Merge tag 'mmc-v4.5-rc1' of git://git.linaro.org/people/ulf.hansson/mmc
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
CommitLineData
b13a0a9e
AC
1/*
2 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 *
22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23 *
24 */
6625f55c
BS
25#define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26#include "priv.h"
27
43a70661 28#include <core/tegra.h>
7632b30e
BS
29#include <subdev/timer.h>
30
b13a0a9e
AC
31#define MHZ (1000 * 1000)
32
33#define MASK(w) ((1 << w) - 1)
34
35#define SYS_GPCPLL_CFG_BASE 0x00137000
36#define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800
37
38#define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0)
39#define GPCPLL_CFG_ENABLE BIT(0)
40#define GPCPLL_CFG_IDDQ BIT(1)
41#define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
42#define GPCPLL_CFG_LOCK BIT(17)
43
44#define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4)
45#define GPCPLL_COEFF_M_SHIFT 0
46#define GPCPLL_COEFF_M_WIDTH 8
47#define GPCPLL_COEFF_N_SHIFT 8
48#define GPCPLL_COEFF_N_WIDTH 8
49#define GPCPLL_COEFF_P_SHIFT 16
50#define GPCPLL_COEFF_P_WIDTH 6
51
52#define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc)
53#define GPCPLL_CFG2_SETUP2_SHIFT 16
54#define GPCPLL_CFG2_PLL_STEPA_SHIFT 24
55
56#define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18)
57#define GPCPLL_CFG3_PLL_STEPB_SHIFT 16
58
59#define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c)
60#define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0
61#define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8
62#define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16
63#define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22
64#define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31
65
66#define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100)
67#define SEL_VCO_GPC2CLK_OUT_SHIFT 0
68
69#define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250)
70#define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
71#define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
72#define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1
73#define GPC2CLK_OUT_VCODIV_WIDTH 6
74#define GPC2CLK_OUT_VCODIV_SHIFT 8
75#define GPC2CLK_OUT_VCODIV1 0
76#define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
77 GPC2CLK_OUT_VCODIV_SHIFT)
78#define GPC2CLK_OUT_BYPDIV_WIDTH 6
79#define GPC2CLK_OUT_BYPDIV_SHIFT 0
80#define GPC2CLK_OUT_BYPDIV31 0x3c
81#define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
82 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
83 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
84 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
85#define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
86 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
87 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
88 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
89
90#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
91#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24
92#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
93 (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
94
b13a0a9e
AC
95static const u8 pl_to_div[] = {
96/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
97/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
98};
99
100/* All frequencies in Mhz */
101struct gk20a_clk_pllg_params {
102 u32 min_vco, max_vco;
103 u32 min_u, max_u;
104 u32 min_m, max_m;
105 u32 min_n, max_n;
106 u32 min_pl, max_pl;
107};
108
109static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
c50d3b2b 110 .min_vco = 1000, .max_vco = 2064,
b13a0a9e
AC
111 .min_u = 12, .max_u = 38,
112 .min_m = 1, .max_m = 255,
113 .min_n = 8, .max_n = 255,
114 .min_pl = 1, .max_pl = 32,
115};
116
3eca809b 117struct gk20a_clk {
7632b30e 118 struct nvkm_clk base;
b13a0a9e
AC
119 const struct gk20a_clk_pllg_params *params;
120 u32 m, n, pl;
121 u32 parent_rate;
122};
b13a0a9e
AC
123
124static void
3eca809b 125gk20a_pllg_read_mnp(struct gk20a_clk *clk)
b13a0a9e 126{
