Merge tag 'drm/tegra/for-4.8-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
CommitLineData
8aceb7de
BS
1/*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
6625f55c
BS
24#define gf100_clk(p) container_of((p), struct gf100_clk, base)
25#include "priv.h"
7632b30e
BS
26#include "pll.h"
27
70790f4f
BS
28#include <subdev/bios.h>
29#include <subdev/bios/pll.h>
7c856522 30#include <subdev/timer.h>
70790f4f 31
7632b30e 32struct gf100_clk_info {
7c856522
BS
33 u32 freq;
34 u32 ssel;
35 u32 mdiv;
36 u32 dsrc;
37 u32 ddiv;
38 u32 coef;
39};
40
3eca809b 41struct gf100_clk {
7632b30e
BS
42 struct nvkm_clk base;
43 struct gf100_clk_info eng[16];
7c856522
BS
44};
45
3eca809b 46static u32 read_div(struct gf100_clk *, int, u32, u32);
7c856522
BS
47
48static u32
3eca809b 49read_vco(struct gf100_clk *clk, u32 dsrc)
7c856522 50{
822ad79f
BS
51 struct nvkm_device *device = clk->base.subdev.device;
52 u32 ssrc = nvkm_rd32(device, dsrc);
7c856522 53 if (!(ssrc & 0x00000100))
6625f55c
BS
54 return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55 return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
7c856522
BS
56}
57
58static u32
3eca809b 59read_pll(struct gf100_clk *clk, u32 pll)
7c856522 60{
822ad79f
BS
61 struct nvkm_device *device = clk->base.subdev.device;
62 u32 ctrl = nvkm_rd32(device, pll + 0x00);
63 u32 coef = nvkm_rd32(device, pll + 0x04);
7c856522
BS
64 u32 P = (coef & 0x003f0000) >> 16;
65 u32 N = (coef & 0x0000ff00) >> 8;
66 u32 M = (coef & 0x000000ff) >> 0;
67 u32 sclk;
68
69 if (!(ctrl & 0x00000001))
70 return 0;
71
72 switch (pll) {
73 case 0x00e800:
74 case 0x00e820:
822ad79f 75 sclk = device->crystal;
7c856522
BS
76 P = 1;
77 break;
78 case 0x132000:
6625f55c 79 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
7c856522
BS
80 break;
81 case 0x132020:
6625f55c 82 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
7c856522
BS
83 break;
84 case 0x137000:
85 case 0x137020:
86 case 0x137040:
87 case 0x1370e0:
3eca809b 88 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
7c856522
BS
89 break;
90 default:
91 return 0;
92 }
93
94 return sclk * N / M / P;
95}
96
97static u32
3eca809b 98read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
7c856522 99{
822ad79f
BS
100 struct nvkm_device *device = clk->base.subdev.device;
101 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
f8fa2e4b 102 u32 sclk, sctl, sdiv = 2;
7c856522
BS
103
104 switch (ssrc & 0x00000003) {
105 case 0:
106 if ((ssrc & 0x00030000) != 0x00030000)
822ad79f 107 return device->crystal;
7c856522
BS
108 return 108000;
109 case 2:
110 return 100000;
111 case 3:
f8fa2e4b
RS
112 sclk = read_vco(clk, dsrc + (doff * 4));
113
114 /* Memclk has doff of 0 despite its alt. location */
115 if (doff <= 2) {
116 sctl = nvkm_rd32(device, dctl + (doff * 4));
117
118 if (sctl & 0x80000000) {
119 if (ssrc & 0x100)
120 sctl >>= 8;
121
122 sdiv = (sctl & 0x3f) + 2;
123 }
7c856522
BS
124 }
125
f8fa2e4b 126 return (sclk * 2) / sdiv;
7c856522
BS
127 default:
128 return 0;
129 }
130}
131
132static u32
3eca809b 133read_clk(struct gf100_clk *clk, int idx)
7c856522 134{
822ad79f
BS
135 struct nvkm_device *device = clk->base.subdev.device;
136 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
137 u32 ssel = nvkm_rd32(device, 0x137100);
7c856522
BS
138 u32 sclk, sdiv;
139
3eca809b
BS
140 if (ssel & (1 << idx)) {
141 if (idx < 7)
142 sclk = read_pll(clk, 0x137000 + (idx * 0x20));
7c856522 143 else
3eca809b 144 sclk = read_pll(clk, 0x1370e0);
7c856522
BS
145 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
