I915_READ(DSPFW3);
1059 reg &= ~DSPFW_CURSOR_SR_MASK;
1060 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1061 I915_WRITE(DSPFW3, reg);
1062
1063 /* Display HPLL off SR */
1064 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1065 pineview_display_hplloff_wm.fifo_size,
1066 pixel_size, latency->display_hpll_disable);
1067 reg = I915_READ(DSPFW3);
1068 reg &= ~DSPFW_HPLL_SR_MASK;
1069 reg |= wm & DSPFW_HPLL_SR_MASK;
1070 I915_WRITE(DSPFW3, reg);
1071
1072 /* cursor HPLL off SR */
1073 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1074 pineview_display_hplloff_wm.fifo_size,
1075 pixel_size, latency->cursor_hpll_disable);
1076 reg = I915_READ(DSPFW3);
1077 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1078 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1079 I915_WRITE(DSPFW3, reg);
1080 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1081
1082 /* activate cxsr */
1083 I915_WRITE(DSPFW3,
1084 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1085 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1086 } else {
1087 pineview_disable_cxsr(dev);
1088 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1089 }
1090}
1091
1092static bool g4x_compute_wm0(struct drm_device *dev,
1093 int plane,
1094 const struct intel_watermark_params *display,
1095 int display_latency_ns,
1096 const struct intel_watermark_params *cursor,
1097 int cursor_latency_ns,
1098 int *plane_wm,
1099 int *cursor_wm)
1100{
1101 struct drm_crtc *crtc;
4fe8590a 1102 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1103 int htotal, hdisplay, clock, pixel_size;
1104 int line_time_us, line_count;
1105 int entries, tlb_miss;
1106
1107 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1108 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
1109 *cursor_wm = cursor->guard_size;
1110 *plane_wm = display->guard_size;
1111 return false;
1112 }
1113
4fe8590a 1114 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1115 clock = adjusted_mode->crtc_clock;
4fe8590a 1116 htotal = adjusted_mode->htotal;
37327abd 1117 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1118 pixel_size = crtc->fb->bits_per_pixel / 8;
1119
1120 /* Use the small buffer method to calculate plane watermark */
1121 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1122 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1123 if (tlb_miss > 0)
1124 entries += tlb_miss;
1125 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1126 *plane_wm = entries + display->guard_size;
1127 if (*plane_wm > (int)display->max_wm)
1128 *plane_wm = display->max_wm;
1129
1130 /* Use the large buffer method to calculate cursor watermark */
1131 line_time_us = ((htotal * 1000) / clock);
1132 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1133 entries = line_count * 64 * pixel_size;
1134 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1135 if (tlb_miss > 0)
1136 entries += tlb_miss;
1137 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1138 *cursor_wm = entries + cursor->guard_size;
1139 if (*cursor_wm > (int)cursor->max_wm)
1140 *cursor_wm = (int)cursor->max_wm;
1141
1142 return true;
1143}
1144
1145/*
1146 * Check the wm result.
1147 *
1148 * If any calculated watermark values is larger than the maximum value that
1149 * can be programmed into the associated watermark register, that watermark
1150 * must be disabled.
1151 */
1152static bool g4x_check_srwm(struct drm_device *dev,
1153 int display_wm, int cursor_wm,
1154 const struct intel_watermark_params *display,
1155 const struct intel_watermark_params *cursor)
1156{
1157 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1158 display_wm, cursor_wm);
1159
1160 if (display_wm > display->max_wm) {
1161 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1162 display_wm, display->max_wm);
1163 return false;
1164 }
1165
1166 if (cursor_wm > cursor->max_wm) {
1167 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1168 cursor_wm, cursor->max_wm);
1169 return false;
1170 }
1171
1172 if (!(display_wm || cursor_wm)) {
1173 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1174 return false;
1175 }
1176
1177 return true;
1178}
1179
1180static bool g4x_compute_srwm(struct drm_device *dev,
1181 int plane,
1182 int latency_ns,
1183 const struct intel_watermark_params *display,
1184 const struct intel_watermark_params *cursor,
1185 int *display_wm, int *cursor_wm)
1186{
1187 struct drm_crtc *crtc;
4fe8590a 1188 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1189 int hdisplay, htotal, pixel_size, clock;
1190 unsigned long line_time_us;
1191 int line_count, line_size;
1192 int small, large;
1193 int entries;
1194
1195 if (!latency_ns) {
1196 *display_wm = *cursor_wm = 0;
1197 return false;
1198 }
1199
1200 crtc = intel_get_crtc_for_plane(dev, plane);
4fe8590a 1201 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1202 clock = adjusted_mode->crtc_clock;
4fe8590a 1203 htotal = adjusted_mode->htotal;
37327abd 1204 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1205 pixel_size = crtc->fb->bits_per_pixel / 8;
1206
1207 line_time_us = (htotal * 1000) / clock;
1208 line_count = (latency_ns / line_time_us + 1000) / 1000;
1209 line_size = hdisplay * pixel_size;
1210
1211 /* Use the minimum of the small and large buffer method for primary */
1212 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1213 large = line_count * line_size;
1214
1215 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1216 *display_wm = entries + display->guard_size;
1217
1218 /* calculate the self-refresh watermark for display cursor */
1219 entries = line_count * pixel_size * 64;
1220 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1221 *cursor_wm = entries + cursor->guard_size;
1222
1223 return g4x_check_srwm(dev,
1224 *display_wm, *cursor_wm,
1225 display, cursor);
1226}
1227
1228static bool vlv_compute_drain_latency(struct drm_device *dev,
1229 int plane,
1230 int *plane_prec_mult,
1231 int *plane_dl,
1232 int *cursor_prec_mult,
1233 int *cursor_dl)
1234{
1235 struct drm_crtc *crtc;
1236 int clock, pixel_size;
1237 int entries;
1238
1239 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1240 if (!intel_crtc_active(crtc))
b445e3b0
ED
1241 return false;
1242
241bfc38 1243 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
b445e3b0
ED
1244 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1245
1246 entries = (clock / 1000) * pixel_size;
1247 *plane_prec_mult = (entries > 256) ?
1248 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1249 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1250 pixel_size);
1251
1252 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1253 *cursor_prec_mult = (entries > 256) ?
1254 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1256
1257 return true;
1258}
1259
1260/*
1261 * Update drain latency registers of memory arbiter
1262 *
1263 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1264 * to be programmed. Each plane has a drain latency multiplier and a drain
1265 * latency value.
1266 */
1267
1268static void vlv_update_drain_latency(struct drm_device *dev)
1269{
1270 struct drm_i915_private *dev_priv = dev->dev_private;
1271 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1272 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1273 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1274 either 16 or 32 */
1275
1276 /* For plane A, Cursor A */
1277 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1278 &cursor_prec_mult, &cursora_dl)) {
1279 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1281 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1283
1284 I915_WRITE(VLV_DDL1, cursora_prec |
1285 (cursora_dl << DDL_CURSORA_SHIFT) |
1286 planea_prec | planea_dl);
1287 }
1288
1289 /* For plane B, Cursor B */
1290 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1291 &cursor_prec_mult, &cursorb_dl)) {
1292 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1293 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1294 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1295 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1296
1297 I915_WRITE(VLV_DDL2, cursorb_prec |
1298 (cursorb_dl << DDL_CURSORB_SHIFT) |
1299 planeb_prec | planeb_dl);
1300 }
1301}
1302
1303#define single_plane_enabled(mask) is_power_of_2(mask)
1304
46ba614c 1305static void valleyview_update_wm(struct drm_crtc *crtc)
b445e3b0 1306{
46ba614c 1307 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1308 static const int sr_latency_ns = 12000;
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1311 int plane_sr, cursor_sr;
af6c4575 1312 int ignore_plane_sr, ignore_cursor_sr;
b445e3b0
ED
1313 unsigned int enabled = 0;
1314
1315 vlv_update_drain_latency(dev);
1316
51cea1f4 1317 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1318 &valleyview_wm_info, latency_ns,
1319 &valleyview_cursor_wm_info, latency_ns,
1320 &planea_wm, &cursora_wm))
51cea1f4 1321 enabled |= 1 << PIPE_A;
b445e3b0 1322
51cea1f4 1323 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1324 &valleyview_wm_info, latency_ns,
1325 &valleyview_cursor_wm_info, latency_ns,
1326 &planeb_wm, &cursorb_wm))
51cea1f4 1327 enabled |= 1 << PIPE_B;
b445e3b0 1328
b445e3b0
ED
1329 if (single_plane_enabled(enabled) &&
1330 g4x_compute_srwm(dev, ffs(enabled) - 1,
1331 sr_latency_ns,
1332 &valleyview_wm_info,
1333 &valleyview_cursor_wm_info,
af6c4575
CW
1334 &plane_sr, &ignore_cursor_sr) &&
1335 g4x_compute_srwm(dev, ffs(enabled) - 1,
1336 2*sr_latency_ns,
1337 &valleyview_wm_info,
1338 &valleyview_cursor_wm_info,
52bd02d8 1339 &ignore_plane_sr, &cursor_sr)) {
b445e3b0 1340 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
52bd02d8 1341 } else {
b445e3b0
ED
1342 I915_WRITE(FW_BLC_SELF_VLV,
1343 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
52bd02d8
CW
1344 plane_sr = cursor_sr = 0;
1345 }
b445e3b0
ED
1346
1347 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1348 planea_wm, cursora_wm,
1349 planeb_wm, cursorb_wm,
1350 plane_sr, cursor_sr);
1351
1352 I915_WRITE(DSPFW1,
1353 (plane_sr << DSPFW_SR_SHIFT) |
1354 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1355 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1356 planea_wm);
1357 I915_WRITE(DSPFW2,
8c919b28 1358 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1359 (cursora_wm << DSPFW_CURSORA_SHIFT));
1360 I915_WRITE(DSPFW3,
8c919b28
CW
1361 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1362 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
b445e3b0
ED
1363}
1364
46ba614c 1365static void g4x_update_wm(struct drm_crtc *crtc)
b445e3b0 1366{
46ba614c 1367 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1368 static const int sr_latency_ns = 12000;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371 int plane_sr, cursor_sr;
1372 unsigned int enabled = 0;
1373
51cea1f4 1374 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1375 &g4x_wm_info, latency_ns,
1376 &g4x_cursor_wm_info, latency_ns,
1377 &planea_wm, &cursora_wm))
51cea1f4 1378 enabled |= 1 << PIPE_A;
b445e3b0 1379
51cea1f4 1380 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1381 &g4x_wm_info, latency_ns,
1382 &g4x_cursor_wm_info, latency_ns,
1383 &planeb_wm, &cursorb_wm))
51cea1f4 1384 enabled |= 1 << PIPE_B;
b445e3b0 1385
b445e3b0
ED
1386 if (single_plane_enabled(enabled) &&
1387 g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 sr_latency_ns,
1389 &g4x_wm_info,
1390 &g4x_cursor_wm_info,
52bd02d8 1391 &plane_sr, &cursor_sr)) {
b445e3b0 1392 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
52bd02d8 1393 } else {
b445e3b0
ED
1394 I915_WRITE(FW_BLC_SELF,
1395 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
52bd02d8
CW
1396 plane_sr = cursor_sr = 0;
1397 }
b445e3b0
ED
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1400 planea_wm, cursora_wm,
1401 planeb_wm, cursorb_wm,
1402 plane_sr, cursor_sr);
1403
1404 I915_WRITE(DSPFW1,
1405 (plane_sr << DSPFW_SR_SHIFT) |
1406 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1407 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1408 planea_wm);
1409 I915_WRITE(DSPFW2,
8c919b28 1410 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1411 (cursora_wm << DSPFW_CURSORA_SHIFT));
1412 /* HPLL off in SR has some issues on G4x... disable it */
1413 I915_WRITE(DSPFW3,
8c919b28 1414 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
b445e3b0
ED
1415 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1416}
1417
46ba614c 1418static void i965_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1419{
46ba614c 1420 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1421 struct drm_i915_private *dev_priv = dev->dev_private;
1422 struct drm_crtc *crtc;
1423 int srwm = 1;
1424 int cursor_sr = 16;
1425
1426 /* Calc sr entries for one plane configs */
1427 crtc = single_enabled_crtc(dev);
1428 if (crtc) {
1429 /* self-refresh has much higher latency */
1430 static const int sr_latency_ns = 12000;
4fe8590a
VS
1431 const struct drm_display_mode *adjusted_mode =
1432 &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1433 int clock = adjusted_mode->crtc_clock;
4fe8590a 1434 int htotal = adjusted_mode->htotal;
37327abd 1435 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1436 int pixel_size = crtc->fb->bits_per_pixel / 8;
1437 unsigned long line_time_us;
1438 int entries;
1439
1440 line_time_us = ((htotal * 1000) / clock);
1441
1442 /* Use ns/us then divide to preserve precision */
1443 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1444 pixel_size * hdisplay;
1445 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1446 srwm = I965_FIFO_SIZE - entries;
1447 if (srwm < 0)
1448 srwm = 1;
1449 srwm &= 0x1ff;
1450 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1451 entries, srwm);
1452
1453 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1454 pixel_size * 64;
1455 entries = DIV_ROUND_UP(entries,
1456 i965_cursor_wm_info.cacheline_size);
1457 cursor_sr = i965_cursor_wm_info.fifo_size -
1458 (entries + i965_cursor_wm_info.guard_size);
1459
1460 if (cursor_sr > i965_cursor_wm_info.max_wm)
1461 cursor_sr = i965_cursor_wm_info.max_wm;
1462
1463 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1464 "cursor %d\n", srwm, cursor_sr);
1465
1466 if (IS_CRESTLINE(dev))
1467 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1468 } else {
1469 /* Turn off self refresh if both pipes are enabled */
1470 if (IS_CRESTLINE(dev))
1471 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1472 & ~FW_BLC_SELF_EN);
1473 }
1474
1475 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1476 srwm);
1477
1478 /* 965 has limitations... */
1479 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1480 (8 << 16) | (8 << 8) | (8 << 0));
1481 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1482 /* update cursor SR watermark */
1483 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1484}
1485
46ba614c 1486static void i9xx_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1487{
46ba614c 1488 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490 const struct intel_watermark_params *wm_info;
1491 uint32_t fwater_lo;
1492 uint32_t fwater_hi;
1493 int cwm, srwm = 1;
1494 int fifo_size;
1495 int planea_wm, planeb_wm;
1496 struct drm_crtc *crtc, *enabled = NULL;
1497
1498 if (IS_I945GM(dev))
1499 wm_info = &i945_wm_info;
1500 else if (!IS_GEN2(dev))
1501 wm_info = &i915_wm_info;
1502 else
feb56b93 1503 wm_info = &i830_wm_info;
b445e3b0
ED
1504
1505 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1506 crtc = intel_get_crtc_for_plane(dev, 0);
3490ea5d 1507 if (intel_crtc_active(crtc)) {
241bfc38 1508 const struct drm_display_mode *adjusted_mode;
b9e0bda3
CW
1509 int cpp = crtc->fb->bits_per_pixel / 8;
1510 if (IS_GEN2(dev))
1511 cpp = 4;
1512
241bfc38
DL
1513 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1514 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 1515 wm_info, fifo_size, cpp,
b445e3b0
ED
1516 latency_ns);
1517 enabled = crtc;
1518 } else
1519 planea_wm = fifo_size - wm_info->guard_size;
1520
1521 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1522 crtc = intel_get_crtc_for_plane(dev, 1);
3490ea5d 1523 if (intel_crtc_active(crtc)) {
241bfc38 1524 const struct drm_display_mode *adjusted_mode;
b9e0bda3
CW
1525 int cpp = crtc->fb->bits_per_pixel / 8;
1526 if (IS_GEN2(dev))
1527 cpp = 4;
1528
241bfc38
DL
1529 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1530 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 1531 wm_info, fifo_size, cpp,
b445e3b0
ED
1532 latency_ns);
1533 if (enabled == NULL)
1534 enabled = crtc;
1535 else
1536 enabled = NULL;
1537 } else
1538 planeb_wm = fifo_size - wm_info->guard_size;
1539
1540 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1541
1542 /*
1543 * Overlay gets an aggressive default since video jitter is bad.
1544 */
1545 cwm = 2;
1546
1547 /* Play safe and disable self-refresh before adjusting watermarks. */
1548 if (IS_I945G(dev) || IS_I945GM(dev))
1549 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1550 else if (IS_I915GM(dev))
1551 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1552
1553 /* Calc sr entries for one plane configs */
1554 if (HAS_FW_BLC(dev) && enabled) {
1555 /* self-refresh has much higher latency */
1556 static const int sr_latency_ns = 6000;
4fe8590a
VS
1557 const struct drm_display_mode *adjusted_mode =
1558 &to_intel_crtc(enabled)->config.adjusted_mode;
241bfc38 1559 int clock = adjusted_mode->crtc_clock;
4fe8590a 1560 int htotal = adjusted_mode->htotal;
f727b490 1561 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
b445e3b0
ED
1562 int pixel_size = enabled->fb->bits_per_pixel / 8;
1563 unsigned long line_time_us;
1564 int entries;
1565
1566 line_time_us = (htotal * 1000) / clock;
1567
1568 /* Use ns/us then divide to preserve precision */
1569 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1570 pixel_size * hdisplay;
1571 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1572 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1573 srwm = wm_info->fifo_size - entries;
1574 if (srwm < 0)
1575 srwm = 1;
1576
1577 if (IS_I945G(dev) || IS_I945GM(dev))
1578 I915_WRITE(FW_BLC_SELF,
1579 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1580 else if (IS_I915GM(dev))
1581 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1582 }
1583
1584 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1585 planea_wm, planeb_wm, cwm, srwm);
1586
1587 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1588 fwater_hi = (cwm & 0x1f);
1589
1590 /* Set request length to 8 cachelines per fetch */
1591 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1592 fwater_hi = fwater_hi | (1 << 8);
1593
1594 I915_WRITE(FW_BLC, fwater_lo);
1595 I915_WRITE(FW_BLC2, fwater_hi);
1596
1597 if (HAS_FW_BLC(dev)) {
1598 if (enabled) {
1599 if (IS_I945G(dev) || IS_I945GM(dev))
1600 I915_WRITE(FW_BLC_SELF,
1601 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1602 else if (IS_I915GM(dev))
1603 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1604 DRM_DEBUG_KMS("memory self refresh enabled\n");
1605 } else
1606 DRM_DEBUG_KMS("memory self refresh disabled\n");
1607 }
1608}
1609
feb56b93 1610static void i845_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1611{
46ba614c 1612 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 struct drm_crtc *crtc;
241bfc38 1615 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1616 uint32_t fwater_lo;
1617 int planea_wm;
1618
1619 crtc = single_enabled_crtc(dev);
1620 if (crtc == NULL)
1621 return;
1622
241bfc38
DL
1623 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1624 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
feb56b93 1625 &i845_wm_info,
b445e3b0 1626 dev_priv->display.get_fifo_size(dev, 0),
b9e0bda3 1627 4, latency_ns);
b445e3b0
ED
1628 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1629 fwater_lo |= (3<<8) | planea_wm;
1630
1631 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1632
1633 I915_WRITE(FW_BLC, fwater_lo);
1634}
1635
3658729a
VS
1636static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1637 struct drm_crtc *crtc)
801bcfff
PZ
1638{
1639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fd4daa9c 1640 uint32_t pixel_rate;
801bcfff 1641
241bfc38 1642 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
801bcfff
PZ
1643
1644 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1645 * adjust the pixel_rate here. */
1646
fd4daa9c 1647 if (intel_crtc->config.pch_pfit.enabled) {
801bcfff 1648 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
fd4daa9c 1649 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
801bcfff 1650
37327abd
VS
1651 pipe_w = intel_crtc->config.pipe_src_w;
1652 pipe_h = intel_crtc->config.pipe_src_h;
801bcfff
PZ
1653 pfit_w = (pfit_size >> 16) & 0xFFFF;
1654 pfit_h = pfit_size & 0xFFFF;
1655 if (pipe_w < pfit_w)
1656 pipe_w = pfit_w;
1657 if (pipe_h < pfit_h)
1658 pipe_h = pfit_h;
1659
1660 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1661 pfit_w * pfit_h);
1662 }
1663
1664 return pixel_rate;
1665}
1666
37126462 1667/* latency must be in 0.1us units. */
23297044 1668static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
801bcfff
PZ
1669 uint32_t latency)
1670{
1671 uint64_t ret;
1672
3312ba65
VS
1673 if (WARN(latency == 0, "Latency value missing\n"))
1674 return UINT_MAX;
1675
801bcfff
PZ
1676 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1677 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1678
1679 return ret;
1680}
1681
37126462 1682/* latency must be in 0.1us units. */
23297044 1683static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
801bcfff
PZ
1684 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1685 uint32_t latency)
1686{
1687 uint32_t ret;
1688
3312ba65
VS
1689 if (WARN(latency == 0, "Latency value missing\n"))
1690 return UINT_MAX;
1691
801bcfff
PZ
1692 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1693 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1694 ret = DIV_ROUND_UP(ret, 64) + 2;
1695 return ret;
1696}
1697
23297044 1698static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
cca32e9a
PZ
1699 uint8_t bytes_per_pixel)
1700{
1701 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1702}
1703
820c1980 1704struct ilk_pipe_wm_parameters {
801bcfff 1705 bool active;
801bcfff
PZ
1706 uint32_t pipe_htotal;
1707 uint32_t pixel_rate;
c35426d2
VS
1708 struct intel_plane_wm_parameters pri;
1709 struct intel_plane_wm_parameters spr;
1710 struct intel_plane_wm_parameters cur;
801bcfff
PZ
1711};
1712
820c1980 1713struct ilk_wm_maximums {
cca32e9a
PZ
1714 uint16_t pri;
1715 uint16_t spr;
1716 uint16_t cur;
1717 uint16_t fbc;
1718};
1719
240264f4
VS
1720/* used in computing the new watermarks state */
1721struct intel_wm_config {
1722 unsigned int num_pipes_active;
1723 bool sprites_enabled;
1724 bool sprites_scaled;
240264f4
VS
1725};
1726
37126462
VS
1727/*
1728 * For both WM_PIPE and WM_LP.