822ad79f 127 struct nvkm_device *device = clk->base.subdev.device;
b13a0a9e
AC
128 u32 val;
129
822ad79f 130 val = nvkm_rd32(device, GPCPLL_COEFF);
3eca809b
BS
131 clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
132 clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
133 clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
b13a0a9e
AC
134}
135
136static u32
3eca809b 137gk20a_pllg_calc_rate(struct gk20a_clk *clk)
b13a0a9e
AC
138{
139 u32 rate;
140 u32 divider;
141
3eca809b
BS
142 rate = clk->parent_rate * clk->n;
143 divider = clk->m * pl_to_div[clk->pl];
b13a0a9e 144
8cb87c04 145 return rate / divider / 2;
b13a0a9e
AC
146}
147
148static int
3eca809b 149gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
b13a0a9e 150{
b907649e 151 struct nvkm_subdev *subdev = &clk->base.subdev;
b13a0a9e
AC
152 u32 target_clk_f, ref_clk_f, target_freq;
153 u32 min_vco_f, max_vco_f;
154 u32 low_pl, high_pl, best_pl;
155 u32 target_vco_f, vco_f;
156 u32 best_m, best_n;
157 u32 u_f;
158 u32 m, n, n2;
159 u32 delta, lwv, best_delta = ~0;
160 u32 pl;
161
162 target_clk_f = rate * 2 / MHZ;
3eca809b 163 ref_clk_f = clk->parent_rate / MHZ;
b13a0a9e 164
3eca809b
BS
165 max_vco_f = clk->params->max_vco;
166 min_vco_f = clk->params->min_vco;
167 best_m = clk->params->max_m;
168 best_n = clk->params->min_n;
169 best_pl = clk->params->min_pl;
b13a0a9e
AC
170
171 target_vco_f = target_clk_f + target_clk_f / 50;
172 if (max_vco_f < target_vco_f)
173 max_vco_f = target_vco_f;
174
175 /* min_pl <= high_pl <= max_pl */
176 high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
3eca809b
BS
177 high_pl = min(high_pl, clk->params->max_pl);
178 high_pl = max(high_pl, clk->params->min_pl);
b13a0a9e
AC
179
180 /* min_pl <= low_pl <= max_pl */
181 low_pl = min_vco_f / target_vco_f;
3eca809b
BS
182 low_pl = min(low_pl, clk->params->max_pl);
183 low_pl = max(low_pl, clk->params->min_pl);
b13a0a9e
AC
184
185 /* Find Indices of high_pl and low_pl */
186 for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
187 if (pl_to_div[pl] >= low_pl) {
188 low_pl = pl;
189 break;
190 }
191 }
192 for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
193 if (pl_to_div[pl] >= high_pl) {
194 high_pl = pl;
195 break;
196 }
197 }
198
b907649e
BS
199 nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
200 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
b13a0a9e
AC
201
202 /* Select lowest possible VCO */
203 for (pl = low_pl; pl <= high_pl; pl++) {
204 target_vco_f = target_clk_f * pl_to_div[pl];
3eca809b 205 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
b13a0a9e
AC
206 u_f = ref_clk_f / m;
207
3eca809b 208 if (u_f < clk->params->min_u)
b13a0a9e 209 break;
3eca809b 210 if (u_f > clk->params->max_u)
b13a0a9e
AC
211 continue;
212
213 n = (target_vco_f * m) / ref_clk_f;
214 n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
215
3eca809b 216 if (n > clk->params->max_n)
b13a0a9e
AC
217 break;
218
219 for (; n <= n2; n++) {
3eca809b 220 if (n < clk->params->min_n)
b13a0a9e 221 continue;
3eca809b 222 if (n > clk->params->max_n)
b13a0a9e
AC
223 break;
224
225 vco_f = ref_clk_f * n / m;
226
227 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
228 lwv = (vco_f + (pl_to_div[pl] / 2))
229 / pl_to_div[pl];
230 delta = abs(lwv - target_clk_f);
231
232 if (delta < best_delta) {
233 best_delta = delta;
234 best_m = m;
235 best_n = n;
236 best_pl = pl;
237
238 if (best_delta == 0)
239 goto found_match;
240 }
241 }
242 }
243 }
244 }
245
246found_match:
247 WARN_ON(best_delta == ~0);
248
249 if (best_delta != 0)
b907649e
BS
250 nvkm_debug(subdev,
251 "no best match for target @ %dMHz on gpc_pll",
252 target_clk_f);
b13a0a9e 253
3eca809b
BS
254 clk->m = best_m;
255 clk->n = best_n;
256 clk->pl = best_pl;
b13a0a9e 257
3eca809b 258 target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
b13a0a9e 259
b907649e
BS
260 nvkm_debug(subdev,
261 "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
262 target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
b13a0a9e
AC
263 return 0;
264}
265
266static int
