ide: kill DATA_READY define
[deliverable/linux.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
1977f032 50#include <linux/bitops.h>
1da177e4
LT
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
1da177e4 56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
bbc615b1 58 int uptodate, unsigned int nr_bytes, int dequeue)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
4a546e04 78 ide_dma_on(drive);
1da177e4
LT
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
bbc615b1
BZ
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
ba027def 88 end_that_request_last(rq, uptodate);
1da177e4
LT
89 ret = 0;
90 }
8672d571 91
1da177e4
LT
92 return ret;
93}
1da177e4
LT
94
95/**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
41e9d344 108 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
8672d571
JA
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
1da177e4
LT
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
41e9d344
JA
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
1da177e4 126
bbc615b1 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
1da177e4
LT
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
8c2c0118
JL
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
1da177e4
LT
146 ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
c00895ab 151 struct request_pm_state *pm = rq->data;
ad3cadda 152
1da177e4
LT
153 if (drive->media != ide_disk)
154 return;
155
ad3cadda 156 switch (pm->pm_step) {
1da177e4 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
1da177e4 160 else
ad3cadda 161 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 164 pm->pm_step = ide_pm_state_completed;
1da177e4 165 break;
8c2c0118
JL
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 170 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
171 break;
172 }
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
c00895ab 177 struct request_pm_state *pm = rq->data;
1da177e4
LT
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
ad3cadda 182 switch (pm->pm_step) {
1da177e4
LT
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
650d841d 192 args->tf.command = WIN_FLUSH_CACHE_EXT;
1da177e4 193 else
650d841d 194 args->tf.command = WIN_FLUSH_CACHE;
74095a91 195 goto out_do_tf;
1da177e4
LT
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
650d841d 198 args->tf.command = WIN_STANDBYNOW1;
74095a91 199 goto out_do_tf;
1da177e4 200
8c2c0118 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
26bcb879 202 ide_set_max_pio(drive);
317a46a2
BZ
203 /*
204 * skip idedisk_pm_idle for ATAPI devices
205 */
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
210 return ide_stopped;
211
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
650d841d 213 args->tf.command = WIN_IDLEIMMEDIATE;
74095a91 214 goto out_do_tf;
1da177e4 215
8c2c0118 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4 217 /*
0ae2e178 218 * Right now, all we do is call ide_set_dma(drive),
1da177e4
LT
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
221 */
15ce926a 222 if (drive->hwif->dma_host_set == NULL)
1da177e4 223 break;
8987d21b
BZ
224 /*
225 * TODO: respect ->using_dma setting
226 */
3608b5d7 227 ide_set_dma(drive);
1da177e4
LT
228 break;
229 }
ad3cadda 230 pm->pm_step = ide_pm_state_completed;
1da177e4 231 return ide_stopped;
74095a91
BZ
232
233out_do_tf:
657cc1a8 234 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
ac026ff2 235 args->data_phase = TASKFILE_NO_DATA;
74095a91 236 return do_rw_taskfile(drive, args);
1da177e4
LT
237}
238
dbe217af
AC
239/**
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
242 * @uptodate:
243 * @nr_sectors: number of sectors completed
244 *
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
249 *
250 * NOTE: This path does not handle barrier, but barrier is not supported
251 * on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
256{
257 unsigned long flags;
bbc615b1 258 int ret;
dbe217af
AC
259
260 spin_lock_irqsave(&ide_lock, flags);
4aff5e23 261 BUG_ON(!blk_rq_started(rq));
bbc615b1 262 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
dbe217af 263 spin_unlock_irqrestore(&ide_lock, flags);
bbc615b1 264
dbe217af
AC
265 return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
1da177e4
LT
270/**
271 * ide_complete_pm_request - end the current Power Management request
272 * @drive: target drive
273 * @rq: request
274 *
275 * This function cleans up the current PM request and stops the queue
276 * if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280 unsigned long flags;
281
282#ifdef DEBUG_PM
283 printk("%s: completing PM request, %s\n", drive->name,
284 blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286 spin_lock_irqsave(&ide_lock, flags);
287 if (blk_pm_suspend_request(rq)) {
288 blk_stop_queue(drive->queue);
289 } else {
290 drive->blocked = 0;
291 blk_start_queue(drive->queue);
292 }
293 blkdev_dequeue_request(rq);
294 HWGROUP(drive)->rq = NULL;
8ffdc655 295 end_that_request_last(rq, 1);
1da177e4
LT
296 spin_unlock_irqrestore(&ide_lock, flags);
297}
298
c2b57cdc
BZ
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301 ide_hwif_t *hwif = drive->hwif;
302 struct ide_taskfile *tf = &task->tf;
303
304 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305 u16 data = hwif->INW(IDE_DATA_REG);
306
307 tf->data = data & 0xff;
308 tf->hob_data = (data >> 8) & 0xff;
309 }
310
311 /* be sure we're looking at the low order bits */
312 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
316 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317 tf->lbal = hwif->INB(IDE_SECTOR_REG);
318 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319 tf->lbam = hwif->INB(IDE_LCYL_REG);
320 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321 tf->lbah = hwif->INB(IDE_HCYL_REG);
322 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323 tf->device = hwif->INB(IDE_SELECT_REG);
324
325 if (task->tf_flags & IDE_TFLAG_LBA48) {
326 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
332 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
336 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
338 }
339}
340
1da177e4
LT
341/**
342 * ide_end_drive_cmd - end an explicit drive command
343 * @drive: command
344 * @stat: status bits
345 * @err: error bits
346 *
347 * Clean up after success/failure of an explicit drive command.
