i2c: exynos5: add CONFIG_PM_SLEEP to suspend/resume functions
[deliverable/linux.git] / drivers / i2c / busses / i2c-exynos5.c
CommitLineData
8a73cd4c
NKC
1/**
2 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
3 *
4 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9*/
10
11#include <linux/kernel.h>
12#include <linux/module.h>
13
14#include <linux/i2c.h>
8a73cd4c
NKC
15#include <linux/time.h>
16#include <linux/interrupt.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/err.h>
20#include <linux/platform_device.h>
21#include <linux/clk.h>
22#include <linux/slab.h>
23#include <linux/io.h>
24#include <linux/of_address.h>
25#include <linux/of_irq.h>
26#include <linux/spinlock.h>
27
28/*
29 * HSI2C controller from Samsung supports 2 modes of operation
30 * 1. Auto mode: Where in master automatically controls the whole transaction
31 * 2. Manual mode: Software controls the transaction by issuing commands
32 * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
33 *
34 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
35 *
36 * Special bits are available for both modes of operation to set commands
37 * and for checking transfer status
38 */
39
40/* Register Map */
41#define HSI2C_CTL 0x00
42#define HSI2C_FIFO_CTL 0x04
43#define HSI2C_TRAILIG_CTL 0x08
44#define HSI2C_CLK_CTL 0x0C
45#define HSI2C_CLK_SLOT 0x10
46#define HSI2C_INT_ENABLE 0x20
47#define HSI2C_INT_STATUS 0x24
48#define HSI2C_ERR_STATUS 0x2C
49#define HSI2C_FIFO_STATUS 0x30
50#define HSI2C_TX_DATA 0x34
51#define HSI2C_RX_DATA 0x38
52#define HSI2C_CONF 0x40
53#define HSI2C_AUTO_CONF 0x44
54#define HSI2C_TIMEOUT 0x48
55#define HSI2C_MANUAL_CMD 0x4C
56#define HSI2C_TRANS_STATUS 0x50
57#define HSI2C_TIMING_HS1 0x54
58#define HSI2C_TIMING_HS2 0x58
59#define HSI2C_TIMING_HS3 0x5C
60#define HSI2C_TIMING_FS1 0x60
61#define HSI2C_TIMING_FS2 0x64
62#define HSI2C_TIMING_FS3 0x68
63#define HSI2C_TIMING_SLA 0x6C
64#define HSI2C_ADDR 0x70
65
66/* I2C_CTL Register bits */
67#define HSI2C_FUNC_MODE_I2C (1u << 0)
68#define HSI2C_MASTER (1u << 3)
69#define HSI2C_RXCHON (1u << 6)
70#define HSI2C_TXCHON (1u << 7)
71#define HSI2C_SW_RST (1u << 31)
72
73/* I2C_FIFO_CTL Register bits */
74#define HSI2C_RXFIFO_EN (1u << 0)
75#define HSI2C_TXFIFO_EN (1u << 1)
76#define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
77#define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
78
79/* As per user manual FIFO max depth is 64bytes */
80#define HSI2C_FIFO_MAX 0x40
81/* default trigger levels for Tx and Rx FIFOs */
82#define HSI2C_DEF_TXFIFO_LVL (HSI2C_FIFO_MAX - 0x30)
83#define HSI2C_DEF_RXFIFO_LVL (HSI2C_FIFO_MAX - 0x10)
84
85/* I2C_TRAILING_CTL Register bits */
86#define HSI2C_TRAILING_COUNT (0xf)
87
88/* I2C_INT_EN Register bits */
89#define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
90#define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
91#define HSI2C_INT_TRAILING_EN (1u << 6)
92#define HSI2C_INT_I2C_EN (1u << 9)
93
94/* I2C_INT_STAT Register bits */
95#define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
96#define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
97#define HSI2C_INT_TX_UNDERRUN (1u << 2)
98#define HSI2C_INT_TX_OVERRUN (1u << 3)
99#define HSI2C_INT_RX_UNDERRUN (1u << 4)
100#define HSI2C_INT_RX_OVERRUN (1u << 5)
101#define HSI2C_INT_TRAILING (1u << 6)
102#define HSI2C_INT_I2C (1u << 9)
103
104/* I2C_FIFO_STAT Register bits */
105#define HSI2C_RX_FIFO_EMPTY (1u << 24)
