drm: GEM handles are u32, not int
[deliverable/linux.git] / drivers / gpu / drm / radeon / mkregtable.c
CommitLineData
50f15303
DA
1/* utility to create the register check tables
2 * this includes inlined list.h safe for userspace.
3 *
4 * Copyright 2009 Jerome Glisse
5 * Copyright 2009 Red Hat Inc.
6 *
7 * Authors:
8 * Jerome Glisse
9 * Dave Airlie
10 */
11
12#include <sys/types.h>
13#include <stdlib.h>
14#include <string.h>
15#include <stdio.h>
16#include <regex.h>
17#include <libgen.h>
18
19#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
20/**
21 * container_of - cast a member of a structure out to the containing structure
22 * @ptr: the pointer to the member.
23 * @type: the type of the container struct this is embedded in.
24 * @member: the name of the member within the struct.
25 *
26 */
27#define container_of(ptr, type, member) ({ \
28 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
29 (type *)( (char *)__mptr - offsetof(type,member) );})
30
31
32
33/*
34 * Simple doubly linked list implementation.
35 *
36 * Some of the internal functions ("__xxx") are useful when
37 * manipulating whole lists rather than single entries, as
38 * sometimes we already know the next/prev entries and we can
39 * generate better code by using them directly rather than
40 * using the generic single-entry routines.
41 */
42
43struct list_head {
44 struct list_head *next, *prev;
45};
46
47#define LIST_HEAD_INIT(name) { &(name), &(name) }
48
49#define LIST_HEAD(name) \
50 struct list_head name = LIST_HEAD_INIT(name)
51
52static inline void INIT_LIST_HEAD(struct list_head *list)
53{
54 list->next = list;
55 list->prev = list;
56}
57
58/*
59 * Insert a new entry between two known consecutive entries.
60 *
61 * This is only for internal list manipulation where we know
62 * the prev/next entries already!
63 */
64#ifndef CONFIG_DEBUG_LIST
65static inline void __list_add(struct list_head *new,
66 struct list_head *prev,
67 struct list_head *next)
68{
69 next->prev = new;
70 new->next = next;
71 new->prev = prev;
72 prev->next = new;
73}
74#else
75extern void __list_add(struct list_head *new,
76 struct list_head *prev,
77 struct list_head *next);
78#endif
79
80/**
81 * list_add - add a new entry
82 * @new: new entry to be added
83 * @head: list head to add it after
84 *
85 * Insert a new entry after the specified head.
86 * This is good for implementing stacks.
87 */
88static inline void list_add(struct list_head *new, struct list_head *head)
89{
90 __list_add(new, head, head->next);
91}
92
93
94/**
95 * list_add_tail - add a new entry
96 * @new: new entry to be added
97 * @head: list head to add it before
98 *
99 * Insert a new entry before the specified head.
100 * This is useful for implementing queues.
101 */
102static inline void list_add_tail(struct list_head *new, struct list_head *head)
103{
104 __list_add(new, head->prev, head);
105}
106
107/*
108 * Delete a list entry by making the prev/next entries
109 * point to each other.
110 *
111 * This is only for internal list manipulation where we know
112 * the prev/next entries already!
113 */
114static inline void __list_del(struct list_head * prev, struct list_head * next)
115{
116 next->prev = prev;
117 prev->next = next;
118}
119
120/**
121 * list_del - deletes entry from list.
122 * @entry: the element to delete from the list.
123 * Note: list_empty() on entry does not return true after this, the entry is
124 * in an undefined state.
125 */
126#ifndef CONFIG_DEBUG_LIST
127static inline void list_del(struct list_head *entry)
128{
129 __list_del(entry->prev, entry->next);
130 entry->next = (void*)0xDEADBEEF;
131 entry->prev = (void*)0xBEEFDEAD;
132}
133#else
134extern void list_del(struct list_head *entry);
135#endif
136
137/**
138 * list_replace - replace old entry by new one
139 * @old : the element to be replaced
140 * @new : the new element to insert
141 *
142 * If @old was empty, it will be overwritten.
143 */
144static inline void list_replace(struct list_head *old,
145 struct list_head *new)
146{
147 new->next = old->next;
148 new->next->prev = new;
149 new->prev = old->prev;
150 new->prev->next = new;
151}
152
153static inline void list_replace_init(struct list_head *old,
154 struct list_head *new)
155{
156 list_replace(old, new);
157 INIT_LIST_HEAD(old);
158}
159
160/**
161 * list_del_init - deletes entry from list and reinitialize it.
