drm/i915: Store number of active engines in device info
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
CommitLineData
8187a2b7
ZN
1#ifndef _INTEL_RINGBUFFER_H_
2#define _INTEL_RINGBUFFER_H_
3
44e895a8 4#include <linux/hashtable.h>
06fbca71 5#include "i915_gem_batch_pool.h"
dcff85c8 6#include "i915_gem_request.h"
44e895a8
BV
7
8#define I915_CMD_HASH_ORDER 9
9
4712274c
OM
10/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
11 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
12 * to give some inclination as to some of the magic values used in the various
13 * workarounds!
14 */
15#define CACHELINE_BYTES 64
17ee950d 16#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
4712274c 17
633cf8f5
VS
18/*
19 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
20 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
21 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
22 *
23 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
24 * cacheline, the Head Pointer must not be greater than the Tail
25 * Pointer."
26 */
27#define I915_RING_FREE_SPACE 64
28
8187a2b7 29struct intel_hw_status_page {
4225d0f2 30 u32 *page_addr;
8187a2b7 31 unsigned int gfx_addr;
05394f39 32 struct drm_i915_gem_object *obj;
8187a2b7
ZN
33};
34
bbdc070a
DG
35#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
36#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
cae5852d 37
bbdc070a
DG
38#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
39#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
cae5852d 40
bbdc070a
DG
41#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
42#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
cae5852d 43
bbdc070a
DG
44#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
45#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
cae5852d 46
bbdc070a
DG
47#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
48#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
870e86dd 49
bbdc070a
DG
50#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
51#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
e9fea574 52
3e78998a
BW
53/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
54 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
55 */
8c12672e
CW
56#define gen8_semaphore_seqno_size sizeof(uint64_t)
57#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
58 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
3e78998a
BW
59#define GEN8_SIGNAL_OFFSET(__ring, to) \
60 (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
8c12672e 61 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
3e78998a
BW
62#define GEN8_WAIT_OFFSET(__ring, from) \
63 (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
8c12672e 64 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
3e78998a 65
7e37f889 66enum intel_engine_hangcheck_action {
da661464 67 HANGCHECK_IDLE = 0,
f2f4d82f
JN
68 HANGCHECK_WAIT,
69 HANGCHECK_ACTIVE,
70 HANGCHECK_KICK,
71 HANGCHECK_HUNG,
72};
ad8beaea 73
b6b0fac0
MK
74#define HANGCHECK_SCORE_RING_HUNG 31
75
7e37f889 76struct intel_engine_hangcheck {
50877445 77 u64 acthd;
92cab734 78 u32 seqno;
05407ff8 79 int score;
7e37f889 80 enum intel_engine_hangcheck_action action;
4be17381 81 int deadlock;
61642ff0 82 u32 instdone[I915_NUM_INSTDONE_REG];
92cab734
MK
83};
84
7e37f889 85struct intel_ring {
8ee14975 86 struct drm_i915_gem_object *obj;
f2f0ed71 87 void *vaddr;
0eb973d3 88 struct i915_vma *vma;
8ee14975 89
4a570db5 90 struct intel_engine_cs *engine;
608c1a52 91 struct list_head link;
0c7dd53b 92
675d9ad7
CW
93 struct list_head request_list;
94
8ee14975
OM
95 u32 head;
96 u32 tail;
97 int space;
98 int size;
99 int effective_size;
100
101 /** We track the position of the requests in the ring buffer, and
102 * when each is retired we increment last_retired_head as the GPU
103 * must have finished processing the request and so we know we
104 * can advance the ringbuffer up to that position.
105 *
106 * last_retired_head is set to -1 after the value is consumed so
107 * we can detect new retirements.
108 */
109 u32 last_retired_head;
110};
111
e2efd130 112struct i915_gem_context;
361b027b 113struct drm_i915_reg_table;
21076372 114
17ee950d
AS
115/*
116 * we use a single page to load ctx workarounds so all of these
117 * values are referred in terms of dwords
118 *
119 * struct i915_wa_ctx_bb:
120 * offset: specifies batch starting position, also helpful in case
121 * if we want to have multiple batches at different offsets based on
122 * some criteria. It is not a requirement at the moment but provides
123 * an option for future use.