1729 * mem_value must be in 0.1us units.
1730 */
820c1980 1731static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
cca32e9a
PZ
1732 uint32_t mem_value,
1733 bool is_lp)
801bcfff 1734{
cca32e9a
PZ
1735 uint32_t method1, method2;
1736
c35426d2 1737 if (!params->active || !params->pri.enabled)
801bcfff
PZ
1738 return 0;
1739
23297044 1740 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 1741 params->pri.bytes_per_pixel,
cca32e9a
PZ
1742 mem_value);
1743
1744 if (!is_lp)
1745 return method1;
1746
23297044 1747 method2 = ilk_wm_method2(params->pixel_rate,
cca32e9a 1748 params->pipe_htotal,
c35426d2
VS
1749 params->pri.horiz_pixels,
1750 params->pri.bytes_per_pixel,
cca32e9a
PZ
1751 mem_value);
1752
1753 return min(method1, method2);
801bcfff
PZ
1754}
1755
37126462
VS
1756/*
1757 * For both WM_PIPE and WM_LP.
1758 * mem_value must be in 0.1us units.
1759 */
820c1980 1760static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
801bcfff
PZ
1761 uint32_t mem_value)
1762{
1763 uint32_t method1, method2;
1764
c35426d2 1765 if (!params->active || !params->spr.enabled)
801bcfff
PZ
1766 return 0;
1767
23297044 1768 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 1769 params->spr.bytes_per_pixel,
801bcfff 1770 mem_value);
23297044 1771 method2 = ilk_wm_method2(params->pixel_rate,
801bcfff 1772 params->pipe_htotal,
c35426d2
VS
1773 params->spr.horiz_pixels,
1774 params->spr.bytes_per_pixel,
801bcfff
PZ
1775 mem_value);
1776 return min(method1, method2);
1777}
1778
37126462
VS
1779/*
1780 * For both WM_PIPE and WM_LP.
1781 * mem_value must be in 0.1us units.
1782 */
820c1980 1783static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
801bcfff
PZ
1784 uint32_t mem_value)
1785{
c35426d2 1786 if (!params->active || !params->cur.enabled)
801bcfff
PZ
1787 return 0;
1788
23297044 1789 return ilk_wm_method2(params->pixel_rate,
801bcfff 1790 params->pipe_htotal,
c35426d2
VS
1791 params->cur.horiz_pixels,
1792 params->cur.bytes_per_pixel,
801bcfff
PZ
1793 mem_value);
1794}
1795
cca32e9a 1796/* Only for WM_LP. */
820c1980 1797static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1fda9882 1798 uint32_t pri_val)
cca32e9a 1799{
c35426d2 1800 if (!params->active || !params->pri.enabled)
cca32e9a
PZ
1801 return 0;
1802
23297044 1803 return ilk_wm_fbc(pri_val,
c35426d2
VS
1804 params->pri.horiz_pixels,
1805 params->pri.bytes_per_pixel);
cca32e9a
PZ
1806}
1807
158ae64f
VS
1808static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1809{
416f4727
VS
1810 if (INTEL_INFO(dev)->gen >= 8)
1811 return 3072;
1812 else if (INTEL_INFO(dev)->gen >= 7)
158ae64f
VS
1813 return 768;
1814 else
1815 return 512;
1816}
1817
1818/* Calculate the maximum primary/sprite plane watermark */
1819static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1820 int level,
240264f4 1821 const struct intel_wm_config *config,
158ae64f
VS
1822 enum intel_ddb_partitioning ddb_partitioning,
1823 bool is_sprite)
1824{
1825 unsigned int fifo_size = ilk_display_fifo_size(dev);
1826 unsigned int max;
1827
1828 /* if sprites aren't enabled, sprites get nothing */
240264f4 1829 if (is_sprite && !config->sprites_enabled)
158ae64f
VS
1830 return 0;
1831
1832 /* HSW allows LP1+ watermarks even with multiple pipes */
240264f4 1833 if (level == 0 || config->num_pipes_active > 1) {
158ae64f
VS
1834 fifo_size /= INTEL_INFO(dev)->num_pipes;
1835
1836 /*
1837 * For some reason the non self refresh
1838 * FIFO size is only half of the self
1839 * refresh FIFO size on ILK/SNB.
1840 */
1841 if (INTEL_INFO(dev)->gen <= 6)
1842 fifo_size /= 2;
1843 }
1844
240264f4 1845 if (config->sprites_enabled) {
158ae64f
VS
1846 /* level 0 is always calculated with 1:1 split */
1847 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1848 if (is_sprite)
1849 fifo_size *= 5;
1850 fifo_size /= 6;
1851 } else {
1852 fifo_size /= 2;
1853 }
1854 }
1855
1856 /* clamp to max that the registers can hold */
416f4727
VS
1857 if (INTEL_INFO(dev)->gen >= 8)
1858 max = level == 0 ? 255 : 2047;
1859 else if (INTEL_INFO(dev)->gen >= 7)
158ae64f
VS
1860 /* IVB/HSW primary/sprite plane watermarks */
1861 max = level == 0 ? 127 : 1023;
1862 else if (!is_sprite)
1863 /* ILK/SNB primary plane watermarks */
1864 max = level == 0 ? 127 : 511;
1865 else
1866 /* ILK/SNB sprite plane watermarks */
1867 max = level == 0 ? 63 : 255;
1868
1869 return min(fifo_size, max);
1870}
1871
1872/* Calculate the maximum cursor plane watermark */
1873static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
240264f4
VS
1874 int level,
1875 const struct intel_wm_config *config)
158ae64f
VS
1876{
1877 /* HSW LP1+ watermarks w/ multiple pipes */
240264f4 1878 if (level > 0 && config->num_pipes_active > 1)
158ae64f
VS
1879 return 64;
1880
1881 /* otherwise just report max that registers can hold */
1882 if (INTEL_INFO(dev)->gen >= 7)
1883 return level == 0 ? 63 : 255;
1884 else
1885 return level == 0 ? 31 : 63;
1886}
1887
1888/* Calculate the maximum FBC watermark */
416f4727 1889static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
158ae64f
VS
1890{
1891 /* max that registers can hold */
416f4727
VS
1892 if (INTEL_INFO(dev)->gen >= 8)
1893 return 31;
1894 else
1895 return 15;
158ae64f
VS
1896}
1897
34982fe1
VS
1898static void ilk_compute_wm_maximums(struct drm_device *dev,
1899 int level,
1900 const struct intel_wm_config *config,
1901 enum intel_ddb_partitioning ddb_partitioning,
820c1980 1902 struct ilk_wm_maximums *max)
158ae64f 1903{
240264f4
VS
1904 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1905 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1906 max->cur = ilk_cursor_wm_max(dev, level, config);
416f4727 1907 max->fbc = ilk_fbc_wm_max(dev);
158ae64f
VS
1908}
1909
d9395655 1910static bool ilk_validate_wm_level(int level,
820c1980 1911 const struct ilk_wm_maximums *max,
d9395655 1912 struct intel_wm_level *result)
a9786a11
VS
1913{
1914 bool ret;
1915
1916 /* already determined to be invalid? */
1917 if (!result->enable)
1918 return false;
1919
1920 result->enable = result->pri_val <= max->pri &&
1921 result->spr_val <= max->spr &&
1922 result->cur_val <= max->cur;
1923
1924 ret = result->enable;
1925
1926 /*
1927 * HACK until we can pre-compute everything,
1928 * and thus fail gracefully if LP0 watermarks
1929 * are exceeded...
1930 */
1931 if (level == 0 && !result->enable) {
1932 if (result->pri_val > max->pri)
1933 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1934 level, result->pri_val, max->pri);
1935 if (result->spr_val > max->spr)
1936 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1937 level, result->spr_val, max->spr);
1938 if (result->cur_val > max->cur)
1939 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1940 level, result->cur_val, max->cur);
1941
1942 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1943 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1944 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1945 result->enable = true;
1946 }
1947
a9786a11
VS
1948 return ret;
1949}
1950
6f5ddd17
VS
1951static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
1952 int level,
820c1980 1953 const struct ilk_pipe_wm_parameters *p,
1fd527cc 1954 struct intel_wm_level *result)
6f5ddd17
VS
1955{
1956 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1957 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1958 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1959
1960 /* WM1+ latency values stored in 0.5us units */
1961 if (level > 0) {
1962 pri_latency *= 5;
1963 spr_latency *= 5;
1964 cur_latency *= 5;
1965 }
1966
1967 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1968 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1969 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1970 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1971 result->enable = true;
1972}
1973
801bcfff
PZ
1974static uint32_t
1975hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1f8eeabf
ED
1976{
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1011d8c4 1978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011d8c4 1979 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
85a02deb 1980 u32 linetime, ips_linetime;
1f8eeabf 1981
801bcfff
PZ
1982 if (!intel_crtc_active(crtc))
1983 return 0;
1011d8c4 1984
1f8eeabf
ED
1985 /* The WM are computed with base on how long it takes to fill a single
1986 * row at the given clock rate, multiplied by 8.
1987 * */
85a02deb
PZ
1988 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
1989 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
1990 intel_ddi_get_cdclk_freq(dev_priv));
1f8eeabf 1991
801bcfff
PZ
1992 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1993 PIPE_WM_LINETIME_TIME(linetime);
1f8eeabf
ED
1994}
1995
12b134df
VS
1996static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
1997{
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999
a42a5719 2000 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12b134df
VS
2001 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2002
2003 wm[0] = (sskpd >> 56) & 0xFF;
2004 if (wm[0] == 0)
2005 wm[0] = sskpd & 0xF;
e5d5019e
VS
2006 wm[1] = (sskpd >> 4) & 0xFF;
2007 wm[2] = (sskpd >> 12) & 0xFF;
2008 wm[3] = (sskpd >> 20) & 0x1FF;
2009 wm[4] = (sskpd >> 32) & 0x1FF;
63cf9a13
VS
2010 } else if (INTEL_INFO(dev)->gen >= 6) {
2011 uint32_t sskpd = I915_READ(MCH_SSKPD);
2012
2013 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2014 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2015 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2016 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
3a88d0ac
VS
2017 } else if (INTEL_INFO(dev)->gen >= 5) {
2018 uint32_t mltr = I915_READ(MLTR_ILK);
2019
2020 /* ILK primary LP0 latency is 700 ns */
2021 wm[0] = 7;
2022 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2023 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
12b134df
VS
2024 }
2025}
2026
53615a5e
VS
2027static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2028{
2029 /* ILK sprite LP0 latency is 1300 ns */
2030 if (INTEL_INFO(dev)->gen == 5)
2031 wm[0] = 13;
2032}
2033
2034static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2035{
2036 /* ILK cursor LP0 latency is 1300 ns */
2037 if (INTEL_INFO(dev)->gen == 5)
2038 wm[0] = 13;
2039
2040 /* WaDoubleCursorLP3Latency:ivb */
2041 if (IS_IVYBRIDGE(dev))
2042 wm[3] *= 2;
2043}
2044
ad0d6dc4 2045static int ilk_wm_max_level(const struct drm_device *dev)
26ec971e 2046{
26ec971e 2047 /* how many WM levels are we expecting */
a42a5719 2048 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ad0d6dc4 2049 return 4;
26ec971e 2050 else if (INTEL_INFO(dev)->gen >= 6)
ad0d6dc4 2051 return 3;
26ec971e 2052 else
ad0d6dc4
VS
2053 return 2;
2054}
2055
2056static void intel_print_wm_latency(struct drm_device *dev,
2057 const char *name,
2058 const uint16_t wm[5])
2059{
2060 int level, max_level = ilk_wm_max_level(dev);
26ec971e
VS
2061
2062 for (level = 0; level <= max_level; level++) {
2063 unsigned int latency = wm[level];
2064
2065 if (latency == 0) {
2066 DRM_ERROR("%s WM%d latency not provided\n",
2067 name, level);
2068 continue;
2069 }
2070
2071 /* WM1+ latency values in 0.5us units */
2072 if (level > 0)
2073 latency *= 5;
2074
2075 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2076 name, level, wm[level],
2077 latency / 10, latency % 10);
2078 }
2079}
2080
53615a5e
VS
2081static void intel_setup_wm_latency(struct drm_device *dev)
2082{
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084
2085 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2086
2087 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2088 sizeof(dev_priv->wm.pri_latency));
2089 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2090 sizeof(dev_priv->wm.pri_latency));
2091
2092 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2093 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
26ec971e
VS
2094
2095 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2096 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2097 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
53615a5e
VS
2098}
2099
820c1980
ID
2100static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2101 struct ilk_pipe_wm_parameters *p,
a485bfb8 2102 struct intel_wm_config *config)
1011d8c4 2103{
7c4a395f
VS
2104 struct drm_device *dev = crtc->dev;
2105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2106 enum pipe pipe = intel_crtc->pipe;
7c4a395f 2107 struct drm_plane *plane;
1011d8c4 2108
7c4a395f
VS
2109 p->active = intel_crtc_active(crtc);
2110 if (p->active) {
576b259e 2111 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
3658729a 2112 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
c35426d2
VS
2113 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2114 p->cur.bytes_per_pixel = 4;
37327abd 2115 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
c35426d2
VS
2116 p->cur.horiz_pixels = 64;
2117 /* TODO: for now, assume primary and cursor planes are always enabled. */
2118 p->pri.enabled = true;
2119 p->cur.enabled = true;
801bcfff
PZ
2120 }
2121
7c4a395f 2122 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
a485bfb8 2123 config->num_pipes_active += intel_crtc_active(crtc);
7c4a395f 2124
801bcfff
PZ
2125 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2126 struct intel_plane *intel_plane = to_intel_plane(plane);
801bcfff 2127
7c4a395f
VS
2128 if (intel_plane->pipe == pipe)
2129 p->spr = intel_plane->wm;
cca32e9a 2130
a485bfb8
VS
2131 config->sprites_enabled |= intel_plane->wm.enabled;
2132 config->sprites_scaled |= intel_plane->wm.scaled;
cca32e9a 2133 }
801bcfff
PZ
2134}
2135
0b2ae6d7
VS
2136/* Compute new watermarks for the pipe */
2137static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
820c1980 2138 const struct ilk_pipe_wm_parameters *params,
0b2ae6d7
VS
2139 struct intel_pipe_wm *pipe_wm)
2140{
2141 struct drm_device *dev = crtc->dev;
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143 int level, max_level = ilk_wm_max_level(dev);
2144 /* LP0 watermark maximums depend on this pipe alone */
2145 struct intel_wm_config config = {
2146 .num_pipes_active = 1,
2147 .sprites_enabled = params->spr.enabled,
2148 .sprites_scaled = params->spr.scaled,
2149 };
820c1980 2150 struct ilk_wm_maximums max;
0b2ae6d7 2151
0b2ae6d7 2152 /* LP0 watermarks always use 1/2 DDB partitioning */
34982fe1 2153 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
0b2ae6d7 2154
7b39a0b7
VS
2155 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2156 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2157 max_level = 1;
2158
2159 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2160 if (params->spr.scaled)
2161 max_level = 0;
2162
0b2ae6d7
VS
2163 for (level = 0; level <= max_level; level++)
2164 ilk_compute_wm_level(dev_priv, level, params,
2165 &pipe_wm->wm[level]);
2166
a42a5719 2167 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ce0e0713 2168 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
0b2ae6d7
VS
2169
2170 /* At least LP0 must be valid */
d9395655 2171 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
0b2ae6d7
VS
2172}
2173
2174/*
2175 * Merge the watermarks from all active pipes for a specific level.
2176 */
2177static void ilk_merge_wm_level(struct drm_device *dev,
2178 int level,
2179 struct intel_wm_level *ret_wm)
2180{
2181 const struct intel_crtc *intel_crtc;
2182
2183 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2184 const struct intel_wm_level *wm =
2185 &intel_crtc->wm.active.wm[level];
2186
2187 if (!wm->enable)
2188 return;
2189
2190 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2191 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2192 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2193 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2194 }
2195
2196 ret_wm->enable = true;
2197}
2198
2199/*
2200 * Merge all low power watermarks for all active pipes.
2201 */
2202static void ilk_wm_merge(struct drm_device *dev,
0ba22e26 2203 const struct intel_wm_config *config,
820c1980 2204 const struct ilk_wm_maximums *max,
0b2ae6d7
VS
2205 struct intel_pipe_wm *merged)
2206{
2207 int level, max_level = ilk_wm_max_level(dev);
2208
0ba22e26
VS
2209 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2210 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2211 config->num_pipes_active > 1)
2212 return;
2213
6c8b6c28
VS
2214 /* ILK: FBC WM must be disabled always */
2215 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
0b2ae6d7
VS
2216
2217 /* merge each WM1+ level */
2218 for (level = 1; level <= max_level; level++) {
2219 struct intel_wm_level *wm = &merged->wm[level];
2220
2221 ilk_merge_wm_level(dev, level, wm);
2222
d9395655 2223 if (!ilk_validate_wm_level(level, max, wm))
0b2ae6d7
VS
2224 break;
2225
2226 /*
2227 * The spec says it is preferred to disable
2228 * FBC WMs instead of disabling a WM level.
2229 */
2230 if (wm->fbc_val > max->fbc) {
2231 merged->fbc_wm_enabled = false;
2232 wm->fbc_val = 0;
2233 }
2234 }
6c8b6c28
VS
2235
2236 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2237 /*
2238 * FIXME this is racy. FBC might get enabled later.
2239 * What we should check here is whether FBC can be
2240 * enabled sometime later.
