Merge branch 'topic/drm-vblank-rework' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
CommitLineData
62fdfeaf
EA
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
760285e7 30#include <drm/drmP.h>
62fdfeaf 31#include "i915_drv.h"
760285e7 32#include <drm/i915_drm.h>
62fdfeaf 33#include "i915_trace.h"
881f47b6 34#include "intel_drv.h"
62fdfeaf 35
18393f63
CW
36/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38 * to give some inclination as to some of the magic values used in the various
39 * workarounds!
40 */
41#define CACHELINE_BYTES 64
42
1cf0ba14 43static inline int __ring_space(int head, int tail, int size)
c7dca47b 44{
1cf0ba14 45 int space = head - (tail + I915_RING_FREE_SPACE);
c7dca47b 46 if (space < 0)
1cf0ba14 47 space += size;
c7dca47b
CW
48 return space;
49}
50
1cf0ba14
CW
51static inline int ring_space(struct intel_ring_buffer *ring)
52{
53 return __ring_space(ring->head & HEAD_ADDR, ring->tail, ring->size);
54}
55
88b4aa87 56static bool intel_ring_stopped(struct intel_ring_buffer *ring)
09246732
CW
57{
58 struct drm_i915_private *dev_priv = ring->dev->dev_private;
88b4aa87
MK
59 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60}
09246732 61
88b4aa87
MK
62void __intel_ring_advance(struct intel_ring_buffer *ring)
63{
09246732 64 ring->tail &= ring->size - 1;
88b4aa87 65 if (intel_ring_stopped(ring))
09246732
CW
66 return;
67 ring->write_tail(ring, ring->tail);
68}
69
b72f3acb 70static int
46f0f8d1
CW
71gen2_render_ring_flush(struct intel_ring_buffer *ring,
72 u32 invalidate_domains,
73 u32 flush_domains)
74{
75 u32 cmd;
76 int ret;
77
78 cmd = MI_FLUSH;
31b14c9f 79 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
46f0f8d1
CW
80 cmd |= MI_NO_WRITE_FLUSH;
81
82 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
83 cmd |= MI_READ_FLUSH;
84
85 ret = intel_ring_begin(ring, 2);
86 if (ret)
87 return ret;
88
89 intel_ring_emit(ring, cmd);
90 intel_ring_emit(ring, MI_NOOP);
91 intel_ring_advance(ring);
92
93 return 0;
94}
95
96static int
97gen4_render_ring_flush(struct intel_ring_buffer *ring,
98 u32 invalidate_domains,
99 u32 flush_domains)
62fdfeaf 100{
78501eac 101 struct drm_device *dev = ring->dev;
6f392d54 102 u32 cmd;
b72f3acb 103 int ret;
6f392d54 104
36d527de
CW
105 /*
106 * read/write caches:
107 *
108 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
109 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
110 * also flushed at 2d versus 3d pipeline switches.
111 *
112 * read-only caches:
113 *
114 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
115 * MI_READ_FLUSH is set, and is always flushed on 965.
116 *
117 * I915_GEM_DOMAIN_COMMAND may not exist?
118 *
119 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
120 * invalidated when MI_EXE_FLUSH is set.
121 *
122 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
123 * invalidated with every MI_FLUSH.
124 *
125 * TLBs:
126 *
127 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
128 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
129 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
130 * are flushed at any MI_FLUSH.
131 */
132
133 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
46f0f8d1 134 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
36d527de 135 cmd &= ~MI_NO_WRITE_FLUSH;
36d527de
CW
136 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
137 cmd |= MI_EXE_FLUSH;
62fdfeaf 138
36d527de
CW
139 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
140 (IS_G4X(dev) || IS_GEN5(dev)))
141 cmd |= MI_INVALIDATE_ISP;
70eac33e 142
36d527de
CW
143 ret = intel_ring_begin(ring, 2);
144 if (ret)
145 return ret;
b72f3acb 146
36d527de
CW
147 intel_ring_emit(ring, cmd);
148 intel_ring_emit(ring, MI_NOOP);
149 intel_ring_advance(ring);
b72f3acb
CW
150
151 return 0;
8187a2b7
ZN
152}
153
8d315287
JB
154/**
155 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
156 * implementing two workarounds on gen6. From section 1.4.7.1
157 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
158 *
159 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
160 * produced by non-pipelined state commands), software needs to first
161 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
162 * 0.
163 *
164 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
165 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
166 *
167 * And the workaround for these two requires this workaround first:
168 *
169 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
170 * BEFORE the pipe-control with a post-sync op and no write-cache
171 * flushes.
172 *
173 * And this last workaround is tricky because of the requirements on
174 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
175 * volume 2 part 1:
176 *
177 * "1 of the following must also be set:
178 * - Render Target Cache Flush Enable ([12] of DW1)
179 * - Depth Cache Flush Enable ([0] of DW1)
180 * - Stall at Pixel Scoreboard ([1] of DW1)
181 * - Depth Stall ([13] of DW1)
182 * - Post-Sync Operation ([13] of DW1)
183 * - Notify Enable ([8] of DW1)"
184 *
185 * The cache flushes require the workaround flush that triggered this
186 * one, so we can't use it. Depth stall would trigger the same.
187 * Post-sync nonzero is what triggered this second workaround, so we
188 * can't use that one either. Notify enable is IRQs, which aren't
189 * really our business. That leaves only stall at scoreboard.
190 */
191static int
192intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
193{
18393f63 194 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
195 int ret;
196
197
198 ret = intel_ring_begin(ring, 6);
199 if (ret)
200 return ret;
201
202 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
203 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
204 PIPE_CONTROL_STALL_AT_SCOREBOARD);
205 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
206 intel_ring_emit(ring, 0); /* low dword */
207 intel_ring_emit(ring, 0); /* high dword */
208 intel_ring_emit(ring, MI_NOOP);
209 intel_ring_advance(ring);
210
211 ret = intel_ring_begin(ring, 6);
212 if (ret)
213 return ret;
214
215 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
216 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0);
219 intel_ring_emit(ring, 0);
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 return 0;
224}
225
226static int
227gen6_render_ring_flush(struct intel_ring_buffer *ring,
228 u32 invalidate_domains, u32 flush_domains)
229{
230 u32 flags = 0;
18393f63 231 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
232 int ret;
233
b3111509
PZ
234 /* Force SNB workarounds for PIPE_CONTROL flushes */
235 ret = intel_emit_post_sync_nonzero_flush(ring);
236 if (ret)
237 return ret;
238
8d315287
JB
239 /* Just flush everything. Experiments have shown that reducing the
240 * number of bits based on the write domains has little performance
241 * impact.
242 */
7d54a904
CW
243 if (flush_domains) {
244 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
245 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
246 /*
247 * Ensure that any following seqno writes only happen
248 * when the render cache is indeed flushed.
249 */
97f209bc 250 flags |= PIPE_CONTROL_CS_STALL;
7d54a904
CW
251 }
252 if (invalidate_domains) {
253 flags |= PIPE_CONTROL_TLB_INVALIDATE;
254 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
255 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
256 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
259 /*
260 * TLB invalidate requires a post-sync write.
261 */
3ac78313 262 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
7d54a904 263 }
8d315287 264
6c6cf5aa 265 ret = intel_ring_begin(ring, 4);
8d315287
JB
266 if (ret)
267 return ret;
268
6c6cf5aa 269 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
8d315287
JB
270 intel_ring_emit(ring, flags);
271 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
6c6cf5aa 272 intel_ring_emit(ring, 0);
8d315287
JB
273 intel_ring_advance(ring);
274
275 return 0;
276}
277
f3987631
PZ
278static int
279gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
280{
281 int ret;
282
283 ret = intel_ring_begin(ring, 4);
284 if (ret)
285 return ret;
286
287 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
288 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
289 PIPE_CONTROL_STALL_AT_SCOREBOARD);
290 intel_ring_emit(ring, 0);
291 intel_ring_emit(ring, 0);
292 intel_ring_advance(ring);
293
294 return 0;
295}
296
fd3da6c9
RV
297static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
298{
299 int ret;
300
301 if (!ring->fbc_dirty)
302 return 0;
303
37c1d94f 304 ret = intel_ring_begin(ring, 6);
fd3da6c9
RV
305 if (ret)
306 return ret;
fd3da6c9
RV
307 /* WaFbcNukeOn3DBlt:ivb/hsw */
308 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
309 intel_ring_emit(ring, MSG_FBC_REND_STATE);
310 intel_ring_emit(ring, value);
37c1d94f
VS
311 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
312 intel_ring_emit(ring, MSG_FBC_REND_STATE);
313 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
fd3da6c9
RV
314 intel_ring_advance(ring);
315
316 ring->fbc_dirty = false;
317 return 0;
318}
319
4772eaeb
PZ
320static int
321gen7_render_ring_flush(struct intel_ring_buffer *ring,
322 u32 invalidate_domains, u32 flush_domains)
323{
324 u32 flags = 0;
18393f63 325 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4772eaeb
PZ
326 int ret;
327
f3987631
PZ
328 /*
329 * Ensure that any following seqno writes only happen when the render
330 * cache is indeed flushed.
331 *
332 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 * don't try to be clever and just set it unconditionally.
335 */
336 flags |= PIPE_CONTROL_CS_STALL;
337
4772eaeb
PZ
338 /* Just flush everything. Experiments have shown that reducing the
339 * number of bits based on the write domains has little performance
340 * impact.
341 */
342 if (flush_domains) {
343 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4772eaeb
PZ
345 }
346 if (invalidate_domains) {
347 flags |= PIPE_CONTROL_TLB_INVALIDATE;
348 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353 /*
354 * TLB invalidate requires a post-sync write.