162 * @entry: the element to delete from the list.
163 */
164static inline void list_del_init(struct list_head *entry)
165{
166 __list_del(entry->prev, entry->next);
167 INIT_LIST_HEAD(entry);
168}
169
170/**
171 * list_move - delete from one list and add as another's head
172 * @list: the entry to move
173 * @head: the head that will precede our entry
174 */
175static inline void list_move(struct list_head *list, struct list_head *head)
176{
177 __list_del(list->prev, list->next);
178 list_add(list, head);
179}
180
181/**
182 * list_move_tail - delete from one list and add as another's tail
183 * @list: the entry to move
184 * @head: the head that will follow our entry
185 */
186static inline void list_move_tail(struct list_head *list,
187 struct list_head *head)
188{
189 __list_del(list->prev, list->next);
190 list_add_tail(list, head);
191}
192
193/**
194 * list_is_last - tests whether @list is the last entry in list @head
195 * @list: the entry to test
196 * @head: the head of the list
197 */
198static inline int list_is_last(const struct list_head *list,
199 const struct list_head *head)
200{
201 return list->next == head;
202}
203
204/**
205 * list_empty - tests whether a list is empty
206 * @head: the list to test.
207 */
208static inline int list_empty(const struct list_head *head)
209{
210 return head->next == head;
211}
212
213/**
214 * list_empty_careful - tests whether a list is empty and not being modified
215 * @head: the list to test
216 *
217 * Description:
218 * tests whether a list is empty _and_ checks that no other CPU might be
219 * in the process of modifying either member (next or prev)
220 *
221 * NOTE: using list_empty_careful() without synchronization
222 * can only be safe if the only activity that can happen
223 * to the list entry is list_del_init(). Eg. it cannot be used
224 * if another CPU could re-list_add() it.
225 */
226static inline int list_empty_careful(const struct list_head *head)
227{
228 struct list_head *next = head->next;
229 return (next == head) && (next == head->prev);
230}
231
232/**
233 * list_is_singular - tests whether a list has just one entry.
234 * @head: the list to test.
235 */
236static inline int list_is_singular(const struct list_head *head)
237{
238 return !list_empty(head) && (head->next == head->prev);
239}
240
241static inline void __list_cut_position(struct list_head *list,
242 struct list_head *head, struct list_head *entry)
243{
244 struct list_head *new_first = entry->next;
245 list->next = head->next;
246 list->next->prev = list;
247 list->prev = entry;
248 entry->next = list;
249 head->next = new_first;
250 new_first->prev = head;
251}
252
253/**
254 * list_cut_position - cut a list into two
255 * @list: a new list to add all removed entries
256 * @head: a list with entries
257 * @entry: an entry within head, could be the head itself
258 * and if so we won't cut the list
259 *
260 * This helper moves the initial part of @head, up to and
261 * including @entry, from @head to @list. You should
262 * pass on @entry an element you know is on @head. @list
263 * should be an empty list or a list you do not care about
264 * losing its data.
265 *
266 */
267static inline void list_cut_position(struct list_head *list,
268 struct list_head *head, struct list_head *entry)
269{
270 if (list_empty(head))
271 return;
272 if (list_is_singular(head) &&
273 (head->next != entry && head != entry))
274 return;
275 if (entry == head)
276 INIT_LIST_HEAD(list);
277 else
278 __list_cut_position(list, head, entry);
279}
280
281static inline void __list_splice(const struct list_head *list,
282 struct list_head *prev,
283 struct list_head *next)
284{
285 struct list_head *first = list->next;
286 struct list_head *last = list->prev;
287
288 first->prev = prev;
289 prev->next = first;
290
291 last->next = next;
292 next->prev = last;
293}
294
295/**
296 * list_splice - join two lists, this is designed for stacks
297 * @list: the new list to add.
298 * @head: the place to add it in the first list.
299 */
300static inline void list_splice(const struct list_head *list,
301 struct list_head *head)
302{
303 if (!list_empty(list))
304 __list_splice(list, head, head->next);
305}
306
307/**
308 * list_splice_tail - join two lists, each list being a queue
309 * @list: the new list to add.
310 * @head: the place to add it in the first list.
311 */
312static inline void list_splice_tail(struct list_head *list,
313 struct list_head *head)
314{
315 if (!list_empty(list))
316 __list_splice(list, head->prev, head);
317}
318
319/**
320 * list_splice_init - join two lists and reinitialise the emptied list.