124 * size: size of the batch in DWORDS
125 */
126struct i915_ctx_workarounds {
127 struct i915_wa_ctx_bb {
128 u32 offset;
129 u32 size;
130 } indirect_ctx, per_ctx;
131 struct drm_i915_gem_object *obj;
132};
133
c81d4613
CW
134struct drm_i915_gem_request;
135
c033666a
CW
136struct intel_engine_cs {
137 struct drm_i915_private *i915;
8187a2b7 138 const char *name;
117897f4 139 enum intel_engine_id {
de1add36 140 RCS = 0,
96154f2f 141 BCS,
de1add36
TU
142 VCS,
143 VCS2, /* Keep instances of the same type engine together. */
144 VECS
9220434a 145 } id;
666796da 146#define I915_NUM_ENGINES 5
de1add36 147#define _VCS(n) (VCS + (n))
426960be 148 unsigned int exec_id;
215a7e32
CW
149 unsigned int hw_id;
150 unsigned int guc_id; /* XXX same as hw_id? */
04769652 151 u64 fence_context;
333e9fe9 152 u32 mmio_base;
c2c7f240 153 unsigned int irq_shift;
7e37f889 154 struct intel_ring *buffer;
608c1a52 155 struct list_head buffers;
8187a2b7 156
688e6c72
CW
157 /* Rather than have every client wait upon all user interrupts,
158 * with the herd waking after every interrupt and each doing the
159 * heavyweight seqno dance, we delegate the task (of being the
160 * bottom-half of the user interrupt) to the first client. After
161 * every interrupt, we wake up one client, who does the heavyweight
162 * coherent seqno read and either goes back to sleep (if incomplete),
163 * or wakes up all the completed clients in parallel, before then
164 * transferring the bottom-half status to the next client in the queue.
165 *
166 * Compared to walking the entire list of waiters in a single dedicated
167 * bottom-half, we reduce the latency of the first waiter by avoiding
168 * a context switch, but incur additional coherent seqno reads when
169 * following the chain of request breadcrumbs. Since it is most likely
170 * that we have a single client waiting on each seqno, then reducing
171 * the overhead of waking that client is much preferred.
172 */
173 struct intel_breadcrumbs {
dbd6ef29 174 struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
aca34b6e
CW
175 bool irq_posted;
176
688e6c72
CW
177 spinlock_t lock; /* protects the lists of requests */
178 struct rb_root waiters; /* sorted by retirement, priority */
c81d4613 179 struct rb_root signals; /* sorted by retirement */
688e6c72 180 struct intel_wait *first_wait; /* oldest waiter by retirement */
c81d4613 181 struct task_struct *signaler; /* used for fence signalling */
b3850855 182 struct drm_i915_gem_request *first_signal;
688e6c72 183 struct timer_list fake_irq; /* used after a missed interrupt */
83348ba8
CW
184 struct timer_list hangcheck; /* detect missed interrupts */
185
186 unsigned long timeout;
aca34b6e
CW
187
188 bool irq_enabled : 1;
189 bool rpm_wakelock : 1;
688e6c72
CW
190 } breadcrumbs;
191
06fbca71
CW
192 /*
193 * A pool of objects to use as shadow copies of client batch buffers
194 * when the command parser is enabled. Prevents the client from
195 * modifying the batch contents after software parsing.
196 */
197 struct i915_gem_batch_pool batch_pool;
198
8187a2b7 199 struct intel_hw_status_page status_page;
17ee950d 200 struct i915_ctx_workarounds wa_ctx;
8187a2b7 201
61ff75ac
CW
202 u32 irq_keep_mask; /* always keep these interrupts */
203 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
38a0f2db
DG
204 void (*irq_enable)(struct intel_engine_cs *engine);
205 void (*irq_disable)(struct intel_engine_cs *engine);
8187a2b7 206
38a0f2db 207 int (*init_hw)(struct intel_engine_cs *engine);
8187a2b7 208
8753181e 209 int (*init_context)(struct drm_i915_gem_request *req);
86d7f238 210
ddd66c51
CW
211 int (*emit_flush)(struct drm_i915_gem_request *request,
212 u32 mode);
213#define EMIT_INVALIDATE BIT(0)
214#define EMIT_FLUSH BIT(1)
215#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
216 int (*emit_bb_start)(struct drm_i915_gem_request *req,
217 u64 offset, u32 length,
218 unsigned int dispatch_flags);
219#define I915_DISPATCH_SECURE BIT(0)
220#define I915_DISPATCH_PINNED BIT(1)
221#define I915_DISPATCH_RS BIT(2)
222 int (*emit_request)(struct drm_i915_gem_request *req);
223 void (*submit_request)(struct drm_i915_gem_request *req);
b2eadbc8
CW
224 /* Some chipsets are not quite as coherent as advertised and need
225 * an expensive kick to force a true read of the up-to-date seqno.