355 */
356 flags |= PIPE_CONTROL_QW_WRITE;
b9e1faa7 357 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
f3987631
PZ
358
359 /* Workaround: we must issue a pipe_control with CS-stall bit
360 * set before a pipe_control command that has the state cache
361 * invalidate bit set. */
362 gen7_render_ring_cs_stall_wa(ring);
4772eaeb
PZ
363 }
364
365 ret = intel_ring_begin(ring, 4);
366 if (ret)
367 return ret;
368
369 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
370 intel_ring_emit(ring, flags);
b9e1faa7 371 intel_ring_emit(ring, scratch_addr);
4772eaeb
PZ
372 intel_ring_emit(ring, 0);
373 intel_ring_advance(ring);
374
9688ecad 375 if (!invalidate_domains && flush_domains)
fd3da6c9
RV
376 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
377
4772eaeb
PZ
378 return 0;
379}
380
a5f3d68e
BW
381static int
382gen8_render_ring_flush(struct intel_ring_buffer *ring,
383 u32 invalidate_domains, u32 flush_domains)
384{
385 u32 flags = 0;
18393f63 386 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
a5f3d68e
BW
387 int ret;
388
389 flags |= PIPE_CONTROL_CS_STALL;
390
391 if (flush_domains) {
392 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
393 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
394 }
395 if (invalidate_domains) {
396 flags |= PIPE_CONTROL_TLB_INVALIDATE;
397 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
398 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
399 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
400 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
401 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
402 flags |= PIPE_CONTROL_QW_WRITE;
403 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
404 }
405
406 ret = intel_ring_begin(ring, 6);
407 if (ret)
408 return ret;
409
410 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
411 intel_ring_emit(ring, flags);
412 intel_ring_emit(ring, scratch_addr);
413 intel_ring_emit(ring, 0);
414 intel_ring_emit(ring, 0);
415 intel_ring_emit(ring, 0);
416 intel_ring_advance(ring);
417
418 return 0;
419
420}
421
78501eac 422static void ring_write_tail(struct intel_ring_buffer *ring,
297b0c5b 423 u32 value)
d46eefa2 424{
4640c4ff 425 struct drm_i915_private *dev_priv = ring->dev->dev_private;
297b0c5b 426 I915_WRITE_TAIL(ring, value);
d46eefa2
XH
427}
428
50877445 429u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
8187a2b7 430{
4640c4ff 431 struct drm_i915_private *dev_priv = ring->dev->dev_private;
50877445 432 u64 acthd;
8187a2b7 433
50877445
CW
434 if (INTEL_INFO(ring->dev)->gen >= 8)
435 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
436 RING_ACTHD_UDW(ring->mmio_base));
437 else if (INTEL_INFO(ring->dev)->gen >= 4)
438 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
439 else
440 acthd = I915_READ(ACTHD);
441
442 return acthd;
8187a2b7
ZN
443}
444
035dc1e0
DV
445static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
446{
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 u32 addr;
449
450 addr = dev_priv->status_page_dmah->busaddr;
451 if (INTEL_INFO(ring->dev)->gen >= 4)
452 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
453 I915_WRITE(HWS_PGA, addr);
454}
455
9991ae78 456static bool stop_ring(struct intel_ring_buffer *ring)
8187a2b7 457{
9991ae78 458 struct drm_i915_private *dev_priv = to_i915(ring->dev);
8187a2b7 459
9991ae78
CW
460 if (!IS_GEN2(ring->dev)) {
461 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
462 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
463 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
464 return false;
465 }
466 }
b7884eb4 467
7f2ab699 468 I915_WRITE_CTL(ring, 0);
570ef608 469 I915_WRITE_HEAD(ring, 0);
78501eac 470 ring->write_tail(ring, 0);
8187a2b7 471
9991ae78
CW
472 if (!IS_GEN2(ring->dev)) {
473 (void)I915_READ_CTL(ring);
474 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
475 }
a51435a3 476
9991ae78
CW
477 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
478}
8187a2b7 479
9991ae78
CW
480static int init_ring_common(struct intel_ring_buffer *ring)
481{
482 struct drm_device *dev = ring->dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 struct drm_i915_gem_object *obj = ring->obj;
485 int ret = 0;
486
487 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
488
489 if (!stop_ring(ring)) {
490 /* G45 ring initialization often fails to reset head to zero */
6fd0d56e
CW
491 DRM_DEBUG_KMS("%s head not reset to zero "
492 "ctl %08x head %08x tail %08x start %08x\n",
493 ring->name,
494 I915_READ_CTL(ring),
495 I915_READ_HEAD(ring),
496 I915_READ_TAIL(ring),
497 I915_READ_START(ring));
8187a2b7 498
9991ae78 499 if (!stop_ring(ring)) {
6fd0d56e
CW
500 DRM_ERROR("failed to set %s head to zero "
501 "ctl %08x head %08x tail %08x start %08x\n",
502 ring->name,
503 I915_READ_CTL(ring),
504 I915_READ_HEAD(ring),
505 I915_READ_TAIL(ring),
506 I915_READ_START(ring));
9991ae78
CW
507 ret = -EIO;
508 goto out;
6fd0d56e 509 }
8187a2b7
ZN
510 }
511
9991ae78
CW
512 if (I915_NEED_GFX_HWS(dev))
513 intel_ring_setup_status_page(ring);
514 else
515 ring_setup_phys_status_page(ring);
516
0d8957c8
DV
517 /* Initialize the ring. This must happen _after_ we've cleared the ring
518 * registers with the above sequence (the readback of the HEAD registers
519 * also enforces ordering), otherwise the hw might lose the new ring
520 * register values. */
f343c5f6 521 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
7f2ab699 522 I915_WRITE_CTL(ring,
ae69b42a 523 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
5d031e5b 524 | RING_VALID);
8187a2b7 525
8187a2b7 526 /* If the head is still not zero, the ring is dead */
f01db988 527 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
f343c5f6 528 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
f01db988 529 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
e74cfed5 530 DRM_ERROR("%s initialization failed "
48e48a0b
CW
531 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
532 ring->name,
533 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
534 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
535 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
b7884eb4
DV
536 ret = -EIO;
537 goto out;
8187a2b7
ZN
538 }
539
78501eac
CW
540 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
541 i915_kernel_lost_context(ring->dev);
8187a2b7 542 else {
c7dca47b 543 ring->head = I915_READ_HEAD(ring);
870e86dd 544 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
c7dca47b 545 ring->space = ring_space(ring);
c3b20037 546 ring->last_retired_head = -1;
8187a2b7 547 }
1ec14ad3 548
50f018df
CW
549 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
550
b7884eb4 551out:
c8d9a590 552 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
b7884eb4
DV
553
554 return ret;
8187a2b7
ZN
555}
556
c6df541c
CW
557static int
558init_pipe_control(struct intel_ring_buffer *ring)
559{
c6df541c
CW
560 int ret;
561
0d1aacac 562 if (ring->scratch.obj)
c6df541c
CW
563 return 0;
564
0d1aacac
CW
565 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
566 if (ring->scratch.obj == NULL) {
c6df541c
CW
567 DRM_ERROR("Failed to allocate seqno page\n");
568 ret = -ENOMEM;
569 goto err;
570 }
e4ffd173 571
a9cc726c
DV
572 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
573 if (ret)
574 goto err_unref;
c6df541c 575
1ec9e26d 576 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
c6df541c
CW
577 if (ret)
578 goto err_unref;
579
0d1aacac
CW
580 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
581 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
582 if (ring->scratch.cpu_page == NULL) {
56b085a0 583 ret = -ENOMEM;
c6df541c 584 goto err_unpin;
56b085a0 585 }
c6df541c 586
2b1086cc 587 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
0d1aacac 588 ring->name, ring->scratch.gtt_offset);
c6df541c
CW
589 return 0;
590
591err_unpin:
d7f46fc4 592 i915_gem_object_ggtt_unpin(ring->scratch.obj);
c6df541c 593err_unref:
0d1aacac 594 drm_gem_object_unreference(&ring->scratch.obj->base);
c6df541c 595err:
c6df541c
CW
596 return ret;
597}
598
78501eac 599static int init_render_ring(struct intel_ring_buffer *ring)
8187a2b7 600{
78501eac 601 struct drm_device *dev = ring->dev;
1ec14ad3 602 struct drm_i915_private *dev_priv = dev->dev_private;
78501eac 603 int ret = init_ring_common(ring);
a69ffdbf 604
61a563a2
AG
605 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
606 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
6b26c86d 607 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1c8c38c5
CW
608
609 /* We need to disable the AsyncFlip performance optimisations in order
610 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
611 * programmed to '1' on all products.
8693a824 612 *
b3f797ac 613 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1c8c38c5
CW
614 */
615 if (INTEL_INFO(dev)->gen >= 6)
616 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
617
f05bb0c7 618 /* Required for the hardware to program scanline values for waiting */
01fa0302 619 /* WaEnableFlushTlbInvalidationMode:snb */
f05bb0c7
CW
620 if (INTEL_INFO(dev)->gen == 6)
621 I915_WRITE(GFX_MODE,
aa83e30d 622 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
f05bb0c7 623
01fa0302 624 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1c8c38c5
CW
625 if (IS_GEN7(dev))
626 I915_WRITE(GFX_MODE_GEN7,
01fa0302 627 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1c8c38c5 628 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
78501eac 629
8d315287 630 if (INTEL_INFO(dev)->gen >= 5) {
c6df541c
CW
631 ret = init_pipe_control(ring);
632 if (ret)
633 return ret;
634 }
635
5e13a0c5 636 if (IS_GEN6(dev)) {
3a69ddd6
KG
637 /* From the Sandybridge PRM, volume 1 part 3, page 24:
638 * "If this bit is set, STCunit will have LRA as replacement
639 * policy. [...] This bit must be reset. LRA replacement
640 * policy is not supported."
641 */
642 I915_WRITE(CACHE_MODE_0,
5e13a0c5 643 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
84f9f938
BW
644 }
645
6b26c86d
DV
646 if (INTEL_INFO(dev)->gen >= 6)
647 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
84f9f938 648
040d2baa 649 if (HAS_L3_DPF(dev))
35a85ac6 650 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
15b9f80e 651
8187a2b7
ZN
652 return ret;
653}
654
c6df541c
CW
655static void render_ring_cleanup(struct intel_ring_buffer *ring)
656{
b45305fc
DV
657 struct drm_device *dev = ring->dev;
658
0d1aacac 659 if (ring->scratch.obj == NULL)
c6df541c
CW
660 return;
661
0d1aacac
CW
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
d7f46fc4 664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
0d1aacac 665 }
aaf8a516 666
0d1aacac
CW
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
c6df541c
CW
669}
670
024a43e1
BW
671static int gen6_signal(struct intel_ring_buffer *signaller,
672 unsigned int num_dwords)
1ec14ad3 673{
024a43e1
BW
674 struct drm_device *dev = signaller->dev;
675 struct drm_i915_private *dev_priv = dev->dev_private;
78325f2d 676 struct intel_ring_buffer *useless;
024a43e1 677 int i, ret;
78325f2d 678
024a43e1
BW
679 /* NB: In order to be able to do semaphore MBOX updates for varying
680 * number of rings, it's easiest if we round up each individual update
681 * to a multiple of 2 (since ring updates must always be a multiple of
682 * 2) even though the actual update only requires 3 dwords.