2241 */
2242 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2243 for (level = 2; level <= max_level; level++) {
2244 struct intel_wm_level *wm = &merged->wm[level];
2245
2246 wm->enable = false;
2247 }
2248 }
0b2ae6d7
VS
2249}
2250
b380ca3c
VS
2251static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2252{
2253 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2254 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2255}
2256
a68d68ee
VS
2257/* The value we need to program into the WM_LPx latency field */
2258static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2259{
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261
a42a5719 2262 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
a68d68ee
VS
2263 return 2 * level;
2264 else
2265 return dev_priv->wm.pri_latency[level];
2266}
2267
820c1980 2268static void ilk_compute_wm_results(struct drm_device *dev,
0362c781 2269 const struct intel_pipe_wm *merged,
609cedef 2270 enum intel_ddb_partitioning partitioning,
820c1980 2271 struct ilk_wm_values *results)
801bcfff 2272{
0b2ae6d7
VS
2273 struct intel_crtc *intel_crtc;
2274 int level, wm_lp;
cca32e9a 2275
0362c781 2276 results->enable_fbc_wm = merged->fbc_wm_enabled;
609cedef 2277 results->partitioning = partitioning;
cca32e9a 2278
0b2ae6d7 2279 /* LP1+ register values */
cca32e9a 2280 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
1fd527cc 2281 const struct intel_wm_level *r;
801bcfff 2282
b380ca3c 2283 level = ilk_wm_lp_to_level(wm_lp, merged);
0b2ae6d7 2284
0362c781 2285 r = &merged->wm[level];
0b2ae6d7 2286 if (!r->enable)
cca32e9a
PZ
2287 break;
2288
416f4727 2289 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
a68d68ee 2290 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
416f4727
VS
2291 (r->pri_val << WM1_LP_SR_SHIFT) |
2292 r->cur_val;
2293
2294 if (INTEL_INFO(dev)->gen >= 8)
2295 results->wm_lp[wm_lp - 1] |=
2296 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2297 else
2298 results->wm_lp[wm_lp - 1] |=
2299 r->fbc_val << WM1_LP_FBC_SHIFT;
2300
6cef2b8a
VS
2301 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2302 WARN_ON(wm_lp != 1);
2303 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2304 } else
2305 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
cca32e9a 2306 }
801bcfff 2307
0b2ae6d7
VS
2308 /* LP0 register values */
2309 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2310 enum pipe pipe = intel_crtc->pipe;
2311 const struct intel_wm_level *r =
2312 &intel_crtc->wm.active.wm[0];
2313
2314 if (WARN_ON(!r->enable))
2315 continue;
2316
2317 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
1011d8c4 2318
0b2ae6d7
VS
2319 results->wm_pipe[pipe] =
2320 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2321 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2322 r->cur_val;
801bcfff
PZ
2323 }
2324}
2325
861f3389
PZ
2326/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2327 * case both are at the same level. Prefer r1 in case they're the same. */
820c1980 2328static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
198a1e9b
VS
2329 struct intel_pipe_wm *r1,
2330 struct intel_pipe_wm *r2)
861f3389 2331{
198a1e9b
VS
2332 int level, max_level = ilk_wm_max_level(dev);
2333 int level1 = 0, level2 = 0;
861f3389 2334
198a1e9b
VS
2335 for (level = 1; level <= max_level; level++) {
2336 if (r1->wm[level].enable)
2337 level1 = level;
2338 if (r2->wm[level].enable)
2339 level2 = level;
861f3389
PZ
2340 }
2341
198a1e9b
VS
2342 if (level1 == level2) {
2343 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
861f3389
PZ
2344 return r2;
2345 else
2346 return r1;
198a1e9b 2347 } else if (level1 > level2) {
861f3389
PZ
2348 return r1;
2349 } else {
2350 return r2;
2351 }
2352}
2353
49a687c4
VS
2354/* dirty bits used to track which watermarks need changes */
2355#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2356#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2357#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2358#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2359#define WM_DIRTY_FBC (1 << 24)
2360#define WM_DIRTY_DDB (1 << 25)
2361
2362static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
820c1980
ID
2363 const struct ilk_wm_values *old,
2364 const struct ilk_wm_values *new)
49a687c4
VS
2365{
2366 unsigned int dirty = 0;
2367 enum pipe pipe;
2368 int wm_lp;
2369
2370 for_each_pipe(pipe) {
2371 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2372 dirty |= WM_DIRTY_LINETIME(pipe);
2373 /* Must disable LP1+ watermarks too */
2374 dirty |= WM_DIRTY_LP_ALL;
2375 }
2376
2377 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2378 dirty |= WM_DIRTY_PIPE(pipe);
2379 /* Must disable LP1+ watermarks too */
2380 dirty |= WM_DIRTY_LP_ALL;
2381 }
2382 }
2383
2384 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2385 dirty |= WM_DIRTY_FBC;
2386 /* Must disable LP1+ watermarks too */
2387 dirty |= WM_DIRTY_LP_ALL;
2388 }
2389
2390 if (old->partitioning != new->partitioning) {
2391 dirty |= WM_DIRTY_DDB;
2392 /* Must disable LP1+ watermarks too */
2393 dirty |= WM_DIRTY_LP_ALL;
2394 }
2395
2396 /* LP1+ watermarks already deemed dirty, no need to continue */
2397 if (dirty & WM_DIRTY_LP_ALL)
2398 return dirty;
2399
2400 /* Find the lowest numbered LP1+ watermark in need of an update... */
2401 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2402 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2403 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2404 break;
2405 }
2406
2407 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2408 for (; wm_lp <= 3; wm_lp++)
2409 dirty |= WM_DIRTY_LP(wm_lp);
2410
2411 return dirty;
2412}
2413
8553c18e
VS
2414static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2415 unsigned int dirty)
801bcfff 2416{
820c1980 2417 struct ilk_wm_values *previous = &dev_priv->wm.hw;
8553c18e 2418 bool changed = false;
801bcfff 2419
facd619b
VS
2420 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2421 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2422 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
8553c18e 2423 changed = true;
facd619b
VS
2424 }
2425 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2426 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2427 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
8553c18e 2428 changed = true;
facd619b
VS
2429 }
2430 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2431 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2432 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
8553c18e 2433 changed = true;
facd619b 2434 }
801bcfff 2435
facd619b
VS
2436 /*
2437 * Don't touch WM1S_LP_EN here.
2438 * Doing so could cause underruns.
2439 */
6cef2b8a 2440
8553c18e
VS
2441 return changed;
2442}
2443
2444/*
2445 * The spec says we shouldn't write when we don't need, because every write
2446 * causes WMs to be re-evaluated, expending some power.
2447 */
820c1980
ID
2448static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2449 struct ilk_wm_values *results)
8553c18e
VS
2450{
2451 struct drm_device *dev = dev_priv->dev;
820c1980 2452 struct ilk_wm_values *previous = &dev_priv->wm.hw;
8553c18e
VS
2453 unsigned int dirty;
2454 uint32_t val;
2455
2456 dirty = ilk_compute_wm_dirty(dev, previous, results);
2457 if (!dirty)
2458 return;
2459
2460 _ilk_disable_lp_wm(dev_priv, dirty);
2461
49a687c4 2462 if (dirty & WM_DIRTY_PIPE(PIPE_A))
801bcfff 2463 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
49a687c4 2464 if (dirty & WM_DIRTY_PIPE(PIPE_B))
801bcfff 2465 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
49a687c4 2466 if (dirty & WM_DIRTY_PIPE(PIPE_C))
801bcfff
PZ
2467 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2468
49a687c4 2469 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
801bcfff 2470 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
49a687c4 2471 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
801bcfff 2472 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
49a687c4 2473 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
801bcfff
PZ
2474 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2475
49a687c4 2476 if (dirty & WM_DIRTY_DDB) {
a42a5719 2477 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
ac9545fd
VS
2478 val = I915_READ(WM_MISC);
2479 if (results->partitioning == INTEL_DDB_PART_1_2)
2480 val &= ~WM_MISC_DATA_PARTITION_5_6;
2481 else
2482 val |= WM_MISC_DATA_PARTITION_5_6;
2483 I915_WRITE(WM_MISC, val);
2484 } else {
2485 val = I915_READ(DISP_ARB_CTL2);
2486 if (results->partitioning == INTEL_DDB_PART_1_2)
2487 val &= ~DISP_DATA_PARTITION_5_6;
2488 else
2489 val |= DISP_DATA_PARTITION_5_6;
2490 I915_WRITE(DISP_ARB_CTL2, val);
2491 }
1011d8c4
PZ
2492 }
2493
49a687c4 2494 if (dirty & WM_DIRTY_FBC) {
cca32e9a
PZ
2495 val = I915_READ(DISP_ARB_CTL);
2496 if (results->enable_fbc_wm)
2497 val &= ~DISP_FBC_WM_DIS;
2498 else
2499 val |= DISP_FBC_WM_DIS;
2500 I915_WRITE(DISP_ARB_CTL, val);
2501 }
2502
954911eb
ID
2503 if (dirty & WM_DIRTY_LP(1) &&
2504 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2505 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2506
2507 if (INTEL_INFO(dev)->gen >= 7) {
6cef2b8a
VS
2508 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2509 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2510 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2511 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2512 }
801bcfff 2513
facd619b 2514 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
801bcfff 2515 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
facd619b 2516 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
801bcfff 2517 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
facd619b 2518 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
801bcfff 2519 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
609cedef
VS
2520
2521 dev_priv->wm.hw = *results;
801bcfff
PZ
2522}
2523
8553c18e
VS
2524static bool ilk_disable_lp_wm(struct drm_device *dev)
2525{
2526 struct drm_i915_private *dev_priv = dev->dev_private;
2527
2528 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2529}
2530
820c1980 2531static void ilk_update_wm(struct drm_crtc *crtc)
801bcfff 2532{
7c4a395f 2533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
46ba614c 2534 struct drm_device *dev = crtc->dev;
801bcfff 2535 struct drm_i915_private *dev_priv = dev->dev_private;
820c1980
ID
2536 struct ilk_wm_maximums max;
2537 struct ilk_pipe_wm_parameters params = {};
2538 struct ilk_wm_values results = {};
77c122bc 2539 enum intel_ddb_partitioning partitioning;
7c4a395f 2540 struct intel_pipe_wm pipe_wm = {};
198a1e9b 2541 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
a485bfb8 2542 struct intel_wm_config config = {};
7c4a395f 2543
820c1980 2544 ilk_compute_wm_parameters(crtc, &params, &config);
7c4a395f
VS
2545
2546 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2547
2548 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2549 return;
861f3389 2550
7c4a395f 2551 intel_crtc->wm.active = pipe_wm;
861f3389 2552
34982fe1 2553 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
0ba22e26 2554 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
a485bfb8
VS
2555
2556 /* 5/6 split only in single pipe config on IVB+ */
ec98c8d1
VS
2557 if (INTEL_INFO(dev)->gen >= 7 &&
2558 config.num_pipes_active == 1 && config.sprites_enabled) {
34982fe1 2559 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
0ba22e26 2560 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
0362c781 2561
820c1980 2562 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
861f3389 2563 } else {
198a1e9b 2564 best_lp_wm = &lp_wm_1_2;
861f3389
PZ
2565 }
2566
198a1e9b 2567 partitioning = (best_lp_wm == &lp_wm_1_2) ?
77c122bc 2568 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
801bcfff 2569
820c1980 2570 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
609cedef 2571
820c1980 2572 ilk_write_wm_values(dev_priv, &results);
1011d8c4
PZ
2573}
2574
820c1980 2575static void ilk_update_sprite_wm(struct drm_plane *plane,
adf3d35e 2576 struct drm_crtc *crtc,
526682e9 2577 uint32_t sprite_width, int pixel_size,
bdd57d03 2578 bool enabled, bool scaled)
526682e9 2579{
8553c18e 2580 struct drm_device *dev = plane->dev;
adf3d35e 2581 struct intel_plane *intel_plane = to_intel_plane(plane);
526682e9 2582
adf3d35e
VS
2583 intel_plane->wm.enabled = enabled;
2584 intel_plane->wm.scaled = scaled;
2585 intel_plane->wm.horiz_pixels = sprite_width;
2586 intel_plane->wm.bytes_per_pixel = pixel_size;
526682e9 2587
8553c18e
VS
2588 /*
2589 * IVB workaround: must disable low power watermarks for at least
2590 * one frame before enabling scaling. LP watermarks can be re-enabled
2591 * when scaling is disabled.
2592 *
2593 * WaCxSRDisabledForSpriteScaling:ivb
2594 */
2595 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2596 intel_wait_for_vblank(dev, intel_plane->pipe);
2597
820c1980 2598 ilk_update_wm(crtc);
526682e9
PZ
2599}
2600
243e6a44
VS
2601static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2602{
2603 struct drm_device *dev = crtc->dev;
2604 struct drm_i915_private *dev_priv = dev->dev_private;
820c1980 2605 struct ilk_wm_values *hw = &dev_priv->wm.hw;
243e6a44
VS
2606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2607 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2608 enum pipe pipe = intel_crtc->pipe;
2609 static const unsigned int wm0_pipe_reg[] = {
2610 [PIPE_A] = WM0_PIPEA_ILK,
2611 [PIPE_B] = WM0_PIPEB_ILK,
2612 [PIPE_C] = WM0_PIPEC_IVB,
2613 };
2614
2615 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
a42a5719 2616 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ce0e0713 2617 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
243e6a44
VS
2618
2619 if (intel_crtc_active(crtc)) {
2620 u32 tmp = hw->wm_pipe[pipe];
2621
2622 /*
2623 * For active pipes LP0 watermark is marked as
2624 * enabled, and LP1+ watermaks as disabled since
2625 * we can't really reverse compute them in case
2626 * multiple pipes are active.
2627 */
2628 active->wm[0].enable = true;
2629 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2630 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2631 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2632 active->linetime = hw->wm_linetime[pipe];
2633 } else {
2634 int level, max_level = ilk_wm_max_level(dev);
2635
2636 /*
2637 * For inactive pipes, all watermark levels
2638 * should be marked as enabled but zeroed,
2639 * which is what we'd compute them to.
2640 */
2641 for (level = 0; level <= max_level; level++)
2642 active->wm[level].enable = true;
2643 }
2644}
2645
2646void ilk_wm_get_hw_state(struct drm_device *dev)
2647{
2648 struct drm_i915_private *dev_priv = dev->dev_private;
820c1980 2649 struct ilk_wm_values *hw = &dev_priv->wm.hw;
243e6a44
VS
2650 struct drm_crtc *crtc;
2651
2652 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2653 ilk_pipe_wm_get_hw_state(crtc);
2654
2655 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2656 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2657 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2658
2659 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2660 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2661 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2662
a42a5719 2663 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ac9545fd
VS
2664 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2665 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2666 else if (IS_IVYBRIDGE(dev))
2667 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2668 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
243e6a44
VS
2669
2670 hw->enable_fbc_wm =
2671 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2672}
2673
b445e3b0
ED
2674/**
2675 * intel_update_watermarks - update FIFO watermark values based on current modes
2676 *
2677 * Calculate watermark values for the various WM regs based on current mode
2678 * and plane configuration.
2679 *
2680 * There are several cases to deal with here:
2681 * - normal (i.e. non-self-refresh)
2682 * - self-refresh (SR) mode
2683 * - lines are large relative to FIFO size (buffer can hold up to 2)
2684 * - lines are small relative to FIFO size (buffer can hold more than 2
2685 * lines), so need to account for TLB latency
2686 *
2687 * The normal calculation is:
2688 * watermark = dotclock * bytes per pixel * latency
2689 * where latency is platform & configuration dependent (we assume pessimal
2690 * values here).
2691 *
2692 * The SR calculation is:
2693 * watermark = (trunc(latency/line time)+1) * surface width *
2694 * bytes per pixel
2695 * where
2696 * line time = htotal / dotclock
2697 * surface width = hdisplay for normal plane and 64 for cursor
2698 * and latency is assumed to be high, as above.
2699 *
2700 * The final value programmed to the register should always be rounded up,
2701 * and include an extra 2 entries to account for clock crossings.
2702 *
2703 * We don't use the sprite, so we can ignore that. And on Crestline we have
2704 * to set the non-SR watermarks to 8.
2705 */
46ba614c 2706void intel_update_watermarks(struct drm_crtc *crtc)
b445e3b0 2707{
46ba614c 2708 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
b445e3b0
ED
2709
2710 if (dev_priv->display.update_wm)
46ba614c 2711 dev_priv->display.update_wm(crtc);
b445e3b0
ED
2712}
2713
adf3d35e
VS
2714void intel_update_sprite_watermarks(struct drm_plane *plane,
2715 struct drm_crtc *crtc,
4c4ff43a 2716 uint32_t sprite_width, int pixel_size,
39db4a4d 2717 bool enabled, bool scaled)
b445e3b0 2718{
adf3d35e 2719 struct drm_i915_private *dev_priv = plane->dev->dev_private;
b445e3b0
ED
2720
2721 if (dev_priv->display.update_sprite_wm)
adf3d35e 2722 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
39db4a4d 2723 pixel_size, enabled, scaled);
b445e3b0
ED
2724}
2725
2b4e57bd
ED
2726static struct drm_i915_gem_object *
2727intel_alloc_context_page(struct drm_device *dev)
2728{
2729 struct drm_i915_gem_object *ctx;
2730 int ret;
2731
2732 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2733
2734 ctx = i915_gem_alloc_object(dev, 4096);
2735 if (!ctx) {
2736 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2737 return NULL;
2738 }
2739
c37e2204 2740 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2b4e57bd
ED
2741 if (ret) {
2742 DRM_ERROR("failed to pin power context: %d\n", ret);
2743 goto err_unref;
2744 }
2745
2746 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2747 if (ret) {
2748 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2749 goto err_unpin;
2750 }
2751
2752 return ctx;
2753
2754err_unpin:
2755 i915_gem_object_unpin(ctx);
2756err_unref:
2757 drm_gem_object_unreference(&ctx->base);
2b4e57bd
ED
2758 return NULL;
2759}
2760
9270388e
DV
2761/**
2762 * Lock protecting IPS related data structures
9270388e
DV
2763 */
2764DEFINE_SPINLOCK(mchdev_lock);
2765
2766/* Global for IPS driver to get at the current i915 device. Protected by
2767 * mchdev_lock. */
2768static struct drm_i915_private *i915_mch_dev;
2769
2b4e57bd
ED
2770bool ironlake_set_drps(struct drm_device *dev, u8 val)
2771{
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 u16 rgvswctl;
2774
9270388e
DV
2775 assert_spin_locked(&mchdev_lock);
2776
2b4e57bd
ED
2777 rgvswctl = I915_READ16(MEMSWCTL);
2778 if (rgvswctl & MEMCTL_CMD_STS) {
2779 DRM_DEBUG("gpu busy, RCS change rejected\n");
2780 return false; /* still busy with another command */
2781 }
2782
2783 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2784 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2785 I915_WRITE16(MEMSWCTL, rgvswctl);
2786 POSTING_READ16(MEMSWCTL);
2787
2788 rgvswctl |= MEMCTL_CMD_STS;
2789 I915_WRITE16(MEMSWCTL, rgvswctl);
2790
2791 return true;
2792}
2793
8090c6b9 2794static void ironlake_enable_drps(struct drm_device *dev)
2b4e57bd
ED
2795{
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 u32 rgvmodectl = I915_READ(MEMMODECTL);
2798 u8 fmax, fmin, fstart, vstart;
2799
9270388e
DV
2800 spin_lock_irq(&mchdev_lock);
2801
2b4e57bd
ED
2802 /* Enable temp reporting */
2803 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2804 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2805
2806 /* 100ms RC evaluation intervals */
2807 I915_WRITE(RCUPEI, 100000);
2808 I915_WRITE(RCDNEI, 100000);
2809
2810 /* Set max/min thresholds to 90ms and 80ms respectively */
2811 I915_WRITE(RCBMAXAVG, 90000);
2812 I915_WRITE(RCBMINAVG, 80000);
2813
2814 I915_WRITE(MEMIHYST, 1);
2815
2816 /* Set up min, max, and cur for interrupt handling */
2817 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2818 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2819 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2820 MEMMODE_FSTART_SHIFT;
2821
2822 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2823 PXVFREQ_PX_SHIFT;
2824
20e4d407
DV
2825 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2826 dev_priv->ips.fstart = fstart;
2b4e57bd 2827
20e4d407
DV
2828 dev_priv->ips.max_delay = fstart;
2829 dev_priv->ips.min_delay = fmin;
2830 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
2831
2832 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2833 fmax, fmin, fstart);
2834
2835 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2836
2837 /*
2838 * Interrupts will be enabled in ironlake_irq_postinstall
2839 */
2840
2841 I915_WRITE(VIDSTART, vstart);
2842 POSTING_READ(VIDSTART);
2843
2844 rgvmodectl |= MEMMODE_SWMODE_EN;
2845 I915_WRITE(MEMMODECTL, rgvmodectl);
2846
9270388e 2847 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 2848 DRM_ERROR("stuck trying to change perf mode\n");
9270388e 2849 mdelay(1);
2b4e57bd
ED
2850
2851 ironlake_set_drps(dev, fstart);
2852
20e4d407 2853 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2b4e57bd 2854 I915_READ(0x112e0);
20e4d407
DV
2855 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2856 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2857 getrawmonotonic(&dev_priv->ips.last_time2);
9270388e
DV
2858
2859 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2860}
2861
8090c6b9 2862static void ironlake_disable_drps(struct drm_device *dev)
2b4e57bd
ED
2863{
2864 struct drm_i915_private *dev_priv = dev->dev_private;
9270388e
DV
2865 u16 rgvswctl;
2866
2867 spin_lock_irq(&mchdev_lock);
2868
2869 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
2870
2871 /* Ack interrupts, disable EFC interrupt */
2872 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2873 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2874 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2875 I915_WRITE(DEIIR, DE_PCU_EVENT);
2876 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2877
2878 /* Go back to the starting frequency */
20e4d407 2879 ironlake_set_drps(dev, dev_priv->ips.fstart);
9270388e 2880 mdelay(1);
2b4e57bd
ED
2881 rgvswctl |= MEMCTL_CMD_STS;
2882 I915_WRITE(MEMSWCTL, rgvswctl);
9270388e 2883 mdelay(1);
2b4e57bd 2884
9270388e 2885 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2886}
2887
acbe9475
DV
2888/* There's a funny hw issue where the hw returns all 0 when reading from
2889 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2890 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2891 * all limits and the gpu stuck at whatever frequency it is at atm).