348 * These get thrown onto the queue so they are synchronized with
349 * real I/O operations on the drive.
350 *
351 * In LBA48 mode we have to read the register set twice to get
352 * all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
357 ide_hwif_t *hwif = HWIF(drive);
358 unsigned long flags;
359 struct request *rq;
360
361 spin_lock_irqsave(&ide_lock, flags);
362 rq = HWGROUP(drive)->rq;
363 spin_unlock_irqrestore(&ide_lock, flags);
364
4aff5e23 365 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
366 u8 *args = (u8 *) rq->buffer;
367 if (rq->errors == 0)
368 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370 if (args) {
371 args[0] = stat;
372 args[1] = err;
49c746ee
BZ
373 /* be sure we're looking at the low order bits */
374 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
1da177e4
LT
375 args[2] = hwif->INB(IDE_NSECTOR_REG);
376 }
4aff5e23 377 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
378 ide_task_t *args = (ide_task_t *) rq->special;
379 if (rq->errors == 0)
380 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381
382 if (args) {
650d841d
BZ
383 struct ide_taskfile *tf = &args->tf;
384
650d841d 385 tf->error = err;
650d841d 386 tf->status = stat;
1da177e4 387
c2b57cdc 388 ide_tf_read(drive, args);
1da177e4
LT
389 }
390 } else if (blk_pm_request(rq)) {
c00895ab 391 struct request_pm_state *pm = rq->data;
1da177e4
LT
392#ifdef DEBUG_PM
393 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394 drive->name, rq->pm->pm_step, stat, err);
395#endif
396 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 397 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
398 ide_complete_pm_request(drive, rq);
399 return;
400 }
401
402 spin_lock_irqsave(&ide_lock, flags);
403 blkdev_dequeue_request(rq);
404 HWGROUP(drive)->rq = NULL;
405 rq->errors = err;
8ffdc655 406 end_that_request_last(rq, !rq->errors);
1da177e4
LT
407 spin_unlock_irqrestore(&ide_lock, flags);
408}
409
410EXPORT_SYMBOL(ide_end_drive_cmd);
411
412/**
413 * try_to_flush_leftover_data - flush junk
414 * @drive: drive to flush
415 *
416 * try_to_flush_leftover_data() is invoked in response to a drive
417 * unexpectedly having its DRQ_STAT bit set. As an alternative to
418 * resetting the drive, this routine tries to clear the condition
419 * by read a sector's worth of data from the drive. Of course,
420 * this may not help if the drive is *waiting* for data from *us*.
