ide: fix ->io_32bit race in ide_taskfile_ioctl()
[deliverable/linux.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
1977f032 50#include <linux/bitops.h>
1da177e4
LT
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
1da177e4 56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
bbc615b1 58 int uptodate, unsigned int nr_bytes, int dequeue)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
4a546e04 78 ide_dma_on(drive);
1da177e4
LT
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
bbc615b1
BZ
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
ba027def 88 end_that_request_last(rq, uptodate);
1da177e4
LT
89 ret = 0;
90 }
8672d571 91
1da177e4
LT
92 return ret;
93}
1da177e4
LT
94
95/**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
41e9d344 108 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
8672d571
JA
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
1da177e4
LT
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
41e9d344
JA
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
1da177e4 126
bbc615b1 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
1da177e4
LT
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
8c2c0118
JL
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
1da177e4
LT
146 ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
c00895ab 151 struct request_pm_state *pm = rq->data;
ad3cadda 152
1da177e4
LT
153 if (drive->media != ide_disk)
154 return;
155
ad3cadda 156 switch (pm->pm_step) {
1da177e4 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
1da177e4 160 else
ad3cadda 161 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 164 pm->pm_step = ide_pm_state_completed;
1da177e4 165 break;
8c2c0118
JL
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 170 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
171 break;
172 }
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
c00895ab 177 struct request_pm_state *pm = rq->data;
1da177e4
LT
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
ad3cadda 182 switch (pm->pm_step) {
1da177e4
LT
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
650d841d 192 args->tf.command = WIN_FLUSH_CACHE_EXT;
1da177e4 193 else
650d841d 194 args->tf.command = WIN_FLUSH_CACHE;
74095a91 195 goto out_do_tf;
1da177e4
LT
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
650d841d 198 args->tf.command = WIN_STANDBYNOW1;
74095a91 199 goto out_do_tf;
1da177e4 200
8c2c0118 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
26bcb879 202 ide_set_max_pio(drive);
317a46a2
BZ
203 /*
204 * skip idedisk_pm_idle for ATAPI devices
205 */
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
210 return ide_stopped;
211
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
650d841d 213 args->tf.command = WIN_IDLEIMMEDIATE;
74095a91 214 goto out_do_tf;
1da177e4 215
8c2c0118 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4 217 /*
0ae2e178 218 * Right now, all we do is call ide_set_dma(drive),
1da177e4
LT
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
221 */
15ce926a 222 if (drive->hwif->dma_host_set == NULL)
1da177e4 223 break;
8987d21b
BZ
224 /*
225 * TODO: respect ->using_dma setting
226 */
3608b5d7 227 ide_set_dma(drive);
1da177e4
LT
228 break;
229 }
ad3cadda 230 pm->pm_step = ide_pm_state_completed;
1da177e4 231 return ide_stopped;
74095a91
BZ
232
233out_do_tf:
ac026ff2
BZ
234 args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
235 args->data_phase = TASKFILE_NO_DATA;
74095a91 236 return do_rw_taskfile(drive, args);
1da177e4
LT
237}
238
dbe217af
AC
239/**
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
242 * @uptodate:
243 * @nr_sectors: number of sectors completed
244 *
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
249 *
250 * NOTE: This path does not handle barrier, but barrier is not supported
251 * on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
256{
257 unsigned long flags;
bbc615b1 258 int ret;
dbe217af
AC
259
260 spin_lock_irqsave(&ide_lock, flags);
4aff5e23 261 BUG_ON(!blk_rq_started(rq));
bbc615b1 262 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
dbe217af 263 spin_unlock_irqrestore(&ide_lock, flags);
bbc615b1 264
dbe217af
AC
265 return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
1da177e4
LT
270/**
271 * ide_complete_pm_request - end the current Power Management request
272 * @drive: target drive
273 * @rq: request
274 *
275 * This function cleans up the current PM request and stops the queue
276 * if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280 unsigned long flags;
281
282#ifdef DEBUG_PM
283 printk("%s: completing PM request, %s\n", drive->name,
284 blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286 spin_lock_irqsave(&ide_lock, flags);
287 if (blk_pm_suspend_request(rq)) {
288 blk_stop_queue(drive->queue);
289 } else {
290 drive->blocked = 0;
291 blk_start_queue(drive->queue);
292 }
293 blkdev_dequeue_request(rq);
294 HWGROUP(drive)->rq = NULL;
8ffdc655 295 end_that_request_last(rq, 1);
1da177e4
LT
296 spin_unlock_irqrestore(&ide_lock, flags);
297}
298
c2b57cdc
BZ
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301 ide_hwif_t *hwif = drive->hwif;
302 struct ide_taskfile *tf = &task->tf;
303
304 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305 u16 data = hwif->INW(IDE_DATA_REG);
306
307 tf->data = data & 0xff;
308 tf->hob_data = (data >> 8) & 0xff;
309 }
310
311 /* be sure we're looking at the low order bits */
312 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
316 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317 tf->lbal = hwif->INB(IDE_SECTOR_REG);
318 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319 tf->lbam = hwif->INB(IDE_LCYL_REG);
320 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321 tf->lbah = hwif->INB(IDE_HCYL_REG);
322 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323 tf->device = hwif->INB(IDE_SELECT_REG);
324
325 if (task->tf_flags & IDE_TFLAG_LBA48) {
326 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
332 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
336 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
338 }
339}
340
1da177e4
LT
341/**
342 * ide_end_drive_cmd - end an explicit drive command
343 * @drive: command
344 * @stat: status bits
345 * @err: error bits
346 *
347 * Clean up after success/failure of an explicit drive command.
348 * These get thrown onto the queue so they are synchronized with
349 * real I/O operations on the drive.