2892 */
6917c7b9 2893static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2b4e57bd 2894{
7b9e0ae6 2895 u32 limits;
2b4e57bd 2896
20b46e59
DV
2897 /* Only set the down limit when we've reached the lowest level to avoid
2898 * getting more interrupts, otherwise leave this clear. This prevents a
2899 * race in the hw when coming out of rc6: There's a tiny window where
2900 * the hw runs at the minimal clock before selecting the desired
2901 * frequency, if the down threshold expires in that window we will not
2902 * receive a down interrupt. */
6917c7b9
CW
2903 limits = dev_priv->rps.max_delay << 24;
2904 if (val <= dev_priv->rps.min_delay)
c6a828d3 2905 limits |= dev_priv->rps.min_delay << 16;
20b46e59
DV
2906
2907 return limits;
2908}
2909
dd75fdc8
CW
2910static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2911{
2912 int new_power;
2913
2914 new_power = dev_priv->rps.power;
2915 switch (dev_priv->rps.power) {
2916 case LOW_POWER:
2917 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2918 new_power = BETWEEN;
2919 break;
2920
2921 case BETWEEN:
2922 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2923 new_power = LOW_POWER;
2924 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2925 new_power = HIGH_POWER;
2926 break;
2927
2928 case HIGH_POWER:
2929 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2930 new_power = BETWEEN;
2931 break;
2932 }
2933 /* Max/min bins are special */
2934 if (val == dev_priv->rps.min_delay)
2935 new_power = LOW_POWER;
2936 if (val == dev_priv->rps.max_delay)
2937 new_power = HIGH_POWER;
2938 if (new_power == dev_priv->rps.power)
2939 return;
2940
2941 /* Note the units here are not exactly 1us, but 1280ns. */
2942 switch (new_power) {
2943 case LOW_POWER:
2944 /* Upclock if more than 95% busy over 16ms */
2945 I915_WRITE(GEN6_RP_UP_EI, 12500);
2946 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2947
2948 /* Downclock if less than 85% busy over 32ms */
2949 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2950 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2951
2952 I915_WRITE(GEN6_RP_CONTROL,
2953 GEN6_RP_MEDIA_TURBO |
2954 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2955 GEN6_RP_MEDIA_IS_GFX |
2956 GEN6_RP_ENABLE |
2957 GEN6_RP_UP_BUSY_AVG |
2958 GEN6_RP_DOWN_IDLE_AVG);
2959 break;
2960
2961 case BETWEEN:
2962 /* Upclock if more than 90% busy over 13ms */
2963 I915_WRITE(GEN6_RP_UP_EI, 10250);
2964 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2965
2966 /* Downclock if less than 75% busy over 32ms */
2967 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2968 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2969
2970 I915_WRITE(GEN6_RP_CONTROL,
2971 GEN6_RP_MEDIA_TURBO |
2972 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2973 GEN6_RP_MEDIA_IS_GFX |
2974 GEN6_RP_ENABLE |
2975 GEN6_RP_UP_BUSY_AVG |
2976 GEN6_RP_DOWN_IDLE_AVG);
2977 break;
2978
2979 case HIGH_POWER:
2980 /* Upclock if more than 85% busy over 10ms */
2981 I915_WRITE(GEN6_RP_UP_EI, 8000);
2982 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2983
2984 /* Downclock if less than 60% busy over 32ms */
2985 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2986 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
2987
2988 I915_WRITE(GEN6_RP_CONTROL,
2989 GEN6_RP_MEDIA_TURBO |
2990 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2991 GEN6_RP_MEDIA_IS_GFX |
2992 GEN6_RP_ENABLE |
2993 GEN6_RP_UP_BUSY_AVG |
2994 GEN6_RP_DOWN_IDLE_AVG);
2995 break;
2996 }
2997
2998 dev_priv->rps.power = new_power;
2999 dev_priv->rps.last_adj = 0;
3000}
3001
20b46e59
DV
3002void gen6_set_rps(struct drm_device *dev, u8 val)
3003{
3004 struct drm_i915_private *dev_priv = dev->dev_private;
7b9e0ae6 3005
4fc688ce 3006 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79249636
BW
3007 WARN_ON(val > dev_priv->rps.max_delay);
3008 WARN_ON(val < dev_priv->rps.min_delay);
004777cb 3009
c6a828d3 3010 if (val == dev_priv->rps.cur_delay)
7b9e0ae6
CW
3011 return;
3012
dd75fdc8
CW
3013 gen6_set_rps_thresholds(dev_priv, val);
3014
92bd1bf0
RV
3015 if (IS_HASWELL(dev))
3016 I915_WRITE(GEN6_RPNSWREQ,
3017 HSW_FREQUENCY(val));
3018 else
3019 I915_WRITE(GEN6_RPNSWREQ,
3020 GEN6_FREQUENCY(val) |
3021 GEN6_OFFSET(0) |
3022 GEN6_AGGRESSIVE_TURBO);
7b9e0ae6
CW
3023
3024 /* Make sure we continue to get interrupts
3025 * until we hit the minimum or maximum frequencies.
3026 */
6917c7b9
CW
3027 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3028 gen6_rps_limits(dev_priv, val));
7b9e0ae6 3029
d5570a72
BW
3030 POSTING_READ(GEN6_RPNSWREQ);
3031
c6a828d3 3032 dev_priv->rps.cur_delay = val;
be2cde9a
DV
3033
3034 trace_intel_gpu_freq_change(val * 50);
2b4e57bd
ED
3035}
3036
b29c19b6
CW
3037void gen6_rps_idle(struct drm_i915_private *dev_priv)
3038{
691bb717
DL
3039 struct drm_device *dev = dev_priv->dev;
3040
b29c19b6 3041 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c 3042 if (dev_priv->rps.enabled) {
691bb717 3043 if (IS_VALLEYVIEW(dev))
c0951f0c
CW
3044 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3045 else
3046 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3047 dev_priv->rps.last_adj = 0;
3048 }
b29c19b6
CW
3049 mutex_unlock(&dev_priv->rps.hw_lock);
3050}
3051
3052void gen6_rps_boost(struct drm_i915_private *dev_priv)
3053{
691bb717
DL
3054 struct drm_device *dev = dev_priv->dev;
3055
b29c19b6 3056 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c 3057 if (dev_priv->rps.enabled) {
691bb717 3058 if (IS_VALLEYVIEW(dev))
c0951f0c
CW
3059 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3060 else
3061 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3062 dev_priv->rps.last_adj = 0;
3063 }
b29c19b6
CW
3064 mutex_unlock(&dev_priv->rps.hw_lock);
3065}
3066
0a073b84
JB
3067void valleyview_set_rps(struct drm_device *dev, u8 val)
3068{
3069 struct drm_i915_private *dev_priv = dev->dev_private;
7a67092a 3070
0a073b84
JB
3071 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3072 WARN_ON(val > dev_priv->rps.max_delay);
3073 WARN_ON(val < dev_priv->rps.min_delay);
3074
73008b98 3075 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
2ec3815f 3076 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
73008b98 3077 dev_priv->rps.cur_delay,
2ec3815f 3078 vlv_gpu_freq(dev_priv, val), val);
0a073b84
JB
3079
3080 if (val == dev_priv->rps.cur_delay)
3081 return;
3082
ae99258f 3083 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
0a073b84 3084
80814ae4 3085 dev_priv->rps.cur_delay = val;
0a073b84 3086
2ec3815f 3087 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
0a073b84
JB
3088}
3089
44fc7d5c 3090static void gen6_disable_rps_interrupts(struct drm_device *dev)
2b4e57bd
ED
3091{
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093
2b4e57bd 3094 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4848405c 3095 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3096 /* Complete PM interrupt masking here doesn't race with the rps work
3097 * item again unmasking PM interrupts because that is using a different
3098 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3099 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3100
59cdb63d 3101 spin_lock_irq(&dev_priv->irq_lock);
c6a828d3 3102 dev_priv->rps.pm_iir = 0;
59cdb63d 3103 spin_unlock_irq(&dev_priv->irq_lock);
2b4e57bd 3104
4848405c 3105 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3106}
3107
44fc7d5c 3108static void gen6_disable_rps(struct drm_device *dev)
d20d4f0c
JB
3109{
3110 struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112 I915_WRITE(GEN6_RC_CONTROL, 0);
44fc7d5c 3113 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
d20d4f0c 3114
44fc7d5c
DV
3115 gen6_disable_rps_interrupts(dev);
3116}
3117
3118static void valleyview_disable_rps(struct drm_device *dev)
3119{
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121
3122 I915_WRITE(GEN6_RC_CONTROL, 0);
d20d4f0c 3123
44fc7d5c 3124 gen6_disable_rps_interrupts(dev);
c9cddffc
JB
3125
3126 if (dev_priv->vlv_pctx) {
3127 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3128 dev_priv->vlv_pctx = NULL;
3129 }
d20d4f0c
JB
3130}
3131
dc39fff7
BW
3132static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3133{
3134 if (IS_GEN6(dev))
3135 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3136
3137 if (IS_HASWELL(dev))
3138 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3139
3140 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3141 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3142 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3143 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3144}
3145
2b4e57bd
ED
3146int intel_enable_rc6(const struct drm_device *dev)
3147{
eb4926e4
DL
3148 /* No RC6 before Ironlake */
3149 if (INTEL_INFO(dev)->gen < 5)
3150 return 0;
3151
456470eb 3152 /* Respect the kernel parameter if it is set */
2b4e57bd
ED
3153 if (i915_enable_rc6 >= 0)
3154 return i915_enable_rc6;
3155
6567d748
CW
3156 /* Disable RC6 on Ironlake */
3157 if (INTEL_INFO(dev)->gen == 5)
3158 return 0;
2b4e57bd 3159
dc39fff7 3160 if (IS_HASWELL(dev))
4a637c2c 3161 return INTEL_RC6_ENABLE;
2b4e57bd 3162
456470eb 3163 /* snb/ivb have more than one rc6 state. */
dc39fff7 3164 if (INTEL_INFO(dev)->gen == 6)
2b4e57bd 3165 return INTEL_RC6_ENABLE;
456470eb 3166
2b4e57bd
ED
3167 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3168}
3169
44fc7d5c
DV
3170static void gen6_enable_rps_interrupts(struct drm_device *dev)
3171{
3172 struct drm_i915_private *dev_priv = dev->dev_private;
a9c1f90c 3173 u32 enabled_intrs;
44fc7d5c
DV
3174
3175 spin_lock_irq(&dev_priv->irq_lock);
a0b3335a 3176 WARN_ON(dev_priv->rps.pm_iir);
edbfdb45 3177 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
44fc7d5c
DV
3178 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3179 spin_unlock_irq(&dev_priv->irq_lock);
a9c1f90c 3180
fd547d25 3181 /* only unmask PM interrupts we need. Mask all others. */
a9c1f90c
MK
3182 enabled_intrs = GEN6_PM_RPS_EVENTS;
3183
3184 /* IVB and SNB hard hangs on looping batchbuffer
3185 * if GEN6_PM_UP_EI_EXPIRED is masked.
3186 */
3187 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3188 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3189
3190 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
44fc7d5c
DV
3191}
3192
6edee7f3
BW
3193static void gen8_enable_rps(struct drm_device *dev)
3194{
3195 struct drm_i915_private *dev_priv = dev->dev_private;
3196 struct intel_ring_buffer *ring;
3197 uint32_t rc6_mask = 0, rp_state_cap;
3198 int unused;
3199
3200 /* 1a: Software RC state - RC0 */
3201 I915_WRITE(GEN6_RC_STATE, 0);
3202
3203 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3204 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
c8d9a590 3205 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
3206
3207 /* 2a: Disable RC states. */
3208 I915_WRITE(GEN6_RC_CONTROL, 0);
3209
3210 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3211
3212 /* 2b: Program RC6 thresholds.*/
3213 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3214 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3215 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3216 for_each_ring(ring, dev_priv, unused)
3217 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3218 I915_WRITE(GEN6_RC_SLEEP, 0);
3219 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3220
3221 /* 3: Enable RC6 */
3222 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3223 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3224 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3225 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3226 GEN6_RC_CTL_EI_MODE(1) |
3227 rc6_mask);
3228
3229 /* 4 Program defaults and thresholds for RPS*/
3230 I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3231 I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3232 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3233 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3234
3235 /* Docs recommend 900MHz, and 300 MHz respectively */
3236 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3237 dev_priv->rps.max_delay << 24 |
3238 dev_priv->rps.min_delay << 16);
3239
3240 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3241 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3242 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3243 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3244
3245 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3246
3247 /* 5: Enable RPS */
3248 I915_WRITE(GEN6_RP_CONTROL,
3249 GEN6_RP_MEDIA_TURBO |
3250 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3251 GEN6_RP_MEDIA_IS_GFX |
3252 GEN6_RP_ENABLE |
3253 GEN6_RP_UP_BUSY_AVG |
3254 GEN6_RP_DOWN_IDLE_AVG);
3255
3256 /* 6: Ring frequency + overclocking (our driver does this later */
3257
3258 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3259
3260 gen6_enable_rps_interrupts(dev);
3261
c8d9a590 3262 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
3263}
3264
79f5b2c7 3265static void gen6_enable_rps(struct drm_device *dev)
2b4e57bd 3266{
79f5b2c7 3267 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 3268 struct intel_ring_buffer *ring;
7b9e0ae6
CW
3269 u32 rp_state_cap;
3270 u32 gt_perf_status;
31643d54 3271 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2b4e57bd 3272 u32 gtfifodbg;
2b4e57bd 3273 int rc6_mode;
42c0526c 3274 int i, ret;
2b4e57bd 3275
4fc688ce 3276 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3277
2b4e57bd
ED
3278 /* Here begins a magic sequence of register writes to enable
3279 * auto-downclocking.
3280 *
3281 * Perhaps there might be some value in exposing these to
3282 * userspace...
3283 */
3284 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
3285
3286 /* Clear the DBG now so we don't confuse earlier errors */
3287 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3288 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3289 I915_WRITE(GTFIFODBG, gtfifodbg);
3290 }
3291
c8d9a590 3292 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
2b4e57bd 3293
7b9e0ae6
CW
3294 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3295 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3296
31c77388
BW
3297 /* In units of 50MHz */
3298 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
dd75fdc8
CW
3299 dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3300 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3301 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3302 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
c6a828d3 3303 dev_priv->rps.cur_delay = 0;
7b9e0ae6 3304
2b4e57bd
ED
3305 /* disable the counters and set deterministic thresholds */
3306 I915_WRITE(GEN6_RC_CONTROL, 0);
3307
3308 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3309 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3310 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3311 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3312 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3313
b4519513
CW
3314 for_each_ring(ring, dev_priv, i)
3315 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2b4e57bd
ED
3316
3317 I915_WRITE(GEN6_RC_SLEEP, 0);
3318 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
29c78f60 3319 if (IS_IVYBRIDGE(dev))
351aa566
SM
3320 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3321 else
3322 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
0920a487 3323 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2b4e57bd
ED
3324 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3325
5a7dc92a 3326 /* Check if we are enabling RC6 */
2b4e57bd
ED
3327 rc6_mode = intel_enable_rc6(dev_priv->dev);
3328 if (rc6_mode & INTEL_RC6_ENABLE)
3329 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3330
5a7dc92a
ED
3331 /* We don't use those on Haswell */
3332 if (!IS_HASWELL(dev)) {
3333 if (rc6_mode & INTEL_RC6p_ENABLE)
3334 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 3335
5a7dc92a
ED
3336 if (rc6_mode & INTEL_RC6pp_ENABLE)
3337 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3338 }
2b4e57bd 3339
dc39fff7 3340 intel_print_rc6_info(dev, rc6_mask);
2b4e57bd
ED
3341
3342 I915_WRITE(GEN6_RC_CONTROL,
3343 rc6_mask |
3344 GEN6_RC_CTL_EI_MODE(1) |
3345 GEN6_RC_CTL_HW_ENABLE);
3346
dd75fdc8
CW
3347 /* Power down if completely idle for over 50ms */
3348 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
2b4e57bd 3349 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2b4e57bd 3350
42c0526c 3351 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
988b36e5 3352 if (!ret) {
42c0526c
BW
3353 pcu_mbox = 0;
3354 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
a2b3fc01 3355 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
10e08497 3356 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
a2b3fc01
BW
3357 (dev_priv->rps.max_delay & 0xff) * 50,
3358 (pcu_mbox & 0xff) * 50);
31c77388 3359 dev_priv->rps.hw_max = pcu_mbox & 0xff;
42c0526c
BW
3360 }
3361 } else {
3362 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2b4e57bd
ED
3363 }
3364
dd75fdc8
CW
3365 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3366 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
2b4e57bd 3367
44fc7d5c 3368 gen6_enable_rps_interrupts(dev);
2b4e57bd 3369
31643d54
BW
3370 rc6vids = 0;
3371 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3372 if (IS_GEN6(dev) && ret) {
3373 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3374 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3375 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3376 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3377 rc6vids &= 0xffff00;
3378 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3379 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3380 if (ret)
3381 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3382 }
3383
c8d9a590 3384 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
2b4e57bd
ED
3385}
3386
c67a470b 3387void gen6_update_ring_freq(struct drm_device *dev)
2b4e57bd 3388{
79f5b2c7 3389 struct drm_i915_private *dev_priv = dev->dev_private;
2b4e57bd 3390 int min_freq = 15;
3ebecd07
CW
3391 unsigned int gpu_freq;
3392 unsigned int max_ia_freq, min_ring_freq;
2b4e57bd 3393 int scaling_factor = 180;
eda79642 3394 struct cpufreq_policy *policy;
2b4e57bd 3395
4fc688ce 3396 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3397
eda79642
BW
3398 policy = cpufreq_cpu_get(0);
3399 if (policy) {
3400 max_ia_freq = policy->cpuinfo.max_freq;
3401 cpufreq_cpu_put(policy);
3402 } else {
3403 /*
3404 * Default to measured freq if none found, PCU will ensure we
3405 * don't go over
3406 */
2b4e57bd 3407 max_ia_freq = tsc_khz;
eda79642 3408 }
2b4e57bd
ED
3409
3410 /* Convert from kHz to MHz */
3411 max_ia_freq /= 1000;
3412
153b4b95 3413 min_ring_freq = I915_READ(DCLK) & 0xf;
f6aca45c
BW
3414 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3415 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3ebecd07 3416
2b4e57bd
ED
3417 /*
3418 * For each potential GPU frequency, load a ring frequency we'd like
3419 * to use for memory access. We do this by specifying the IA frequency
3420 * the PCU should use as a reference to determine the ring frequency.