421 */
422static void try_to_flush_leftover_data (ide_drive_t *drive)
423{
424 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426 if (drive->media != ide_disk)
427 return;
428 while (i > 0) {
429 u32 buffer[16];
430 u32 wcount = (i > 16) ? 16 : i;
431
432 i -= wcount;
433 HWIF(drive)->ata_input_data(drive, buffer, wcount);
434 }
435}
436
437static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438{
439 if (rq->rq_disk) {
440 ide_driver_t *drv;
441
442 drv = *(ide_driver_t **)rq->rq_disk->private_data;
443 drv->end_request(drive, 0, 0);
444 } else
445 ide_end_request(drive, 0, 0);
446}
447
448static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449{
450 ide_hwif_t *hwif = drive->hwif;
451
452 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453 /* other bits are useless when BUSY */
454 rq->errors |= ERROR_RESET;
455 } else if (stat & ERR_STAT) {
456 /* err has different meaning on cdrom and tape */
457 if (err == ABRT_ERR) {
458 if (drive->select.b.lba &&
459 /* some newer drives don't support WIN_SPECIFY */
460 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461 return ide_stopped;
462 } else if ((err & BAD_CRC) == BAD_CRC) {
463 /* UDMA crc error, just retry the operation */
464 drive->crc_count++;
465 } else if (err & (BBD_ERR | ECC_ERR)) {
466 /* retries won't help these */
467 rq->errors = ERROR_MAX;
468 } else if (err & TRK0_ERR) {
469 /* help it find track zero */
470 rq->errors |= ERROR_RECAL;
471 }
472 }
473
ed67b923
BZ
474 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
1da177e4
LT
476 try_to_flush_leftover_data(drive);
477
513daadd
SS
478 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479 ide_kill_rq(drive, rq);
480 return ide_stopped;
481 }
482
1da177e4 483 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 484 rq->errors |= ERROR_RESET;
1da177e4 485
513daadd 486 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 487 ++rq->errors;
513daadd 488 return ide_do_reset(drive);
1da177e4 489 }
513daadd
SS
490
491 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492 drive->special.b.recalibrate = 1;
493
494 ++rq->errors;
495
1da177e4
LT
496 return ide_stopped;
497}
498
499static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500{
501 ide_hwif_t *hwif = drive->hwif;
502
503 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504 /* other bits are useless when BUSY */
505 rq->errors |= ERROR_RESET;
506 } else {
507 /* add decoding error stuff */
508 }
509
510 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511 /* force an abort */
512 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514 if (rq->errors >= ERROR_MAX) {
515 ide_kill_rq(drive, rq);
516 } else {
517 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518 ++rq->errors;
519 return ide_do_reset(drive);
520 }
521 ++rq->errors;
522 }
523
524 return ide_stopped;
525}
526
527ide_startstop_t
528__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529{
530 if (drive->media == ide_disk)
531 return ide_ata_error(drive, rq, stat, err);
532 return ide_atapi_error(drive, rq, stat, err);
533}
534
535EXPORT_SYMBOL_GPL(__ide_error);
536
537/**
538 * ide_error - handle an error on the IDE
539 * @drive: drive the error occurred on
540 * @msg: message to report
541 * @stat: status bits
542 *
543 * ide_error() takes action based on the error returned by the drive.
544 * For normal I/O that may well include retries. We deal with
545 * both new-style (taskfile) and old style command handling here.
546 * In the case of taskfile command handling there is work left to
547 * do
548 */
549
550ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551{
552 struct request *rq;
553 u8 err;
554
555 err = ide_dump_status(drive, msg, stat);
556
557 if ((rq = HWGROUP(drive)->rq) == NULL)
558 return ide_stopped;
559
560 /* retry only "normal" I/O: */
4aff5e23 561 if (!blk_fs_request(rq)) {
1da177e4
LT
562 rq->errors = 1;
563 ide_end_drive_cmd(drive, stat, err);
564 return ide_stopped;
565 }
566
567 if (rq->rq_disk) {
568 ide_driver_t *drv;
569
570 drv = *(ide_driver_t **)rq->rq_disk->private_data;
571 return drv->error(drive, rq, stat, err);
572 } else
573 return __ide_error(drive, rq, stat, err);
574}
575
576EXPORT_SYMBOL_GPL(ide_error);
577
578ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579{
580 if (drive->media != ide_disk)
581 rq->errors |= ERROR_RESET;
582
583 ide_kill_rq(drive, rq);
584
585 return ide_stopped;
586}
587
588EXPORT_SYMBOL_GPL(__ide_abort);
589
590/**
338cec32 591 * ide_abort - abort pending IDE operations
1da177e4
LT
592 * @drive: drive the error occurred on
593 * @msg: message to report
594 *
595 * ide_abort kills and cleans up when we are about to do a
596 * host initiated reset on active commands. Longer term we
597 * want handlers to have sensible abort handling themselves
598 *
599 * This differs fundamentally from ide_error because in
600 * this case the command is doing just fine when we
601 * blow it away.