350 *
351 * In LBA48 mode we have to read the register set twice to get
352 * all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
357 ide_hwif_t *hwif = HWIF(drive);
358 unsigned long flags;
359 struct request *rq;
360
361 spin_lock_irqsave(&ide_lock, flags);
362 rq = HWGROUP(drive)->rq;
363 spin_unlock_irqrestore(&ide_lock, flags);
364
4aff5e23 365 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
366 u8 *args = (u8 *) rq->buffer;
367 if (rq->errors == 0)
368 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370 if (args) {
371 args[0] = stat;
372 args[1] = err;
373 args[2] = hwif->INB(IDE_NSECTOR_REG);
374 }
4aff5e23 375 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
376 ide_task_t *args = (ide_task_t *) rq->special;
377 if (rq->errors == 0)
378 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
379
380 if (args) {
650d841d
BZ
381 struct ide_taskfile *tf = &args->tf;
382
650d841d 383 tf->error = err;
650d841d 384 tf->status = stat;
1da177e4 385
c2b57cdc
BZ
386 args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE);
387 if (args->tf_flags & IDE_TFLAG_LBA48)
388 args->tf_flags |= IDE_TFLAG_IN_HOB;
389
390 ide_tf_read(drive, args);
1da177e4
LT
391 }
392 } else if (blk_pm_request(rq)) {
c00895ab 393 struct request_pm_state *pm = rq->data;
1da177e4
LT
394#ifdef DEBUG_PM
395 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
396 drive->name, rq->pm->pm_step, stat, err);
397#endif
398 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 399 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
400 ide_complete_pm_request(drive, rq);
401 return;
402 }
403
404 spin_lock_irqsave(&ide_lock, flags);
405 blkdev_dequeue_request(rq);
406 HWGROUP(drive)->rq = NULL;
407 rq->errors = err;
8ffdc655 408 end_that_request_last(rq, !rq->errors);
1da177e4
LT
409 spin_unlock_irqrestore(&ide_lock, flags);
410}
411
412EXPORT_SYMBOL(ide_end_drive_cmd);
413
414/**
415 * try_to_flush_leftover_data - flush junk
416 * @drive: drive to flush
417 *
418 * try_to_flush_leftover_data() is invoked in response to a drive
419 * unexpectedly having its DRQ_STAT bit set. As an alternative to
420 * resetting the drive, this routine tries to clear the condition
421 * by read a sector's worth of data from the drive. Of course,
422 * this may not help if the drive is *waiting* for data from *us*.
423 */
424static void try_to_flush_leftover_data (ide_drive_t *drive)
425{
426 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
427
428 if (drive->media != ide_disk)
429 return;
430 while (i > 0) {
431 u32 buffer[16];
432 u32 wcount = (i > 16) ? 16 : i;
433
434 i -= wcount;
435 HWIF(drive)->ata_input_data(drive, buffer, wcount);
436 }
437}
438
439static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
440{
441 if (rq->rq_disk) {
442 ide_driver_t *drv;
443
444 drv = *(ide_driver_t **)rq->rq_disk->private_data;
445 drv->end_request(drive, 0, 0);
446 } else
447 ide_end_request(drive, 0, 0);
448}
449
450static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
451{
452 ide_hwif_t *hwif = drive->hwif;
453
454 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
455 /* other bits are useless when BUSY */
456 rq->errors |= ERROR_RESET;
457 } else if (stat & ERR_STAT) {
458 /* err has different meaning on cdrom and tape */
459 if (err == ABRT_ERR) {
460 if (drive->select.b.lba &&
461 /* some newer drives don't support WIN_SPECIFY */
462 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
463 return ide_stopped;
464 } else if ((err & BAD_CRC) == BAD_CRC) {
465 /* UDMA crc error, just retry the operation */
466 drive->crc_count++;
467 } else if (err & (BBD_ERR | ECC_ERR)) {
468 /* retries won't help these */
469 rq->errors = ERROR_MAX;
470 } else if (err & TRK0_ERR) {
471 /* help it find track zero */
472 rq->errors |= ERROR_RECAL;
473 }
474 }
475
ed67b923
BZ
476 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
477 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
1da177e4
LT
478 try_to_flush_leftover_data(drive);
479
513daadd
SS
480 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
481 ide_kill_rq(drive, rq);
482 return ide_stopped;
483 }
484
1da177e4 485 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 486 rq->errors |= ERROR_RESET;
1da177e4 487
513daadd 488 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 489 ++rq->errors;
513daadd 490 return ide_do_reset(drive);
1da177e4 491 }
513daadd
SS
492
493 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
494 drive->special.b.recalibrate = 1;
495
496 ++rq->errors;
497
1da177e4
LT
498 return ide_stopped;
499}
500
501static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
502{
503 ide_hwif_t *hwif = drive->hwif;
504
505 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
506 /* other bits are useless when BUSY */
507 rq->errors |= ERROR_RESET;
508 } else {
509 /* add decoding error stuff */
510 }
511
512 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513 /* force an abort */
514 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
515
516 if (rq->errors >= ERROR_MAX) {
517 ide_kill_rq(drive, rq);
518 } else {
519 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
520 ++rq->errors;
521 return ide_do_reset(drive);
522 }
523 ++rq->errors;
524 }
525
526 return ide_stopped;
527}
528
529ide_startstop_t
530__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
531{
532 if (drive->media == ide_disk)
533 return ide_ata_error(drive, rq, stat, err);
534 return ide_atapi_error(drive, rq, stat, err);
535}
536
537EXPORT_SYMBOL_GPL(__ide_error);
538
539/**
540 * ide_error - handle an error on the IDE
541 * @drive: drive the error occurred on
542 * @msg: message to report
543 * @stat: status bits
544 *
545 * ide_error() takes action based on the error returned by the drive.
546 * For normal I/O that may well include retries. We deal with
547 * both new-style (taskfile) and old style command handling here.
548 * In the case of taskfile command handling there is work left to
549 * do
550 */
551
552ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
553{
554 struct request *rq;
555 u8 err;
556
557 err = ide_dump_status(drive, msg, stat);
558
559 if ((rq = HWGROUP(drive)->rq) == NULL)
560 return ide_stopped;
561
562 /* retry only "normal" I/O: */
4aff5e23 563 if (!blk_fs_request(rq)) {
1da177e4
LT
564 rq->errors = 1;
565 ide_end_drive_cmd(drive, stat, err);
566 return ide_stopped;
567 }
568
569 if (rq->rq_disk) {
570 ide_driver_t *drv;
571
572 drv = *(ide_driver_t **)rq->rq_disk->private_data;
573 return drv->error(drive, rq, stat, err);
574 } else
575 return __ide_error(drive, rq, stat, err);
576}
577
578EXPORT_SYMBOL_GPL(ide_error);
579
580ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
581{
582 if (drive->media != ide_disk)
583 rq->errors |= ERROR_RESET;
584
585 ide_kill_rq(drive, rq);
586
587 return ide_stopped;
588}
589
590EXPORT_SYMBOL_GPL(__ide_abort);
591
592/**
338cec32 593 * ide_abort - abort pending IDE operations
1da177e4
LT
594 * @drive: drive the error occurred on
595 * @msg: message to report
596 *
597 * ide_abort kills and cleans up when we are about to do a
598 * host initiated reset on active commands. Longer term we
599 * want handlers to have sensible abort handling themselves
600 *
601 * This differs fundamentally from ide_error because in
602 * this case the command is doing just fine when we
603 * blow it away.