321 * @list: the new list to add.
322 * @head: the place to add it in the first list.
323 *
324 * The list at @list is reinitialised
325 */
326static inline void list_splice_init(struct list_head *list,
327 struct list_head *head)
328{
329 if (!list_empty(list)) {
330 __list_splice(list, head, head->next);
331 INIT_LIST_HEAD(list);
332 }
333}
334
335/**
336 * list_splice_tail_init - join two lists and reinitialise the emptied list
337 * @list: the new list to add.
338 * @head: the place to add it in the first list.
339 *
340 * Each of the lists is a queue.
341 * The list at @list is reinitialised
342 */
343static inline void list_splice_tail_init(struct list_head *list,
344 struct list_head *head)
345{
346 if (!list_empty(list)) {
347 __list_splice(list, head->prev, head);
348 INIT_LIST_HEAD(list);
349 }
350}
351
352/**
353 * list_entry - get the struct for this entry
354 * @ptr: the &struct list_head pointer.
355 * @type: the type of the struct this is embedded in.
356 * @member: the name of the list_struct within the struct.
357 */
358#define list_entry(ptr, type, member) \
359 container_of(ptr, type, member)
360
361/**
362 * list_first_entry - get the first element from a list
363 * @ptr: the list head to take the element from.
364 * @type: the type of the struct this is embedded in.
365 * @member: the name of the list_struct within the struct.
366 *
367 * Note, that list is expected to be not empty.
368 */
369#define list_first_entry(ptr, type, member) \
370 list_entry((ptr)->next, type, member)
371
372/**
373 * list_for_each - iterate over a list
374 * @pos: the &struct list_head to use as a loop cursor.
375 * @head: the head for your list.
376 */
377#define list_for_each(pos, head) \
378 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
379 pos = pos->next)
380
381/**
382 * __list_for_each - iterate over a list
383 * @pos: the &struct list_head to use as a loop cursor.
384 * @head: the head for your list.
385 *
386 * This variant differs from list_for_each() in that it's the
387 * simplest possible list iteration code, no prefetching is done.
388 * Use this for code that knows the list to be very short (empty
389 * or 1 entry) most of the time.
390 */
391#define __list_for_each(pos, head) \
392 for (pos = (head)->next; pos != (head); pos = pos->next)
393
394/**
395 * list_for_each_prev - iterate over a list backwards
396 * @pos: the &struct list_head to use as a loop cursor.
397 * @head: the head for your list.
398 */
399#define list_for_each_prev(pos, head) \
400 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
401 pos = pos->prev)
402
403/**
404 * list_for_each_safe - iterate over a list safe against removal of list entry
405 * @pos: the &struct list_head to use as a loop cursor.
406 * @n: another &struct list_head to use as temporary storage
407 * @head: the head for your list.
408 */
409#define list_for_each_safe(pos, n, head) \
410 for (pos = (head)->next, n = pos->next; pos != (head); \
411 pos = n, n = pos->next)
412
413/**
414 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
415 * @pos: the &struct list_head to use as a loop cursor.
416 * @n: another &struct list_head to use as temporary storage
417 * @head: the head for your list.
418 */
419#define list_for_each_prev_safe(pos, n, head) \
420 for (pos = (head)->prev, n = pos->prev; \
421 prefetch(pos->prev), pos != (head); \
422 pos = n, n = pos->prev)
423
424/**
425 * list_for_each_entry - iterate over list of given type
426 * @pos: the type * to use as a loop cursor.
427 * @head: the head for your list.
428 * @member: the name of the list_struct within the struct.
429 */
430#define list_for_each_entry(pos, head, member) \
431 for (pos = list_entry((head)->next, typeof(*pos), member); \
432 &pos->member != (head); \
433 pos = list_entry(pos->member.next, typeof(*pos), member))
434
435/**
436 * list_for_each_entry_reverse - iterate backwards over list of given type.
437 * @pos: the type * to use as a loop cursor.
438 * @head: the head for your list.
439 * @member: the name of the list_struct within the struct.
440 */
441#define list_for_each_entry_reverse(pos, head, member) \
442 for (pos = list_entry((head)->prev, typeof(*pos), member); \
443 prefetch(pos->member.prev), &pos->member != (head); \
444 pos = list_entry(pos->member.prev, typeof(*pos), member))
445
446/**
447 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
448 * @pos: the type * to use as a start point
449 * @head: the head of the list
450 * @member: the name of the list_struct within the struct.