146 } else {
3eca809b 147 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
7c856522
BS
148 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
149 }
150
151 if (sctl & 0x80000000)
152 return (sclk * 2) / sdiv;
153
154 return sclk;
155}
156
157static int
6625f55c 158gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
7c856522 159{
6625f55c 160 struct gf100_clk *clk = gf100_clk(base);
b907649e
BS
161 struct nvkm_subdev *subdev = &clk->base.subdev;
162 struct nvkm_device *device = subdev->device;
7c856522
BS
163
164 switch (src) {
165 case nv_clk_src_crystal:
166 return device->crystal;
167 case nv_clk_src_href:
168 return 100000;
169 case nv_clk_src_sppll0:
3eca809b 170 return read_pll(clk, 0x00e800);
7c856522 171 case nv_clk_src_sppll1:
3eca809b 172 return read_pll(clk, 0x00e820);
7c856522
BS
173
174 case nv_clk_src_mpllsrcref:
3eca809b 175 return read_div(clk, 0, 0x137320, 0x137330);
7c856522 176 case nv_clk_src_mpllsrc:
3eca809b 177 return read_pll(clk, 0x132020);
7c856522 178 case nv_clk_src_mpll:
3eca809b 179 return read_pll(clk, 0x132000);
7c856522 180 case nv_clk_src_mdiv:
3eca809b 181 return read_div(clk, 0, 0x137300, 0x137310);
7c856522 182 case nv_clk_src_mem:
822ad79f 183 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
6625f55c
BS
184 return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
185 return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
7c856522
BS
186
187 case nv_clk_src_gpc:
3eca809b 188 return read_clk(clk, 0x00);
7c856522 189 case nv_clk_src_rop:
3eca809b 190 return read_clk(clk, 0x01);
7c856522 191 case nv_clk_src_hubk07:
3eca809b 192 return read_clk(clk, 0x02);
7c856522 193 case nv_clk_src_hubk06:
3eca809b 194 return read_clk(clk, 0x07);
7c856522 195 case nv_clk_src_hubk01:
3eca809b 196 return read_clk(clk, 0x08);
7c856522 197 case nv_clk_src_copy:
3eca809b 198 return read_clk(clk, 0x09);
547dd271 199 case nv_clk_src_pmu:
3eca809b 200 return read_clk(clk, 0x0c);
7c856522 201 case nv_clk_src_vdec:
3eca809b 202 return read_clk(clk, 0x0e);
7c856522 203 default:
b907649e 204 nvkm_error(subdev, "invalid clock source %d\n", src);
7c856522
BS
205 return -EINVAL;
206 }
207}
208
209static u32
3eca809b 210calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
7c856522
BS
211{
212 u32 div = min((ref * 2) / freq, (u32)65);
213 if (div < 2)
214 div = 2;
215
216 *ddiv = div - 2;
217 return (ref * 2) / div;
218}
219
220static u32
3eca809b 221calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
7c856522
BS
222{
223 u32 sclk;
224
225 /* use one of the fixed frequencies if possible */
226 *ddiv = 0x00000000;
227 switch (freq) {
228 case 27000:
229 case 108000:
230 *dsrc = 0x00000000;
231 if (freq == 108000)
232 *dsrc |= 0x00030000;
233 return freq;
234 case 100000:
235 *dsrc = 0x00000002;
236 return freq;
237 default:
238 *dsrc = 0x00000003;
239 break;
240 }
241
242 /* otherwise, calculate the closest divider */
3eca809b
BS
243 sclk = read_vco(clk, 0x137160 + (idx * 4));
244 if (idx < 7)
245 sclk = calc_div(clk, idx, sclk, freq, ddiv);
7c856522
BS
246 return sclk;
247}
248
249static u32
3eca809b 250calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
7c856522 251{
46484438
BS
252 struct nvkm_subdev *subdev = &clk->base.subdev;
253 struct nvkm_bios *bios = subdev->device->bios;
7c856522
BS
254 struct nvbios_pll limits;
255 int N, M, P, ret;
256
3eca809b 257 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
7c856522
BS
258 if (ret)
259 return 0;
260
3eca809b 261 limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