604 */
605
606ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
607{
608 struct request *rq;
609
610 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
611 return ide_stopped;
612
613 /* retry only "normal" I/O: */
4aff5e23 614 if (!blk_fs_request(rq)) {
1da177e4
LT
615 rq->errors = 1;
616 ide_end_drive_cmd(drive, BUSY_STAT, 0);
617 return ide_stopped;
618 }
619
620 if (rq->rq_disk) {
621 ide_driver_t *drv;
622
623 drv = *(ide_driver_t **)rq->rq_disk->private_data;
624 return drv->abort(drive, rq);
625 } else
626 return __ide_abort(drive, rq);
627}
628
1da177e4
LT
629/**
630 * drive_cmd_intr - drive command completion interrupt
631 * @drive: drive the completion interrupt occurred on
632 *
633 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 634 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
635 * go non busy. At that point we may read the error data and complete
636 * the request
637 */
638
639static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
640{
641 struct request *rq = HWGROUP(drive)->rq;
642 ide_hwif_t *hwif = HWIF(drive);
643 u8 *args = (u8 *) rq->buffer;
644 u8 stat = hwif->INB(IDE_STATUS_REG);
645 int retries = 10;
646
366c7f55 647 local_irq_enable_in_hardirq();
320112bd
BZ
648 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
649 (stat & DRQ_STAT) && args && args[3]) {
1da177e4
LT
650 u8 io_32bit = drive->io_32bit;
651 drive->io_32bit = 0;
652 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
653 drive->io_32bit = io_32bit;
654 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
655 udelay(100);
656 }
657
658 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
659 return ide_error(drive, "drive_cmd", stat);
660 /* calls ide_end_drive_cmd */
661 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
662 return ide_stopped;
663}
664
57d7366b 665static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 666{
57d7366b
BZ
667 tf->nsect = drive->sect;
668 tf->lbal = drive->sect;
669 tf->lbam = drive->cyl;
670 tf->lbah = drive->cyl >> 8;
671 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
672 tf->command = WIN_SPECIFY;
1da177e4
LT
673}
674
57d7366b 675static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 676{
57d7366b
BZ
677 tf->nsect = drive->sect;
678 tf->command = WIN_RESTORE;
1da177e4
LT
679}
680
57d7366b 681static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 682{
57d7366b
BZ
683 tf->nsect = drive->mult_req;
684 tf->command = WIN_SETMULT;
1da177e4
LT
685}
686
687static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688{
689 special_t *s = &drive->special;
690 ide_task_t args;
691
692 memset(&args, 0, sizeof(ide_task_t));
ac026ff2 693 args.data_phase = TASKFILE_NO_DATA;
1da177e4
LT
694
695 if (s->b.set_geometry) {
696 s->b.set_geometry = 0;
57d7366b 697 ide_tf_set_specify_cmd(drive, &args.tf);
1da177e4
LT
698 } else if (s->b.recalibrate) {
699 s->b.recalibrate = 0;
57d7366b 700 ide_tf_set_restore_cmd(drive, &args.tf);
1da177e4
LT
701 } else if (s->b.set_multmode) {
702 s->b.set_multmode = 0;
703 if (drive->mult_req > drive->id->max_multsect)
704 drive->mult_req = drive->id->max_multsect;
57d7366b 705 ide_tf_set_setmult_cmd(drive, &args.tf);
1da177e4
LT
706 } else if (s->all) {
707 int special = s->all;
708 s->all = 0;
709 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710 return ide_stopped;
711 }
712
57d7366b
BZ
713 args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
714 IDE_TFLAG_CUSTOM_HANDLER;
74095a91 715
1da177e4
LT
716 do_rw_taskfile(drive, &args);
717
718 return ide_started;
719}
720
26bcb879
BZ
721/*
722 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
723 */
724static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
725{
726 switch (req_pio) {
727 case 202:
728 case 201:
729 case 200:
730 case 102:
731 case 101:
732 case 100:
733 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
734 case 9:
735 case 8:
736 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
737 case 7:
738 case 6:
739 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
740 default:
741 return 0;
742 }
743}
744
1da177e4
LT
745/**
746 * do_special - issue some special commands
747 * @drive: drive the command is for
748 *
749 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
750 * commands to a drive. It used to do much more, but has been scaled
751 * back.
752 */
753
754static ide_startstop_t do_special (ide_drive_t *drive)
755{
756 special_t *s = &drive->special;
757
758#ifdef DEBUG
759 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
760#endif
761 if (s->b.set_tune) {
26bcb879
BZ
762 ide_hwif_t *hwif = drive->hwif;
763 u8 req_pio = drive->tune_req;
764
1da177e4 765 s->b.set_tune = 0;
26bcb879
BZ
766
767 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
d393aa03
BZ
768
769 if (hwif->set_pio_mode == NULL)
770 return ide_stopped;
771
772 /*
773 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
774 */
775 if (req_pio == 8 || req_pio == 9) {
776 unsigned long flags;
777
778 spin_lock_irqsave(&ide_lock, flags);
779 hwif->set_pio_mode(drive, req_pio);
780 spin_unlock_irqrestore(&ide_lock, flags);
781 } else
26bcb879 782 hwif->set_pio_mode(drive, req_pio);
aedea591
BZ
783 } else {
784 int keep_dma = drive->using_dma;
785
26bcb879
BZ
786 ide_set_pio(drive, req_pio);
787
aedea591
BZ
788 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
789 if (keep_dma)
4a546e04 790 ide_dma_on(drive);
aedea591
BZ
791 }
792 }
793
1da177e4
LT
794 return ide_stopped;
795 } else {
796 if (drive->media == ide_disk)
797 return ide_disk_special(drive);
798
799 s->all = 0;
800 drive->mult_req = 0;
801 return ide_stopped;
802 }
803}
804
805void ide_map_sg(ide_drive_t *drive, struct request *rq)
806{
807 ide_hwif_t *hwif = drive->hwif;
808 struct scatterlist *sg = hwif->sg_table;
809
810 if (hwif->sg_mapped) /* needed by ide-scsi */
811 return;
812
4aff5e23 813 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
814 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
815 } else {
816 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
817 hwif->sg_nents = 1;
818 }
819}
820
821EXPORT_SYMBOL_GPL(ide_map_sg);
822
823void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
824{
825 ide_hwif_t *hwif = drive->hwif;
826
827 hwif->nsect = hwif->nleft = rq->nr_sectors;
55c16a70
JA
828 hwif->cursg_ofs = 0;
829 hwif->cursg = NULL;
1da177e4
LT
830}
831
832EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
833
834/**
835 * execute_drive_command - issue special drive command