106#define HSI2C_RX_FIFO_FULL (1u << 23)
107#define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
108#define HSI2C_TX_FIFO_EMPTY (1u << 8)
109#define HSI2C_TX_FIFO_FULL (1u << 7)
110#define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
111
112/* I2C_CONF Register bits */
113#define HSI2C_AUTO_MODE (1u << 31)
114#define HSI2C_10BIT_ADDR_MODE (1u << 30)
115#define HSI2C_HS_MODE (1u << 29)
116
117/* I2C_AUTO_CONF Register bits */
118#define HSI2C_READ_WRITE (1u << 16)
119#define HSI2C_STOP_AFTER_TRANS (1u << 17)
120#define HSI2C_MASTER_RUN (1u << 31)
121
122/* I2C_TIMEOUT Register bits */
123#define HSI2C_TIMEOUT_EN (1u << 31)
124#define HSI2C_TIMEOUT_MASK 0xff
125
126/* I2C_TRANS_STATUS register bits */
127#define HSI2C_MASTER_BUSY (1u << 17)
128#define HSI2C_SLAVE_BUSY (1u << 16)
129#define HSI2C_TIMEOUT_AUTO (1u << 4)
130#define HSI2C_NO_DEV (1u << 3)
131#define HSI2C_NO_DEV_ACK (1u << 2)
132#define HSI2C_TRANS_ABORT (1u << 1)
133#define HSI2C_TRANS_DONE (1u << 0)
134
135/* I2C_ADDR register bits */
136#define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
137#define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
138#define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
139#define MASTER_ID(x) ((x & 0x7) + 0x08)
140
141/*
142 * Controller operating frequency, timing values for operation
143 * are calculated against this frequency
144 */
145#define HSI2C_HS_TX_CLOCK 1000000
146#define HSI2C_FS_TX_CLOCK 100000
147#define HSI2C_HIGH_SPD 1
148#define HSI2C_FAST_SPD 0
149
150#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(1000))
151
152struct exynos5_i2c {
153 struct i2c_adapter adap;
154 unsigned int suspended:1;
155
156 struct i2c_msg *msg;
157 struct completion msg_complete;
158 unsigned int msg_ptr;
159
160 unsigned int irq;
161
162 void __iomem *regs;
163 struct clk *clk;
164 struct device *dev;
165 int state;
166
167 spinlock_t lock; /* IRQ synchronization */
168
169 /*
170 * Since the TRANS_DONE bit is cleared on read, and we may read it
171 * either during an IRQ or after a transaction, keep track of its
172 * state here.
173 */
174 int trans_done;
175
176 /* Controller operating frequency */
177 unsigned int fs_clock;
178 unsigned int hs_clock;
179
180 /*
181 * HSI2C Controller can operate in
182 * 1. High speed upto 3.4Mbps
183 * 2. Fast speed upto 1Mbps
184 */
185 int speed_mode;
186};
187
188static const struct of_device_id exynos5_i2c_match[] = {
189 { .compatible = "samsung,exynos5-hsi2c" },
190 {},
191};
192MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
193
194static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
195{
196 writel(readl(i2c->regs + HSI2C_INT_STATUS),
197 i2c->regs + HSI2C_INT_STATUS);
198}
199
200/*
201 * exynos5_i2c_set_timing: updates the registers with appropriate
202 * timing values calculated
203 *
204 * Returns 0 on success, -EINVAL if the cycle length cannot
205 * be calculated.
206 */
207static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, int mode)
208{
209 u32 i2c_timing_s1;
210 u32 i2c_timing_s2;
211 u32 i2c_timing_s3;
212 u32 i2c_timing_sla;
213 unsigned int t_start_su, t_start_hd;
214 unsigned int t_stop_su;
215 unsigned int t_data_su, t_data_hd;
216 unsigned int t_scl_l, t_scl_h;
217 unsigned int t_sr_release;
218 unsigned int t_ftl_cycle;
219 unsigned int clkin = clk_get_rate(i2c->clk);
220 unsigned int div, utemp0 = 0, utemp1 = 0, clk_cycle;
221 unsigned int op_clk = (mode == HSI2C_HIGH_SPD) ?