3eca809b 267gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
b13a0a9e 268{
b907649e
BS
269 struct nvkm_subdev *subdev = &clk->base.subdev;
270 struct nvkm_device *device = subdev->device;
b13a0a9e
AC
271 u32 val;
272 int ramp_timeout;
273
274 /* get old coefficients */
822ad79f 275 val = nvkm_rd32(device, GPCPLL_COEFF);
b13a0a9e
AC
276 /* do nothing if NDIV is the same */
277 if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
278 return 0;
279
280 /* setup */
822ad79f 281 nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
b13a0a9e 282 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
822ad79f 283 nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
b13a0a9e
AC
284 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
285
286 /* pll slowdown mode */
822ad79f 287 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
b13a0a9e
AC
288 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
289 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
290
291 /* new ndiv ready for ramp */
822ad79f 292 val = nvkm_rd32(device, GPCPLL_COEFF);
b13a0a9e
AC
293 val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
294 val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
295 udelay(1);
822ad79f 296 nvkm_wr32(device, GPCPLL_COEFF, val);
b13a0a9e
AC
297
298 /* dynamic ramp to new ndiv */
822ad79f 299 val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
b13a0a9e
AC
300 val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
301 udelay(1);
822ad79f 302 nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
b13a0a9e
AC
303
304 for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
305 udelay(1);
822ad79f 306 val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
b13a0a9e
AC
307 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
308 break;
309 }
310
311 /* exit slowdown mode */
822ad79f 312 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
b13a0a9e
AC
313 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
314 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
822ad79f 315 nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
b13a0a9e
AC
316
317 if (ramp_timeout <= 0) {
b907649e 318 nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
b13a0a9e
AC
319 return -ETIMEDOUT;
320 }
321
322 return 0;
323}
324
325static void
3eca809b 326_gk20a_pllg_enable(struct gk20a_clk *clk)
b13a0a9e 327{
822ad79f
BS
328 struct nvkm_device *device = clk->base.subdev.device;
329 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
330 nvkm_rd32(device, GPCPLL_CFG);
b13a0a9e
AC
331}
332
333static void
3eca809b 334_gk20a_pllg_disable(struct gk20a_clk *clk)
b13a0a9e 335{
822ad79f
BS
336 struct nvkm_device *device = clk->base.subdev.device;
337 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
338 nvkm_rd32(device, GPCPLL_CFG);
b13a0a9e
AC
339}
340
341static int
3eca809b 342_gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
b13a0a9e 343{
b907649e
BS
344 struct nvkm_subdev *subdev = &clk->base.subdev;
345 struct nvkm_device *device = subdev->device;
b13a0a9e
AC
346 u32 val, cfg;
347 u32 m_old, pl_old, n_lo;
348
349 /* get old coefficients */
822ad79f 350 val = nvkm_rd32(device, GPCPLL_COEFF);
b13a0a9e
AC
351 m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
352 pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
353
354 /* do NDIV slide if there is no change in M and PL */
822ad79f 355 cfg = nvkm_rd32(device, GPCPLL_CFG);
3eca809b 356 if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
b13a0a9e 357 (cfg & GPCPLL_CFG_ENABLE)) {
3eca809b 358 return gk20a_pllg_slide(clk, clk->n);
b13a0a9e
AC
359 }
360
361 /* slide down to NDIV_LO */
3eca809b
BS
362 n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
363 clk->parent_rate / MHZ);
b13a0a9e 364 if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
3eca809b 365 int ret = gk20a_pllg_slide(clk, n_lo);
b13a0a9e
AC
366
367 if (ret)
368 return ret;
369 }
370
371 /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
822ad79f 372 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
b13a0a9e
AC
373 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
374