683 */
ad776f8b 684#define MBOX_UPDATE_DWORDS 4
024a43e1
BW
685 if (i915_semaphore_is_enabled(dev))
686 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
6e450ab2
MK
687 else
688 return intel_ring_begin(signaller, num_dwords);
024a43e1
BW
689
690 ret = intel_ring_begin(signaller, num_dwords);
691 if (ret)
692 return ret;
693#undef MBOX_UPDATE_DWORDS
694
78325f2d
BW
695 for_each_ring(useless, dev_priv, i) {
696 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
697 if (mbox_reg != GEN6_NOSYNC) {
698 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
699 intel_ring_emit(signaller, mbox_reg);
700 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
701 intel_ring_emit(signaller, MI_NOOP);
702 } else {
703 intel_ring_emit(signaller, MI_NOOP);
704 intel_ring_emit(signaller, MI_NOOP);
705 intel_ring_emit(signaller, MI_NOOP);
706 intel_ring_emit(signaller, MI_NOOP);
707 }
708 }
024a43e1
BW
709
710 return 0;
1ec14ad3
CW
711}
712
c8c99b0f
BW
713/**
714 * gen6_add_request - Update the semaphore mailbox registers
715 *
716 * @ring - ring that is adding a request
717 * @seqno - return seqno stuck into the ring
718 *
719 * Update the mailbox registers in the *other* rings with the current seqno.
720 * This acts like a signal in the canonical semaphore.
721 */
1ec14ad3 722static int
9d773091 723gen6_add_request(struct intel_ring_buffer *ring)
1ec14ad3 724{
024a43e1 725 int ret;
52ed2325 726
024a43e1 727 ret = ring->semaphore.signal(ring, 4);
1ec14ad3
CW
728 if (ret)
729 return ret;
730
1ec14ad3
CW
731 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
732 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1823521d 733 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1ec14ad3 734 intel_ring_emit(ring, MI_USER_INTERRUPT);
09246732 735 __intel_ring_advance(ring);
1ec14ad3 736
1ec14ad3
CW
737 return 0;
738}
739
f72b3435
MK
740static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
741 u32 seqno)
742{
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 return dev_priv->last_seqno < seqno;
745}
746
c8c99b0f
BW
747/**
748 * intel_ring_sync - sync the waiter to the signaller on seqno
749 *
750 * @waiter - ring that is waiting
751 * @signaller - ring which has, or will signal
752 * @seqno - seqno which the waiter will block on
753 */
754static int
686cb5f9
DV
755gen6_ring_sync(struct intel_ring_buffer *waiter,
756 struct intel_ring_buffer *signaller,
757 u32 seqno)
1ec14ad3 758{
c8c99b0f
BW
759 u32 dw1 = MI_SEMAPHORE_MBOX |
760 MI_SEMAPHORE_COMPARE |
761 MI_SEMAPHORE_REGISTER;
ebc348b2
BW
762 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
763 int ret;
1ec14ad3 764
1500f7ea
BW
765 /* Throughout all of the GEM code, seqno passed implies our current
766 * seqno is >= the last seqno executed. However for hardware the
767 * comparison is strictly greater than.
768 */
769 seqno -= 1;
770
ebc348b2 771 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
686cb5f9 772
c8c99b0f 773 ret = intel_ring_begin(waiter, 4);
1ec14ad3
CW
774 if (ret)
775 return ret;
776
f72b3435
MK
777 /* If seqno wrap happened, omit the wait with no-ops */
778 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
ebc348b2 779 intel_ring_emit(waiter, dw1 | wait_mbox);
f72b3435
MK
780 intel_ring_emit(waiter, seqno);
781 intel_ring_emit(waiter, 0);
782 intel_ring_emit(waiter, MI_NOOP);
783 } else {
784 intel_ring_emit(waiter, MI_NOOP);
785 intel_ring_emit(waiter, MI_NOOP);
786 intel_ring_emit(waiter, MI_NOOP);
787 intel_ring_emit(waiter, MI_NOOP);
788 }
c8c99b0f 789 intel_ring_advance(waiter);
1ec14ad3
CW
790
791 return 0;
792}
793
c6df541c
CW
794#define PIPE_CONTROL_FLUSH(ring__, addr__) \
795do { \
fcbc34e4
KG
796 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
797 PIPE_CONTROL_DEPTH_STALL); \
c6df541c
CW
798 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
799 intel_ring_emit(ring__, 0); \
800 intel_ring_emit(ring__, 0); \
801} while (0)
802
803static int
9d773091 804pc_render_add_request(struct intel_ring_buffer *ring)
c6df541c 805{
18393f63 806 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
c6df541c
CW
807 int ret;
808
809 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
810 * incoherent with writes to memory, i.e. completely fubar,
811 * so we need to use PIPE_NOTIFY instead.
812 *
813 * However, we also need to workaround the qword write
814 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
815 * memory before requesting an interrupt.
816 */
817 ret = intel_ring_begin(ring, 32);
818 if (ret)
819 return ret;
820
fcbc34e4 821 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
9d971b37
KG
822 PIPE_CONTROL_WRITE_FLUSH |
823 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
0d1aacac 824 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1823521d 825 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
c6df541c
CW
826 intel_ring_emit(ring, 0);
827 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 828 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
c6df541c 829 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 830 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 831 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 832 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 833 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 834 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 835 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 836 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 837 PIPE_CONTROL_FLUSH(ring, scratch_addr);
a71d8d94 838
fcbc34e4 839 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
9d971b37
KG
840 PIPE_CONTROL_WRITE_FLUSH |
841 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
c6df541c 842 PIPE_CONTROL_NOTIFY);
0d1aacac 843 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1823521d 844 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
c6df541c 845 intel_ring_emit(ring, 0);
09246732 846 __intel_ring_advance(ring);
c6df541c 847
c6df541c
CW
848 return 0;
849}
850
4cd53c0c 851static u32
b2eadbc8 852gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
4cd53c0c 853{
4cd53c0c
DV
854 /* Workaround to force correct ordering between irq and seqno writes on
855 * ivb (and maybe also on snb) by reading from a CS register (like
856 * ACTHD) before reading the status page. */
50877445
CW
857 if (!lazy_coherency) {
858 struct drm_i915_private *dev_priv = ring->dev->dev_private;
859 POSTING_READ(RING_ACTHD(ring->mmio_base));
860 }
861
4cd53c0c
DV
862 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
863}
864
8187a2b7 865static u32
b2eadbc8 866ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
8187a2b7 867{
1ec14ad3
CW
868 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
869}
870
b70ec5bf
MK
871static void
872ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
873{
874 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
875}
876
c6df541c 877static u32
b2eadbc8 878pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
c6df541c 879{
0d1aacac 880 return ring->scratch.cpu_page[0];
c6df541c
CW
881}
882
b70ec5bf
MK
883static void
884pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
885{
0d1aacac 886 ring->scratch.cpu_page[0] = seqno;
b70ec5bf
MK
887}
888
e48d8634
DV
889static bool
890gen5_ring_get_irq(struct intel_ring_buffer *ring)
891{
892 struct drm_device *dev = ring->dev;
4640c4ff 893 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 894 unsigned long flags;
e48d8634
DV
895
896 if (!dev->irq_enabled)
897 return false;
898
7338aefa 899 spin_lock_irqsave(&dev_priv->irq_lock, flags);
43eaea13
PZ
900 if (ring->irq_refcount++ == 0)
901 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
7338aefa 902 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
e48d8634
DV
903
904 return true;
905}
906
907static void
908gen5_ring_put_irq(struct intel_ring_buffer *ring)
909{
910 struct drm_device *dev = ring->dev;
4640c4ff 911 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 912 unsigned long flags;
e48d8634 913
7338aefa 914 spin_lock_irqsave(&dev_priv->irq_lock, flags);
43eaea13
PZ
915 if (--ring->irq_refcount == 0)
916 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
7338aefa 917 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
e48d8634
DV
918}
919
b13c2b96 920static bool
e3670319 921i9xx_ring_get_irq(struct intel_ring_buffer *ring)
62fdfeaf 922{
78501eac 923 struct drm_device *dev = ring->dev;
4640c4ff 924 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 925 unsigned long flags;
62fdfeaf 926
b13c2b96
CW
927 if (!dev->irq_enabled)
928 return false;
929
7338aefa 930 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 931 if (ring->irq_refcount++ == 0) {
f637fde4
DV
932 dev_priv->irq_mask &= ~ring->irq_enable_mask;
933 I915_WRITE(IMR, dev_priv->irq_mask);
934 POSTING_READ(IMR);
935 }
7338aefa 936 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
b13c2b96
CW
937
938 return true;
62fdfeaf
EA
939}
940
8187a2b7 941static void
e3670319 942i9xx_ring_put_irq(struct intel_ring_buffer *ring)
62fdfeaf 943{
78501eac 944 struct drm_device *dev = ring->dev;
4640c4ff 945 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 946 unsigned long flags;
62fdfeaf 947
7338aefa 948 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 949 if (--ring->irq_refcount == 0) {
f637fde4
DV
950 dev_priv->irq_mask |= ring->irq_enable_mask;
951 I915_WRITE(IMR, dev_priv->irq_mask);
952 POSTING_READ(IMR);
953 }
7338aefa 954 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
62fdfeaf
EA
955}
956
c2798b19
CW
957static bool
958i8xx_ring_get_irq(struct intel_ring_buffer *ring)
959{
960 struct drm_device *dev = ring->dev;
4640c4ff 961 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 962 unsigned long flags;
c2798b19
CW
963
964 if (!dev->irq_enabled)
965 return false;
966
7338aefa 967 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 968 if (ring->irq_refcount++ == 0) {
c2798b19
CW
969 dev_priv->irq_mask &= ~ring->irq_enable_mask;
970 I915_WRITE16(IMR, dev_priv->irq_mask);
971 POSTING_READ16(IMR);
972 }
7338aefa 973 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
c2798b19
CW
974
975 return true;
976}
977
978static void
979i8xx_ring_put_irq(struct intel_ring_buffer *ring)
980{
981 struct drm_device *dev = ring->dev;
4640c4ff 982 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 983 unsigned long flags;
c2798b19 984
7338aefa 985 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 986 if (--ring->irq_refcount == 0) {
c2798b19
CW
987 dev_priv->irq_mask |= ring->irq_enable_mask;
988 I915_WRITE16(IMR, dev_priv->irq_mask);
989 POSTING_READ16(IMR);
990 }
7338aefa 991 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
c2798b19
CW
992}
993
78501eac 994void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
8187a2b7 995{
4593010b 996 struct drm_device *dev = ring->dev;
4640c4ff 997 struct drm_i915_private *dev_priv = ring->dev->dev_private;
4593010b
EA
998 u32 mmio = 0;
999
1000 /* The ring status page addresses are no longer next to the rest of
1001 * the ring registers as of gen7.