338cec32 836 * @drive: the drive to issue the command on
1da177e4
LT
837 * @rq: the request structure holding the command
838 *
839 * execute_drive_cmd() issues a special drive command, usually
840 * initiated by ioctl() from the external hdparm program. The
841 * command can be a drive command, drive task or taskfile
842 * operation. Weirdly you can call it with NULL to wait for
843 * all commands to finish. Don't do this as that is due to change
844 */
845
846static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
847 struct request *rq)
848{
849 ide_hwif_t *hwif = HWIF(drive);
21d535c9 850 u8 *args = rq->buffer;
807e35d6
BZ
851 ide_task_t ltask;
852 struct ide_taskfile *tf = &ltask.tf;
21d535c9 853
4aff5e23 854 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
21d535c9 855 ide_task_t *task = rq->special;
1da177e4 856
21d535c9 857 if (task == NULL)
1da177e4
LT
858 goto done;
859
21d535c9 860 hwif->data_phase = task->data_phase;
1da177e4
LT
861
862 switch (hwif->data_phase) {
863 case TASKFILE_MULTI_OUT:
864 case TASKFILE_OUT:
865 case TASKFILE_MULTI_IN:
866 case TASKFILE_IN:
867 ide_init_sg_cmd(drive, rq);
868 ide_map_sg(drive, rq);
869 default:
870 break;
871 }
74095a91 872
21d535c9
BZ
873 return do_rw_taskfile(drive, task);
874 }
875
876 if (args == NULL)
877 goto done;
878
807e35d6 879 memset(&ltask, 0, sizeof(ltask));
29ed2a5f 880 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4 881#ifdef DEBUG
807e35d6 882 printk("%s: DRIVE_CMD\n", drive->name);
1da177e4 883#endif
807e35d6
BZ
884 tf->feature = args[2];
885 if (args[0] == WIN_SMART) {
886 tf->nsect = args[3];
887 tf->lbal = args[1];
888 tf->lbam = 0x4f;
889 tf->lbah = 0xc2;
890 ltask.tf_flags = IDE_TFLAG_OUT_TF;
891 } else {
892 tf->nsect = args[1];
893 ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
894 IDE_TFLAG_OUT_NSECT;
895 }
1da177e4 896 }
807e35d6
BZ
897 tf->command = args[0];
898 ide_tf_load(drive, &ltask);
1f2564b8 899 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
21d535c9
BZ
900 return ide_started;
901
1da177e4
LT
902done:
903 /*
904 * NULL is actually a valid way of waiting for
905 * all current requests to be flushed from the queue.
906 */
907#ifdef DEBUG
908 printk("%s: DRIVE_CMD (null)\n", drive->name);
909#endif
910 ide_end_drive_cmd(drive,
911 hwif->INB(IDE_STATUS_REG),
912 hwif->INB(IDE_ERROR_REG));
913 return ide_stopped;
914}
915
ad3cadda
JA
916static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
917{
c00895ab 918 struct request_pm_state *pm = rq->data;
ad3cadda
JA
919
920 if (blk_pm_suspend_request(rq) &&
921 pm->pm_step == ide_pm_state_start_suspend)
922 /* Mark drive blocked when starting the suspend sequence. */
923 drive->blocked = 1;
924 else if (blk_pm_resume_request(rq) &&
925 pm->pm_step == ide_pm_state_start_resume) {
926 /*
927 * The first thing we do on wakeup is to wait for BSY bit to
928 * go away (with a looong timeout) as a drive on this hwif may
929 * just be POSTing itself.
930 * We do that before even selecting as the "other" device on
931 * the bus may be broken enough to walk on our toes at this
932 * point.
933 */
934 int rc;
935#ifdef DEBUG_PM
936 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
937#endif
938 rc = ide_wait_not_busy(HWIF(drive), 35000);
939 if (rc)
940 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
941 SELECT_DRIVE(drive);
81ca6919 942 ide_set_irq(drive, 1);
178184b6 943 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
944 if (rc)
945 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
946 }
947}
948
1da177e4
LT
949/**
950 * start_request - start of I/O and command issuing for IDE
951 *
952 * start_request() initiates handling of a new I/O request. It
953 * accepts commands and I/O (read/write) requests. It also does
954 * the final remapping for weird stuff like EZDrive. Once
955 * device mapper can work sector level the EZDrive stuff can go away
956 *
957 * FIXME: this function needs a rename
958 */
959
960static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
961{
962 ide_startstop_t startstop;
963 sector_t block;
964
4aff5e23 965 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
966
967#ifdef DEBUG
968 printk("%s: start_request: current=0x%08lx\n",
969 HWIF(drive)->name, (unsigned long) rq);
970#endif
971
972 /* bail early if we've exceeded max_failures */
973 if (drive->max_failures && (drive->failures > drive->max_failures)) {
b5e1a4e2 974 rq->cmd_flags |= REQ_FAILED;
1da177e4
LT
975 goto kill_rq;
976 }
977
978 block = rq->sector;
979 if (blk_fs_request(rq) &&
980 (drive->media == ide_disk || drive->media == ide_floppy)) {
981 block += drive->sect0;
982 }
983 /* Yecch - this will shift the entire interval,
984 possibly killing some innocent following sector */
985 if (block == 0 && drive->remap_0_to_1 == 1)
986 block = 1; /* redirect MBR access to EZ-Drive partn table */
987
ad3cadda
JA
988 if (blk_pm_request(rq))
989 ide_check_pm_state(drive, rq);
1da177e4
LT
990
991 SELECT_DRIVE(drive);
992 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
993 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
994 return startstop;
995 }
996 if (!drive->special.all) {
997 ide_driver_t *drv;
998
513daadd
SS
999 /*
1000 * We reset the drive so we need to issue a SETFEATURES.
1001 * Do it _after_ do_special() restored device parameters.
1002 */
1003 if (drive->current_speed == 0xff)
1004 ide_config_drive_speed(drive, drive->desired_speed);
1005
4aff5e23 1006 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
4aff5e23 1007 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1008 return execute_drive_cmd(drive, rq);
1009 else if (blk_pm_request(rq)) {
c00895ab 1010 struct request_pm_state *pm = rq->data;
1da177e4
LT
1011#ifdef DEBUG_PM
1012 printk("%s: start_power_step(step: %d)\n",
1013 drive->name, rq->pm->pm_step);
1014#endif
1015 startstop = ide_start_power_step(drive, rq);
1016 if (startstop == ide_stopped &&
ad3cadda 1017 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1018 ide_complete_pm_request(drive, rq);
1019 return startstop;
1020 }
1021
1022 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1023 return drv->do_request(drive, rq, block);
1024 }
1025 return do_special(drive);
1026kill_rq:
1027 ide_kill_rq(drive, rq);
1028 return ide_stopped;
1029}
1030
1031/**
1032 * ide_stall_queue - pause an IDE device
1033 * @drive: drive to stall
1034 * @timeout: time to stall for (jiffies)
1035 *
1036 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1037 * to the hwgroup by sleeping for timeout jiffies.