226 * However, the up-to-date seqno is not always required and the last
227 * seen value is good enough. Note that the seqno will always be
228 * monotonic, even if not coherent.
229 */
38a0f2db 230 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
38a0f2db 231 void (*cleanup)(struct intel_engine_cs *engine);
ebc348b2 232
3e78998a
BW
233 /* GEN8 signal/wait table - never trust comments!
234 * signal to signal to signal to signal to signal to
235 * RCS VCS BCS VECS VCS2
236 * --------------------------------------------------------------------
237 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
238 * |-------------------------------------------------------------------
239 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
240 * |-------------------------------------------------------------------
241 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
242 * |-------------------------------------------------------------------
243 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
244 * |-------------------------------------------------------------------
245 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
246 * |-------------------------------------------------------------------
247 *
248 * Generalization:
249 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
250 * ie. transpose of g(x, y)
251 *
252 * sync from sync from sync from sync from sync from
253 * RCS VCS BCS VECS VCS2
254 * --------------------------------------------------------------------
255 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
256 * |-------------------------------------------------------------------
257 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
258 * |-------------------------------------------------------------------
259 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
260 * |-------------------------------------------------------------------
261 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
262 * |-------------------------------------------------------------------
263 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
264 * |-------------------------------------------------------------------
265 *
266 * Generalization:
267 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
268 * ie. transpose of f(x, y)
269 */
ebc348b2 270 struct {
666796da 271 u32 sync_seqno[I915_NUM_ENGINES-1];
78325f2d 272
3e78998a
BW
273 union {
274 struct {
275 /* our mbox written by others */
666796da 276 u32 wait[I915_NUM_ENGINES];
3e78998a 277 /* mboxes this ring signals to */
666796da 278 i915_reg_t signal[I915_NUM_ENGINES];
3e78998a 279 } mbox;
666796da 280 u64 signal_ggtt[I915_NUM_ENGINES];
3e78998a 281 };
78325f2d
BW
282
283 /* AKA wait() */
ad7bdb2b
CW
284 int (*sync_to)(struct drm_i915_gem_request *req,
285 struct drm_i915_gem_request *signal);
286 int (*signal)(struct drm_i915_gem_request *req);
ebc348b2 287 } semaphore;
ad776f8b 288
4da46e1e 289 /* Execlists */
27af5eea
TU
290 struct tasklet_struct irq_tasklet;
291 spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
acdd884a 292 struct list_head execlist_queue;
3756685a 293 unsigned int fw_domains;
c6a2ac71
TU
294 unsigned int next_context_status_buffer;
295 unsigned int idle_lite_restore_wa;
ca82580c
TU
296 bool disable_lite_restore_wa;
297 u32 ctx_desc_template;
4da46e1e 298
8187a2b7
ZN
299 /**
300 * List of breadcrumbs associated with GPU requests currently
301 * outstanding.
302 */
303 struct list_head request_list;
304
94f7bbe1
TE
305 /**
306 * Seqno of request most recently submitted to request_list.
307 * Used exclusively by hang checker to avoid grabbing lock while
308 * inspecting request list.
309 */
310 u32 last_submitted_seqno;
311
dcff85c8
CW
312 /* An RCU guarded pointer to the last request. No reference is
313 * held to the request, users must carefully acquire a reference to
1426f715 314 * the request using i915_gem_active_get_rcu(), or hold the
dcff85c8
CW
315 * struct_mutex.
316 */
317 struct i915_gem_active last_request;
318
e2efd130 319 struct i915_gem_context *last_context;
40521054 320
7e37f889 321 struct intel_engine_hangcheck hangcheck;
92cab734 322
0d1aacac
CW
323 struct {
324 struct drm_i915_gem_object *obj;
325 u32 gtt_offset;
0d1aacac 326 } scratch;
351e3db2 327
44e895a8
BV
328 bool needs_cmd_parser;
329
351e3db2 330 /*
44e895a8 331 * Table of commands the command parser needs to know about
33a051a5 332 * for this engine.
351e3db2 333 */
44e895a8 334 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
351e3db2
BV
335
336 /*
337 * Table of registers allowed in commands that read/write registers.
338 */
361b027b
JJ
339 const struct drm_i915_reg_table *reg_tables;
340 int reg_table_count;
351e3db2
BV
341
342 /*
343 * Returns the bitmask for the length field of the specified command.