602 */
603
604ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605{
606 struct request *rq;
607
608 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609 return ide_stopped;
610
611 /* retry only "normal" I/O: */
4aff5e23 612 if (!blk_fs_request(rq)) {
1da177e4
LT
613 rq->errors = 1;
614 ide_end_drive_cmd(drive, BUSY_STAT, 0);
615 return ide_stopped;
616 }
617
618 if (rq->rq_disk) {
619 ide_driver_t *drv;
620
621 drv = *(ide_driver_t **)rq->rq_disk->private_data;
622 return drv->abort(drive, rq);
623 } else
624 return __ide_abort(drive, rq);
625}
626
1da177e4
LT
627/**
628 * drive_cmd_intr - drive command completion interrupt
629 * @drive: drive the completion interrupt occurred on
630 *
631 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 632 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
633 * go non busy. At that point we may read the error data and complete
634 * the request
635 */
636
637static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638{
639 struct request *rq = HWGROUP(drive)->rq;
640 ide_hwif_t *hwif = HWIF(drive);
641 u8 *args = (u8 *) rq->buffer;
642 u8 stat = hwif->INB(IDE_STATUS_REG);
643 int retries = 10;
644
366c7f55 645 local_irq_enable_in_hardirq();
320112bd
BZ
646 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
647 (stat & DRQ_STAT) && args && args[3]) {
1da177e4
LT
648 u8 io_32bit = drive->io_32bit;
649 drive->io_32bit = 0;
650 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
651 drive->io_32bit = io_32bit;
652 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
653 udelay(100);
654 }
655
656 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
657 return ide_error(drive, "drive_cmd", stat);
658 /* calls ide_end_drive_cmd */
659 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
660 return ide_stopped;
661}
662
57d7366b 663static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 664{
57d7366b
BZ
665 tf->nsect = drive->sect;
666 tf->lbal = drive->sect;
667 tf->lbam = drive->cyl;
668 tf->lbah = drive->cyl >> 8;
669 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
670 tf->command = WIN_SPECIFY;
1da177e4
LT
671}
672
57d7366b 673static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 674{
57d7366b
BZ
675 tf->nsect = drive->sect;
676 tf->command = WIN_RESTORE;
1da177e4
LT
677}
678
57d7366b 679static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 680{
57d7366b
BZ
681 tf->nsect = drive->mult_req;
682 tf->command = WIN_SETMULT;
1da177e4
LT
683}
684
685static ide_startstop_t ide_disk_special(ide_drive_t *drive)
686{
687 special_t *s = &drive->special;
688 ide_task_t args;
689
690 memset(&args, 0, sizeof(ide_task_t));
ac026ff2 691 args.data_phase = TASKFILE_NO_DATA;
1da177e4
LT
692
693 if (s->b.set_geometry) {
694 s->b.set_geometry = 0;
57d7366b 695 ide_tf_set_specify_cmd(drive, &args.tf);
1da177e4
LT
696 } else if (s->b.recalibrate) {
697 s->b.recalibrate = 0;
57d7366b 698 ide_tf_set_restore_cmd(drive, &args.tf);
1da177e4
LT
699 } else if (s->b.set_multmode) {
700 s->b.set_multmode = 0;
701 if (drive->mult_req > drive->id->max_multsect)
702 drive->mult_req = drive->id->max_multsect;
57d7366b 703 ide_tf_set_setmult_cmd(drive, &args.tf);
1da177e4
LT
704 } else if (s->all) {
705 int special = s->all;
706 s->all = 0;
707 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
708 return ide_stopped;
709 }
710
657cc1a8 711 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
57d7366b 712 IDE_TFLAG_CUSTOM_HANDLER;
74095a91 713
1da177e4
LT
714 do_rw_taskfile(drive, &args);
715
716 return ide_started;
717}
718
26bcb879
BZ
719/*
720 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
721 */
722static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
723{
724 switch (req_pio) {
725 case 202:
726 case 201:
727 case 200:
728 case 102:
729 case 101:
730 case 100:
731 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
732 case 9:
733 case 8:
734 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
735 case 7:
736 case 6:
737 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
738 default:
739 return 0;
740 }
741}
742
1da177e4
LT
743/**
744 * do_special - issue some special commands
745 * @drive: drive the command is for
746 *
747 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
748 * commands to a drive. It used to do much more, but has been scaled
749 * back.