1038 */
1039
1040void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1041{
1042 if (timeout > WAIT_WORSTCASE)
1043 timeout = WAIT_WORSTCASE;
1044 drive->sleep = timeout + jiffies;
1045 drive->sleeping = 1;
1046}
1047
1048EXPORT_SYMBOL(ide_stall_queue);
1049
1050#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1051
1052/**
1053 * choose_drive - select a drive to service
1054 * @hwgroup: hardware group to select on
1055 *
1056 * choose_drive() selects the next drive which will be serviced.
1057 * This is necessary because the IDE layer can't issue commands
1058 * to both drives on the same cable, unlike SCSI.
1059 */
1060
1061static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1062{
1063 ide_drive_t *drive, *best;
1064
1065repeat:
1066 best = NULL;
1067 drive = hwgroup->drive;
1068
1069 /*
1070 * drive is doing pre-flush, ordered write, post-flush sequence. even
1071 * though that is 3 requests, it must be seen as a single transaction.
1072 * we must not preempt this drive until that is complete
1073 */
1074 if (blk_queue_flushing(drive->queue)) {
1075 /*
1076 * small race where queue could get replugged during
1077 * the 3-request flush cycle, just yank the plug since
1078 * we want it to finish asap
1079 */
1080 blk_remove_plug(drive->queue);
1081 return drive;
1082 }
1083
1084 do {
1085 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1086 && !elv_queue_empty(drive->queue)) {
1087 if (!best
1088 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1089 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1090 {
1091 if (!blk_queue_plugged(drive->queue))
1092 best = drive;
1093 }
1094 }
1095 } while ((drive = drive->next) != hwgroup->drive);
1096 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1097 long t = (signed long)(WAKEUP(best) - jiffies);
1098 if (t >= WAIT_MIN_SLEEP) {
1099 /*
1100 * We *may* have some time to spare, but first let's see if
1101 * someone can potentially benefit from our nice mood today..
1102 */
1103 drive = best->next;
1104 do {
1105 if (!drive->sleeping
1106 && time_before(jiffies - best->service_time, WAKEUP(drive))
1107 && time_before(WAKEUP(drive), jiffies + t))
1108 {
1109 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1110 goto repeat;
1111 }
1112 } while ((drive = drive->next) != best);
1113 }
1114 }
1115 return best;
1116}
1117
1118/*
1119 * Issue a new request to a drive from hwgroup
1120 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1121 *
1122 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1123 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1124 * may have both interfaces in a single hwgroup to "serialize" access.
1125 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1126 * together into one hwgroup for serialized access.
1127 *
1128 * Note also that several hwgroups can end up sharing a single IRQ,
1129 * possibly along with many other devices. This is especially common in
1130 * PCI-based systems with off-board IDE controller cards.
1131 *
1132 * The IDE driver uses the single global ide_lock spinlock to protect
1133 * access to the request queues, and to protect the hwgroup->busy flag.
1134 *
1135 * The first thread into the driver for a particular hwgroup sets the
1136 * hwgroup->busy flag to indicate that this hwgroup is now active,
1137 * and then initiates processing of the top request from the request queue.
1138 *
1139 * Other threads attempting entry notice the busy setting, and will simply
1140 * queue their new requests and exit immediately. Note that hwgroup->busy
1141 * remains set even when the driver is merely awaiting the next interrupt.
1142 * Thus, the meaning is "this hwgroup is busy processing a request".
1143 *
1144 * When processing of a request completes, the completing thread or IRQ-handler
1145 * will start the next request from the queue. If no more work remains,
1146 * the driver will clear the hwgroup->busy flag and exit.
1147 *
1148 * The ide_lock (spinlock) is used to protect all access to the
1149 * hwgroup->busy flag, but is otherwise not needed for most processing in
1150 * the driver. This makes the driver much more friendlier to shared IRQs
1151 * than previous designs, while remaining 100% (?) SMP safe and capable.
1152 */
1153static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1154{
1155 ide_drive_t *drive;
1156 ide_hwif_t *hwif;
1157 struct request *rq;
1158 ide_startstop_t startstop;
867f8b4e 1159 int loops = 0;
1da177e4
LT
1160
1161 /* for atari only: POSSIBLY BROKEN HERE(?) */
1162 ide_get_lock(ide_intr, hwgroup);
1163
1164 /* caller must own ide_lock */
1165 BUG_ON(!irqs_disabled());
1166
1167 while (!hwgroup->busy) {
1168 hwgroup->busy = 1;
1169 drive = choose_drive(hwgroup);
1170 if (drive == NULL) {
1171 int sleeping = 0;
1172 unsigned long sleep = 0; /* shut up, gcc */
1173 hwgroup->rq = NULL;
1174 drive = hwgroup->drive;
1175 do {
1176 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1177 sleeping = 1;
1178 sleep = drive->sleep;
1179 }
1180 } while ((drive = drive->next) != hwgroup->drive);
1181 if (sleeping) {
1182 /*
1183 * Take a short snooze, and then wake up this hwgroup again.
1184 * This gives other hwgroups on the same a chance to
1185 * play fairly with us, just in case there are big differences
1186 * in relative throughputs.. don't want to hog the cpu too much.
1187 */
1188 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1189 sleep = jiffies + WAIT_MIN_SLEEP;
1190#if 1
1191 if (timer_pending(&hwgroup->timer))
1192 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1193#endif
1194 /* so that ide_timer_expiry knows what to do */
1195 hwgroup->sleeping = 1;
23450319 1196 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1197 mod_timer(&hwgroup->timer, sleep);
1198 /* we purposely leave hwgroup->busy==1
1199 * while sleeping */
1200 } else {
1201 /* Ugly, but how can we sleep for the lock
1202 * otherwise? perhaps from tq_disk?