3421 */
c6a828d3 3422 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2b4e57bd 3423 gpu_freq--) {
c6a828d3 3424 int diff = dev_priv->rps.max_delay - gpu_freq;
3ebecd07
CW
3425 unsigned int ia_freq = 0, ring_freq = 0;
3426
46c764d4
BW
3427 if (INTEL_INFO(dev)->gen >= 8) {
3428 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3429 ring_freq = max(min_ring_freq, gpu_freq);
3430 } else if (IS_HASWELL(dev)) {
f6aca45c 3431 ring_freq = mult_frac(gpu_freq, 5, 4);
3ebecd07
CW
3432 ring_freq = max(min_ring_freq, ring_freq);
3433 /* leave ia_freq as the default, chosen by cpufreq */
3434 } else {
3435 /* On older processors, there is no separate ring
3436 * clock domain, so in order to boost the bandwidth
3437 * of the ring, we need to upclock the CPU (ia_freq).
3438 *
3439 * For GPU frequencies less than 750MHz,
3440 * just use the lowest ring freq.
3441 */
3442 if (gpu_freq < min_freq)
3443 ia_freq = 800;
3444 else
3445 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3446 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3447 }
2b4e57bd 3448
42c0526c
BW
3449 sandybridge_pcode_write(dev_priv,
3450 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3ebecd07
CW
3451 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3452 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3453 gpu_freq);
2b4e57bd 3454 }
2b4e57bd
ED
3455}
3456
0a073b84
JB
3457int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3458{
3459 u32 val, rp0;
3460
64936258 3461 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
0a073b84
JB
3462
3463 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3464 /* Clamp to max */
3465 rp0 = min_t(u32, rp0, 0xea);
3466
3467 return rp0;
3468}
3469
3470static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3471{
3472 u32 val, rpe;
3473
64936258 3474 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
0a073b84 3475 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
64936258 3476 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
0a073b84
JB
3477 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3478
3479 return rpe;
3480}
3481
3482int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3483{
64936258 3484 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
0a073b84
JB
3485}
3486
c9cddffc
JB
3487static void valleyview_setup_pctx(struct drm_device *dev)
3488{
3489 struct drm_i915_private *dev_priv = dev->dev_private;
3490 struct drm_i915_gem_object *pctx;
3491 unsigned long pctx_paddr;
3492 u32 pcbr;
3493 int pctx_size = 24*1024;
3494
3495 pcbr = I915_READ(VLV_PCBR);
3496 if (pcbr) {
3497 /* BIOS set it up already, grab the pre-alloc'd space */
3498 int pcbr_offset;
3499
3500 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3501 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3502 pcbr_offset,
190d6cd5 3503 I915_GTT_OFFSET_NONE,
c9cddffc
JB
3504 pctx_size);
3505 goto out;
3506 }
3507
3508 /*
3509 * From the Gunit register HAS:
3510 * The Gfx driver is expected to program this register and ensure
3511 * proper allocation within Gfx stolen memory. For example, this
3512 * register should be programmed such than the PCBR range does not
3513 * overlap with other ranges, such as the frame buffer, protected
3514 * memory, or any other relevant ranges.
3515 */
3516 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3517 if (!pctx) {
3518 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3519 return;
3520 }
3521
3522 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3523 I915_WRITE(VLV_PCBR, pctx_paddr);
3524
3525out:
3526 dev_priv->vlv_pctx = pctx;
3527}
3528
0a073b84
JB
3529static void valleyview_enable_rps(struct drm_device *dev)
3530{
3531 struct drm_i915_private *dev_priv = dev->dev_private;
3532 struct intel_ring_buffer *ring;
a2b23fe0 3533 u32 gtfifodbg, val, rc6_mode = 0;
0a073b84
JB
3534 int i;
3535
3536 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3537
3538 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
f7d85c1e
JB
3539 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3540 gtfifodbg);
0a073b84
JB
3541 I915_WRITE(GTFIFODBG, gtfifodbg);
3542 }
3543
c9cddffc
JB
3544 valleyview_setup_pctx(dev);
3545
c8d9a590
D
3546 /* If VLV, Forcewake all wells, else re-direct to regular path */
3547 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
3548
3549 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3550 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3551 I915_WRITE(GEN6_RP_UP_EI, 66000);
3552 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3553
3554 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3555
3556 I915_WRITE(GEN6_RP_CONTROL,
3557 GEN6_RP_MEDIA_TURBO |
3558 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3559 GEN6_RP_MEDIA_IS_GFX |
3560 GEN6_RP_ENABLE |
3561 GEN6_RP_UP_BUSY_AVG |
3562 GEN6_RP_DOWN_IDLE_CONT);
3563
3564 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3565 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3566 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3567
3568 for_each_ring(ring, dev_priv, i)
3569 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3570
2f0aa304 3571 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
0a073b84
JB
3572
3573 /* allows RC6 residency counter to work */
49798eb2
JB
3574 I915_WRITE(VLV_COUNTER_CONTROL,
3575 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3576 VLV_MEDIA_RC6_COUNT_EN |
3577 VLV_RENDER_RC6_COUNT_EN));
a2b23fe0 3578 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
6b88f295 3579 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
dc39fff7
BW
3580
3581 intel_print_rc6_info(dev, rc6_mode);
3582
a2b23fe0 3583 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
0a073b84 3584
64936258 3585 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
0a073b84
JB
3586
3587 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3588 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3589
0a073b84 3590 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
73008b98 3591 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
2ec3815f 3592 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
73008b98 3593 dev_priv->rps.cur_delay);
0a073b84
JB
3594
3595 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3596 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
73008b98 3597 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
2ec3815f 3598 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
73008b98 3599 dev_priv->rps.max_delay);
0a073b84 3600
73008b98
VS
3601 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3602 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
2ec3815f 3603 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
73008b98 3604 dev_priv->rps.rpe_delay);
0a073b84 3605
73008b98
VS
3606 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3607 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
2ec3815f 3608 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
73008b98 3609 dev_priv->rps.min_delay);
0a073b84 3610
73008b98 3611 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
2ec3815f 3612 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
73008b98 3613 dev_priv->rps.rpe_delay);
0a073b84 3614
73008b98 3615 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
0a073b84 3616
44fc7d5c 3617 gen6_enable_rps_interrupts(dev);
0a073b84 3618
c8d9a590 3619 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
3620}
3621
930ebb46 3622void ironlake_teardown_rc6(struct drm_device *dev)
2b4e57bd
ED
3623{
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625
3e373948
DV
3626 if (dev_priv->ips.renderctx) {
3627 i915_gem_object_unpin(dev_priv->ips.renderctx);
3628 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3629 dev_priv->ips.renderctx = NULL;
2b4e57bd
ED
3630 }
3631
3e373948
DV
3632 if (dev_priv->ips.pwrctx) {
3633 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3634 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3635 dev_priv->ips.pwrctx = NULL;
2b4e57bd
ED
3636 }
3637}
3638
930ebb46 3639static void ironlake_disable_rc6(struct drm_device *dev)
2b4e57bd
ED
3640{
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642
3643 if (I915_READ(PWRCTXA)) {
3644 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3645 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3646 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3647 50);
3648
3649 I915_WRITE(PWRCTXA, 0);
3650 POSTING_READ(PWRCTXA);
3651
3652 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3653 POSTING_READ(RSTDBYCTL);
3654 }
2b4e57bd
ED
3655}
3656
3657static int ironlake_setup_rc6(struct drm_device *dev)
3658{
3659 struct drm_i915_private *dev_priv = dev->dev_private;
3660
3e373948
DV
3661 if (dev_priv->ips.renderctx == NULL)
3662 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3663 if (!dev_priv->ips.renderctx)
2b4e57bd
ED
3664 return -ENOMEM;
3665
3e373948
DV
3666 if (dev_priv->ips.pwrctx == NULL)
3667 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3668 if (!dev_priv->ips.pwrctx) {
2b4e57bd
ED
3669 ironlake_teardown_rc6(dev);
3670 return -ENOMEM;
3671 }
3672
3673 return 0;
3674}
3675
930ebb46 3676static void ironlake_enable_rc6(struct drm_device *dev)
2b4e57bd
ED
3677{
3678 struct drm_i915_private *dev_priv = dev->dev_private;
6d90c952 3679 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3e960501 3680 bool was_interruptible;
2b4e57bd
ED
3681 int ret;
3682
3683 /* rc6 disabled by default due to repeated reports of hanging during
3684 * boot and resume.
3685 */
3686 if (!intel_enable_rc6(dev))
3687 return;
3688
79f5b2c7
DV
3689 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3690
2b4e57bd 3691 ret = ironlake_setup_rc6(dev);
79f5b2c7 3692 if (ret)
2b4e57bd 3693 return;
2b4e57bd 3694
3e960501
CW
3695 was_interruptible = dev_priv->mm.interruptible;
3696 dev_priv->mm.interruptible = false;
3697
2b4e57bd
ED
3698 /*
3699 * GPU can automatically power down the render unit if given a page
3700 * to save state.
3701 */
6d90c952 3702 ret = intel_ring_begin(ring, 6);
2b4e57bd
ED
3703 if (ret) {
3704 ironlake_teardown_rc6(dev);
3e960501 3705 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
3706 return;
3707 }
3708
6d90c952
DV
3709 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3710 intel_ring_emit(ring, MI_SET_CONTEXT);
f343c5f6 3711 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
6d90c952
DV
3712 MI_MM_SPACE_GTT |
3713 MI_SAVE_EXT_STATE_EN |
3714 MI_RESTORE_EXT_STATE_EN |
3715 MI_RESTORE_INHIBIT);
3716 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3717 intel_ring_emit(ring, MI_NOOP);
3718 intel_ring_emit(ring, MI_FLUSH);
3719 intel_ring_advance(ring);
2b4e57bd
ED
3720
3721 /*
3722 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3723 * does an implicit flush, combined with MI_FLUSH above, it should be
3724 * safe to assume that renderctx is valid
3725 */
3e960501
CW
3726 ret = intel_ring_idle(ring);
3727 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd 3728 if (ret) {
def27a58 3729 DRM_ERROR("failed to enable ironlake power savings\n");
2b4e57bd 3730 ironlake_teardown_rc6(dev);
2b4e57bd
ED
3731 return;
3732 }
3733
f343c5f6 3734 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
2b4e57bd 3735 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
dc39fff7
BW
3736
3737 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
2b4e57bd
ED
3738}
3739
dde18883
ED
3740static unsigned long intel_pxfreq(u32 vidfreq)
3741{
3742 unsigned long freq;
3743 int div = (vidfreq & 0x3f0000) >> 16;
3744 int post = (vidfreq & 0x3000) >> 12;
3745 int pre = (vidfreq & 0x7);
3746
3747 if (!pre)
3748 return 0;
3749
3750 freq = ((div * 133333) / ((1<<post) * pre));
3751
3752 return freq;
3753}
3754
eb48eb00
DV
3755static const struct cparams {
3756 u16 i;
3757 u16 t;
3758 u16 m;
3759 u16 c;
3760} cparams[] = {
3761 { 1, 1333, 301, 28664 },
3762 { 1, 1066, 294, 24460 },
3763 { 1, 800, 294, 25192 },
3764 { 0, 1333, 276, 27605 },
3765 { 0, 1066, 276, 27605 },
3766 { 0, 800, 231, 23784 },
3767};
3768
f531dcb2 3769static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3770{
3771 u64 total_count, diff, ret;
3772 u32 count1, count2, count3, m = 0, c = 0;
3773 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3774 int i;
3775
02d71956
DV
3776 assert_spin_locked(&mchdev_lock);
3777
20e4d407 3778 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
3779
3780 /* Prevent division-by-zero if we are asking too fast.
3781 * Also, we don't get interesting results if we are polling
3782 * faster than once in 10ms, so just return the saved value
3783 * in such cases.
3784 */
3785 if (diff1 <= 10)
20e4d407 3786 return dev_priv->ips.chipset_power;
eb48eb00
DV
3787
3788 count1 = I915_READ(DMIEC);
3789 count2 = I915_READ(DDREC);
3790 count3 = I915_READ(CSIEC);
3791
3792 total_count = count1 + count2 + count3;
3793
3794 /* FIXME: handle per-counter overflow */
20e4d407
DV
3795 if (total_count < dev_priv->ips.last_count1) {
3796 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
3797 diff += total_count;
3798 } else {
20e4d407 3799 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
3800 }
3801
3802 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
3803 if (cparams[i].i == dev_priv->ips.c_m &&
3804 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
3805 m = cparams[i].m;
3806 c = cparams[i].c;
3807 break;
3808 }
3809 }
3810
3811 diff = div_u64(diff, diff1);
3812 ret = ((m * diff) + c);
3813 ret = div_u64(ret, 10);
3814
20e4d407
DV
3815 dev_priv->ips.last_count1 = total_count;
3816 dev_priv->ips.last_time1 = now;
eb48eb00 3817
20e4d407 3818 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
3819
3820 return ret;
3821}
3822
f531dcb2
CW
3823unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3824{
3825 unsigned long val;
3826
3827 if (dev_priv->info->gen != 5)
3828 return 0;
3829
3830 spin_lock_irq(&mchdev_lock);
3831
3832 val = __i915_chipset_val(dev_priv);
3833
3834 spin_unlock_irq(&mchdev_lock);
3835
3836 return val;
3837}
3838
eb48eb00
DV
3839unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3840{
3841 unsigned long m, x, b;
3842 u32 tsfs;
3843
3844 tsfs = I915_READ(TSFS);
3845
3846 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3847 x = I915_READ8(TR1);
3848
3849 b = tsfs & TSFS_INTR_MASK;
3850
3851 return ((m * x) / 127) - b;
3852}
3853
3854static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3855{
3856 static const struct v_table {
3857 u16 vd; /* in .1 mil */
3858 u16 vm; /* in .1 mil */
3859 } v_table[] = {
3860 { 0, 0, },
3861 { 375, 0, },
3862 { 500, 0, },
3863 { 625, 0, },
3864 { 750, 0, },
3865 { 875, 0, },
3866 { 1000, 0, },
3867 { 1125, 0, },
3868 { 4125, 3000, },
3869 { 4125, 3000, },
3870 { 4125, 3000, },
3871 { 4125, 3000, },
3872 { 4125, 3000, },
3873 { 4125, 3000, },
3874 { 4125, 3000, },
3875 { 4125, 3000, },
3876 { 4125, 3000, },
3877 { 4125, 3000, },
3878 { 4125, 3000, },
3879 { 4125, 3000, },
3880 { 4125, 3000, },
3881 { 4125, 3000, },
3882 { 4125, 3000, },
3883 { 4125, 3000, },
3884 { 4125, 3000, },
3885 { 4125, 3000, },
3886 { 4125, 3000, },
3887 { 4125, 3000, },
3888 { 4125, 3000, },
3889 { 4125, 3000, },
3890 { 4125, 3000, },
3891 { 4125, 3000, },
3892 { 4250, 3125, },
3893 { 4375, 3250, },
3894 { 4500, 3375, },
3895 { 4625, 3500, },
3896 { 4750, 3625, },
3897 { 4875, 3750, },
3898 { 5000, 3875, },
3899 { 5125, 4000, },
3900 { 5250, 4125, },
3901 { 5375, 4250, },
3902 { 5500, 4375, },
3903 { 5625, 4500, },
3904 { 5750, 4625, },
3905 { 5875, 4750, },
3906 { 6000, 4875, },
3907 { 6125, 5000, },
3908 { 6250, 5125, },
3909 { 6375, 5250, },
3910 { 6500, 5375, },
3911 { 6625, 5500, },
3912 { 6750, 5625, },
3913 { 6875, 5750, },
3914 { 7000, 5875, },
3915 { 7125, 6000, },
3916 { 7250, 6125, },
3917 { 7375, 6250, },
3918 { 7500, 6375, },
3919 { 7625, 6500, },
3920 { 7750, 6625, },
3921 { 7875, 6750, },
3922 { 8000, 6875, },
3923 { 8125, 7000, },
3924 { 8250, 7125, },
3925 { 8375, 7250, },
3926 { 8500, 7375, },
3927 { 8625, 7500, },
3928 { 8750, 7625, },
3929 { 8875, 7750, },
3930 { 9000, 7875, },
3931 { 9125, 8000, },
3932 { 9250, 8125, },
3933 { 9375, 8250, },
3934 { 9500, 8375, },
3935 { 9625, 8500, },
3936 { 9750, 8625, },
3937 { 9875, 8750, },
3938 { 10000, 8875, },
3939 { 10125, 9000, },
3940 { 10250, 9125, },
3941 { 10375, 9250, },
3942 { 10500, 9375, },
3943 { 10625, 9500, },
3944 { 10750, 9625, },
3945 { 10875, 9750, },
3946 { 11000, 9875, },
3947 { 11125, 10000, },
3948 { 11250, 10125, },
3949 { 11375, 10250, },
3950 { 11500, 10375, },
3951 { 11625, 10500, },
3952 { 11750, 10625, },
3953 { 11875, 10750, },
3954 { 12000, 10875, },
3955 { 12125, 11000, },
3956 { 12250, 11125, },
3957 { 12375, 11250, },
3958 { 12500, 11375, },
3959 { 12625, 11500, },
3960 { 12750, 11625, },
3961 { 12875, 11750, },
3962 { 13000, 11875, },
3963 { 13125, 12000, },
3964 { 13250, 12125, },
3965 { 13375, 12250, },
3966 { 13500, 12375, },
3967 { 13625, 12500, },
3968 { 13750, 12625, },
3969 { 13875, 12750, },
3970 { 14000, 12875, },
3971 { 14125, 13000, },
3972 { 14250, 13125, },
3973 { 14375, 13250, },
3974 { 14500, 13375, },
3975 { 14625, 13500, },
3976 { 14750, 13625, },
3977 { 14875, 13750, },
3978 { 15000, 13875, },
3979 { 15125, 14000, },
3980 { 15250, 14125, },
3981 { 15375, 14250, },
3982 { 15500, 14375, },
3983 { 15625, 14500, },
3984 { 15750, 14625, },
3985 { 15875, 14750, },
3986 { 16000, 14875, },
3987 { 16125, 15000, },
3988 };
3989 if (dev_priv->info->is_mobile)
3990 return v_table[pxvid].vm;
3991 else
3992 return v_table[pxvid].vd;
3993}
3994
02d71956 3995static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3996{
3997 struct timespec now, diff1;
3998 u64 diff;
3999 unsigned long diffms;
4000 u32 count;
4001
02d71956 4002 assert_spin_locked(&mchdev_lock);
eb48eb00
DV
4003
4004 getrawmonotonic(&now);
20e4d407 4005 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
eb48eb00
DV
4006
4007 /* Don't divide by 0 */
4008 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4009 if (!diffms)
4010 return;
4011
4012 count = I915_READ(GFXEC);
4013
20e4d407
DV
4014 if (count < dev_priv->ips.last_count2) {
4015 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
4016 diff += count;
4017 } else {
20e4d407 4018 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
4019 }
4020
20e4d407
DV
4021 dev_priv->ips.last_count2 = count;
4022 dev_priv->ips.last_time2 = now;
eb48eb00
DV
4023
4024 /* More magic constants... */
4025 diff = diff * 1181;
4026 diff = div_u64(diff, diffms * 10);
20e4d407 4027 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
4028}
4029
02d71956
DV
4030void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4031{
4032 if (dev_priv->info->gen != 5)
4033 return;
4034
9270388e 4035 spin_lock_irq(&mchdev_lock);
02d71956
DV
4036
4037 __i915_update_gfx_val(dev_priv);
4038
9270388e 4039 spin_unlock_irq(&mchdev_lock);
02d71956
DV
4040}
4041
f531dcb2 4042static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4043{
4044 unsigned long t, corr, state1, corr2, state2;
4045 u32 pxvid, ext_v;
4046
02d71956
DV
4047 assert_spin_locked(&mchdev_lock);
4048
c6a828d3 4049 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
eb48eb00
DV
4050 pxvid = (pxvid >> 24) & 0x7f;
4051 ext_v = pvid_to_extvid(dev_priv, pxvid);
4052
4053 state1 = ext_v;
4054
4055 t = i915_mch_val(dev_priv);
4056
4057 /* Revel in the empirically derived constants */
4058
4059 /* Correction factor in 1/100000 units */
4060 if (t > 80)
4061 corr = ((t * 2349) + 135940);
4062 else if (t >= 50)
4063 corr = ((t * 964) + 29317);
4064 else /* < 50 */
4065 corr = ((t * 301) + 1004);
4066
4067 corr = corr * ((150142 * state1) / 10000 - 78642);
4068 corr /= 100000;
20e4d407 4069 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
4070
4071 state2 = (corr2 * state1) / 10000;
4072 state2 /= 100; /* convert to mW */
4073
02d71956 4074 __i915_update_gfx_val(dev_priv);
eb48eb00 4075
20e4d407 4076 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
4077}
4078
f531dcb2
CW
4079unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4080{
4081 unsigned long val;
4082
4083 if (dev_priv->info->gen != 5)
4084 return 0;
4085
4086 spin_lock_irq(&mchdev_lock);
4087
4088 val = __i915_gfx_val(dev_priv);
4089
4090 spin_unlock_irq(&mchdev_lock);
4091
4092 return val;
4093}
4094
eb48eb00
DV
4095/**
4096 * i915_read_mch_val - return value for IPS use
4097 *
4098 * Calculate and return a value for the IPS driver to use when deciding whether
4099 * we have thermal and power headroom to increase CPU or GPU power budget.