7c856522
BS
262 if (!limits.refclk)
263 return 0;
264
46484438 265 ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
7c856522
BS
266 if (ret <= 0)
267 return 0;
268
269 *coef = (P << 16) | (N << 8) | M;
270 return ret;
271}
272
273static int
3eca809b 274calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
7c856522 275{
3eca809b 276 struct gf100_clk_info *info = &clk->eng[idx];
7c856522
BS
277 u32 freq = cstate->domain[dom];
278 u32 src0, div0, div1D, div1P = 0;
279 u32 clk0, clk1 = 0;
280
281 /* invalid clock domain */
282 if (!freq)
283 return 0;
284
285 /* first possible path, using only dividers */
3eca809b
BS
286 clk0 = calc_src(clk, idx, freq, &src0, &div0);
287 clk0 = calc_div(clk, idx, clk0, freq, &div1D);
7c856522
BS
288
289 /* see if we can get any closer using PLLs */
3eca809b
BS
290 if (clk0 != freq && (0x00004387 & (1 << idx))) {
291 if (idx <= 7)
292 clk1 = calc_pll(clk, idx, freq, &info->coef);
7c856522
BS
293 else
294 clk1 = cstate->domain[nv_clk_src_hubk06];
3eca809b 295 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
7c856522
BS
296 }
297
298 /* select the method which gets closest to target freq */
299 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
300 info->dsrc = src0;
301 if (div0) {
302 info->ddiv |= 0x80000000;
303 info->ddiv |= div0 << 8;
304 info->ddiv |= div0;
305 }
306 if (div1D) {
307 info->mdiv |= 0x80000000;
308 info->mdiv |= div1D;
309 }
310 info->ssel = info->coef = 0;
311 info->freq = clk0;
312 } else {
313 if (div1P) {
314 info->mdiv |= 0x80000000;
315 info->mdiv |= div1P << 8;
316 }
3eca809b 317 info->ssel = (1 << idx);
7c856522
BS
318 info->freq = clk1;
319 }
320
321 return 0;
322}
323
324static int
6625f55c 325gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
7c856522 326{
6625f55c 327 struct gf100_clk *clk = gf100_clk(base);
7c856522
BS
328 int ret;
329
3eca809b
BS
330 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
331 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
332 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
333 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
334 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
335 (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
547dd271 336 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
3eca809b 337 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
7c856522
BS
338 return ret;
339
340 return 0;
341}
342
343static void
3eca809b 344gf100_clk_prog_0(struct gf100_clk *clk, int idx)
7c856522 345{
3eca809b 346 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f 347 struct nvkm_device *device = clk->base.subdev.device;
3eca809b 348 if (idx < 7 && !info->ssel) {
822ad79f
BS
349 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
350 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
7c856522
BS
351 }
352}
353
354static void
3eca809b 355gf100_clk_prog_1(struct gf100_clk *clk, int idx)
7c856522 356{
822ad79f
BS
357 struct nvkm_device *device = clk->base.subdev.device;
358 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
6979c630
BS
359 nvkm_msec(device, 2000,
360 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
361 break;
362 );
7c856522
BS
363}
364
365static void
3eca809b 366gf100_clk_prog_2(struct gf100_clk *clk, int idx)
7c856522 367{
3eca809b 368 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f 369 struct nvkm_device *device = clk->base.subdev.device;
3eca809b
BS
370 const u32 addr = 0x137000 + (idx * 0x20);
371 if (idx <= 7) {
822ad79f
BS