222 i2c->hs_clock : i2c->fs_clock;
223
224 /*
225 * FPCLK / FI2C =
226 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
227 * utemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
228 * utemp1 = (TSCLK_L + TSCLK_H + 2)
229 */
230 t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
231 utemp0 = (clkin / op_clk) - 8 - 2 * t_ftl_cycle;
232
233 /* CLK_DIV max is 256 */
234 for (div = 0; div < 256; div++) {
235 utemp1 = utemp0 / (div + 1);
236
237 /*
238 * SCL_L and SCL_H each has max value of 255
239 * Hence, For the clk_cycle to the have right value
240 * utemp1 has to be less then 512 and more than 4.
241 */
242 if ((utemp1 < 512) && (utemp1 > 4)) {
243 clk_cycle = utemp1 - 2;
244 break;
245 } else if (div == 255) {
246 dev_warn(i2c->dev, "Failed to calculate divisor");
247 return -EINVAL;
248 }
249 }
250
251 t_scl_l = clk_cycle / 2;
252 t_scl_h = clk_cycle / 2;
253 t_start_su = t_scl_l;
254 t_start_hd = t_scl_l;
255 t_stop_su = t_scl_l;
256 t_data_su = t_scl_l / 2;
257 t_data_hd = t_scl_l / 2;
258 t_sr_release = clk_cycle;
259
260 i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
261 i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
262 i2c_timing_s3 = div << 16 | t_sr_release << 0;
263 i2c_timing_sla = t_data_hd << 0;
264
265 dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
266 t_start_su, t_start_hd, t_stop_su);
267 dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
268 t_data_su, t_scl_l, t_scl_h);
269 dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
270 div, t_sr_release);
271 dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
272
273 if (mode == HSI2C_HIGH_SPD) {
274 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
275 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
276 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
277 } else {
278 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
279 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
280 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
281 }
282 writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
283
284 return 0;
285}
286
287static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
288{
289 /*
290 * Configure the Fast speed timing values
291 * Even the High Speed mode initially starts with Fast mode
292 */
293 if (exynos5_i2c_set_timing(i2c, HSI2C_FAST_SPD)) {
294 dev_err(i2c->dev, "HSI2C FS Clock set up failed\n");
295 return -EINVAL;
296 }
297
298 /* configure the High speed timing values */
299 if (i2c->speed_mode == HSI2C_HIGH_SPD) {
300 if (exynos5_i2c_set_timing(i2c, HSI2C_HIGH_SPD)) {
301 dev_err(i2c->dev, "HSI2C HS Clock set up failed\n");
302 return -EINVAL;
303 }
304 }
305
306 return 0;
307}
308
309/*
310 * exynos5_i2c_init: configures the controller for I2C functionality
311 * Programs I2C controller for Master mode operation
312 */
313static void exynos5_i2c_init(struct exynos5_i2c *i2c)
314{
315 u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
316 u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
317
318 /* Clear to disable Timeout */
319 i2c_timeout &= ~HSI2C_TIMEOUT_EN;
320 writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
321
322 writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
323 i2c->regs + HSI2C_CTL);
324 writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
325
326 if (i2c->speed_mode == HSI2C_HIGH_SPD) {
327 writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
328 i2c->regs + HSI2C_ADDR);
329 i2c_conf |= HSI2C_HS_MODE;
330 }
331
332 writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
333}
334
335static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
336{
337 u32 i2c_ctl;
338
339 /* Set and clear the bit for reset */
340 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
341 i2c_ctl |= HSI2C_SW_RST;
342 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
343
344 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
345 i2c_ctl &= ~HSI2C_SW_RST;
346 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
347
348 /* We don't expect calculations to fail during the run */
349 exynos5_hsi2c_clock_setup(i2c);
350 /* Initialize the configure registers */
351 exynos5_i2c_init(i2c);
352}
353
354/*
355 * exynos5_i2c_irq: top level IRQ servicing routine
356 *
357 * INT_STATUS registers gives the interrupt details. Further,
358 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
359 * state of the bus.