1002 */
1003 if (IS_GEN7(dev)) {
1004 switch (ring->id) {
96154f2f 1005 case RCS:
4593010b
EA
1006 mmio = RENDER_HWS_PGA_GEN7;
1007 break;
96154f2f 1008 case BCS:
4593010b
EA
1009 mmio = BLT_HWS_PGA_GEN7;
1010 break;
77fe2ff3
ZY
1011 /*
1012 * VCS2 actually doesn't exist on Gen7. Only shut up
1013 * gcc switch check warning
1014 */
1015 case VCS2:
96154f2f 1016 case VCS:
4593010b
EA
1017 mmio = BSD_HWS_PGA_GEN7;
1018 break;
4a3dd19d 1019 case VECS:
9a8a2213
BW
1020 mmio = VEBOX_HWS_PGA_GEN7;
1021 break;
4593010b
EA
1022 }
1023 } else if (IS_GEN6(ring->dev)) {
1024 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1025 } else {
eb0d4b75 1026 /* XXX: gen8 returns to sanity */
4593010b
EA
1027 mmio = RING_HWS_PGA(ring->mmio_base);
1028 }
1029
78501eac
CW
1030 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1031 POSTING_READ(mmio);
884020bf 1032
dc616b89
DL
1033 /*
1034 * Flush the TLB for this page
1035 *
1036 * FIXME: These two bits have disappeared on gen8, so a question
1037 * arises: do we still need this and if so how should we go about
1038 * invalidating the TLB?
1039 */
1040 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
884020bf 1041 u32 reg = RING_INSTPM(ring->mmio_base);
02f6a1e7
NKK
1042
1043 /* ring should be idle before issuing a sync flush*/
1044 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1045
884020bf
CW
1046 I915_WRITE(reg,
1047 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1048 INSTPM_SYNC_FLUSH));
1049 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1050 1000))
1051 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1052 ring->name);
1053 }
8187a2b7
ZN
1054}
1055
b72f3acb 1056static int
78501eac
CW
1057bsd_ring_flush(struct intel_ring_buffer *ring,
1058 u32 invalidate_domains,
1059 u32 flush_domains)
d1b851fc 1060{
b72f3acb
CW
1061 int ret;
1062
b72f3acb
CW
1063 ret = intel_ring_begin(ring, 2);
1064 if (ret)
1065 return ret;
1066
1067 intel_ring_emit(ring, MI_FLUSH);
1068 intel_ring_emit(ring, MI_NOOP);
1069 intel_ring_advance(ring);
1070 return 0;
d1b851fc
ZN
1071}
1072
3cce469c 1073static int
9d773091 1074i9xx_add_request(struct intel_ring_buffer *ring)
d1b851fc 1075{
3cce469c
CW
1076 int ret;
1077
1078 ret = intel_ring_begin(ring, 4);
1079 if (ret)
1080 return ret;
6f392d54 1081
3cce469c
CW
1082 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1083 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1823521d 1084 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
3cce469c 1085 intel_ring_emit(ring, MI_USER_INTERRUPT);
09246732 1086 __intel_ring_advance(ring);
d1b851fc 1087
3cce469c 1088 return 0;
d1b851fc
ZN
1089}
1090
0f46832f 1091static bool
25c06300 1092gen6_ring_get_irq(struct intel_ring_buffer *ring)
0f46832f
CW
1093{
1094 struct drm_device *dev = ring->dev;
4640c4ff 1095 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1096 unsigned long flags;
0f46832f
CW
1097
1098 if (!dev->irq_enabled)
1099 return false;
1100
7338aefa 1101 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1102 if (ring->irq_refcount++ == 0) {
040d2baa 1103 if (HAS_L3_DPF(dev) && ring->id == RCS)
cc609d5d
BW
1104 I915_WRITE_IMR(ring,
1105 ~(ring->irq_enable_mask |
35a85ac6 1106 GT_PARITY_ERROR(dev)));
15b9f80e
BW
1107 else
1108 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
43eaea13 1109 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
0f46832f 1110 }
7338aefa 1111 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
0f46832f
CW
1112
1113 return true;
1114}
1115
1116static void
25c06300 1117gen6_ring_put_irq(struct intel_ring_buffer *ring)
0f46832f
CW
1118{
1119 struct drm_device *dev = ring->dev;
4640c4ff 1120 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1121 unsigned long flags;
0f46832f 1122
7338aefa 1123 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1124 if (--ring->irq_refcount == 0) {
040d2baa 1125 if (HAS_L3_DPF(dev) && ring->id == RCS)
35a85ac6 1126 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
15b9f80e
BW
1127 else
1128 I915_WRITE_IMR(ring, ~0);
43eaea13 1129 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1ec14ad3 1130 }
7338aefa 1131 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
d1b851fc
ZN
1132}
1133
a19d2933
BW
1134static bool
1135hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1136{
1137 struct drm_device *dev = ring->dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 unsigned long flags;
1140
1141 if (!dev->irq_enabled)
1142 return false;
1143
59cdb63d 1144 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1145 if (ring->irq_refcount++ == 0) {
a19d2933 1146 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
edbfdb45 1147 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
a19d2933 1148 }
59cdb63d 1149 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
a19d2933
BW
1150
1151 return true;
1152}
1153
1154static void
1155hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1156{
1157 struct drm_device *dev = ring->dev;
1158 struct drm_i915_private *dev_priv = dev->dev_private;
1159 unsigned long flags;
1160
1161 if (!dev->irq_enabled)
1162 return;
1163
59cdb63d 1164 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1165 if (--ring->irq_refcount == 0) {
a19d2933 1166 I915_WRITE_IMR(ring, ~0);
edbfdb45 1167 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
a19d2933 1168 }
59cdb63d 1169 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
a19d2933
BW
1170}
1171
abd58f01
BW
1172static bool
1173gen8_ring_get_irq(struct intel_ring_buffer *ring)
1174{
1175 struct drm_device *dev = ring->dev;
1176 struct drm_i915_private *dev_priv = dev->dev_private;
1177 unsigned long flags;
1178
1179 if (!dev->irq_enabled)
1180 return false;
1181
1182 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1183 if (ring->irq_refcount++ == 0) {
1184 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1185 I915_WRITE_IMR(ring,
1186 ~(ring->irq_enable_mask |
1187 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1188 } else {
1189 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1190 }
1191 POSTING_READ(RING_IMR(ring->mmio_base));
1192 }
1193 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1194
1195 return true;
1196}
1197
1198static void
1199gen8_ring_put_irq(struct intel_ring_buffer *ring)
1200{
1201 struct drm_device *dev = ring->dev;
1202 struct drm_i915_private *dev_priv = dev->dev_private;
1203 unsigned long flags;
1204
1205 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1206 if (--ring->irq_refcount == 0) {
1207 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1208 I915_WRITE_IMR(ring,
1209 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1210 } else {
1211 I915_WRITE_IMR(ring, ~0);
1212 }
1213 POSTING_READ(RING_IMR(ring->mmio_base));
1214 }
1215 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1216}
1217
d1b851fc 1218static int
d7d4eedd 1219i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
9bcb144c 1220 u64 offset, u32 length,
d7d4eedd 1221 unsigned flags)
d1b851fc 1222{
e1f99ce6 1223 int ret;
78501eac 1224
e1f99ce6
CW
1225 ret = intel_ring_begin(ring, 2);
1226 if (ret)
1227 return ret;
1228
78501eac 1229 intel_ring_emit(ring,
65f56876
CW
1230 MI_BATCH_BUFFER_START |
1231 MI_BATCH_GTT |
d7d4eedd 1232 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
c4e7a414 1233 intel_ring_emit(ring, offset);
78501eac
CW
1234 intel_ring_advance(ring);
1235
d1b851fc
ZN
1236 return 0;
1237}
1238
b45305fc
DV
1239/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1240#define I830_BATCH_LIMIT (256*1024)
8187a2b7 1241static int
fb3256da 1242i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
9bcb144c 1243 u64 offset, u32 len,
d7d4eedd 1244 unsigned flags)
62fdfeaf 1245{
c4e7a414 1246 int ret;
62fdfeaf 1247
b45305fc
DV
1248 if (flags & I915_DISPATCH_PINNED) {
1249 ret = intel_ring_begin(ring, 4);
1250 if (ret)
1251 return ret;
62fdfeaf 1252
b45305fc
DV
1253 intel_ring_emit(ring, MI_BATCH_BUFFER);
1254 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1255 intel_ring_emit(ring, offset + len - 8);
1256 intel_ring_emit(ring, MI_NOOP);
1257 intel_ring_advance(ring);
1258 } else {
0d1aacac 1259 u32 cs_offset = ring->scratch.gtt_offset;
b45305fc
DV
1260
1261 if (len > I830_BATCH_LIMIT)
1262 return -ENOSPC;
1263
1264 ret = intel_ring_begin(ring, 9+3);
1265 if (ret)
1266 return ret;
1267 /* Blit the batch (which has now all relocs applied) to the stable batch
1268 * scratch bo area (so that the CS never stumbles over its tlb
1269 * invalidation bug) ... */
1270 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1271 XY_SRC_COPY_BLT_WRITE_ALPHA |
1272 XY_SRC_COPY_BLT_WRITE_RGB);
1273 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1274 intel_ring_emit(ring, 0);
1275 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1276 intel_ring_emit(ring, cs_offset);
1277 intel_ring_emit(ring, 0);
1278 intel_ring_emit(ring, 4096);
1279 intel_ring_emit(ring, offset);
1280 intel_ring_emit(ring, MI_FLUSH);
1281
1282 /* ... and execute it. */
1283 intel_ring_emit(ring, MI_BATCH_BUFFER);
1284 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1285 intel_ring_emit(ring, cs_offset + len - 8);
1286 intel_ring_advance(ring);
1287 }
e1f99ce6 1288
fb3256da
DV
1289 return 0;
1290}
1291
1292static int