4100 */
4101unsigned long i915_read_mch_val(void)
4102{
4103 struct drm_i915_private *dev_priv;
4104 unsigned long chipset_val, graphics_val, ret = 0;
4105
9270388e 4106 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4107 if (!i915_mch_dev)
4108 goto out_unlock;
4109 dev_priv = i915_mch_dev;
4110
f531dcb2
CW
4111 chipset_val = __i915_chipset_val(dev_priv);
4112 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
4113
4114 ret = chipset_val + graphics_val;
4115
4116out_unlock:
9270388e 4117 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4118
4119 return ret;
4120}
4121EXPORT_SYMBOL_GPL(i915_read_mch_val);
4122
4123/**
4124 * i915_gpu_raise - raise GPU frequency limit
4125 *
4126 * Raise the limit; IPS indicates we have thermal headroom.
4127 */
4128bool i915_gpu_raise(void)
4129{
4130 struct drm_i915_private *dev_priv;
4131 bool ret = true;
4132
9270388e 4133 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4134 if (!i915_mch_dev) {
4135 ret = false;
4136 goto out_unlock;
4137 }
4138 dev_priv = i915_mch_dev;
4139
20e4d407
DV
4140 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4141 dev_priv->ips.max_delay--;
eb48eb00
DV
4142
4143out_unlock:
9270388e 4144 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4145
4146 return ret;
4147}
4148EXPORT_SYMBOL_GPL(i915_gpu_raise);
4149
4150/**
4151 * i915_gpu_lower - lower GPU frequency limit
4152 *
4153 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4154 * frequency maximum.
4155 */
4156bool i915_gpu_lower(void)
4157{
4158 struct drm_i915_private *dev_priv;
4159 bool ret = true;
4160
9270388e 4161 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4162 if (!i915_mch_dev) {
4163 ret = false;
4164 goto out_unlock;
4165 }
4166 dev_priv = i915_mch_dev;
4167
20e4d407
DV
4168 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4169 dev_priv->ips.max_delay++;
eb48eb00
DV
4170
4171out_unlock:
9270388e 4172 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4173
4174 return ret;
4175}
4176EXPORT_SYMBOL_GPL(i915_gpu_lower);
4177
4178/**
4179 * i915_gpu_busy - indicate GPU business to IPS
4180 *
4181 * Tell the IPS driver whether or not the GPU is busy.
4182 */
4183bool i915_gpu_busy(void)
4184{
4185 struct drm_i915_private *dev_priv;
f047e395 4186 struct intel_ring_buffer *ring;
eb48eb00 4187 bool ret = false;
f047e395 4188 int i;
eb48eb00 4189
9270388e 4190 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4191 if (!i915_mch_dev)
4192 goto out_unlock;
4193 dev_priv = i915_mch_dev;
4194
f047e395
CW
4195 for_each_ring(ring, dev_priv, i)
4196 ret |= !list_empty(&ring->request_list);
eb48eb00
DV
4197
4198out_unlock:
9270388e 4199 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4200
4201 return ret;
4202}
4203EXPORT_SYMBOL_GPL(i915_gpu_busy);
4204
4205/**
4206 * i915_gpu_turbo_disable - disable graphics turbo
4207 *
4208 * Disable graphics turbo by resetting the max frequency and setting the
4209 * current frequency to the default.
4210 */
4211bool i915_gpu_turbo_disable(void)
4212{
4213 struct drm_i915_private *dev_priv;
4214 bool ret = true;
4215
9270388e 4216 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4217 if (!i915_mch_dev) {
4218 ret = false;
4219 goto out_unlock;
4220 }
4221 dev_priv = i915_mch_dev;
4222
20e4d407 4223 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 4224
20e4d407 4225 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
eb48eb00
DV
4226 ret = false;
4227
4228out_unlock:
9270388e 4229 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4230
4231 return ret;
4232}
4233EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4234
4235/**
4236 * Tells the intel_ips driver that the i915 driver is now loaded, if
4237 * IPS got loaded first.
4238 *
4239 * This awkward dance is so that neither module has to depend on the
4240 * other in order for IPS to do the appropriate communication of
4241 * GPU turbo limits to i915.
4242 */
4243static void
4244ips_ping_for_i915_load(void)
4245{
4246 void (*link)(void);
4247
4248 link = symbol_get(ips_link_to_i915_driver);
4249 if (link) {
4250 link();
4251 symbol_put(ips_link_to_i915_driver);
4252 }
4253}
4254
4255void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4256{
02d71956
DV
4257 /* We only register the i915 ips part with intel-ips once everything is
4258 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 4259 spin_lock_irq(&mchdev_lock);
eb48eb00 4260 i915_mch_dev = dev_priv;
9270388e 4261 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4262
4263 ips_ping_for_i915_load();
4264}
4265
4266void intel_gpu_ips_teardown(void)
4267{
9270388e 4268 spin_lock_irq(&mchdev_lock);
eb48eb00 4269 i915_mch_dev = NULL;
9270388e 4270 spin_unlock_irq(&mchdev_lock);
eb48eb00 4271}
8090c6b9 4272static void intel_init_emon(struct drm_device *dev)
dde18883
ED
4273{
4274 struct drm_i915_private *dev_priv = dev->dev_private;
4275 u32 lcfuse;
4276 u8 pxw[16];
4277 int i;
4278
4279 /* Disable to program */
4280 I915_WRITE(ECR, 0);
4281 POSTING_READ(ECR);
4282
4283 /* Program energy weights for various events */
4284 I915_WRITE(SDEW, 0x15040d00);
4285 I915_WRITE(CSIEW0, 0x007f0000);
4286 I915_WRITE(CSIEW1, 0x1e220004);
4287 I915_WRITE(CSIEW2, 0x04000004);
4288
4289 for (i = 0; i < 5; i++)
4290 I915_WRITE(PEW + (i * 4), 0);
4291 for (i = 0; i < 3; i++)
4292 I915_WRITE(DEW + (i * 4), 0);
4293
4294 /* Program P-state weights to account for frequency power adjustment */
4295 for (i = 0; i < 16; i++) {
4296 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4297 unsigned long freq = intel_pxfreq(pxvidfreq);
4298 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4299 PXVFREQ_PX_SHIFT;
4300 unsigned long val;
4301
4302 val = vid * vid;
4303 val *= (freq / 1000);
4304 val *= 255;
4305 val /= (127*127*900);
4306 if (val > 0xff)
4307 DRM_ERROR("bad pxval: %ld\n", val);
4308 pxw[i] = val;
4309 }
4310 /* Render standby states get 0 weight */
4311 pxw[14] = 0;
4312 pxw[15] = 0;
4313
4314 for (i = 0; i < 4; i++) {
4315 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4316 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4317 I915_WRITE(PXW + (i * 4), val);
4318 }
4319
4320 /* Adjust magic regs to magic values (more experimental results) */
4321 I915_WRITE(OGW0, 0);
4322 I915_WRITE(OGW1, 0);
4323 I915_WRITE(EG0, 0x00007f00);
4324 I915_WRITE(EG1, 0x0000000e);
4325 I915_WRITE(EG2, 0x000e0000);
4326 I915_WRITE(EG3, 0x68000300);
4327 I915_WRITE(EG4, 0x42000000);
4328 I915_WRITE(EG5, 0x00140031);
4329 I915_WRITE(EG6, 0);
4330 I915_WRITE(EG7, 0);
4331
4332 for (i = 0; i < 8; i++)
4333 I915_WRITE(PXWL + (i * 4), 0);
4334
4335 /* Enable PMON + select events */
4336 I915_WRITE(ECR, 0x80000019);
4337
4338 lcfuse = I915_READ(LCFUSE02);
4339
20e4d407 4340 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
4341}
4342
8090c6b9
DV
4343void intel_disable_gt_powersave(struct drm_device *dev)
4344{
1a01ab3b
JB
4345 struct drm_i915_private *dev_priv = dev->dev_private;
4346
fd0c0642
DV
4347 /* Interrupts should be disabled already to avoid re-arming. */
4348 WARN_ON(dev->irq_enabled);
4349
930ebb46 4350 if (IS_IRONLAKE_M(dev)) {
8090c6b9 4351 ironlake_disable_drps(dev);
930ebb46 4352 ironlake_disable_rc6(dev);
0a073b84 4353 } else if (INTEL_INFO(dev)->gen >= 6) {
1a01ab3b 4354 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
250848ca 4355 cancel_work_sync(&dev_priv->rps.work);
4fc688ce 4356 mutex_lock(&dev_priv->rps.hw_lock);
d20d4f0c
JB
4357 if (IS_VALLEYVIEW(dev))
4358 valleyview_disable_rps(dev);
4359 else
4360 gen6_disable_rps(dev);
c0951f0c 4361 dev_priv->rps.enabled = false;
4fc688ce 4362 mutex_unlock(&dev_priv->rps.hw_lock);
930ebb46 4363 }
8090c6b9
DV
4364}
4365
1a01ab3b
JB
4366static void intel_gen6_powersave_work(struct work_struct *work)
4367{
4368 struct drm_i915_private *dev_priv =
4369 container_of(work, struct drm_i915_private,
4370 rps.delayed_resume_work.work);
4371 struct drm_device *dev = dev_priv->dev;
4372
4fc688ce 4373 mutex_lock(&dev_priv->rps.hw_lock);
0a073b84
JB
4374
4375 if (IS_VALLEYVIEW(dev)) {
4376 valleyview_enable_rps(dev);
6edee7f3
BW
4377 } else if (IS_BROADWELL(dev)) {
4378 gen8_enable_rps(dev);
4379 gen6_update_ring_freq(dev);
0a073b84
JB
4380 } else {
4381 gen6_enable_rps(dev);
4382 gen6_update_ring_freq(dev);
4383 }
c0951f0c 4384 dev_priv->rps.enabled = true;
4fc688ce 4385 mutex_unlock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
4386}
4387
8090c6b9
DV
4388void intel_enable_gt_powersave(struct drm_device *dev)
4389{
1a01ab3b
JB
4390 struct drm_i915_private *dev_priv = dev->dev_private;
4391
8090c6b9
DV
4392 if (IS_IRONLAKE_M(dev)) {
4393 ironlake_enable_drps(dev);
4394 ironlake_enable_rc6(dev);
4395 intel_init_emon(dev);
0a073b84 4396 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1a01ab3b
JB
4397 /*
4398 * PCU communication is slow and this doesn't need to be
4399 * done at any specific time, so do this out of our fast path
4400 * to make resume and init faster.
4401 */
4402 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4403 round_jiffies_up_relative(HZ));
8090c6b9
DV
4404 }
4405}
4406
3107bd48
DV
4407static void ibx_init_clock_gating(struct drm_device *dev)
4408{
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410
4411 /*
4412 * On Ibex Peak and Cougar Point, we need to disable clock
4413 * gating for the panel power sequencer or it will fail to
4414 * start up when no ports are active.
4415 */
4416 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4417}
4418
0e088b8f
VS
4419static void g4x_disable_trickle_feed(struct drm_device *dev)
4420{
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 int pipe;
4423
4424 for_each_pipe(pipe) {
4425 I915_WRITE(DSPCNTR(pipe),
4426 I915_READ(DSPCNTR(pipe)) |
4427 DISPPLANE_TRICKLE_FEED_DISABLE);
1dba99f4 4428 intel_flush_primary_plane(dev_priv, pipe);
0e088b8f
VS
4429 }
4430}
4431
017636cc
VS
4432static void ilk_init_lp_watermarks(struct drm_device *dev)
4433{
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435
4436 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4437 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4438 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4439
4440 /*
4441 * Don't touch WM1S_LP_EN here.
4442 * Doing so could cause underruns.
4443 */
4444}
4445
1fa61106 4446static void ironlake_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4447{
4448 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4449 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4450
f1e8fa56
DL
4451 /*
4452 * Required for FBC
4453 * WaFbcDisableDpfcClockGating:ilk
4454 */
4d47e4f5
DL
4455 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4456 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4457 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4458
4459 I915_WRITE(PCH_3DCGDIS0,
4460 MARIUNIT_CLOCK_GATE_DISABLE |
4461 SVSMUNIT_CLOCK_GATE_DISABLE);
4462 I915_WRITE(PCH_3DCGDIS1,
4463 VFMUNIT_CLOCK_GATE_DISABLE);
4464
6f1d69b0
ED
4465 /*
4466 * According to the spec the following bits should be set in
4467 * order to enable memory self-refresh
4468 * The bit 22/21 of 0x42004
4469 * The bit 5 of 0x42020
4470 * The bit 15 of 0x45000
4471 */
4472 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4473 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4474 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 4475 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4476 I915_WRITE(DISP_ARB_CTL,
4477 (I915_READ(DISP_ARB_CTL) |
4478 DISP_FBC_WM_DIS));
017636cc
VS
4479
4480 ilk_init_lp_watermarks(dev);
6f1d69b0
ED
4481
4482 /*
4483 * Based on the document from hardware guys the following bits
4484 * should be set unconditionally in order to enable FBC.
4485 * The bit 22 of 0x42000
4486 * The bit 22 of 0x42004
4487 * The bit 7,8,9 of 0x42020.
4488 */
4489 if (IS_IRONLAKE_M(dev)) {
4bb35334 4490 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6f1d69b0
ED
4491 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4492 I915_READ(ILK_DISPLAY_CHICKEN1) |
4493 ILK_FBCQ_DIS);
4494 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4495 I915_READ(ILK_DISPLAY_CHICKEN2) |
4496 ILK_DPARB_GATE);
6f1d69b0
ED
4497 }
4498
4d47e4f5
DL
4499 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4500
6f1d69b0
ED
4501 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4502 I915_READ(ILK_DISPLAY_CHICKEN2) |
4503 ILK_ELPIN_409_SELECT);
4504 I915_WRITE(_3D_CHICKEN2,
4505 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4506 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374 4507
ecdb4eb7 4508 /* WaDisableRenderCachePipelinedFlush:ilk */
4358a374
DV
4509 I915_WRITE(CACHE_MODE_0,
4510 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48 4511
0e088b8f 4512 g4x_disable_trickle_feed(dev);
bdad2b2f 4513
3107bd48
DV
4514 ibx_init_clock_gating(dev);
4515}
4516
4517static void cpt_init_clock_gating(struct drm_device *dev)
4518{
4519 struct drm_i915_private *dev_priv = dev->dev_private;
4520 int pipe;
3f704fa2 4521 uint32_t val;
3107bd48
DV
4522
4523 /*
4524 * On Ibex Peak and Cougar Point, we need to disable clock
4525 * gating for the panel power sequencer or it will fail to
4526 * start up when no ports are active.
4527 */
cd664078
JB
4528 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4529 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4530 PCH_CPUNIT_CLOCK_GATE_DISABLE);
3107bd48
DV
4531 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4532 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
4533 /* The below fixes the weird display corruption, a few pixels shifted
4534 * downward, on (only) LVDS of some HP laptops with IVY.
4535 */
3f704fa2 4536 for_each_pipe(pipe) {
dc4bd2d1
PZ
4537 val = I915_READ(TRANS_CHICKEN2(pipe));
4538 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4539 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
41aa3448 4540 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3f704fa2 4541 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
dc4bd2d1
PZ
4542 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4543 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4544 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3f704fa2
PZ
4545 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4546 }
3107bd48
DV
4547 /* WADP0ClockGatingDisable */
4548 for_each_pipe(pipe) {
4549 I915_WRITE(TRANS_CHICKEN1(pipe),
4550 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4551 }
6f1d69b0
ED
4552}
4553
1d7aaa0c
DV
4554static void gen6_check_mch_setup(struct drm_device *dev)
4555{
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557 uint32_t tmp;
4558
4559 tmp = I915_READ(MCH_SSKPD);
4560 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4561 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4562 DRM_INFO("This can cause pipe underruns and display issues.\n");
4563 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4564 }
4565}
4566
1fa61106 4567static void gen6_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4568{
4569 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4570 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4571
231e54f6 4572 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
4573
4574 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4575 I915_READ(ILK_DISPLAY_CHICKEN2) |
4576 ILK_ELPIN_409_SELECT);
4577
ecdb4eb7 4578 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4283908e
DV
4579 I915_WRITE(_3D_CHICKEN,
4580 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4581
ecdb4eb7 4582 /* WaSetupGtModeTdRowDispatch:snb */
6547fbdb
DV
4583 if (IS_SNB_GT1(dev))
4584 I915_WRITE(GEN6_GT_MODE,
4585 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4586
017636cc 4587 ilk_init_lp_watermarks(dev);
6f1d69b0 4588
6f1d69b0 4589 I915_WRITE(CACHE_MODE_0,
50743298 4590 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
4591
4592 I915_WRITE(GEN6_UCGCTL1,
4593 I915_READ(GEN6_UCGCTL1) |
4594 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4595 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4596
4597 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4598 * gating disable must be set. Failure to set it results in
4599 * flickering pixels due to Z write ordering failures after
4600 * some amount of runtime in the Mesa "fire" demo, and Unigine
4601 * Sanctuary and Tropics, and apparently anything else with
4602 * alpha test or pixel discard.
4603 *
4604 * According to the spec, bit 11 (RCCUNIT) must also be set,
4605 * but we didn't debug actual testcases to find it out.