375 /* put PLL in bypass before programming it */
822ad79f 376 val = nvkm_rd32(device, SEL_VCO);
b13a0a9e
AC
377 val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
378 udelay(2);
822ad79f 379 nvkm_wr32(device, SEL_VCO, val);
b13a0a9e
AC
380
381 /* get out from IDDQ */
822ad79f 382 val = nvkm_rd32(device, GPCPLL_CFG);
b13a0a9e
AC
383 if (val & GPCPLL_CFG_IDDQ) {
384 val &= ~GPCPLL_CFG_IDDQ;
822ad79f
BS
385 nvkm_wr32(device, GPCPLL_CFG, val);
386 nvkm_rd32(device, GPCPLL_CFG);
b13a0a9e
AC
387 udelay(2);
388 }
389
3eca809b 390 _gk20a_pllg_disable(clk);
b13a0a9e 391
b907649e
BS
392 nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
393 clk->m, clk->n, clk->pl);
b13a0a9e 394
3eca809b
BS
395 n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
396 clk->parent_rate / MHZ);
397 val = clk->m << GPCPLL_COEFF_M_SHIFT;
398 val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
399 val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
822ad79f 400 nvkm_wr32(device, GPCPLL_COEFF, val);
b13a0a9e 401
3eca809b 402 _gk20a_pllg_enable(clk);
b13a0a9e 403
822ad79f 404 val = nvkm_rd32(device, GPCPLL_CFG);
b13a0a9e
AC
405 if (val & GPCPLL_CFG_LOCK_DET_OFF) {
406 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
822ad79f 407 nvkm_wr32(device, GPCPLL_CFG, val);
b13a0a9e
AC
408 }
409
6979c630
BS
410 if (nvkm_usec(device, 300,
411 if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
412 break;
413 ) < 0)
b13a0a9e 414 return -ETIMEDOUT;
b13a0a9e
AC
415
416 /* switch to VCO mode */
822ad79f 417 nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
b13a0a9e
AC
418
419 /* restore out divider 1:1 */
822ad79f 420 val = nvkm_rd32(device, GPC2CLK_OUT);
b13a0a9e
AC
421 val &= ~GPC2CLK_OUT_VCODIV_MASK;
422 udelay(2);
822ad79f 423 nvkm_wr32(device, GPC2CLK_OUT, val);
b13a0a9e
AC
424
425 /* slide up to new NDIV */
3eca809b 426 return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
b13a0a9e
AC
427}
428
429static int
3eca809b 430gk20a_pllg_program_mnp(struct gk20a_clk *clk)
b13a0a9e
AC
431{
432 int err;
433
3eca809b 434 err = _gk20a_pllg_program_mnp(clk, true);
b13a0a9e 435 if (err)
3eca809b 436 err = _gk20a_pllg_program_mnp(clk, false);
b13a0a9e
AC
437
438 return err;
439}
440
441static void
3eca809b 442gk20a_pllg_disable(struct gk20a_clk *clk)
b13a0a9e 443{
822ad79f 444 struct nvkm_device *device = clk->base.subdev.device;
b13a0a9e
AC
445 u32 val;
446
447 /* slide to VCO min */
822ad79f 448 val = nvkm_rd32(device, GPCPLL_CFG);
b13a0a9e
AC
449 if (val & GPCPLL_CFG_ENABLE) {
450 u32 coeff, m, n_lo;
451
822ad79f 452 coeff = nvkm_rd32(device, GPCPLL_COEFF);
b13a0a9e 453 m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
3eca809b
BS
454 n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
455 clk->parent_rate / MHZ);
456 gk20a_pllg_slide(clk, n_lo);
b13a0a9e
AC
457 }
458
459 /* put PLL in bypass before disabling it */
822ad79f 460 nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
b13a0a9e 461
3eca809b 462 _gk20a_pllg_disable(clk);
b13a0a9e
AC
463}
464
465#define GK20A_CLK_GPC_MDIV 1000
466
7632b30e 467static struct nvkm_pstate
b13a0a9e
AC
468gk20a_pstates[] = {
469 {
470 .base = {
471 .domain[nv_clk_src_gpc] = 72000,
ef1df1bc 472 .voltage = 0,
b13a0a9e
AC
473 },
474 },
475 {
476 .base = {
477 .domain[nv_clk_src_gpc] = 108000,
ef1df1bc 478 .voltage = 1,
b13a0a9e
AC
479 },
480 },
481 {
482 .base = {
483 .domain[nv_clk_src_gpc] = 180000,
ef1df1bc 484 .voltage = 2,
b13a0a9e
AC
485 },
486 },
487 {
488 .base = {
489 .domain[nv_clk_src_gpc] = 252000,
ef1df1bc 490 .voltage = 3,
b13a0a9e
AC
491 },
492 },
493 {
494 .base = {
495 .domain[nv_clk_src_gpc] = 324000,
ef1df1bc 496 .voltage = 4,
b13a0a9e
AC
497 },
498 },
499 {
500 .base = {
501 .domain[nv_clk_src_gpc] = 396000,
ef1df1bc 502 .voltage = 5,
b13a0a9e
AC
503 },
504 },
505 {
506 .base = {
507 .domain[nv_clk_src_gpc] = 468000,
ef1df1bc 508 .voltage = 6,
b13a0a9e
AC
509 },
510 },
511 {
512 .base = {
513 .domain[nv_clk_src_gpc] = 540000,
ef1df1bc 514 .voltage = 7,
b13a0a9e
AC
515 },
516 },
517 {
518 .base = {
519 .domain[nv_clk_src_gpc] = 612000,