1293i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
9bcb144c 1294 u64 offset, u32 len,
d7d4eedd 1295 unsigned flags)
fb3256da
DV
1296{
1297 int ret;
1298
1299 ret = intel_ring_begin(ring, 2);
1300 if (ret)
1301 return ret;
1302
65f56876 1303 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
d7d4eedd 1304 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
c4e7a414 1305 intel_ring_advance(ring);
62fdfeaf 1306
62fdfeaf
EA
1307 return 0;
1308}
1309
78501eac 1310static void cleanup_status_page(struct intel_ring_buffer *ring)
62fdfeaf 1311{
05394f39 1312 struct drm_i915_gem_object *obj;
62fdfeaf 1313
8187a2b7
ZN
1314 obj = ring->status_page.obj;
1315 if (obj == NULL)
62fdfeaf 1316 return;
62fdfeaf 1317
9da3da66 1318 kunmap(sg_page(obj->pages->sgl));
d7f46fc4 1319 i915_gem_object_ggtt_unpin(obj);
05394f39 1320 drm_gem_object_unreference(&obj->base);
8187a2b7 1321 ring->status_page.obj = NULL;
62fdfeaf
EA
1322}
1323
78501eac 1324static int init_status_page(struct intel_ring_buffer *ring)
62fdfeaf 1325{
05394f39 1326 struct drm_i915_gem_object *obj;
62fdfeaf 1327
e3efda49
CW
1328 if ((obj = ring->status_page.obj) == NULL) {
1329 int ret;
e4ffd173 1330
e3efda49
CW
1331 obj = i915_gem_alloc_object(ring->dev, 4096);
1332 if (obj == NULL) {
1333 DRM_ERROR("Failed to allocate status page\n");
1334 return -ENOMEM;
1335 }
62fdfeaf 1336
e3efda49
CW
1337 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1338 if (ret)
1339 goto err_unref;
1340
1341 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1342 if (ret) {
1343err_unref:
1344 drm_gem_object_unreference(&obj->base);
1345 return ret;
1346 }
1347
1348 ring->status_page.obj = obj;
1349 }
62fdfeaf 1350
f343c5f6 1351 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
9da3da66 1352 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
8187a2b7 1353 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
62fdfeaf 1354
8187a2b7
ZN
1355 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1356 ring->name, ring->status_page.gfx_addr);
62fdfeaf
EA
1357
1358 return 0;
62fdfeaf
EA
1359}
1360
035dc1e0 1361static int init_phys_status_page(struct intel_ring_buffer *ring)
6b8294a4
CW
1362{
1363 struct drm_i915_private *dev_priv = ring->dev->dev_private;
6b8294a4
CW
1364
1365 if (!dev_priv->status_page_dmah) {
1366 dev_priv->status_page_dmah =
1367 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1368 if (!dev_priv->status_page_dmah)
1369 return -ENOMEM;
1370 }
1371
6b8294a4
CW
1372 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1373 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1374
1375 return 0;
1376}
1377
e3efda49 1378static int allocate_ring_buffer(struct intel_ring_buffer *ring)
62fdfeaf 1379{
e3efda49
CW
1380 struct drm_device *dev = ring->dev;
1381 struct drm_i915_private *dev_priv = to_i915(dev);
05394f39 1382 struct drm_i915_gem_object *obj;
dd785e35
CW
1383 int ret;
1384
e3efda49
CW
1385 if (ring->obj)
1386 return 0;
62fdfeaf 1387
ebc052e0
CW
1388 obj = NULL;
1389 if (!HAS_LLC(dev))
1390 obj = i915_gem_object_create_stolen(dev, ring->size);
1391 if (obj == NULL)
1392 obj = i915_gem_alloc_object(dev, ring->size);
e3efda49
CW
1393 if (obj == NULL)
1394 return -ENOMEM;
8187a2b7 1395
1ec9e26d 1396 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
dd785e35
CW
1397 if (ret)
1398 goto err_unref;
62fdfeaf 1399
3eef8918
CW
1400 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1401 if (ret)
1402 goto err_unpin;
1403
dd2757f8 1404 ring->virtual_start =
f343c5f6 1405 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
dd2757f8 1406 ring->size);
4225d0f2 1407 if (ring->virtual_start == NULL) {
8187a2b7 1408 ret = -EINVAL;
dd785e35 1409 goto err_unpin;
62fdfeaf
EA
1410 }
1411
e3efda49
CW
1412 ring->obj = obj;
1413 return 0;
1414
1415err_unpin:
1416 i915_gem_object_ggtt_unpin(obj);
1417err_unref:
1418 drm_gem_object_unreference(&obj->base);
1419 return ret;
1420}
1421
1422static int intel_init_ring_buffer(struct drm_device *dev,
1423 struct intel_ring_buffer *ring)
1424{
1425 int ret;
1426
1427 ring->dev = dev;
1428 INIT_LIST_HEAD(&ring->active_list);
1429 INIT_LIST_HEAD(&ring->request_list);
1430 ring->size = 32 * PAGE_SIZE;
ebc348b2 1431 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
e3efda49
CW
1432
1433 init_waitqueue_head(&ring->irq_queue);
1434
1435 if (I915_NEED_GFX_HWS(dev)) {
1436 ret = init_status_page(ring);
1437 if (ret)
1438 return ret;
1439 } else {
1440 BUG_ON(ring->id != RCS);
1441 ret = init_phys_status_page(ring);
1442 if (ret)
1443 return ret;
1444 }
1445
1446 ret = allocate_ring_buffer(ring);
1447 if (ret) {
1448 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1449 return ret;
1450 }
62fdfeaf 1451
55249baa
CW
1452 /* Workaround an erratum on the i830 which causes a hang if
1453 * the TAIL pointer points to within the last 2 cachelines
1454 * of the buffer.
1455 */
1456 ring->effective_size = ring->size;
e3efda49 1457 if (IS_I830(dev) || IS_845G(dev))
18393f63 1458 ring->effective_size -= 2 * CACHELINE_BYTES;
55249baa 1459
44e895a8
BV
1460 ret = i915_cmd_parser_init_ring(ring);
1461 if (ret)
1462 return ret;
351e3db2 1463
e3efda49 1464 return ring->init(ring);
62fdfeaf
EA
1465}
1466
78501eac 1467void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
62fdfeaf 1468{
e3efda49 1469 struct drm_i915_private *dev_priv = to_i915(ring->dev);
33626e6a 1470
05394f39 1471 if (ring->obj == NULL)
62fdfeaf
EA
1472 return;
1473
e3efda49
CW
1474 intel_stop_ring_buffer(ring);
1475 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
33626e6a 1476
4225d0f2 1477 iounmap(ring->virtual_start);
62fdfeaf 1478
d7f46fc4 1479 i915_gem_object_ggtt_unpin(ring->obj);
05394f39
CW
1480 drm_gem_object_unreference(&ring->obj->base);
1481 ring->obj = NULL;
3d57e5bd
BW
1482 ring->preallocated_lazy_request = NULL;
1483 ring->outstanding_lazy_seqno = 0;
78501eac 1484
8d19215b
ZN
1485 if (ring->cleanup)
1486 ring->cleanup(ring);
1487
78501eac 1488 cleanup_status_page(ring);
44e895a8
BV
1489
1490 i915_cmd_parser_fini_ring(ring);
62fdfeaf
EA
1491}
1492
a71d8d94
CW
1493static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1494{
1495 struct drm_i915_gem_request *request;
1cf0ba14 1496 u32 seqno = 0;
a71d8d94
CW
1497 int ret;
1498
a71d8d94
CW
1499 if (ring->last_retired_head != -1) {
1500 ring->head = ring->last_retired_head;
1501 ring->last_retired_head = -1;
1f70999f 1502
a71d8d94
CW
1503 ring->space = ring_space(ring);
1504 if (ring->space >= n)
1505 return 0;
1506 }
1507
1508 list_for_each_entry(request, &ring->request_list, list) {
1cf0ba14 1509 if (__ring_space(request->tail, ring->tail, ring->size) >= n) {
a71d8d94
CW
1510 seqno = request->seqno;
1511 break;
1512 }
a71d8d94
CW
1513 }
1514
1515 if (seqno == 0)
1516 return -ENOSPC;
1517
1f70999f 1518 ret = i915_wait_seqno(ring, seqno);
a71d8d94
CW
1519 if (ret)
1520 return ret;
1521
1cf0ba14
CW
1522 i915_gem_retire_requests_ring(ring);
1523 ring->head = ring->last_retired_head;
1524 ring->last_retired_head = -1;
a71d8d94 1525
1cf0ba14 1526 ring->space = ring_space(ring);
a71d8d94
CW
1527 return 0;
1528}
1529
3e960501 1530static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
62fdfeaf 1531{
78501eac 1532 struct drm_device *dev = ring->dev;
cae5852d 1533 struct drm_i915_private *dev_priv = dev->dev_private;
78501eac 1534 unsigned long end;
a71d8d94 1535 int ret;
c7dca47b 1536
a71d8d94
CW
1537 ret = intel_ring_wait_request(ring, n);
1538 if (ret != -ENOSPC)
1539 return ret;
1540
09246732
CW
1541 /* force the tail write in case we have been skipping them */
1542 __intel_ring_advance(ring);
1543
63ed2cb2
DV
1544 /* With GEM the hangcheck timer should kick us out of the loop,
1545 * leaving it early runs the risk of corrupting GEM state (due
1546 * to running on almost untested codepaths). But on resume
1547 * timers don't work yet, so prevent a complete hang in that
1548 * case by choosing an insanely large timeout. */
1549 end = jiffies + 60 * HZ;
e6bfaf85 1550
dcfe0506 1551 trace_i915_ring_wait_begin(ring);
8187a2b7 1552 do {
c7dca47b
CW
1553 ring->head = I915_READ_HEAD(ring);
1554 ring->space = ring_space(ring);
62fdfeaf 1555 if (ring->space >= n) {
dcfe0506
CW
1556 ret = 0;
1557 break;
62fdfeaf
EA
1558 }
1559
fb19e2ac
DV
1560 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1561 dev->primary->master) {
62fdfeaf
EA
1562 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1563 if (master_priv->sarea_priv)
1564 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1565 }
d1b851fc 1566
e60a0b10 1567 msleep(1);
d6b2c790 1568
dcfe0506
CW
1569 if (dev_priv->mm.interruptible && signal_pending(current)) {
1570 ret = -ERESTARTSYS;
1571 break;
1572 }
1573
33196ded
DV
1574 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1575 dev_priv->mm.interruptible);
d6b2c790 1576 if (ret)
dcfe0506
CW
1577 break;
1578
1579 if (time_after(jiffies, end)) {
1580 ret = -EBUSY;
1581 break;
1582 }
1583 } while (1);
db53a302 1584 trace_i915_ring_wait_end(ring);
dcfe0506 1585 return ret;
8187a2b7 1586}
62fdfeaf 1587
3e960501
CW
1588static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1589{
1590 uint32_t __iomem *virt;
1591 int rem = ring->size - ring->tail;
1592
1593 if (ring->space < rem) {