0f846f81 4606 *
ecdb4eb7
DL
4607 * Also apply WaDisableVDSUnitClockGating:snb and
4608 * WaDisableRCPBUnitClockGating:snb.
6f1d69b0
ED
4609 */
4610 I915_WRITE(GEN6_UCGCTL2,
0f846f81 4611 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6f1d69b0
ED
4612 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4613 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4614
4615 /* Bspec says we need to always set all mask bits. */
26b6e44a
KG
4616 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4617 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
6f1d69b0
ED
4618
4619 /*
4620 * According to the spec the following bits should be
4621 * set in order to enable memory self-refresh and fbc:
4622 * The bit21 and bit22 of 0x42000
4623 * The bit21 and bit22 of 0x42004
4624 * The bit5 and bit7 of 0x42020
4625 * The bit14 of 0x70180
4626 * The bit14 of 0x71180
4bb35334
DL
4627 *
4628 * WaFbcAsynchFlipDisableFbcQueue:snb
6f1d69b0
ED
4629 */
4630 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4631 I915_READ(ILK_DISPLAY_CHICKEN1) |
4632 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4633 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4634 I915_READ(ILK_DISPLAY_CHICKEN2) |
4635 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
4636 I915_WRITE(ILK_DSPCLK_GATE_D,
4637 I915_READ(ILK_DSPCLK_GATE_D) |
4638 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4639 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 4640
0e088b8f 4641 g4x_disable_trickle_feed(dev);
f8f2ac9a
BW
4642
4643 /* The default value should be 0x200 according to docs, but the two
4644 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4645 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4646 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3107bd48
DV
4647
4648 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4649
4650 gen6_check_mch_setup(dev);
6f1d69b0
ED
4651}
4652
4653static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4654{
4655 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4656
4657 reg &= ~GEN7_FF_SCHED_MASK;
4658 reg |= GEN7_FF_TS_SCHED_HW;
4659 reg |= GEN7_FF_VS_SCHED_HW;
4660 reg |= GEN7_FF_DS_SCHED_HW;
4661
41c0b3a8
BW
4662 if (IS_HASWELL(dev_priv->dev))
4663 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4664
6f1d69b0
ED
4665 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4666}
4667
17a303ec
PZ
4668static void lpt_init_clock_gating(struct drm_device *dev)
4669{
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672 /*
4673 * TODO: this bit should only be enabled when really needed, then
4674 * disabled when not needed anymore in order to save power.
4675 */
4676 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4677 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4678 I915_READ(SOUTH_DSPCLK_GATE_D) |
4679 PCH_LP_PARTITION_LEVEL_DISABLE);
0a790cdb
PZ
4680
4681 /* WADPOClockGatingDisable:hsw */
4682 I915_WRITE(_TRANSA_CHICKEN1,
4683 I915_READ(_TRANSA_CHICKEN1) |
4684 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
17a303ec
PZ
4685}
4686
7d708ee4
ID
4687static void lpt_suspend_hw(struct drm_device *dev)
4688{
4689 struct drm_i915_private *dev_priv = dev->dev_private;
4690
4691 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4692 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4693
4694 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4695 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4696 }
4697}
4698
1020a5c2
BW
4699static void gen8_init_clock_gating(struct drm_device *dev)
4700{
4701 struct drm_i915_private *dev_priv = dev->dev_private;
fe4ab3ce 4702 enum pipe i;
1020a5c2
BW
4703
4704 I915_WRITE(WM3_LP_ILK, 0);
4705 I915_WRITE(WM2_LP_ILK, 0);
4706 I915_WRITE(WM1_LP_ILK, 0);
50ed5fbd
BW
4707
4708 /* FIXME(BDW): Check all the w/a, some might only apply to
4709 * pre-production hw. */
4710
fd392b60
BW
4711 WARN(!i915_preliminary_hw_support,
4712 "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
4713 I915_WRITE(HALF_SLICE_CHICKEN3,
4714 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
bf66347c
BW
4715 I915_WRITE(HALF_SLICE_CHICKEN3,
4716 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4afe8d33
BW
4717 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4718
7f88da0c
BW
4719 I915_WRITE(_3D_CHICKEN3,
4720 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4721
a75f3628
BW
4722 I915_WRITE(COMMON_SLICE_CHICKEN2,
4723 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4724
4c2e7a5f
BW
4725 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4726 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4727
ab57fff1 4728 /* WaSwitchSolVfFArbitrationPriority:bdw */
50ed5fbd 4729 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
fe4ab3ce 4730
ab57fff1 4731 /* WaPsrDPAMaskVBlankInSRD:bdw */
fe4ab3ce
BW
4732 I915_WRITE(CHICKEN_PAR1_1,
4733 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4734
ab57fff1 4735 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
fe4ab3ce
BW
4736 for_each_pipe(i) {
4737 I915_WRITE(CHICKEN_PIPESL_1(i),
4738 I915_READ(CHICKEN_PIPESL_1(i) |
4739 DPRS_MASK_VBLANK_SRD));
4740 }
63801f21
BW
4741
4742 /* Use Force Non-Coherent whenever executing a 3D context. This is a
4743 * workaround for for a possible hang in the unlikely event a TLB
4744 * invalidation occurs during a PSD flush.
4745 */
4746 I915_WRITE(HDC_CHICKEN0,
4747 I915_READ(HDC_CHICKEN0) |
4748 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
ab57fff1
BW
4749
4750 /* WaVSRefCountFullforceMissDisable:bdw */
4751 /* WaDSRefCountFullforceMissDisable:bdw */
4752 I915_WRITE(GEN7_FF_THREAD_MODE,
4753 I915_READ(GEN7_FF_THREAD_MODE) &
4754 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
1020a5c2
BW
4755}
4756
cad2a2d7
ED
4757static void haswell_init_clock_gating(struct drm_device *dev)
4758{
4759 struct drm_i915_private *dev_priv = dev->dev_private;
cad2a2d7 4760
017636cc 4761 ilk_init_lp_watermarks(dev);
cad2a2d7
ED
4762
4763 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4764 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
cad2a2d7
ED
4765 */
4766 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4767
ecdb4eb7 4768 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
cad2a2d7
ED
4769 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4770 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4771
ecdb4eb7 4772 /* WaApplyL3ControlAndL3ChickenMode:hsw */
cad2a2d7
ED
4773 I915_WRITE(GEN7_L3CNTLREG1,
4774 GEN7_WA_FOR_GEN7_L3_CONTROL);
4775 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4776 GEN7_WA_L3_CHICKEN_MODE);
4777
f3fc4884
FJ
4778 /* L3 caching of data atomics doesn't work -- disable it. */
4779 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4780 I915_WRITE(HSW_ROW_CHICKEN3,
4781 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4782
ecdb4eb7 4783 /* This is required by WaCatErrorRejectionIssue:hsw */
cad2a2d7
ED
4784 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4785 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4786 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4787
ecdb4eb7 4788 /* WaVSRefCountFullforceMissDisable:hsw */
cad2a2d7
ED
4789 gen7_setup_fixed_func_scheduler(dev_priv);
4790
ecdb4eb7 4791 /* WaDisable4x2SubspanOptimization:hsw */
cad2a2d7
ED
4792 I915_WRITE(CACHE_MODE_1,
4793 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 4794
ecdb4eb7 4795 /* WaSwitchSolVfFArbitrationPriority:hsw */
e3dff585
BW
4796 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4797
90a88643
PZ
4798 /* WaRsPkgCStateDisplayPMReq:hsw */
4799 I915_WRITE(CHICKEN_PAR1_1,
4800 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
1544d9d5 4801
17a303ec 4802 lpt_init_clock_gating(dev);
cad2a2d7
ED
4803}
4804
1fa61106 4805static void ivybridge_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4806{
4807 struct drm_i915_private *dev_priv = dev->dev_private;
20848223 4808 uint32_t snpcr;
6f1d69b0 4809
017636cc 4810 ilk_init_lp_watermarks(dev);
6f1d69b0 4811
231e54f6 4812 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4813
ecdb4eb7 4814 /* WaDisableEarlyCull:ivb */
87f8020e
JB
4815 I915_WRITE(_3D_CHICKEN3,
4816 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4817
ecdb4eb7 4818 /* WaDisableBackToBackFlipFix:ivb */
6f1d69b0
ED
4819 I915_WRITE(IVB_CHICKEN3,
4820 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4821 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4822
ecdb4eb7 4823 /* WaDisablePSDDualDispatchEnable:ivb */
12f3382b
JB
4824 if (IS_IVB_GT1(dev))
4825 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4826 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4827 else
4828 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4829 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4830
ecdb4eb7 4831 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6f1d69b0
ED
4832 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4833 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4834
ecdb4eb7 4835 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6f1d69b0
ED
4836 I915_WRITE(GEN7_L3CNTLREG1,
4837 GEN7_WA_FOR_GEN7_L3_CONTROL);
4838 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976
JB
4839 GEN7_WA_L3_CHICKEN_MODE);
4840 if (IS_IVB_GT1(dev))
4841 I915_WRITE(GEN7_ROW_CHICKEN2,
4842 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4843 else
4844 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4845 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4846
6f1d69b0 4847
ecdb4eb7 4848 /* WaForceL3Serialization:ivb */
61939d97
JB
4849 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4850 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4851
0f846f81
JB
4852 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4853 * gating disable must be set. Failure to set it results in
4854 * flickering pixels due to Z write ordering failures after
4855 * some amount of runtime in the Mesa "fire" demo, and Unigine
4856 * Sanctuary and Tropics, and apparently anything else with
4857 * alpha test or pixel discard.
4858 *
4859 * According to the spec, bit 11 (RCCUNIT) must also be set,
4860 * but we didn't debug actual testcases to find it out.
4861 *
4862 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4863 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
0f846f81
JB
4864 */
4865 I915_WRITE(GEN6_UCGCTL2,
4866 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4867 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4868
ecdb4eb7 4869 /* This is required by WaCatErrorRejectionIssue:ivb */
6f1d69b0
ED
4870 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4871 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4872 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4873
0e088b8f 4874 g4x_disable_trickle_feed(dev);
6f1d69b0 4875
ecdb4eb7 4876 /* WaVSRefCountFullforceMissDisable:ivb */
6f1d69b0 4877 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f 4878
ecdb4eb7 4879 /* WaDisable4x2SubspanOptimization:ivb */
97e1930f
DV
4880 I915_WRITE(CACHE_MODE_1,
4881 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223
BW
4882
4883 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4884 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4885 snpcr |= GEN6_MBC_SNPCR_MED;
4886 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48 4887
ab5c608b
BW
4888 if (!HAS_PCH_NOP(dev))
4889 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4890
4891 gen6_check_mch_setup(dev);
6f1d69b0
ED
4892}
4893
1fa61106 4894static void valleyview_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4895{
4896 struct drm_i915_private *dev_priv = dev->dev_private;
85b1d7b3
JB
4897 u32 val;
4898
4899 mutex_lock(&dev_priv->rps.hw_lock);
4900 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4901 mutex_unlock(&dev_priv->rps.hw_lock);
4902 switch ((val >> 6) & 3) {
4903 case 0:
85b1d7b3
JB
4904 dev_priv->mem_freq = 800;
4905 break;
f64a28a7 4906 case 1:
85b1d7b3
JB
4907 dev_priv->mem_freq = 1066;
4908 break;
f64a28a7 4909 case 2:
85b1d7b3
JB
4910 dev_priv->mem_freq = 1333;
4911 break;
f64a28a7 4912 case 3:
2325991e 4913 dev_priv->mem_freq = 1333;
f64a28a7 4914 break;
85b1d7b3
JB
4915 }
4916 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
6f1d69b0 4917
d7fe0cc0 4918 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4919
ecdb4eb7 4920 /* WaDisableEarlyCull:vlv */
87f8020e
JB
4921 I915_WRITE(_3D_CHICKEN3,
4922 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4923
ecdb4eb7 4924 /* WaDisableBackToBackFlipFix:vlv */
6f1d69b0
ED
4925 I915_WRITE(IVB_CHICKEN3,
4926 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4927 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4928
ecdb4eb7 4929 /* WaDisablePSDDualDispatchEnable:vlv */
12f3382b 4930 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
d3bc0303
JB
4931 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4932 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 4933
ecdb4eb7 4934 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
6f1d69b0
ED
4935 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4936 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4937
ecdb4eb7 4938 /* WaApplyL3ControlAndL3ChickenMode:vlv */
d0cf5ead 4939 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
6f1d69b0
ED
4940 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4941
ecdb4eb7 4942 /* WaForceL3Serialization:vlv */
61939d97
JB
4943 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4944 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4945
ecdb4eb7 4946 /* WaDisableDopClockGating:vlv */
8ab43976
JB
4947 I915_WRITE(GEN7_ROW_CHICKEN2,
4948 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4949
ecdb4eb7 4950 /* This is required by WaCatErrorRejectionIssue:vlv */
6f1d69b0
ED
4951 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4952 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4953 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4954
0f846f81
JB
4955 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4956 * gating disable must be set. Failure to set it results in
4957 * flickering pixels due to Z write ordering failures after
4958 * some amount of runtime in the Mesa "fire" demo, and Unigine
4959 * Sanctuary and Tropics, and apparently anything else with
4960 * alpha test or pixel discard.
4961 *
4962 * According to the spec, bit 11 (RCCUNIT) must also be set,
4963 * but we didn't debug actual testcases to find it out.
4964 *
4965 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4966 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
0f846f81 4967 *
ecdb4eb7
DL
4968 * Also apply WaDisableVDSUnitClockGating:vlv and
4969 * WaDisableRCPBUnitClockGating:vlv.
0f846f81
JB
4970 */
4971 I915_WRITE(GEN6_UCGCTL2,
4972 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6edaa7fc 4973 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
0f846f81
JB
4974 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4975 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4976 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4977
e3f33d46
JB
4978 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4979
e0d8d59b 4980 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6f1d69b0 4981
6b26c86d
DV
4982 I915_WRITE(CACHE_MODE_1,
4983 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f 4984
2d809570 4985 /*
ecdb4eb7 4986 * WaDisableVLVClockGating_VBIIssue:vlv
2d809570
JB
4987 * Disable clock gating on th GCFG unit to prevent a delay
4988 * in the reporting of vblank events.
4989 */
4e8c84a5
JB
4990 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4991
4992 /* Conservative clock gating settings for now */
4993 I915_WRITE(0x9400, 0xffffffff);
4994 I915_WRITE(0x9404, 0xffffffff);
4995 I915_WRITE(0x9408, 0xffffffff);
4996 I915_WRITE(0x940c, 0xffffffff);
4997 I915_WRITE(0x9410, 0xffffffff);
4998 I915_WRITE(0x9414, 0xffffffff);
4999 I915_WRITE(0x9418, 0xffffffff);
6f1d69b0
ED
5000}
5001
1fa61106 5002static void g4x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5003{
5004 struct drm_i915_private *dev_priv = dev->dev_private;
5005 uint32_t dspclk_gate;
5006
5007 I915_WRITE(RENCLK_GATE_D1, 0);
5008 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5009 GS_UNIT_CLOCK_GATE_DISABLE |
5010 CL_UNIT_CLOCK_GATE_DISABLE);
5011 I915_WRITE(RAMCLK_GATE_D, 0);
5012 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5013 OVRUNIT_CLOCK_GATE_DISABLE |
5014 OVCUNIT_CLOCK_GATE_DISABLE;
5015 if (IS_GM45(dev))
5016 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5017 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
5018
5019 /* WaDisableRenderCachePipelinedFlush */
5020 I915_WRITE(CACHE_MODE_0,
5021 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
de1aa629 5022
0e088b8f 5023 g4x_disable_trickle_feed(dev);
6f1d69b0
ED
5024}
5025
1fa61106 5026static void crestline_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5027{
5028 struct drm_i915_private *dev_priv = dev->dev_private;
5029
5030 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5031 I915_WRITE(RENCLK_GATE_D2, 0);
5032 I915_WRITE(DSPCLK_GATE_D, 0);
5033 I915_WRITE(RAMCLK_GATE_D, 0);
5034 I915_WRITE16(DEUC, 0);
20f94967
VS
5035 I915_WRITE(MI_ARB_STATE,
5036 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5037}
5038
1fa61106 5039static void broadwater_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5040{
5041 struct drm_i915_private *dev_priv = dev->dev_private;
5042
5043 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5044 I965_RCC_CLOCK_GATE_DISABLE |
5045 I965_RCPB_CLOCK_GATE_DISABLE |
5046 I965_ISC_CLOCK_GATE_DISABLE |
5047 I965_FBC_CLOCK_GATE_DISABLE);
5048 I915_WRITE(RENCLK_GATE_D2, 0);
20f94967
VS
5049 I915_WRITE(MI_ARB_STATE,
5050 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5051}
5052
1fa61106 5053static void gen3_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5054{
5055 struct drm_i915_private *dev_priv = dev->dev_private;
5056 u32 dstate = I915_READ(D_STATE);
5057
5058 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5059 DSTATE_DOT_CLOCK_GATING;
5060 I915_WRITE(D_STATE, dstate);
13a86b85
CW
5061
5062 if (IS_PINEVIEW(dev))
5063 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
5064
5065 /* IIR "flip pending" means done if this bit is set */
5066 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6f1d69b0
ED
5067}
5068
1fa61106 5069static void i85x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5070{
5071 struct drm_i915_private *dev_priv = dev->dev_private;
5072
5073 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5074}
5075
1fa61106 5076static void i830_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5077{
5078 struct drm_i915_private *dev_priv = dev->dev_private;
5079
5080 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5081}
5082
6f1d69b0
ED
5083void intel_init_clock_gating(struct drm_device *dev)
5084{
5085 struct drm_i915_private *dev_priv = dev->dev_private;
5086
5087 dev_priv->display.init_clock_gating(dev);
6f1d69b0
ED
5088}
5089
7d708ee4
ID
5090void intel_suspend_hw(struct drm_device *dev)
5091{
5092 if (HAS_PCH_LPT(dev))
5093 lpt_suspend_hw(dev);
5094}
5095
c1ca727f
ID
5096#define for_each_power_well(i, power_well, domain_mask, power_domains) \
5097 for (i = 0; \
5098 i < (power_domains)->power_well_count && \
5099 ((power_well) = &(power_domains)->power_wells[i]); \
5100 i++) \
5101 if ((power_well)->domains & (domain_mask))
5102
5103#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5104 for (i = (power_domains)->power_well_count - 1; \
5105 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5106 i--) \
5107 if ((power_well)->domains & (domain_mask))
5108
15d199ea
PZ
5109/**
5110 * We should only use the power well if we explicitly asked the hardware to
5111 * enable it, so check if it's enabled and also check if we've requested it to
5112 * be enabled.
5113 */
c1ca727f
ID
5114static bool hsw_power_well_enabled(struct drm_device *dev,
5115 struct i915_power_well *power_well)
5116{
5117 struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5120 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5121}
5122
ddf9c536
ID
5123bool intel_display_power_enabled_sw(struct drm_device *dev,
5124 enum intel_display_power_domain domain)
5125{
5126 struct drm_i915_private *dev_priv = dev->dev_private;
5127 struct i915_power_domains *power_domains;
5128
5129 power_domains = &dev_priv->power_domains;
5130
5131 return power_domains->domain_use_count[domain];
5132}
5133
b97186f0
PZ
5134bool intel_display_power_enabled(struct drm_device *dev,
5135 enum intel_display_power_domain domain)
15d199ea
PZ
5136{
5137 struct drm_i915_private *dev_priv = dev->dev_private;
c1ca727f
ID
5138 struct i915_power_domains *power_domains;
5139 struct i915_power_well *power_well;
5140 bool is_enabled;
5141 int i;
15d199ea 5142
c1ca727f
ID
5143 power_domains = &dev_priv->power_domains;
5144
5145 is_enabled = true;
5146
5147 mutex_lock(&power_domains->lock);
5148 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6f3ef5dd
ID
5149 if (power_well->always_on)
5150 continue;
5151
c1ca727f
ID
5152 if (!power_well->is_enabled(dev, power_well)) {
5153 is_enabled = false;
5154 break;
5155 }
5156 }
5157 mutex_unlock(&power_domains->lock);
5158
5159 return is_enabled;
15d199ea
PZ
5160}
5161
d5e8fdc8
PZ
5162static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5163{
5164 struct drm_device *dev = dev_priv->dev;
5165 unsigned long irqflags;
5166
f9dcb0df
PZ
5167 /*
5168 * After we re-enable the power well, if we touch VGA register 0x3d5
5169 * we'll get unclaimed register interrupts. This stops after we write
5170 * anything to the VGA MSR register. The vgacon module uses this
5171 * register all the time, so if we unbind our driver and, as a
5172 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5173 * console_unlock(). So make here we touch the VGA MSR register, making
5174 * sure vgacon can keep working normally without triggering interrupts
5175 * and error messages.