ef1df1bc 520 .voltage = 8,
b13a0a9e
AC
521 },
522 },
523 {
524 .base = {
525 .domain[nv_clk_src_gpc] = 648000,
ef1df1bc 526 .voltage = 9,
b13a0a9e
AC
527 },
528 },
529 {
530 .base = {
531 .domain[nv_clk_src_gpc] = 684000,
ef1df1bc 532 .voltage = 10,
b13a0a9e
AC
533 },
534 },
535 {
536 .base = {
537 .domain[nv_clk_src_gpc] = 708000,
ef1df1bc 538 .voltage = 11,
b13a0a9e
AC
539 },
540 },
541 {
542 .base = {
543 .domain[nv_clk_src_gpc] = 756000,
ef1df1bc 544 .voltage = 12,
b13a0a9e
AC
545 },
546 },
547 {
548 .base = {
549 .domain[nv_clk_src_gpc] = 804000,
ef1df1bc 550 .voltage = 13,
b13a0a9e
AC
551 },
552 },
553 {
554 .base = {
555 .domain[nv_clk_src_gpc] = 852000,
ef1df1bc 556 .voltage = 14,
b13a0a9e
AC
557 },
558 },
559};
560
561static int
6625f55c 562gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
b13a0a9e 563{
6625f55c 564 struct gk20a_clk *clk = gk20a_clk(base);
b907649e
BS
565 struct nvkm_subdev *subdev = &clk->base.subdev;
566 struct nvkm_device *device = subdev->device;
b13a0a9e
AC
567
568 switch (src) {
569 case nv_clk_src_crystal:
822ad79f 570 return device->crystal;
b13a0a9e 571 case nv_clk_src_gpc:
3eca809b
BS
572 gk20a_pllg_read_mnp(clk);
573 return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
b13a0a9e 574 default:
b907649e 575 nvkm_error(subdev, "invalid clock source %d\n", src);
b13a0a9e
AC
576 return -EINVAL;
577 }
578}
579
580static int
6625f55c 581gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
b13a0a9e 582{
6625f55c 583 struct gk20a_clk *clk = gk20a_clk(base);
b13a0a9e 584
3eca809b 585 return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
b13a0a9e
AC
586 GK20A_CLK_GPC_MDIV);
587}
588
589static int
6625f55c 590gk20a_clk_prog(struct nvkm_clk *base)
b13a0a9e 591{
6625f55c 592 struct gk20a_clk *clk = gk20a_clk(base);
b13a0a9e 593
3eca809b 594 return gk20a_pllg_program_mnp(clk);
b13a0a9e
AC
595}
596
597static void
6625f55c 598gk20a_clk_tidy(struct nvkm_clk *base)
b13a0a9e
AC
599{
600}
601
6625f55c
BS
602static void
603gk20a_clk_fini(struct nvkm_clk *base)
b13a0a9e 604{
6625f55c 605 struct gk20a_clk *clk = gk20a_clk(base);
3eca809b 606 gk20a_pllg_disable(clk);
b13a0a9e
AC
607}
608
609static int
6625f55c 610gk20a_clk_init(struct nvkm_clk *base)
b13a0a9e 611{
6625f55c 612 struct gk20a_clk *clk = gk20a_clk(base);
b907649e
BS
613 struct nvkm_subdev *subdev = &clk->base.subdev;
614 struct nvkm_device *device = subdev->device;
b13a0a9e
AC
615 int ret;
616
822ad79f 617 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
b13a0a9e 618
3eca809b 619 ret = gk20a_clk_prog(&clk->base);
b13a0a9e 620 if (ret) {
b907649e 621 nvkm_error(subdev, "cannot initialize clock\n");
b13a0a9e
AC
622 return ret;
623 }
624
625 return 0;
626}
627
6625f55c
BS
628static const struct nvkm_clk_func
629gk20a_clk = {
630 .init = gk20a_clk_init,
631 .fini = gk20a_clk_fini,
632 .read = gk20a_clk_read,
633 .calc = gk20a_clk_calc,
634 .prog = gk20a_clk_prog,
635 .tidy = gk20a_clk_tidy,
636 .pstates = gk20a_pstates,
637 .nr_pstates = ARRAY_SIZE(gk20a_pstates),
638 .domains = {
639 { nv_clk_src_crystal, 0xff },
640 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
641 { nv_clk_src_max }
642 }
643};
644
645int
646gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
b13a0a9e 647{
43a70661 648 struct nvkm_device_tegra *tdev = device->func->tegra(device);
3eca809b 649 struct gk20a_clk *clk;
6625f55c
BS
650 int ret, i;
651
652 if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
653 return -ENOMEM;
654 *pclk = &clk->base;
b13a0a9e
AC
655
656 /* Finish initializing the pstates */
657 for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
658 INIT_LIST_HEAD(&gk20a_pstates[i].list);
659 gk20a_pstates[i].pstate = i + 1;
660 }
661
3eca809b 662 clk->params = &gk20a_pllg_params;
43a70661 663 clk->parent_rate = clk_get_rate(tdev->clk);
6625f55c
BS
664
665 ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
b907649e
BS
666 nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
667 clk->parent_rate / MHZ);
6625f55c 668 return ret;
b13a0a9e 669}
This page took 0.121419 seconds and 5 git commands to generate.