451 *
452 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
453 */
454#define list_prepare_entry(pos, head, member) \
455 ((pos) ? : list_entry(head, typeof(*pos), member))
456
457/**
458 * list_for_each_entry_continue - continue iteration over list of given type
459 * @pos: the type * to use as a loop cursor.
460 * @head: the head for your list.
461 * @member: the name of the list_struct within the struct.
462 *
463 * Continue to iterate over list of given type, continuing after
464 * the current position.
465 */
466#define list_for_each_entry_continue(pos, head, member) \
467 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
468 prefetch(pos->member.next), &pos->member != (head); \
469 pos = list_entry(pos->member.next, typeof(*pos), member))
470
471/**
472 * list_for_each_entry_continue_reverse - iterate backwards from the given point
473 * @pos: the type * to use as a loop cursor.
474 * @head: the head for your list.
475 * @member: the name of the list_struct within the struct.
476 *
477 * Start to iterate over list of given type backwards, continuing after
478 * the current position.
479 */
480#define list_for_each_entry_continue_reverse(pos, head, member) \
481 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
482 prefetch(pos->member.prev), &pos->member != (head); \
483 pos = list_entry(pos->member.prev, typeof(*pos), member))
484
485/**
486 * list_for_each_entry_from - iterate over list of given type from the current point
487 * @pos: the type * to use as a loop cursor.
488 * @head: the head for your list.
489 * @member: the name of the list_struct within the struct.
490 *
491 * Iterate over list of given type, continuing from current position.
492 */
493#define list_for_each_entry_from(pos, head, member) \
494 for (; prefetch(pos->member.next), &pos->member != (head); \
495 pos = list_entry(pos->member.next, typeof(*pos), member))
496
497/**
498 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
499 * @pos: the type * to use as a loop cursor.
500 * @n: another type * to use as temporary storage
501 * @head: the head for your list.
502 * @member: the name of the list_struct within the struct.
503 */
504#define list_for_each_entry_safe(pos, n, head, member) \
505 for (pos = list_entry((head)->next, typeof(*pos), member), \
506 n = list_entry(pos->member.next, typeof(*pos), member); \
507 &pos->member != (head); \
508 pos = n, n = list_entry(n->member.next, typeof(*n), member))
509
510/**
511 * list_for_each_entry_safe_continue
512 * @pos: the type * to use as a loop cursor.
513 * @n: another type * to use as temporary storage
514 * @head: the head for your list.
515 * @member: the name of the list_struct within the struct.
516 *
517 * Iterate over list of given type, continuing after current point,
518 * safe against removal of list entry.
519 */
520#define list_for_each_entry_safe_continue(pos, n, head, member) \
521 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
522 n = list_entry(pos->member.next, typeof(*pos), member); \
523 &pos->member != (head); \
524 pos = n, n = list_entry(n->member.next, typeof(*n), member))
525
526/**
527 * list_for_each_entry_safe_from
528 * @pos: the type * to use as a loop cursor.
529 * @n: another type * to use as temporary storage
530 * @head: the head for your list.
531 * @member: the name of the list_struct within the struct.
532 *
533 * Iterate over list of given type from current point, safe against
534 * removal of list entry.
535 */
536#define list_for_each_entry_safe_from(pos, n, head, member) \
537 for (n = list_entry(pos->member.next, typeof(*pos), member); \
538 &pos->member != (head); \
539 pos = n, n = list_entry(n->member.next, typeof(*n), member))
540
541/**
542 * list_for_each_entry_safe_reverse
543 * @pos: the type * to use as a loop cursor.
544 * @n: another type * to use as temporary storage
545 * @head: the head for your list.
546 * @member: the name of the list_struct within the struct.
547 *
548 * Iterate backwards over list of given type, safe against removal
549 * of list entry.