360 */
361static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
362{
363 struct exynos5_i2c *i2c = dev_id;
364 u32 fifo_level, int_status, fifo_status, trans_status;
365 unsigned char byte;
366 int len = 0;
367
368 i2c->state = -EINVAL;
369
370 spin_lock(&i2c->lock);
371
372 int_status = readl(i2c->regs + HSI2C_INT_STATUS);
373 writel(int_status, i2c->regs + HSI2C_INT_STATUS);
374 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
375
376 /* handle interrupt related to the transfer status */
377 if (int_status & HSI2C_INT_I2C) {
378 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
379 if (trans_status & HSI2C_NO_DEV_ACK) {
380 dev_dbg(i2c->dev, "No ACK from device\n");
381 i2c->state = -ENXIO;
382 goto stop;
383 } else if (trans_status & HSI2C_NO_DEV) {
384 dev_dbg(i2c->dev, "No device\n");
385 i2c->state = -ENXIO;
386 goto stop;
387 } else if (trans_status & HSI2C_TRANS_ABORT) {
388 dev_dbg(i2c->dev, "Deal with arbitration lose\n");
389 i2c->state = -EAGAIN;
390 goto stop;
391 } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
392 dev_dbg(i2c->dev, "Accessing device timed out\n");
393 i2c->state = -EAGAIN;
394 goto stop;
395 } else if (trans_status & HSI2C_TRANS_DONE) {
396 i2c->trans_done = 1;
397 i2c->state = 0;
398 }
399 }
400
401 if ((i2c->msg->flags & I2C_M_RD) && (int_status &
402 (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
403 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
404 fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
405 len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
406
407 while (len > 0) {
408 byte = (unsigned char)
409 readl(i2c->regs + HSI2C_RX_DATA);
410 i2c->msg->buf[i2c->msg_ptr++] = byte;
411 len--;
412 }
413 i2c->state = 0;
414 } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
415 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
416 fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
417
418 len = HSI2C_FIFO_MAX - fifo_level;
419 if (len > (i2c->msg->len - i2c->msg_ptr))
420 len = i2c->msg->len - i2c->msg_ptr;
421
422 while (len > 0) {
423 byte = i2c->msg->buf[i2c->msg_ptr++];
424 writel(byte, i2c->regs + HSI2C_TX_DATA);
425 len--;
426 }
427 i2c->state = 0;
428 }
429
430 stop:
431 if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
432 (i2c->state < 0)) {
433 writel(0, i2c->regs + HSI2C_INT_ENABLE);
434 exynos5_i2c_clr_pend_irq(i2c);
435 complete(&i2c->msg_complete);
436 }
437
438 spin_unlock(&i2c->lock);
439
440 return IRQ_HANDLED;
441}
442
443/*
444 * exynos5_i2c_wait_bus_idle
445 *
446 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
447 * cleared.
448 *
449 * Returns -EBUSY if the bus cannot be bought to idle
450 */
451static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
452{
453 unsigned long stop_time;
454 u32 trans_status;
455
456 /* wait for 100 milli seconds for the bus to be idle */
457 stop_time = jiffies + msecs_to_jiffies(100) + 1;
458 do {
459 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
460 if (!(trans_status & HSI2C_MASTER_BUSY))
461 return 0;
462
463 usleep_range(50, 200);
464 } while (time_before(jiffies, stop_time));
465
466 return -EBUSY;
467}
468
469/*
470 * exynos5_i2c_message_start: Configures the bus and starts the xfer
471 * i2c: struct exynos5_i2c pointer for the current bus
472 * stop: Enables stop after transfer if set. Set for last transfer of
473 * in the list of messages.
474 *
475 * Configures the bus for read/write function
476 * Sets chip address to talk to, message length to be sent.
477 * Enables appropriate interrupts and sends start xfer command.
478 */
479static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
480{
481 u32 i2c_ctl;
482 u32 int_en = HSI2C_INT_I2C_EN;
483 u32 i2c_auto_conf = 0;
484 u32 fifo_ctl;
485 unsigned long flags;
486
487 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
488 i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
489 fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
490
491 if (i2c->msg->flags & I2C_M_RD) {
492 i2c_ctl |= HSI2C_RXCHON;
493
494 i2c_auto_conf = HSI2C_READ_WRITE;
495
496 fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(HSI2C_DEF_TXFIFO_LVL);
497 int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
498 HSI2C_INT_TRAILING_EN);
499 } else {
500 i2c_ctl |= HSI2C_TXCHON;
501
502 fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(HSI2C_DEF_RXFIFO_LVL);
503 int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
504 }
505
506 writel(HSI2C_SLV_ADDR_MAS(i2c->msg->addr), i2c->regs + HSI2C_ADDR);
507
508 writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
509 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
510
511
512 /*
513 * Enable interrupts before starting the transfer so that we don't
514 * miss any INT_I2C interrupts.