344 * Return 0 for an unrecognized/invalid command.
345 *
33a051a5 346 * If the command parser finds an entry for a command in the engine's
351e3db2 347 * cmd_tables, it gets the command's length based on the table entry.
33a051a5
CW
348 * If not, it calls this function to determine the per-engine length
349 * field encoding for the command (i.e. different opcode ranges use
350 * certain bits to encode the command length in the header).
351e3db2
BV
351 */
352 u32 (*get_cmd_length_mask)(u32 cmd_header);
8187a2b7
ZN
353};
354
b0366a54 355static inline bool
67d97da3 356intel_engine_initialized(const struct intel_engine_cs *engine)
b0366a54 357{
c033666a 358 return engine->i915 != NULL;
b0366a54 359}
b4519513 360
96154f2f 361static inline unsigned
67d97da3 362intel_engine_flag(const struct intel_engine_cs *engine)
96154f2f 363{
0bc40be8 364 return 1 << engine->id;
96154f2f
DV
365}
366
1ec14ad3 367static inline u32
7e37f889
CW
368intel_engine_sync_index(struct intel_engine_cs *engine,
369 struct intel_engine_cs *other)
1ec14ad3
CW
370{
371 int idx;
372
373 /*
ddd4dbc6
RV
374 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
375 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
376 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
377 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
378 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
1ec14ad3
CW
379 */
380
0bc40be8 381 idx = (other - engine) - 1;
1ec14ad3 382 if (idx < 0)
666796da 383 idx += I915_NUM_ENGINES;
1ec14ad3
CW
384
385 return idx;
386}
387
319404df 388static inline void
0bc40be8 389intel_flush_status_page(struct intel_engine_cs *engine, int reg)
319404df 390{
0d317ce9
CW
391 mb();
392 clflush(&engine->status_page.page_addr[reg]);
393 mb();
319404df
ID
394}
395
8187a2b7 396static inline u32
5dd8e50c 397intel_read_status_page(struct intel_engine_cs *engine, int reg)
8187a2b7 398{
4225d0f2 399 /* Ensure that the compiler doesn't optimize away the load. */
5dd8e50c 400 return READ_ONCE(engine->status_page.page_addr[reg]);
8187a2b7
ZN
401}
402
b70ec5bf 403static inline void
0bc40be8 404intel_write_status_page(struct intel_engine_cs *engine,
b70ec5bf
MK
405 int reg, u32 value)
406{
0bc40be8 407 engine->status_page.page_addr[reg] = value;
b70ec5bf
MK
408}
409
e2828914 410/*
311bd68e
CW
411 * Reads a dword out of the status page, which is written to from the command
412 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
413 * MI_STORE_DATA_IMM.
414 *
415 * The following dwords have a reserved meaning:
416 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
417 * 0x04: ring 0 head pointer
418 * 0x05: ring 1 head pointer (915-class)
419 * 0x06: ring 2 head pointer (915-class)
420 * 0x10-0x1b: Context status DWords (GM45)
421 * 0x1f: Last written status offset. (GM45)
b07da53c 422 * 0x20-0x2f: Reserved (Gen6+)
311bd68e 423 *
b07da53c 424 * The area from dword 0x30 to 0x3ff is available for driver usage.
311bd68e 425 */
b07da53c 426#define I915_GEM_HWS_INDEX 0x30
7c17d377 427#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
b07da53c 428#define I915_GEM_HWS_SCRATCH_INDEX 0x40
9a289771 429#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
311bd68e 430
7e37f889
CW
431struct intel_ring *
432intel_engine_create_ring(struct intel_engine_cs *engine, int size);
aad29fbb
CW
433int intel_ring_pin(struct intel_ring *ring);
434void intel_ring_unpin(struct intel_ring *ring);
7e37f889 435void intel_ring_free(struct intel_ring *ring);
84c2377f 436
7e37f889
CW
437void intel_engine_stop(struct intel_engine_cs *engine);
438void intel_engine_cleanup(struct intel_engine_cs *engine);
96f298aa 439
6689cb2b
JH
440int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
441
5fb9de1a 442int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
bba09b12 443int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
406ea8d2 444
7e37f889 445static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
406ea8d2 446{
b5321f30
CW
447 *(uint32_t *)(ring->vaddr + ring->tail) = data;
448 ring->tail += 4;
406ea8d2
CW
449}
450
7e37f889 451static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
f92a9162 452{
b5321f30 453 intel_ring_emit(ring, i915_mmio_reg_offset(reg));
f92a9162 454}
406ea8d2 455
7e37f889 456static inline void intel_ring_advance(struct intel_ring *ring)
09246732 457{
8f942018
CW
458 /* Dummy function.