5176 */
5177 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5178 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5179 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5180
d5e8fdc8
PZ
5181 if (IS_BROADWELL(dev)) {
5182 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5183 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5184 dev_priv->de_irq_mask[PIPE_B]);
5185 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5186 ~dev_priv->de_irq_mask[PIPE_B] |
5187 GEN8_PIPE_VBLANK);
5188 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5189 dev_priv->de_irq_mask[PIPE_C]);
5190 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5191 ~dev_priv->de_irq_mask[PIPE_C] |
5192 GEN8_PIPE_VBLANK);
5193 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5194 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5195 }
5196}
5197
5198static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5199{
5200 struct drm_device *dev = dev_priv->dev;
5201 enum pipe p;
5202 unsigned long irqflags;
5203
5204 /*
5205 * After this, the registers on the pipes that are part of the power
5206 * well will become zero, so we have to adjust our counters according to
5207 * that.
5208 *
5209 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5210 */
5211 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5212 for_each_pipe(p)
5213 if (p != PIPE_A)
5214 dev->vblank[p].last = 0;
5215 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5216}
5217
c1ca727f
ID
5218static void hsw_set_power_well(struct drm_device *dev,
5219 struct i915_power_well *power_well, bool enable)
d0d3e513
ED
5220{
5221 struct drm_i915_private *dev_priv = dev->dev_private;
fa42e23c
PZ
5222 bool is_enabled, enable_requested;
5223 uint32_t tmp;
d0d3e513 5224
d62292c8
PZ
5225 WARN_ON(dev_priv->pc8.enabled);
5226
fa42e23c 5227 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6aedd1f5
PZ
5228 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5229 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
d0d3e513 5230
fa42e23c
PZ
5231 if (enable) {
5232 if (!enable_requested)
6aedd1f5
PZ
5233 I915_WRITE(HSW_PWR_WELL_DRIVER,
5234 HSW_PWR_WELL_ENABLE_REQUEST);
d0d3e513 5235
fa42e23c
PZ
5236 if (!is_enabled) {
5237 DRM_DEBUG_KMS("Enabling power well\n");
5238 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6aedd1f5 5239 HSW_PWR_WELL_STATE_ENABLED), 20))
fa42e23c
PZ
5240 DRM_ERROR("Timeout enabling power well\n");
5241 }
596cc11e 5242
d5e8fdc8 5243 hsw_power_well_post_enable(dev_priv);
fa42e23c
PZ
5244 } else {
5245 if (enable_requested) {
5246 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
9dbd8feb 5247 POSTING_READ(HSW_PWR_WELL_DRIVER);
fa42e23c 5248 DRM_DEBUG_KMS("Requesting to disable the power well\n");
9dbd8feb 5249
d5e8fdc8 5250 hsw_power_well_post_disable(dev_priv);
d0d3e513
ED
5251 }
5252 }
fa42e23c 5253}
d0d3e513 5254
b4ed4484
ID
5255static void __intel_power_well_get(struct drm_device *dev,
5256 struct i915_power_well *power_well)
2d66aef5 5257{
d62292c8
PZ
5258 struct drm_i915_private *dev_priv = dev->dev_private;
5259
5260 if (!power_well->count++ && power_well->set) {
5261 hsw_disable_package_c8(dev_priv);
c1ca727f 5262 power_well->set(dev, power_well, true);
d62292c8 5263 }
2d66aef5
VS
5264}
5265
b4ed4484
ID
5266static void __intel_power_well_put(struct drm_device *dev,
5267 struct i915_power_well *power_well)
2d66aef5 5268{
d62292c8
PZ
5269 struct drm_i915_private *dev_priv = dev->dev_private;
5270
2d66aef5 5271 WARN_ON(!power_well->count);
c1ca727f 5272
d62292c8
PZ
5273 if (!--power_well->count && power_well->set &&
5274 i915_disable_power_well) {
c1ca727f 5275 power_well->set(dev, power_well, false);
d62292c8
PZ
5276 hsw_enable_package_c8(dev_priv);
5277 }
2d66aef5
VS
5278}
5279
6765625e
VS
5280void intel_display_power_get(struct drm_device *dev,
5281 enum intel_display_power_domain domain)
5282{
5283 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5284 struct i915_power_domains *power_domains;
c1ca727f
ID
5285 struct i915_power_well *power_well;
5286 int i;
6765625e 5287
83c00f55
ID
5288 power_domains = &dev_priv->power_domains;
5289
5290 mutex_lock(&power_domains->lock);
1da51581 5291
c1ca727f
ID
5292 for_each_power_well(i, power_well, BIT(domain), power_domains)
5293 __intel_power_well_get(dev, power_well);
1da51581 5294
ddf9c536
ID
5295 power_domains->domain_use_count[domain]++;
5296
83c00f55 5297 mutex_unlock(&power_domains->lock);
6765625e
VS
5298}
5299
5300void intel_display_power_put(struct drm_device *dev,
5301 enum intel_display_power_domain domain)
5302{
5303 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5304 struct i915_power_domains *power_domains;
c1ca727f
ID
5305 struct i915_power_well *power_well;
5306 int i;
6765625e 5307
83c00f55
ID
5308 power_domains = &dev_priv->power_domains;
5309
5310 mutex_lock(&power_domains->lock);
1da51581 5311
1da51581
ID
5312 WARN_ON(!power_domains->domain_use_count[domain]);
5313 power_domains->domain_use_count[domain]--;
ddf9c536
ID
5314
5315 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5316 __intel_power_well_put(dev, power_well);
1da51581 5317
83c00f55 5318 mutex_unlock(&power_domains->lock);
6765625e
VS
5319}
5320
83c00f55 5321static struct i915_power_domains *hsw_pwr;
a38911a3
WX
5322
5323/* Display audio driver power well request */
5324void i915_request_power_well(void)
5325{
b4ed4484
ID
5326 struct drm_i915_private *dev_priv;
5327
a38911a3
WX
5328 if (WARN_ON(!hsw_pwr))
5329 return;
5330
b4ed4484
ID
5331 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5332 power_domains);
fbeeaa23 5333 intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
a38911a3
WX
5334}
5335EXPORT_SYMBOL_GPL(i915_request_power_well);
5336
5337/* Display audio driver power well release */
5338void i915_release_power_well(void)
5339{
b4ed4484
ID
5340 struct drm_i915_private *dev_priv;
5341
a38911a3
WX
5342 if (WARN_ON(!hsw_pwr))
5343 return;
5344
b4ed4484
ID
5345 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5346 power_domains);
fbeeaa23 5347 intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
a38911a3
WX
5348}
5349EXPORT_SYMBOL_GPL(i915_release_power_well);
5350
1c2256df
ID
5351static struct i915_power_well i9xx_always_on_power_well[] = {
5352 {
5353 .name = "always-on",
5354 .always_on = 1,
5355 .domains = POWER_DOMAIN_MASK,
5356 },
5357};
5358
c1ca727f 5359static struct i915_power_well hsw_power_wells[] = {
6f3ef5dd
ID
5360 {
5361 .name = "always-on",
5362 .always_on = 1,
5363 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5364 },
c1ca727f
ID
5365 {
5366 .name = "display",
5367 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5368 .is_enabled = hsw_power_well_enabled,
5369 .set = hsw_set_power_well,
5370 },
5371};
5372
5373static struct i915_power_well bdw_power_wells[] = {
6f3ef5dd
ID
5374 {
5375 .name = "always-on",
5376 .always_on = 1,
5377 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5378 },
c1ca727f
ID
5379 {
5380 .name = "display",
5381 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5382 .is_enabled = hsw_power_well_enabled,
5383 .set = hsw_set_power_well,
5384 },
5385};
5386
5387#define set_power_wells(power_domains, __power_wells) ({ \
5388 (power_domains)->power_wells = (__power_wells); \
5389 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
5390})
5391
ddb642fb 5392int intel_power_domains_init(struct drm_device *dev)
a38911a3
WX
5393{
5394 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5395 struct i915_power_domains *power_domains = &dev_priv->power_domains;
c1ca727f 5396
83c00f55 5397 mutex_init(&power_domains->lock);
a38911a3 5398
c1ca727f
ID
5399 /*
5400 * The enabling order will be from lower to higher indexed wells,
5401 * the disabling order is reversed.
5402 */
5403 if (IS_HASWELL(dev)) {
5404 set_power_wells(power_domains, hsw_power_wells);
5405 hsw_pwr = power_domains;
5406 } else if (IS_BROADWELL(dev)) {
5407 set_power_wells(power_domains, bdw_power_wells);
5408 hsw_pwr = power_domains;
5409 } else {
1c2256df 5410 set_power_wells(power_domains, i9xx_always_on_power_well);
c1ca727f 5411 }
a38911a3
WX
5412
5413 return 0;
5414}
5415
ddb642fb 5416void intel_power_domains_remove(struct drm_device *dev)
a38911a3
WX
5417{
5418 hsw_pwr = NULL;
5419}
5420
ddb642fb 5421static void intel_power_domains_resume(struct drm_device *dev)
9cdb826c
VS
5422{
5423 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55
ID
5424 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5425 struct i915_power_well *power_well;
c1ca727f 5426 int i;
9cdb826c 5427
83c00f55 5428 mutex_lock(&power_domains->lock);
c1ca727f
ID
5429 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5430 if (power_well->set)
5431 power_well->set(dev, power_well, power_well->count > 0);
5432 }
83c00f55 5433 mutex_unlock(&power_domains->lock);
a38911a3
WX
5434}
5435
fa42e23c
PZ
5436/*
5437 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5438 * when not needed anymore. We have 4 registers that can request the power well
5439 * to be enabled, and it will only be disabled if none of the registers is
5440 * requesting it to be enabled.
d0d3e513 5441 */
ddb642fb 5442void intel_power_domains_init_hw(struct drm_device *dev)
d0d3e513
ED
5443{
5444 struct drm_i915_private *dev_priv = dev->dev_private;
d0d3e513 5445
fa42e23c 5446 /* For now, we need the power well to be always enabled. */
baa70707 5447 intel_display_set_init_power(dev, true);
ddb642fb 5448 intel_power_domains_resume(dev);
d0d3e513 5449
f7243ac9
ID
5450 if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5451 return;
5452
fa42e23c
PZ
5453 /* We're taking over the BIOS, so clear any requests made by it since
5454 * the driver is in charge now. */
6aedd1f5 5455 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
fa42e23c 5456 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
d0d3e513
ED
5457}
5458
c67a470b
PZ
5459/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5460void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5461{
5462 hsw_disable_package_c8(dev_priv);
5463}
5464
5465void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5466{
5467 hsw_enable_package_c8(dev_priv);
5468}
5469
8a187455
PZ
5470void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5471{
5472 struct drm_device *dev = dev_priv->dev;
5473 struct device *device = &dev->pdev->dev;
5474
5475 if (!HAS_RUNTIME_PM(dev))
5476 return;
5477
5478 pm_runtime_get_sync(device);
5479 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5480}
5481
5482void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5483{
5484 struct drm_device *dev = dev_priv->dev;
5485 struct device *device = &dev->pdev->dev;
5486
5487 if (!HAS_RUNTIME_PM(dev))
5488 return;
5489
5490 pm_runtime_mark_last_busy(device);
5491 pm_runtime_put_autosuspend(device);
5492}
5493
5494void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5495{
5496 struct drm_device *dev = dev_priv->dev;
5497 struct device *device = &dev->pdev->dev;
5498
5499 dev_priv->pm.suspended = false;
5500
5501 if (!HAS_RUNTIME_PM(dev))
5502 return;
5503
5504 pm_runtime_set_active(device);
5505
5506 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5507 pm_runtime_mark_last_busy(device);
5508 pm_runtime_use_autosuspend(device);
5509}
5510
5511void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5512{
5513 struct drm_device *dev = dev_priv->dev;
5514 struct device *device = &dev->pdev->dev;
5515
5516 if (!HAS_RUNTIME_PM(dev))
5517 return;
5518
5519 /* Make sure we're not suspended first. */
5520 pm_runtime_get_sync(device);
5521 pm_runtime_disable(device);
5522}
5523
1fa61106
ED
5524/* Set up chip specific power management-related functions */
5525void intel_init_pm(struct drm_device *dev)
5526{
5527 struct drm_i915_private *dev_priv = dev->dev_private;
5528
3a77c4c4 5529 if (HAS_FBC(dev)) {
40045465 5530 if (INTEL_INFO(dev)->gen >= 7) {
1fa61106 5531 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
40045465
VS
5532 dev_priv->display.enable_fbc = gen7_enable_fbc;
5533 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5534 } else if (INTEL_INFO(dev)->gen >= 5) {
5535 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5536 dev_priv->display.enable_fbc = ironlake_enable_fbc;
1fa61106
ED
5537 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5538 } else if (IS_GM45(dev)) {
5539 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5540 dev_priv->display.enable_fbc = g4x_enable_fbc;
5541 dev_priv->display.disable_fbc = g4x_disable_fbc;
40045465 5542 } else {
1fa61106
ED
5543 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5544 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5545 dev_priv->display.disable_fbc = i8xx_disable_fbc;
993495ae
VS
5546
5547 /* This value was pulled out of someone's hat */
5548 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
1fa61106 5549 }
1fa61106
ED
5550 }
5551
c921aba8
DV
5552 /* For cxsr */
5553 if (IS_PINEVIEW(dev))
5554 i915_pineview_get_mem_freq(dev);
5555 else if (IS_GEN5(dev))
5556 i915_ironlake_get_mem_freq(dev);
5557
1fa61106
ED
5558 /* For FIFO watermark updates */
5559 if (HAS_PCH_SPLIT(dev)) {
53615a5e
VS
5560 intel_setup_wm_latency(dev);
5561
bd602544
VS
5562 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5563 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5564 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5565 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
5566 dev_priv->display.update_wm = ilk_update_wm;
5567 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
5568 } else {
5569 DRM_DEBUG_KMS("Failed to read display plane latency. "
5570 "Disable CxSR\n");
5571 }
5572
5573 if (IS_GEN5(dev))
1fa61106 5574 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
bd602544 5575 else if (IS_GEN6(dev))
1fa61106 5576 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
bd602544 5577 else if (IS_IVYBRIDGE(dev))
1fa61106 5578 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
bd602544 5579 else if (IS_HASWELL(dev))
cad2a2d7 5580 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
bd602544 5581 else if (INTEL_INFO(dev)->gen == 8)
1020a5c2 5582 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
1fa61106
ED
5583 } else if (IS_VALLEYVIEW(dev)) {
5584 dev_priv->display.update_wm = valleyview_update_wm;
5585 dev_priv->display.init_clock_gating =
5586 valleyview_init_clock_gating;
1fa61106
ED
5587 } else if (IS_PINEVIEW(dev)) {
5588 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5589 dev_priv->is_ddr3,
5590 dev_priv->fsb_freq,
5591 dev_priv->mem_freq)) {
5592 DRM_INFO("failed to find known CxSR latency "
5593 "(found ddr%s fsb freq %d, mem freq %d), "
5594 "disabling CxSR\n",
5595 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5596 dev_priv->fsb_freq, dev_priv->mem_freq);
5597 /* Disable CxSR and never update its watermark again */
5598 pineview_disable_cxsr(dev);
5599 dev_priv->display.update_wm = NULL;
5600 } else
5601 dev_priv->display.update_wm = pineview_update_wm;
5602 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5603 } else if (IS_G4X(dev)) {
5604 dev_priv->display.update_wm = g4x_update_wm;
5605 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5606 } else if (IS_GEN4(dev)) {
5607 dev_priv->display.update_wm = i965_update_wm;
5608 if (IS_CRESTLINE(dev))
5609 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5610 else if (IS_BROADWATER(dev))
5611 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5612 } else if (IS_GEN3(dev)) {
5613 dev_priv->display.update_wm = i9xx_update_wm;
5614 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5615 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
feb56b93
DV
5616 } else if (IS_GEN2(dev)) {
5617 if (INTEL_INFO(dev)->num_pipes == 1) {
5618 dev_priv->display.update_wm = i845_update_wm;
1fa61106 5619 dev_priv->display.get_fifo_size = i845_get_fifo_size;
feb56b93
DV
5620 } else {
5621 dev_priv->display.update_wm = i9xx_update_wm;
1fa61106 5622 dev_priv->display.get_fifo_size = i830_get_fifo_size;
feb56b93
DV
5623 }
5624
5625 if (IS_I85X(dev) || IS_I865G(dev))
5626 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5627 else
5628 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5629 } else {
5630 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
1fa61106
ED
5631 }
5632}
5633
42c0526c
BW
5634int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5635{
4fc688ce 5636 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5637
5638 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5639 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5640 return -EAGAIN;
5641 }
5642
5643 I915_WRITE(GEN6_PCODE_DATA, *val);
5644 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5645
5646 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5647 500)) {
5648 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5649 return -ETIMEDOUT;
5650 }
5651
5652 *val = I915_READ(GEN6_PCODE_DATA);
5653 I915_WRITE(GEN6_PCODE_DATA, 0);
5654
5655 return 0;
5656}
5657
5658int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5659{
4fc688ce 5660 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5661
5662 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5663 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5664 return -EAGAIN;
5665 }
5666
5667 I915_WRITE(GEN6_PCODE_DATA, val);
5668 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5669
5670 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5671 500)) {
5672 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5673 return -ETIMEDOUT;
5674 }
5675
5676 I915_WRITE(GEN6_PCODE_DATA, 0);
5677
5678 return 0;
5679}
a0e4e199 5680
2ec3815f 5681int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
855ba3be 5682{
07ab118b 5683 int div;
855ba3be 5684
07ab118b 5685 /* 4 x czclk */
2ec3815f 5686 switch (dev_priv->mem_freq) {
855ba3be 5687 case 800:
07ab118b 5688 div = 10;
855ba3be
JB
5689 break;
5690 case 1066:
07ab118b 5691 div = 12;
855ba3be
JB
5692 break;
5693 case 1333:
07ab118b 5694 div = 16;
855ba3be
JB
5695 break;
5696 default:
5697 return -1;
5698 }
5699
2ec3815f 5700 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
855ba3be
JB
5701}
5702
2ec3815f 5703int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
855ba3be 5704{
07ab118b 5705 int mul;
855ba3be 5706
07ab118b 5707 /* 4 x czclk */
2ec3815f 5708 switch (dev_priv->mem_freq) {
855ba3be 5709 case 800:
07ab118b 5710 mul = 10;
855ba3be
JB
5711 break;
5712 case 1066:
07ab118b 5713 mul = 12;
855ba3be
JB
5714 break;
5715 case 1333:
07ab118b 5716 mul = 16;
855ba3be
JB
5717 break;
5718 default:
5719 return -1;
5720 }
5721
2ec3815f 5722 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
855ba3be
JB
5723}
5724
907b28c5
CW
5725void intel_pm_init(struct drm_device *dev)
5726{
5727 struct drm_i915_private *dev_priv = dev->dev_private;
5728
5729 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5730 intel_gen6_powersave_work);
5731}
This page took 0.64302 seconds and 5 git commands to generate.