515 */
516 spin_lock_irqsave(&i2c->lock, flags);
517 writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
518
519 if (stop == 1)
520 i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
521 i2c_auto_conf |= i2c->msg->len;
522 i2c_auto_conf |= HSI2C_MASTER_RUN;
523 writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
524 spin_unlock_irqrestore(&i2c->lock, flags);
525}
526
527static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
528 struct i2c_msg *msgs, int stop)
529{
530 unsigned long timeout;
531 int ret;
532
533 i2c->msg = msgs;
534 i2c->msg_ptr = 0;
535 i2c->trans_done = 0;
536
13509c3a 537 reinit_completion(&i2c->msg_complete);
8a73cd4c
NKC
538
539 exynos5_i2c_message_start(i2c, stop);
540
541 timeout = wait_for_completion_timeout(&i2c->msg_complete,
542 EXYNOS5_I2C_TIMEOUT);
543 if (timeout == 0)
544 ret = -ETIMEDOUT;
545 else
546 ret = i2c->state;
547
548 /*
549 * If this is the last message to be transfered (stop == 1)
550 * Then check if the bus can be brought back to idle.
551 */
552 if (ret == 0 && stop)
553 ret = exynos5_i2c_wait_bus_idle(i2c);
554
555 if (ret < 0) {
556 exynos5_i2c_reset(i2c);
557 if (ret == -ETIMEDOUT)
558 dev_warn(i2c->dev, "%s timeout\n",
559 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
560 }
561
562 /* Return the state as in interrupt routine */
563 return ret;
564}
565
566static int exynos5_i2c_xfer(struct i2c_adapter *adap,
567 struct i2c_msg *msgs, int num)
568{
569 struct exynos5_i2c *i2c = (struct exynos5_i2c *)adap->algo_data;
570 int i = 0, ret = 0, stop = 0;
571
572 if (i2c->suspended) {
77d84ff8 573 dev_err(i2c->dev, "HS-I2C is not initialized.\n");
8a73cd4c
NKC
574 return -EIO;
575 }
576
577 clk_prepare_enable(i2c->clk);
578
579 for (i = 0; i < num; i++, msgs++) {
580 stop = (i == num - 1);
581
582 ret = exynos5_i2c_xfer_msg(i2c, msgs, stop);
583
584 if (ret < 0)
585 goto out;
586 }
587
588 if (i == num) {
589 ret = num;
590 } else {
591 /* Only one message, cannot access the device */
592 if (i == 1)
593 ret = -EREMOTEIO;
594 else
595 ret = i;
596
597 dev_warn(i2c->dev, "xfer message failed\n");
598 }
599
600 out:
601 clk_disable_unprepare(i2c->clk);
602 return ret;
603}
604
605static u32 exynos5_i2c_func(struct i2c_adapter *adap)
606{
607 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
608}
609
610static const struct i2c_algorithm exynos5_i2c_algorithm = {
611 .master_xfer = exynos5_i2c_xfer,
612 .functionality = exynos5_i2c_func,
613};
614
615static int exynos5_i2c_probe(struct platform_device *pdev)
616{
617 struct device_node *np = pdev->dev.of_node;
618 struct exynos5_i2c *i2c;
619 struct resource *mem;
620 unsigned int op_clock;
621 int ret;
622
623 i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
624 if (!i2c) {
625 dev_err(&pdev->dev, "no memory for state\n");
626 return -ENOMEM;
627 }
628
629 if (of_property_read_u32(np, "clock-frequency", &op_clock)) {
630 i2c->speed_mode = HSI2C_FAST_SPD;
631 i2c->fs_clock = HSI2C_FS_TX_CLOCK;
632 } else {
633 if (op_clock >= HSI2C_HS_TX_CLOCK) {
634 i2c->speed_mode = HSI2C_HIGH_SPD;
635 i2c->fs_clock = HSI2C_FS_TX_CLOCK;
636 i2c->hs_clock = op_clock;
637 } else {
638 i2c->speed_mode = HSI2C_FAST_SPD;
639 i2c->fs_clock = op_clock;
640 }
641 }
642
643 strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
644 i2c->adap.owner = THIS_MODULE;