372 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
373 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
7c856522 374 if (info->coef) {
822ad79f
BS
375 nvkm_wr32(device, addr + 0x04, info->coef);
376 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
0f7fbb99
RS
377
378 /* Test PLL lock */
379 nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
6979c630
BS
380 nvkm_msec(device, 2000,
381 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
382 break;
383 );
0f7fbb99
RS
384 nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
385
386 /* Enable sync mode */
387 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
7c856522
BS
388 }
389 }
390}
391
392static void
3eca809b 393gf100_clk_prog_3(struct gf100_clk *clk, int idx)
7c856522 394{
3eca809b 395 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f 396 struct nvkm_device *device = clk->base.subdev.device;
7c856522 397 if (info->ssel) {
822ad79f 398 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
6979c630
BS
399 nvkm_msec(device, 2000,
400 u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
401 if (tmp == info->ssel)
402 break;
403 );
7c856522
BS
404 }
405}
406
407static void
3eca809b 408gf100_clk_prog_4(struct gf100_clk *clk, int idx)
7c856522 409{
3eca809b 410 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f
BS
411 struct nvkm_device *device = clk->base.subdev.device;
412 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
7c856522
BS
413}
414
415static int
6625f55c 416gf100_clk_prog(struct nvkm_clk *base)
7c856522 417{
6625f55c 418 struct gf100_clk *clk = gf100_clk(base);
7c856522 419 struct {
3eca809b 420 void (*exec)(struct gf100_clk *, int);
7c856522 421 } stage[] = {
7632b30e
BS
422 { gf100_clk_prog_0 }, /* div programming */
423 { gf100_clk_prog_1 }, /* select div mode */
424 { gf100_clk_prog_2 }, /* (maybe) program pll */
425 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
426 { gf100_clk_prog_4 }, /* final divider */
7c856522
BS
427 };
428 int i, j;
429
430 for (i = 0; i < ARRAY_SIZE(stage); i++) {
3eca809b
BS
431 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
432 if (!clk->eng[j].freq)
7c856522 433 continue;
3eca809b 434 stage[i].exec(clk, j);
7c856522
BS
435 }
436 }
437
438 return 0;
439}
440
441static void
6625f55c 442gf100_clk_tidy(struct nvkm_clk *base)
7c856522 443{
6625f55c 444 struct gf100_clk *clk = gf100_clk(base);
3eca809b 445 memset(clk->eng, 0x00, sizeof(clk->eng));
7c856522
BS
446}
447
6625f55c
BS
448static const struct nvkm_clk_func
449gf100_clk = {
450 .read = gf100_clk_read,
451 .calc = gf100_clk_calc,
452 .prog = gf100_clk_prog,
453 .tidy = gf100_clk_tidy,
454 .domains = {
455 { nv_clk_src_crystal, 0xff },
456 { nv_clk_src_href , 0xff },
457 { nv_clk_src_hubk06 , 0x00 },
458 { nv_clk_src_hubk01 , 0x01 },
459 { nv_clk_src_copy , 0x02 },
460 { nv_clk_src_gpc , 0x03, 0, "core", 2000 },
461 { nv_clk_src_rop , 0x04 },
462 { nv_clk_src_mem , 0x05, 0, "memory", 1000 },
463 { nv_clk_src_vdec , 0x06 },
547dd271 464 { nv_clk_src_pmu , 0x0a },
6625f55c
BS
465 { nv_clk_src_hubk07 , 0x0b },
466 { nv_clk_src_max }
467 }
8aceb7de
BS
468};
469
6625f55c
BS
470int
471gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
8aceb7de 472{
3eca809b 473 struct gf100_clk *clk;
8aceb7de 474
6625f55c
BS
475 if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
476 return -ENOMEM;
477 *pclk = &clk->base;
8aceb7de 478
6625f55c 479 return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
8aceb7de 480}
This page took 0.308597 seconds and 5 git commands to generate.