1203 */
1204
1205 /* for atari only */
1206 ide_release_lock();
1207 hwgroup->busy = 0;
1208 }
1209
1210 /* no more work for this hwgroup (for now) */
1211 return;
1212 }
867f8b4e 1213 again:
1da177e4 1214 hwif = HWIF(drive);
81ca6919 1215 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
7299a391
BZ
1216 /*
1217 * set nIEN for previous hwif, drives in the
1218 * quirk_list may not like intr setups/cleanups
1219 */
1220 if (drive->quirk_list != 1)
81ca6919 1221 ide_set_irq(drive, 0);
1da177e4
LT
1222 }
1223 hwgroup->hwif = hwif;
1224 hwgroup->drive = drive;
1225 drive->sleeping = 0;
1226 drive->service_start = jiffies;
1227
1228 if (blk_queue_plugged(drive->queue)) {
1229 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1230 break;
1231 }
1232
1233 /*
1234 * we know that the queue isn't empty, but this can happen
1235 * if the q->prep_rq_fn() decides to kill a request
1236 */
1237 rq = elv_next_request(drive->queue);
1238 if (!rq) {
1239 hwgroup->busy = 0;
1240 break;
1241 }
1242
1243 /*
1244 * Sanity: don't accept a request that isn't a PM request
1245 * if we are currently power managed. This is very important as
1246 * blk_stop_queue() doesn't prevent the elv_next_request()
1247 * above to return us whatever is in the queue. Since we call
1248 * ide_do_request() ourselves, we end up taking requests while
1249 * the queue is blocked...
1250 *
1251 * We let requests forced at head of queue with ide-preempt
1252 * though. I hope that doesn't happen too much, hopefully not
1253 * unless the subdriver triggers such a thing in its own PM
1254 * state machine.
867f8b4e
BH
1255 *
1256 * We count how many times we loop here to make sure we service
1257 * all drives in the hwgroup without looping for ever
1da177e4 1258 */
4aff5e23 1259 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1260 drive = drive->next ? drive->next : hwgroup->drive;
1261 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1262 goto again;
1da177e4
LT
1263 /* We clear busy, there should be no pending ATA command at this point. */
1264 hwgroup->busy = 0;
1265 break;
1266 }
1267
1268 hwgroup->rq = rq;
1269
1270 /*
1271 * Some systems have trouble with IDE IRQs arriving while
1272 * the driver is still setting things up. So, here we disable
1273 * the IRQ used by this interface while the request is being started.
1274 * This may look bad at first, but pretty much the same thing
1275 * happens anyway when any interrupt comes in, IDE or otherwise
1276 * -- the kernel masks the IRQ while it is being handled.
1277 */
1278 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1279 disable_irq_nosync(hwif->irq);
1280 spin_unlock(&ide_lock);
366c7f55 1281 local_irq_enable_in_hardirq();
1da177e4
LT
1282 /* allow other IRQs while we start this request */
1283 startstop = start_request(drive, rq);
1284 spin_lock_irq(&ide_lock);
1285 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1286 enable_irq(hwif->irq);
1287 if (startstop == ide_stopped)
1288 hwgroup->busy = 0;
1289 }
1290}
1291
1292/*
1293 * Passes the stuff to ide_do_request
1294 */
165125e1 1295void do_ide_request(struct request_queue *q)
1da177e4
LT
1296{
1297 ide_drive_t *drive = q->queuedata;
1298
1299 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1300}
1301
1302/*
1303 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1304 * retry the current request in pio mode instead of risking tossing it
1305 * all away
1306 */
1307static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1308{
1309 ide_hwif_t *hwif = HWIF(drive);
1310 struct request *rq;
1311 ide_startstop_t ret = ide_stopped;
1312
1313 /*
1314 * end current dma transaction
1315 */
1316
1317 if (error < 0) {
1318 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1319 (void)HWIF(drive)->ide_dma_end(drive);
1320 ret = ide_error(drive, "dma timeout error",
1321 hwif->INB(IDE_STATUS_REG));
1322 } else {
1323 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1324 hwif->dma_timeout(drive);
1da177e4
LT
1325 }
1326
1327 /*
1328 * disable dma for now, but remember that we did so because of
1329 * a timeout -- we'll reenable after we finish this next request
1330 * (or rather the first chunk of it) in pio.
1331 */
1332 drive->retry_pio++;
1333 drive->state = DMA_PIO_RETRY;
4a546e04 1334 ide_dma_off_quietly(drive);
1da177e4
LT
1335
1336 /*
1337 * un-busy drive etc (hwgroup->busy is cleared on return) and
1338 * make sure request is sane
1339 */
1340 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1341
1342 if (!rq)
1343 goto out;
1344
1da177e4
LT
1345 HWGROUP(drive)->rq = NULL;
1346
1347 rq->errors = 0;
1348
1349 if (!rq->bio)
1350 goto out;
1351
1352 rq->sector = rq->bio->bi_sector;
1353 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1354 rq->hard_cur_sectors = rq->current_nr_sectors;
1355 rq->buffer = bio_data(rq->bio);
1356out:
1357 return ret;
1358}
1359
1360/**
1361 * ide_timer_expiry - handle lack of an IDE interrupt
1362 * @data: timer callback magic (hwgroup)
1363 *
1364 * An IDE command has timed out before the expected drive return
1365 * occurred. At this point we attempt to clean up the current
1366 * mess. If the current handler includes an expiry handler then
1367 * we invoke the expiry handler, and providing it is happy the
1368 * work is done. If that fails we apply generic recovery rules
1369 * invoking the handler and checking the drive DMA status. We
1370 * have an excessively incestuous relationship with the DMA
1371 * logic that wants cleaning up.
1372 */
1373
1374void ide_timer_expiry (unsigned long data)
1375{
1376 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1377 ide_handler_t *handler;
1378 ide_expiry_t *expiry;
1379 unsigned long flags;
1380 unsigned long wait = -1;
1381
1382 spin_lock_irqsave(&ide_lock, flags);
1383
23450319
SS
1384 if (((handler = hwgroup->handler) == NULL) ||
1385 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1386 /*
1387 * Either a marginal timeout occurred
1388 * (got the interrupt just as timer expired),
1389 * or we were "sleeping" to give other devices a chance.
1390 * Either way, we don't really want to complain about anything.