459 *
460 * This serves as a placeholder in the code so that the reader
461 * can compare against the preceding intel_ring_begin() and
462 * check that the number of dwords emitted matches the space
463 * reserved for the command packet (i.e. the value passed to
464 * intel_ring_begin()).
c5efa1ad 465 */
8f942018
CW
466}
467
468static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
469{
470 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
471 return value & (ring->size - 1);
09246732 472}
406ea8d2 473
82e104cc 474int __intel_ring_space(int head, int tail, int size);
32c04f16 475void intel_ring_update_space(struct intel_ring *ring);
09246732 476
7e37f889 477void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
8187a2b7 478
7d5ea807 479int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
0bc40be8 480void intel_fini_pipe_control(struct intel_engine_cs *engine);
9b1136d5 481
019bf277
TU
482void intel_engine_setup_common(struct intel_engine_cs *engine);
483int intel_engine_init_common(struct intel_engine_cs *engine);
96a945aa 484void intel_engine_cleanup_common(struct intel_engine_cs *engine);
019bf277 485
dcff85c8
CW
486static inline int intel_engine_idle(struct intel_engine_cs *engine,
487 bool interruptible)
488{
489 /* Wait upon the last request to be completed */
490 return i915_gem_active_wait_unlocked(&engine->last_request,
491 interruptible, NULL, NULL);
492}
493
8b3e2d36
TU
494int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
495int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
496int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
497int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
498int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
8187a2b7 499
7e37f889 500u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
1b7744e7
CW
501static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
502{
503 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
504}
79f321b7 505
0bc40be8 506int init_workarounds_ring(struct intel_engine_cs *engine);
771b9a53 507
29b1b415
JH
508/*
509 * Arbitrary size for largest possible 'add request' sequence. The code paths
510 * are complex and variable. Empirical measurement shows that the worst case
596e5efc
CW
511 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
512 * we need to allocate double the largest single packet within that emission
513 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
29b1b415 514 */
596e5efc 515#define MIN_SPACE_FOR_ADD_REQUEST 336
29b1b415 516
a58c01aa
CW
517static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
518{
519 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
520}
521
688e6c72 522/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
688e6c72
CW
523int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
524
525static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
526{
527 wait->tsk = current;
528 wait->seqno = seqno;
529}
530
531static inline bool intel_wait_complete(const struct intel_wait *wait)
532{
533 return RB_EMPTY_NODE(&wait->node);
534}
535
536bool intel_engine_add_wait(struct intel_engine_cs *engine,
537 struct intel_wait *wait);
538void intel_engine_remove_wait(struct intel_engine_cs *engine,
539 struct intel_wait *wait);
b3850855 540void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
688e6c72 541
dbd6ef29 542static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
688e6c72 543{
dbd6ef29 544 return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
688e6c72
CW
545}
546
dbd6ef29 547static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
688e6c72
CW
548{
549 bool wakeup = false;
dbd6ef29 550
688e6c72 551 /* Note that for this not to dangerously chase a dangling pointer,
dbd6ef29 552 * we must hold the rcu_read_lock here.
688e6c72
CW
553 *
554 * Also note that tsk is likely to be in !TASK_RUNNING state so an
555 * early test for tsk->state != TASK_RUNNING before wake_up_process()
556 * is unlikely to be beneficial.
557 */
dbd6ef29
CW
558 if (intel_engine_has_waiter(engine)) {
559 struct task_struct *tsk;
560
561 rcu_read_lock();
562 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
563 if (tsk)
564 wakeup = wake_up_process(tsk);
565 rcu_read_unlock();
566 }
567
688e6c72
CW
568 return wakeup;
569}
570
688e6c72
CW
571void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
572unsigned int intel_kick_waiters(struct drm_i915_private *i915);
c81d4613 573unsigned int intel_kick_signalers(struct drm_i915_private *i915);
688e6c72 574
dcff85c8
CW
575static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
576{
577 return i915_gem_active_isset(&engine->last_request);
578}
579
8187a2b7 580#endif /* _INTEL_RINGBUFFER_H_ */
This page took 0.575382 seconds and 5 git commands to generate.