1594 int ret = ring_wait_for_space(ring, rem);
1595 if (ret)
1596 return ret;
1597 }
1598
1599 virt = ring->virtual_start + ring->tail;
1600 rem /= 4;
1601 while (rem--)
1602 iowrite32(MI_NOOP, virt++);
1603
1604 ring->tail = 0;
1605 ring->space = ring_space(ring);
1606
1607 return 0;
1608}
1609
1610int intel_ring_idle(struct intel_ring_buffer *ring)
1611{
1612 u32 seqno;
1613 int ret;
1614
1615 /* We need to add any requests required to flush the objects and ring */
1823521d 1616 if (ring->outstanding_lazy_seqno) {
0025c077 1617 ret = i915_add_request(ring, NULL);
3e960501
CW
1618 if (ret)
1619 return ret;
1620 }
1621
1622 /* Wait upon the last request to be completed */
1623 if (list_empty(&ring->request_list))
1624 return 0;
1625
1626 seqno = list_entry(ring->request_list.prev,
1627 struct drm_i915_gem_request,
1628 list)->seqno;
1629
1630 return i915_wait_seqno(ring, seqno);
1631}
1632
9d773091
CW
1633static int
1634intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1635{
1823521d 1636 if (ring->outstanding_lazy_seqno)
9d773091
CW
1637 return 0;
1638
3c0e234c
CW
1639 if (ring->preallocated_lazy_request == NULL) {
1640 struct drm_i915_gem_request *request;
1641
1642 request = kmalloc(sizeof(*request), GFP_KERNEL);
1643 if (request == NULL)
1644 return -ENOMEM;
1645
1646 ring->preallocated_lazy_request = request;
1647 }
1648
1823521d 1649 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
9d773091
CW
1650}
1651
304d695c
CW
1652static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1653 int bytes)
cbcc80df
MK
1654{
1655 int ret;
1656
1657 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1658 ret = intel_wrap_ring_buffer(ring);
1659 if (unlikely(ret))
1660 return ret;
1661 }
1662
1663 if (unlikely(ring->space < bytes)) {
1664 ret = ring_wait_for_space(ring, bytes);
1665 if (unlikely(ret))
1666 return ret;
1667 }
1668
cbcc80df
MK
1669 return 0;
1670}
1671
e1f99ce6
CW
1672int intel_ring_begin(struct intel_ring_buffer *ring,
1673 int num_dwords)
8187a2b7 1674{
4640c4ff 1675 struct drm_i915_private *dev_priv = ring->dev->dev_private;
e1f99ce6 1676 int ret;
78501eac 1677
33196ded
DV
1678 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1679 dev_priv->mm.interruptible);
de2b9985
DV
1680 if (ret)
1681 return ret;
21dd3734 1682
304d695c
CW
1683 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1684 if (ret)
1685 return ret;
1686
9d773091
CW
1687 /* Preallocate the olr before touching the ring */
1688 ret = intel_ring_alloc_seqno(ring);
1689 if (ret)
1690 return ret;
1691
304d695c
CW
1692 ring->space -= num_dwords * sizeof(uint32_t);
1693 return 0;
8187a2b7 1694}
78501eac 1695
753b1ad4
VS
1696/* Align the ring tail to a cacheline boundary */
1697int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1698{
18393f63 1699 int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
753b1ad4
VS
1700 int ret;
1701
1702 if (num_dwords == 0)
1703 return 0;
1704
18393f63 1705 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
753b1ad4
VS
1706 ret = intel_ring_begin(ring, num_dwords);
1707 if (ret)
1708 return ret;
1709
1710 while (num_dwords--)
1711 intel_ring_emit(ring, MI_NOOP);
1712
1713 intel_ring_advance(ring);
1714
1715 return 0;
1716}
1717
f7e98ad4 1718void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
498d2ac1 1719{
f7e98ad4 1720 struct drm_i915_private *dev_priv = ring->dev->dev_private;
498d2ac1 1721
1823521d 1722 BUG_ON(ring->outstanding_lazy_seqno);
498d2ac1 1723
f7e98ad4
MK
1724 if (INTEL_INFO(ring->dev)->gen >= 6) {
1725 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1726 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
5020150b
BW
1727 if (HAS_VEBOX(ring->dev))
1728 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
e1f99ce6 1729 }
d97ed339 1730
f7e98ad4 1731 ring->set_seqno(ring, seqno);
92cab734 1732 ring->hangcheck.seqno = seqno;
8187a2b7 1733}
62fdfeaf 1734
78501eac 1735static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
297b0c5b 1736 u32 value)
881f47b6 1737{
4640c4ff 1738 struct drm_i915_private *dev_priv = ring->dev->dev_private;
881f47b6
XH
1739
1740 /* Every tail move must follow the sequence below */
12f55818
CW
1741
1742 /* Disable notification that the ring is IDLE. The GT
1743 * will then assume that it is busy and bring it out of rc6.
1744 */
0206e353 1745 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
12f55818
CW
1746 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1747
1748 /* Clear the context id. Here be magic! */
1749 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
0206e353 1750
12f55818 1751 /* Wait for the ring not to be idle, i.e. for it to wake up. */
0206e353 1752 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
12f55818
CW
1753 GEN6_BSD_SLEEP_INDICATOR) == 0,
1754 50))
1755 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
0206e353 1756
12f55818 1757 /* Now that the ring is fully powered up, update the tail */
0206e353 1758 I915_WRITE_TAIL(ring, value);
12f55818
CW
1759 POSTING_READ(RING_TAIL(ring->mmio_base));
1760
1761 /* Let the ring send IDLE messages to the GT again,
1762 * and so let it sleep to conserve power when idle.
1763 */
0206e353 1764 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
12f55818 1765 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
881f47b6
XH
1766}
1767
ea251324
BW
1768static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1769 u32 invalidate, u32 flush)
881f47b6 1770{
71a77e07 1771 uint32_t cmd;
b72f3acb
CW
1772 int ret;
1773
b72f3acb
CW
1774 ret = intel_ring_begin(ring, 4);
1775 if (ret)
1776 return ret;
1777
71a77e07 1778 cmd = MI_FLUSH_DW;
075b3bba
BW
1779 if (INTEL_INFO(ring->dev)->gen >= 8)
1780 cmd += 1;
9a289771
JB
1781 /*
1782 * Bspec vol 1c.5 - video engine command streamer:
1783 * "If ENABLED, all TLBs will be invalidated once the flush
1784 * operation is complete. This bit is only valid when the
1785 * Post-Sync Operation field is a value of 1h or 3h."
1786 */
71a77e07 1787 if (invalidate & I915_GEM_GPU_DOMAINS)
9a289771
JB
1788 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1789 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
71a77e07 1790 intel_ring_emit(ring, cmd);
9a289771 1791 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
075b3bba
BW
1792 if (INTEL_INFO(ring->dev)->gen >= 8) {
1793 intel_ring_emit(ring, 0); /* upper addr */
1794 intel_ring_emit(ring, 0); /* value */
1795 } else {
1796 intel_ring_emit(ring, 0);
1797 intel_ring_emit(ring, MI_NOOP);
1798 }
b72f3acb
CW
1799 intel_ring_advance(ring);
1800 return 0;
881f47b6
XH
1801}
1802
1c7a0623
BW
1803static int
1804gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
9bcb144c 1805 u64 offset, u32 len,
1c7a0623
BW
1806 unsigned flags)
1807{
28cf5415
BW
1808 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1809 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1810 !(flags & I915_DISPATCH_SECURE);
1c7a0623
BW
1811 int ret;
1812
1813 ret = intel_ring_begin(ring, 4);
1814 if (ret)
1815 return ret;
1816
1817 /* FIXME(BDW): Address space and security selectors. */
28cf5415 1818 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
9bcb144c
BW
1819 intel_ring_emit(ring, lower_32_bits(offset));
1820 intel_ring_emit(ring, upper_32_bits(offset));
1c7a0623
BW
1821 intel_ring_emit(ring, MI_NOOP);
1822 intel_ring_advance(ring);
1823
1824 return 0;
1825}
1826
d7d4eedd
CW
1827static int
1828hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
9bcb144c 1829 u64 offset, u32 len,
d7d4eedd
CW
1830 unsigned flags)
1831{
1832 int ret;
1833
1834 ret = intel_ring_begin(ring, 2);
1835 if (ret)
1836 return ret;
1837
1838 intel_ring_emit(ring,
1839 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1840 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1841 /* bit0-7 is the length on GEN6+ */
1842 intel_ring_emit(ring, offset);
1843 intel_ring_advance(ring);
1844
1845 return 0;
1846}
1847
881f47b6 1848static int
78501eac 1849gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
9bcb144c 1850 u64 offset, u32 len,
d7d4eedd 1851 unsigned flags)
881f47b6 1852{
0206e353 1853 int ret;
ab6f8e32 1854
0206e353
AJ
1855 ret = intel_ring_begin(ring, 2);
1856 if (ret)
1857 return ret;
e1f99ce6 1858
d7d4eedd
CW
1859 intel_ring_emit(ring,
1860 MI_BATCH_BUFFER_START |
1861 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
0206e353
AJ
1862 /* bit0-7 is the length on GEN6+ */
1863 intel_ring_emit(ring, offset);
1864 intel_ring_advance(ring);
ab6f8e32 1865
0206e353 1866 return 0;
881f47b6
XH
1867}
1868
549f7365
CW
1869/* Blitter support (SandyBridge+) */
1870
ea251324
BW
1871static int gen6_ring_flush(struct intel_ring_buffer *ring,
1872 u32 invalidate, u32 flush)
8d19215b 1873{
fd3da6c9 1874 struct drm_device *dev = ring->dev;
71a77e07 1875 uint32_t cmd;
b72f3acb
CW
1876 int ret;
1877
6a233c78 1878 ret = intel_ring_begin(ring, 4);
b72f3acb
CW
1879 if (ret)
1880 return ret;
1881
71a77e07 1882 cmd = MI_FLUSH_DW;
075b3bba
BW
1883 if (INTEL_INFO(ring->dev)->gen >= 8)
1884 cmd += 1;
9a289771
JB
1885 /*
1886 * Bspec vol 1c.3 - blitter engine command streamer:
1887 * "If ENABLED, all TLBs will be invalidated once the flush
1888 * operation is complete. This bit is only valid when the
1889 * Post-Sync Operation field is a value of 1h or 3h."