1391 */
1392 if (hwgroup->sleeping) {
1393 hwgroup->sleeping = 0;
1394 hwgroup->busy = 0;
1395 }
1396 } else {
1397 ide_drive_t *drive = hwgroup->drive;
1398 if (!drive) {
1399 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1400 hwgroup->handler = NULL;
1401 } else {
1402 ide_hwif_t *hwif;
1403 ide_startstop_t startstop = ide_stopped;
1404 if (!hwgroup->busy) {
1405 hwgroup->busy = 1; /* paranoia */
1406 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1407 }
1408 if ((expiry = hwgroup->expiry) != NULL) {
1409 /* continue */
1410 if ((wait = expiry(drive)) > 0) {
1411 /* reset timer */
1412 hwgroup->timer.expires = jiffies + wait;
23450319 1413 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1414 add_timer(&hwgroup->timer);
1415 spin_unlock_irqrestore(&ide_lock, flags);
1416 return;
1417 }
1418 }
1419 hwgroup->handler = NULL;
1420 /*
1421 * We need to simulate a real interrupt when invoking
1422 * the handler() function, which means we need to
1423 * globally mask the specific IRQ:
1424 */
1425 spin_unlock(&ide_lock);
1426 hwif = HWIF(drive);
1da177e4
LT
1427 /* disable_irq_nosync ?? */
1428 disable_irq(hwif->irq);
1da177e4
LT
1429 /* local CPU only,
1430 * as if we were handling an interrupt */
1431 local_irq_disable();
1432 if (hwgroup->polling) {
1433 startstop = handler(drive);
1434 } else if (drive_is_ready(drive)) {
1435 if (drive->waiting_for_dma)
841d2a9b 1436 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1437 (void)ide_ack_intr(hwif);
1438 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1439 startstop = handler(drive);
1440 } else {
1441 if (drive->waiting_for_dma) {
1442 startstop = ide_dma_timeout_retry(drive, wait);
1443 } else
1444 startstop =
1445 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1446 }
1447 drive->service_time = jiffies - drive->service_start;
1448 spin_lock_irq(&ide_lock);
1449 enable_irq(hwif->irq);
1450 if (startstop == ide_stopped)
1451 hwgroup->busy = 0;
1452 }
1453 }
1454 ide_do_request(hwgroup, IDE_NO_IRQ);
1455 spin_unlock_irqrestore(&ide_lock, flags);
1456}
1457
1458/**
1459 * unexpected_intr - handle an unexpected IDE interrupt
1460 * @irq: interrupt line
1461 * @hwgroup: hwgroup being processed
1462 *
1463 * There's nothing really useful we can do with an unexpected interrupt,
1464 * other than reading the status register (to clear it), and logging it.
1465 * There should be no way that an irq can happen before we're ready for it,
1466 * so we needn't worry much about losing an "important" interrupt here.
1467 *
1468 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1469 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1470 * looks "good", we just ignore the interrupt completely.
1471 *
1472 * This routine assumes __cli() is in effect when called.
1473 *
1474 * If an unexpected interrupt happens on irq15 while we are handling irq14
1475 * and if the two interfaces are "serialized" (CMD640), then it looks like
1476 * we could screw up by interfering with a new request being set up for
1477 * irq15.
1478 *
1479 * In reality, this is a non-issue. The new command is not sent unless
1480 * the drive is ready to accept one, in which case we know the drive is
1481 * not trying to interrupt us. And ide_set_handler() is always invoked
1482 * before completing the issuance of any new drive command, so we will not
1483 * be accidentally invoked as a result of any valid command completion
1484 * interrupt.
1485 *
1486 * Note that we must walk the entire hwgroup here. We know which hwif
1487 * is doing the current command, but we don't know which hwif burped
1488 * mysteriously.
1489 */
1490
1491static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1492{
1493 u8 stat;
1494 ide_hwif_t *hwif = hwgroup->hwif;
1495
1496 /*
1497 * handle the unexpected interrupt
1498 */
1499 do {
1500 if (hwif->irq == irq) {
1501 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1502 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1503 /* Try to not flood the console with msgs */
1504 static unsigned long last_msgtime, count;
1505 ++count;
1506 if (time_after(jiffies, last_msgtime + HZ)) {
1507 last_msgtime = jiffies;
1508 printk(KERN_ERR "%s%s: unexpected interrupt, "
1509 "status=0x%02x, count=%ld\n",
1510 hwif->name,
1511 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1512 }
1513 }
1514 }
1515 } while ((hwif = hwif->next) != hwgroup->hwif);
1516}
1517
1518/**
1519 * ide_intr - default IDE interrupt handler
1520 * @irq: interrupt number
1521 * @dev_id: hwif group
1522 * @regs: unused weirdness from the kernel irq layer
1523 *
1524 * This is the default IRQ handler for the IDE layer. You should
1525 * not need to override it. If you do be aware it is subtle in
1526 * places
1527 *
1528 * hwgroup->hwif is the interface in the group currently performing
1529 * a command. hwgroup->drive is the drive and hwgroup->handler is
1530 * the IRQ handler to call. As we issue a command the handlers
1531 * step through multiple states, reassigning the handler to the
1532 * next step in the process. Unlike a smart SCSI controller IDE
1533 * expects the main processor to sequence the various transfer
1534 * stages. We also manage a poll timer to catch up with most
1535 * timeout situations. There are still a few where the handlers
1536 * don't ever decide to give up.
1537 *
1538 * The handler eventually returns ide_stopped to indicate the
1539 * request completed. At this point we issue the next request
1540 * on the hwgroup and the process begins again.
1541 */
1542
7d12e780 1543irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1544{
1545 unsigned long flags;
1546 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1547 ide_hwif_t *hwif;
1548 ide_drive_t *drive;
1549 ide_handler_t *handler;
1550 ide_startstop_t startstop;
1551
1552 spin_lock_irqsave(&ide_lock, flags);
1553 hwif = hwgroup->hwif;
1554
1555 if (!ide_ack_intr(hwif)) {
1556 spin_unlock_irqrestore(&ide_lock, flags);
1557 return IRQ_NONE;
1558 }
1559
1560 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1561 /*
1562 * Not expecting an interrupt from this drive.
1563 * That means this could be:
1564 * (1) an interrupt from another PCI device
1565 * sharing the same PCI INT# as us.
1566 * or (2) a drive just entered sleep or standby mode,
1567 * and is interrupting to let us know.
1568 * or (3) a spurious interrupt of unknown origin.
1569 *
1570 * For PCI, we cannot tell the difference,
1571 * so in that case we just ignore it and hope it goes away.
1572 *
1573 * FIXME: unexpected_intr should be hwif-> then we can
1574 * remove all the ifdef PCI crap
1575 */
1576#ifdef CONFIG_BLK_DEV_IDEPCI
1577 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1578#endif /* CONFIG_BLK_DEV_IDEPCI */
1579 {
1580 /*
1581 * Probably not a shared PCI interrupt,
1582 * so we can safely try to do something about it:
1583 */
1584 unexpected_intr(irq, hwgroup);
1585#ifdef CONFIG_BLK_DEV_IDEPCI
1586 } else {
1587 /*
1588 * Whack the status register, just in case
1589 * we have a leftover pending IRQ.