645 i2c->adap.algo = &exynos5_i2c_algorithm;
646 i2c->adap.retries = 3;
647
648 i2c->dev = &pdev->dev;
649 i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
650 if (IS_ERR(i2c->clk)) {
651 dev_err(&pdev->dev, "cannot get clock\n");
652 return -ENOENT;
653 }
654
655 clk_prepare_enable(i2c->clk);
656
657 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
658 i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
659 if (IS_ERR(i2c->regs)) {
660 ret = PTR_ERR(i2c->regs);
661 goto err_clk;
662 }
663
664 i2c->adap.dev.of_node = np;
665 i2c->adap.algo_data = i2c;
666 i2c->adap.dev.parent = &pdev->dev;
667
668 /* Clear pending interrupts from u-boot or misc causes */
669 exynos5_i2c_clr_pend_irq(i2c);
670
671 spin_lock_init(&i2c->lock);
672 init_completion(&i2c->msg_complete);
673
674 i2c->irq = ret = platform_get_irq(pdev, 0);
675 if (ret <= 0) {
676 dev_err(&pdev->dev, "cannot find HS-I2C IRQ\n");
677 ret = -EINVAL;
678 goto err_clk;
679 }
680
681 ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
682 IRQF_NO_SUSPEND | IRQF_ONESHOT,
683 dev_name(&pdev->dev), i2c);
684
685 if (ret != 0) {
686 dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
687 goto err_clk;
688 }
689
690 ret = exynos5_hsi2c_clock_setup(i2c);
691 if (ret)
692 goto err_clk;
693
694 exynos5_i2c_init(i2c);
695
696 ret = i2c_add_adapter(&i2c->adap);
697 if (ret < 0) {
698 dev_err(&pdev->dev, "failed to add bus to i2c core\n");
699 goto err_clk;
700 }
701
702 platform_set_drvdata(pdev, i2c);
703
8a73cd4c
NKC
704 err_clk:
705 clk_disable_unprepare(i2c->clk);
706 return ret;
707}
708
709static int exynos5_i2c_remove(struct platform_device *pdev)
710{
711 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
712
713 i2c_del_adapter(&i2c->adap);
8a73cd4c
NKC
714
715 return 0;
716}
717
3917b84d 718#ifdef CONFIG_PM_SLEEP
8a73cd4c
NKC
719static int exynos5_i2c_suspend_noirq(struct device *dev)
720{
721 struct platform_device *pdev = to_platform_device(dev);
722 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
723
724 i2c->suspended = 1;
725
726 return 0;
727}
728
729static int exynos5_i2c_resume_noirq(struct device *dev)
730{
731 struct platform_device *pdev = to_platform_device(dev);
732 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
733 int ret = 0;
734
735 clk_prepare_enable(i2c->clk);
736
737 ret = exynos5_hsi2c_clock_setup(i2c);
738 if (ret) {
739 clk_disable_unprepare(i2c->clk);
740 return ret;
741 }
742
743 exynos5_i2c_init(i2c);
744 clk_disable_unprepare(i2c->clk);
745 i2c->suspended = 0;
746
747 return 0;
748}
3917b84d 749#endif
8a73cd4c
NKC
750
751static SIMPLE_DEV_PM_OPS(exynos5_i2c_dev_pm_ops, exynos5_i2c_suspend_noirq,
752 exynos5_i2c_resume_noirq);
753
754static struct platform_driver exynos5_i2c_driver = {
755 .probe = exynos5_i2c_probe,
756 .remove = exynos5_i2c_remove,
757 .driver = {
758 .owner = THIS_MODULE,
759 .name = "exynos5-hsi2c",
760 .pm = &exynos5_i2c_dev_pm_ops,
761 .of_match_table = exynos5_i2c_match,
762 },
763};
764
765module_platform_driver(exynos5_i2c_driver);
766
767MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
768MODULE_AUTHOR("Naveen Krishna Chatradhi, <ch.naveen@samsung.com>");
769MODULE_AUTHOR("Taekgyun Ko, <taeggyun.ko@samsung.com>");
770MODULE_LICENSE("GPL v2");
This page took 0.070816 seconds and 5 git commands to generate.