1890 */
71a77e07 1891 if (invalidate & I915_GEM_DOMAIN_RENDER)
9a289771 1892 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
b3fcabb1 1893 MI_FLUSH_DW_OP_STOREDW;
71a77e07 1894 intel_ring_emit(ring, cmd);
9a289771 1895 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
075b3bba
BW
1896 if (INTEL_INFO(ring->dev)->gen >= 8) {
1897 intel_ring_emit(ring, 0); /* upper addr */
1898 intel_ring_emit(ring, 0); /* value */
1899 } else {
1900 intel_ring_emit(ring, 0);
1901 intel_ring_emit(ring, MI_NOOP);
1902 }
b72f3acb 1903 intel_ring_advance(ring);
fd3da6c9 1904
9688ecad 1905 if (IS_GEN7(dev) && !invalidate && flush)
fd3da6c9
RV
1906 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1907
b72f3acb 1908 return 0;
8d19215b
ZN
1909}
1910
5c1143bb
XH
1911int intel_init_render_ring_buffer(struct drm_device *dev)
1912{
4640c4ff 1913 struct drm_i915_private *dev_priv = dev->dev_private;
1ec14ad3 1914 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5c1143bb 1915
59465b5f
DV
1916 ring->name = "render ring";
1917 ring->id = RCS;
1918 ring->mmio_base = RENDER_RING_BASE;
1919
1ec14ad3
CW
1920 if (INTEL_INFO(dev)->gen >= 6) {
1921 ring->add_request = gen6_add_request;
4772eaeb 1922 ring->flush = gen7_render_ring_flush;
6c6cf5aa 1923 if (INTEL_INFO(dev)->gen == 6)
b3111509 1924 ring->flush = gen6_render_ring_flush;
abd58f01 1925 if (INTEL_INFO(dev)->gen >= 8) {
a5f3d68e 1926 ring->flush = gen8_render_ring_flush;
abd58f01
BW
1927 ring->irq_get = gen8_ring_get_irq;
1928 ring->irq_put = gen8_ring_put_irq;
1929 } else {
1930 ring->irq_get = gen6_ring_get_irq;
1931 ring->irq_put = gen6_ring_put_irq;
1932 }
cc609d5d 1933 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
4cd53c0c 1934 ring->get_seqno = gen6_ring_get_seqno;
b70ec5bf 1935 ring->set_seqno = ring_set_seqno;
ebc348b2 1936 ring->semaphore.sync_to = gen6_ring_sync;
78325f2d 1937 ring->semaphore.signal = gen6_signal;
845f74a7
ZY
1938 /*
1939 * The current semaphore is only applied on pre-gen8 platform.
1940 * And there is no VCS2 ring on the pre-gen8 platform. So the
1941 * semaphore between RCS and VCS2 is initialized as INVALID.
1942 * Gen8 will initialize the sema between VCS2 and RCS later.
1943 */
ebc348b2
BW
1944 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1945 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1946 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1947 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1948 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1949 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1950 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1951 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1952 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1953 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
c6df541c
CW
1954 } else if (IS_GEN5(dev)) {
1955 ring->add_request = pc_render_add_request;
46f0f8d1 1956 ring->flush = gen4_render_ring_flush;
c6df541c 1957 ring->get_seqno = pc_render_get_seqno;
b70ec5bf 1958 ring->set_seqno = pc_render_set_seqno;
e48d8634
DV
1959 ring->irq_get = gen5_ring_get_irq;
1960 ring->irq_put = gen5_ring_put_irq;
cc609d5d
BW
1961 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1962 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
59465b5f 1963 } else {
8620a3a9 1964 ring->add_request = i9xx_add_request;
46f0f8d1
CW
1965 if (INTEL_INFO(dev)->gen < 4)
1966 ring->flush = gen2_render_ring_flush;
1967 else
1968 ring->flush = gen4_render_ring_flush;
59465b5f 1969 ring->get_seqno = ring_get_seqno;
b70ec5bf 1970 ring->set_seqno = ring_set_seqno;
c2798b19
CW
1971 if (IS_GEN2(dev)) {
1972 ring->irq_get = i8xx_ring_get_irq;
1973 ring->irq_put = i8xx_ring_put_irq;
1974 } else {
1975 ring->irq_get = i9xx_ring_get_irq;
1976 ring->irq_put = i9xx_ring_put_irq;
1977 }
e3670319 1978 ring->irq_enable_mask = I915_USER_INTERRUPT;
1ec14ad3 1979 }
59465b5f 1980 ring->write_tail = ring_write_tail;
d7d4eedd
CW
1981 if (IS_HASWELL(dev))
1982 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1c7a0623
BW
1983 else if (IS_GEN8(dev))
1984 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
d7d4eedd 1985 else if (INTEL_INFO(dev)->gen >= 6)
fb3256da
DV
1986 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1987 else if (INTEL_INFO(dev)->gen >= 4)
1988 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1989 else if (IS_I830(dev) || IS_845G(dev))
1990 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1991 else
1992 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
59465b5f
DV
1993 ring->init = init_render_ring;
1994 ring->cleanup = render_ring_cleanup;
1995
b45305fc
DV
1996 /* Workaround batchbuffer to combat CS tlb bug. */
1997 if (HAS_BROKEN_CS_TLB(dev)) {
1998 struct drm_i915_gem_object *obj;
1999 int ret;
2000
2001 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2002 if (obj == NULL) {
2003 DRM_ERROR("Failed to allocate batch bo\n");
2004 return -ENOMEM;
2005 }
2006
be1fa129 2007 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
b45305fc
DV
2008 if (ret != 0) {
2009 drm_gem_object_unreference(&obj->base);
2010 DRM_ERROR("Failed to ping batch bo\n");
2011 return ret;
2012 }
2013
0d1aacac
CW
2014 ring->scratch.obj = obj;
2015 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
b45305fc
DV
2016 }
2017
1ec14ad3 2018 return intel_init_ring_buffer(dev, ring);
5c1143bb
XH
2019}
2020
e8616b6c
CW
2021int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2022{
4640c4ff 2023 struct drm_i915_private *dev_priv = dev->dev_private;
e8616b6c 2024 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6b8294a4 2025 int ret;
e8616b6c 2026
59465b5f
DV
2027 ring->name = "render ring";
2028 ring->id = RCS;
2029 ring->mmio_base = RENDER_RING_BASE;
2030
e8616b6c 2031 if (INTEL_INFO(dev)->gen >= 6) {
b4178f8a
DV
2032 /* non-kms not supported on gen6+ */
2033 return -ENODEV;
e8616b6c 2034 }
28f0cbf7
DV
2035
2036 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2037 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2038 * the special gen5 functions. */
2039 ring->add_request = i9xx_add_request;
46f0f8d1
CW
2040 if (INTEL_INFO(dev)->gen < 4)
2041 ring->flush = gen2_render_ring_flush;
2042 else
2043 ring->flush = gen4_render_ring_flush;
28f0cbf7 2044 ring->get_seqno = ring_get_seqno;
b70ec5bf 2045 ring->set_seqno = ring_set_seqno;
c2798b19
CW
2046 if (IS_GEN2(dev)) {
2047 ring->irq_get = i8xx_ring_get_irq;
2048 ring->irq_put = i8xx_ring_put_irq;
2049 } else {
2050 ring->irq_get = i9xx_ring_get_irq;
2051 ring->irq_put = i9xx_ring_put_irq;
2052 }
28f0cbf7 2053 ring->irq_enable_mask = I915_USER_INTERRUPT;
59465b5f 2054 ring->write_tail = ring_write_tail;
fb3256da
DV
2055 if (INTEL_INFO(dev)->gen >= 4)
2056 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2057 else if (IS_I830(dev) || IS_845G(dev))
2058 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2059 else
2060 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
59465b5f
DV
2061 ring->init = init_render_ring;
2062 ring->cleanup = render_ring_cleanup;
e8616b6c
CW
2063
2064 ring->dev = dev;
2065 INIT_LIST_HEAD(&ring->active_list);
2066 INIT_LIST_HEAD(&ring->request_list);
e8616b6c
CW
2067
2068 ring->size = size;
2069 ring->effective_size = ring->size;
17f10fdc 2070 if (IS_I830(ring->dev) || IS_845G(ring->dev))
18393f63 2071 ring->effective_size -= 2 * CACHELINE_BYTES;
e8616b6c 2072
4225d0f2
DV
2073 ring->virtual_start = ioremap_wc(start, size);
2074 if (ring->virtual_start == NULL) {
e8616b6c
CW
2075 DRM_ERROR("can not ioremap virtual address for"
2076 " ring buffer\n");
2077 return -ENOMEM;
2078 }
2079
6b8294a4 2080 if (!I915_NEED_GFX_HWS(dev)) {
035dc1e0 2081 ret = init_phys_status_page(ring);
6b8294a4
CW
2082 if (ret)
2083 return ret;
2084 }
2085
e8616b6c
CW
2086 return 0;
2087}
2088
5c1143bb
XH
2089int intel_init_bsd_ring_buffer(struct drm_device *dev)
2090{
4640c4ff 2091 struct drm_i915_private *dev_priv = dev->dev_private;
1ec14ad3 2092 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
5c1143bb 2093
58fa3835
DV
2094 ring->name = "bsd ring";
2095 ring->id = VCS;
2096
0fd2c201 2097 ring->write_tail = ring_write_tail;
780f18c8 2098 if (INTEL_INFO(dev)->gen >= 6) {
58fa3835 2099 ring->mmio_base = GEN6_BSD_RING_BASE;
0fd2c201
DV
2100 /* gen6 bsd needs a special wa for tail updates */
2101 if (IS_GEN6(dev))
2102 ring->write_tail = gen6_bsd_ring_write_tail;
ea251324 2103 ring->flush = gen6_bsd_ring_flush;
58fa3835
DV
2104 ring->add_request = gen6_add_request;
2105 ring->get_seqno = gen6_ring_get_seqno;
b70ec5bf 2106 ring->set_seqno = ring_set_seqno;
abd58f01
BW
2107 if (INTEL_INFO(dev)->gen >= 8) {
2108 ring->irq_enable_mask =
2109 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2110 ring->irq_get = gen8_ring_get_irq;
2111 ring->irq_put = gen8_ring_put_irq;
1c7a0623
BW
2112 ring->dispatch_execbuffer =
2113 gen8_ring_dispatch_execbuffer;
abd58f01
BW
2114 } else {
2115 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2116 ring->irq_get = gen6_ring_get_irq;
2117 ring->irq_put = gen6_ring_put_irq;
1c7a0623
BW
2118 ring->dispatch_execbuffer =
2119 gen6_ring_dispatch_execbuffer;
abd58f01 2120 }
ebc348b2 2121 ring->semaphore.sync_to = gen6_ring_sync;
78325f2d 2122 ring->semaphore.signal = gen6_signal;
845f74a7
ZY
2123 /*
2124 * The current semaphore is only applied on pre-gen8 platform.