550 */
551#define list_for_each_entry_safe_reverse(pos, n, head, member) \
552 for (pos = list_entry((head)->prev, typeof(*pos), member), \
553 n = list_entry(pos->member.prev, typeof(*pos), member); \
554 &pos->member != (head); \
555 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
556
557struct offset {
558 struct list_head list;
559 unsigned offset;
560};
561
562struct table {
563 struct list_head offsets;
564 unsigned offset_max;
565 unsigned nentry;
566 unsigned *table;
567 char *gpu_prefix;
568};
569
570struct offset* offset_new(unsigned o)
571{
572 struct offset *offset;
573
574 offset = (struct offset*)malloc(sizeof(struct offset));
575 if (offset) {
576 INIT_LIST_HEAD(&offset->list);
577 offset->offset = o;
578 }
579 return offset;
580}
581
582void table_offset_add(struct table *t, struct offset *offset)
583{
584 list_add_tail(&offset->list, &t->offsets);
585}
586
587void table_init(struct table *t)
588{
589 INIT_LIST_HEAD(&t->offsets);
590 t->offset_max = 0;
591 t->nentry = 0;
592 t->table = NULL;
593}
594
595void table_print(struct table *t)
596{
597 unsigned nlloop, i, j, n, c, id;
598
599 nlloop = (t->nentry + 3) / 4;
600 c = t->nentry;
601 printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix, t->nentry);
602 for(i = 0, id = 0; i < nlloop; i++) {
603 n = 4;
604 if (n > c) {
605 n = c;
606 }
607 c -= n;
608 for(j = 0; j < n; j++) {
609 if (j == 0) printf("\t");
610 else printf(" ");
611 printf("0x%08X,", t->table[id++]);
612 }
613 printf("\n");
614 }
615 printf("};\n");
616}
617
618int table_build(struct table *t)
619{
620 struct offset *offset;
621 unsigned i, m;
622
623 t->nentry = ((t->offset_max >> 2) + 31) / 32;
624 t->table = (unsigned*)malloc(sizeof(unsigned) * t->nentry);
625 if (t->table == NULL) {
626 return -1;
627 }
628 memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
629 list_for_each_entry(offset, &t->offsets, list) {
630 i = (offset->offset >> 2) / 32;
631 m = (offset->offset >> 2) & 31;
632 m = 1 << m;
633 t->table[i] ^= m;
634 }
635 return 0;
636}
637
638static char gpu_name[10];
639int parser_auth(struct table *t, const char *filename)
640{
641 FILE *file;
642 regex_t mask_rex;
643 regmatch_t match[4];
644 char buf[1024];
645 size_t end;
646 int len;
647 int done = 0;
648 int r;
649 unsigned o;
650 struct offset *offset;
651 char last_reg_s[10];
652 int last_reg;
653
654 if (regcomp(&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
655 fprintf(stderr, "Failed to compile regular expression\n");
656 return -1;
657 }
658 file = fopen(filename, "r");
659 if (file == NULL) {
660 fprintf(stderr, "Failed to open: %s\n", filename);
661 return -1;
662 }
663 fseek(file, 0, SEEK_END);
664 end = ftell(file);
665 fseek(file, 0, SEEK_SET);
666
667 /* get header */
668 if (fgets(buf, 1024, file) == NULL)
669 return -1;
670
671 /* first line will contain the last register
672 * and gpu name */
673 sscanf(buf, "%s %s", gpu_name, last_reg_s);
674 t->gpu_prefix = gpu_name;
675 last_reg = strtol(last_reg_s, NULL, 16);
676
677 do {
678 if (fgets(buf, 1024, file) == NULL)
679 return -1;
680 len = strlen(buf);
681 if (ftell(file) == end) {
682 done = 1;
683 }
684 if (len) {
685 r = regexec(&mask_rex, buf, 4, match, 0);
686 if (r == REG_NOMATCH) {
687 } else if (r) {
688 fprintf(stderr, "Error matching regular expression %d in %s\n",
689 r, filename);
690 return -1;
691 } else {
692 buf[match[0].rm_eo] = 0;
693 buf[match[1].rm_eo] = 0;
694 buf[match[2].rm_eo] = 0;
695 o = strtol(&buf[match[1].rm_so], NULL, 16);
696 offset = offset_new(o);
697 table_offset_add(t, offset);
698 if (o > t->offset_max) {
699 t->offset_max = o;
700 }
701 }
702 }
703 } while (!done);
704 fclose(file);
705 if (t->offset_max < last_reg)
706 t->offset_max = last_reg;
707 return table_build(t);
708}
709
710int main(int argc, char *argv[])
711{
712 struct table t;
713
714 if (argc != 2) {
715 fprintf(stderr, "Usage: %s <authfile>\n",
716 argv[0]);
717 exit(1);
718 }
719 table_init(&t);
720 if (parser_auth(&t, argv[1])) {
721 fprintf(stderr, "Failed to parse file %s\n", argv[1]);
722 return -1;
723 }
724 table_print(&t);
725 return 0;
726}
This page took 0.050606 seconds and 5 git commands to generate.