1590 */
1591 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1592#endif /* CONFIG_BLK_DEV_IDEPCI */
1593 }
1594 spin_unlock_irqrestore(&ide_lock, flags);
1595 return IRQ_NONE;
1596 }
1597 drive = hwgroup->drive;
1598 if (!drive) {
1599 /*
1600 * This should NEVER happen, and there isn't much
1601 * we could do about it here.
1602 *
1603 * [Note - this can occur if the drive is hot unplugged]
1604 */
1605 spin_unlock_irqrestore(&ide_lock, flags);
1606 return IRQ_HANDLED;
1607 }
1608 if (!drive_is_ready(drive)) {
1609 /*
1610 * This happens regularly when we share a PCI IRQ with
1611 * another device. Unfortunately, it can also happen
1612 * with some buggy drives that trigger the IRQ before
1613 * their status register is up to date. Hopefully we have
1614 * enough advance overhead that the latter isn't a problem.
1615 */
1616 spin_unlock_irqrestore(&ide_lock, flags);
1617 return IRQ_NONE;
1618 }
1619 if (!hwgroup->busy) {
1620 hwgroup->busy = 1; /* paranoia */
1621 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1622 }
1623 hwgroup->handler = NULL;
23450319 1624 hwgroup->req_gen++;
1da177e4
LT
1625 del_timer(&hwgroup->timer);
1626 spin_unlock(&ide_lock);
1627
f0dd8712
AL
1628 /* Some controllers might set DMA INTR no matter DMA or PIO;
1629 * bmdma status might need to be cleared even for
1630 * PIO interrupts to prevent spurious/lost irq.
1631 */
1632 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1633 /* ide_dma_end() needs bmdma status for error checking.
1634 * So, skip clearing bmdma status here and leave it
1635 * to ide_dma_end() if this is dma interrupt.
1636 */
1637 hwif->ide_dma_clear_irq(drive);
1638
1da177e4 1639 if (drive->unmask)
366c7f55 1640 local_irq_enable_in_hardirq();
1da177e4
LT
1641 /* service this interrupt, may set handler for next interrupt */
1642 startstop = handler(drive);
1643 spin_lock_irq(&ide_lock);
1644
1645 /*
1646 * Note that handler() may have set things up for another
1647 * interrupt to occur soon, but it cannot happen until
1648 * we exit from this routine, because it will be the
1649 * same irq as is currently being serviced here, and Linux
1650 * won't allow another of the same (on any CPU) until we return.
1651 */
1652 drive->service_time = jiffies - drive->service_start;
1653 if (startstop == ide_stopped) {
1654 if (hwgroup->handler == NULL) { /* paranoia */
1655 hwgroup->busy = 0;
1656 ide_do_request(hwgroup, hwif->irq);
1657 } else {
1658 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1659 "on exit\n", drive->name);
1660 }
1661 }
1662 spin_unlock_irqrestore(&ide_lock, flags);
1663 return IRQ_HANDLED;
1664}
1665
1666/**
1667 * ide_init_drive_cmd - initialize a drive command request
1668 * @rq: request object
1669 *
1670 * Initialize a request before we fill it in and send it down to
1671 * ide_do_drive_cmd. Commands must be set up by this function. Right
1672 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1673 * nasty surprise.
1da177e4
LT
1674 */
1675
1676void ide_init_drive_cmd (struct request *rq)
1677{
1678 memset(rq, 0, sizeof(*rq));
4aff5e23 1679 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1680 rq->ref_count = 1;
1681}
1682
1683EXPORT_SYMBOL(ide_init_drive_cmd);
1684
1685/**
1686 * ide_do_drive_cmd - issue IDE special command
1687 * @drive: device to issue command
1688 * @rq: request to issue
1689 * @action: action for processing
1690 *
1691 * This function issues a special IDE device request
1692 * onto the request queue.
1693 *
1694 * If action is ide_wait, then the rq is queued at the end of the
1695 * request queue, and the function sleeps until it has been processed.
1696 * This is for use when invoked from an ioctl handler.
1697 *
1698 * If action is ide_preempt, then the rq is queued at the head of
1699 * the request queue, displacing the currently-being-processed
1700 * request and this function returns immediately without waiting
1701 * for the new rq to be completed. This is VERY DANGEROUS, and is
1702 * intended for careful use by the ATAPI tape/cdrom driver code.
1703 *
1da177e4
LT
1704 * If action is ide_end, then the rq is queued at the end of the
1705 * request queue, and the function returns immediately without waiting
1706 * for the new rq to be completed. This is again intended for careful
1707 * use by the ATAPI tape/cdrom driver code.
1708 */
1709
1710int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1711{
1712 unsigned long flags;
1713 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1714 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1715 int where = ELEVATOR_INSERT_BACK, err;
1716 int must_wait = (action == ide_wait || action == ide_head_wait);
1717
1718 rq->errors = 0;
1da177e4
LT
1719
1720 /*
1721 * we need to hold an extra reference to request for safe inspection
1722 * after completion
1723 */
1724 if (must_wait) {
1725 rq->ref_count++;
c00895ab 1726 rq->end_io_data = &wait;
1da177e4
LT
1727 rq->end_io = blk_end_sync_rq;
1728 }
1729
1730 spin_lock_irqsave(&ide_lock, flags);
1731 if (action == ide_preempt)
1732 hwgroup->rq = NULL;
1733 if (action == ide_preempt || action == ide_head_wait) {
1734 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1735 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1736 }
1737 __elv_add_request(drive->queue, rq, where, 0);
1738 ide_do_request(hwgroup, IDE_NO_IRQ);
1739 spin_unlock_irqrestore(&ide_lock, flags);
1740
1741 err = 0;
1742 if (must_wait) {
1743 wait_for_completion(&wait);
1da177e4
LT
1744 if (rq->errors)
1745 err = -EIO;
1746
1747 blk_put_request(rq);
1748 }
1749
1750 return err;
1751}
1752
1753EXPORT_SYMBOL(ide_do_drive_cmd);
2fc57388
BZ
1754
1755void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1756{
1757 ide_task_t task;
1758
1759 memset(&task, 0, sizeof(task));
1760 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1761 IDE_TFLAG_OUT_FEATURE | tf_flags;
1762 task.tf.feature = dma; /* Use PIO/DMA */
1763 task.tf.lbam = bcount & 0xff;
1764 task.tf.lbah = (bcount >> 8) & 0xff;
1765
1766 ide_tf_load(drive, &task);
1767}
1768
1769EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
This page took 0.367449 seconds and 5 git commands to generate.