2125 * And there is no VCS2 ring on the pre-gen8 platform. So the
2126 * semaphore between VCS and VCS2 is initialized as INVALID.
2127 * Gen8 will initialize the sema between VCS2 and VCS later.
2128 */
ebc348b2
BW
2129 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2130 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2131 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2132 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2133 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2134 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2135 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2136 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2137 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2138 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
58fa3835
DV
2139 } else {
2140 ring->mmio_base = BSD_RING_BASE;
58fa3835 2141 ring->flush = bsd_ring_flush;
8620a3a9 2142 ring->add_request = i9xx_add_request;
58fa3835 2143 ring->get_seqno = ring_get_seqno;
b70ec5bf 2144 ring->set_seqno = ring_set_seqno;
e48d8634 2145 if (IS_GEN5(dev)) {
cc609d5d 2146 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
e48d8634
DV
2147 ring->irq_get = gen5_ring_get_irq;
2148 ring->irq_put = gen5_ring_put_irq;
2149 } else {
e3670319 2150 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
e48d8634
DV
2151 ring->irq_get = i9xx_ring_get_irq;
2152 ring->irq_put = i9xx_ring_put_irq;
2153 }
fb3256da 2154 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
58fa3835
DV
2155 }
2156 ring->init = init_ring_common;
2157
1ec14ad3 2158 return intel_init_ring_buffer(dev, ring);
5c1143bb 2159}
549f7365 2160
845f74a7
ZY
2161/**
2162 * Initialize the second BSD ring for Broadwell GT3.
2163 * It is noted that this only exists on Broadwell GT3.
2164 */
2165int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2166{
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 struct intel_ring_buffer *ring = &dev_priv->ring[VCS2];
2169
2170 if ((INTEL_INFO(dev)->gen != 8)) {
2171 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2172 return -EINVAL;
2173 }
2174
2175 ring->name = "bds2_ring";
2176 ring->id = VCS2;
2177
2178 ring->write_tail = ring_write_tail;
2179 ring->mmio_base = GEN8_BSD2_RING_BASE;
2180 ring->flush = gen6_bsd_ring_flush;
2181 ring->add_request = gen6_add_request;
2182 ring->get_seqno = gen6_ring_get_seqno;
2183 ring->set_seqno = ring_set_seqno;
2184 ring->irq_enable_mask =
2185 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2186 ring->irq_get = gen8_ring_get_irq;
2187 ring->irq_put = gen8_ring_put_irq;
2188 ring->dispatch_execbuffer =
2189 gen8_ring_dispatch_execbuffer;
ebc348b2 2190 ring->semaphore.sync_to = gen6_ring_sync;
d1533379 2191 ring->semaphore.signal = gen6_signal;
845f74a7
ZY
2192 /*
2193 * The current semaphore is only applied on the pre-gen8. And there
2194 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2195 * between VCS2 and other ring is initialized as invalid.
2196 * Gen8 will initialize the sema between VCS2 and other ring later.
2197 */
ebc348b2
BW
2198 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2199 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2200 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2201 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2202 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2203 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2204 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2205 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2206 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2207 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
845f74a7
ZY
2208
2209 ring->init = init_ring_common;
2210
2211 return intel_init_ring_buffer(dev, ring);
2212}
2213
549f7365
CW
2214int intel_init_blt_ring_buffer(struct drm_device *dev)
2215{
4640c4ff 2216 struct drm_i915_private *dev_priv = dev->dev_private;
1ec14ad3 2217 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
549f7365 2218
3535d9dd
DV
2219 ring->name = "blitter ring";
2220 ring->id = BCS;
2221
2222 ring->mmio_base = BLT_RING_BASE;
2223 ring->write_tail = ring_write_tail;
ea251324 2224 ring->flush = gen6_ring_flush;
3535d9dd
DV
2225 ring->add_request = gen6_add_request;
2226 ring->get_seqno = gen6_ring_get_seqno;
b70ec5bf 2227 ring->set_seqno = ring_set_seqno;
abd58f01
BW
2228 if (INTEL_INFO(dev)->gen >= 8) {
2229 ring->irq_enable_mask =
2230 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2231 ring->irq_get = gen8_ring_get_irq;
2232 ring->irq_put = gen8_ring_put_irq;
1c7a0623 2233 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
abd58f01
BW
2234 } else {
2235 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2236 ring->irq_get = gen6_ring_get_irq;
2237 ring->irq_put = gen6_ring_put_irq;
1c7a0623 2238 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
abd58f01 2239 }
ebc348b2 2240 ring->semaphore.sync_to = gen6_ring_sync;
78325f2d 2241 ring->semaphore.signal = gen6_signal;
845f74a7
ZY
2242 /*
2243 * The current semaphore is only applied on pre-gen8 platform. And
2244 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2245 * between BCS and VCS2 is initialized as INVALID.
2246 * Gen8 will initialize the sema between BCS and VCS2 later.
2247 */
ebc348b2
BW
2248 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2249 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2250 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2251 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2252 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2253 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2254 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2255 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2256 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2257 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3535d9dd 2258 ring->init = init_ring_common;
549f7365 2259
1ec14ad3 2260 return intel_init_ring_buffer(dev, ring);
549f7365 2261}
a7b9761d 2262
9a8a2213
BW
2263int intel_init_vebox_ring_buffer(struct drm_device *dev)
2264{
4640c4ff 2265 struct drm_i915_private *dev_priv = dev->dev_private;
9a8a2213
BW
2266 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2267
2268 ring->name = "video enhancement ring";
2269 ring->id = VECS;
2270
2271 ring->mmio_base = VEBOX_RING_BASE;
2272 ring->write_tail = ring_write_tail;
2273 ring->flush = gen6_ring_flush;
2274 ring->add_request = gen6_add_request;
2275 ring->get_seqno = gen6_ring_get_seqno;
2276 ring->set_seqno = ring_set_seqno;
abd58f01
BW
2277
2278 if (INTEL_INFO(dev)->gen >= 8) {
2279 ring->irq_enable_mask =
40c499f9 2280 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
abd58f01
BW
2281 ring->irq_get = gen8_ring_get_irq;
2282 ring->irq_put = gen8_ring_put_irq;
1c7a0623 2283 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
abd58f01
BW
2284 } else {
2285 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2286 ring->irq_get = hsw_vebox_get_irq;
2287 ring->irq_put = hsw_vebox_put_irq;
1c7a0623 2288 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
abd58f01 2289 }
ebc348b2 2290 ring->semaphore.sync_to = gen6_ring_sync;
78325f2d 2291 ring->semaphore.signal = gen6_signal;
ebc348b2
BW
2292 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2293 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2294 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2295 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2296 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2297 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2298 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2299 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2300 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2301 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
9a8a2213
BW
2302 ring->init = init_ring_common;
2303
2304 return intel_init_ring_buffer(dev, ring);
2305}
2306
a7b9761d
CW
2307int
2308intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2309{
2310 int ret;
2311
2312 if (!ring->gpu_caches_dirty)
2313 return 0;
2314
2315 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2316 if (ret)
2317 return ret;
2318
2319 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2320
2321 ring->gpu_caches_dirty = false;
2322 return 0;
2323}
2324
2325int
2326intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2327{
2328 uint32_t flush_domains;
2329 int ret;
2330
2331 flush_domains = 0;
2332 if (ring->gpu_caches_dirty)
2333 flush_domains = I915_GEM_GPU_DOMAINS;
2334
2335 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2336 if (ret)
2337 return ret;
2338
2339 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2340
2341 ring->gpu_caches_dirty = false;
2342 return 0;
2343}
e3efda49
CW
2344
2345void
2346intel_stop_ring_buffer(struct intel_ring_buffer *ring)
2347{
2348 int ret;
2349
2350 if (!intel_ring_initialized(ring))
2351 return;
2352
2353 ret = intel_ring_idle(ring);
2354 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2355 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2356 ring->name, ret);
2357
2358 stop_ring(ring);
2359}
This page took 0.435843 seconds and 5 git commands to generate.