750 */
751
752static ide_startstop_t do_special (ide_drive_t *drive)
753{
754 special_t *s = &drive->special;
755
756#ifdef DEBUG
757 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
758#endif
759 if (s->b.set_tune) {
26bcb879
BZ
760 ide_hwif_t *hwif = drive->hwif;
761 u8 req_pio = drive->tune_req;
762
1da177e4 763 s->b.set_tune = 0;
26bcb879
BZ
764
765 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
d393aa03
BZ
766
767 if (hwif->set_pio_mode == NULL)
768 return ide_stopped;
769
770 /*
771 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
772 */
773 if (req_pio == 8 || req_pio == 9) {
774 unsigned long flags;
775
776 spin_lock_irqsave(&ide_lock, flags);
777 hwif->set_pio_mode(drive, req_pio);
778 spin_unlock_irqrestore(&ide_lock, flags);
779 } else
26bcb879 780 hwif->set_pio_mode(drive, req_pio);
aedea591
BZ
781 } else {
782 int keep_dma = drive->using_dma;
783
26bcb879
BZ
784 ide_set_pio(drive, req_pio);
785
aedea591
BZ
786 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
787 if (keep_dma)
4a546e04 788 ide_dma_on(drive);
aedea591
BZ
789 }
790 }
791
1da177e4
LT
792 return ide_stopped;
793 } else {
794 if (drive->media == ide_disk)
795 return ide_disk_special(drive);
796
797 s->all = 0;
798 drive->mult_req = 0;
799 return ide_stopped;
800 }
801}
802
803void ide_map_sg(ide_drive_t *drive, struct request *rq)
804{
805 ide_hwif_t *hwif = drive->hwif;
806 struct scatterlist *sg = hwif->sg_table;
807
808 if (hwif->sg_mapped) /* needed by ide-scsi */
809 return;
810
4aff5e23 811 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
812 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
813 } else {
814 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
815 hwif->sg_nents = 1;
816 }
817}
818
819EXPORT_SYMBOL_GPL(ide_map_sg);
820
821void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
822{
823 ide_hwif_t *hwif = drive->hwif;
824
825 hwif->nsect = hwif->nleft = rq->nr_sectors;
55c16a70
JA
826 hwif->cursg_ofs = 0;
827 hwif->cursg = NULL;
1da177e4
LT
828}
829
830EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
831
832/**
833 * execute_drive_command - issue special drive command
338cec32 834 * @drive: the drive to issue the command on
1da177e4
LT
835 * @rq: the request structure holding the command
836 *
837 * execute_drive_cmd() issues a special drive command, usually
838 * initiated by ioctl() from the external hdparm program. The
839 * command can be a drive command, drive task or taskfile
840 * operation. Weirdly you can call it with NULL to wait for
841 * all commands to finish. Don't do this as that is due to change
842 */
843
844static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
845 struct request *rq)
846{
847 ide_hwif_t *hwif = HWIF(drive);
21d535c9 848 u8 *args = rq->buffer;
807e35d6
BZ
849 ide_task_t ltask;
850 struct ide_taskfile *tf = &ltask.tf;
21d535c9 851
4aff5e23 852 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
21d535c9 853 ide_task_t *task = rq->special;
1da177e4 854
21d535c9 855 if (task == NULL)
1da177e4
LT
856 goto done;
857
21d535c9 858 hwif->data_phase = task->data_phase;
1da177e4
LT
859
860 switch (hwif->data_phase) {
861 case TASKFILE_MULTI_OUT:
862 case TASKFILE_OUT:
863 case TASKFILE_MULTI_IN:
864 case TASKFILE_IN:
865 ide_init_sg_cmd(drive, rq);
866 ide_map_sg(drive, rq);
867 default:
868 break;
869 }
74095a91 870
21d535c9
BZ
871 return do_rw_taskfile(drive, task);
872 }
873
874 if (args == NULL)
875 goto done;
876
807e35d6 877 memset(&ltask, 0, sizeof(ltask));
29ed2a5f 878 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4 879#ifdef DEBUG
807e35d6 880 printk("%s: DRIVE_CMD\n", drive->name);
1da177e4 881#endif
807e35d6
BZ
882 tf->feature = args[2];
883 if (args[0] == WIN_SMART) {
884 tf->nsect = args[3];
885 tf->lbal = args[1];
886 tf->lbam = 0x4f;
887 tf->lbah = 0xc2;
888 ltask.tf_flags = IDE_TFLAG_OUT_TF;
889 } else {
890 tf->nsect = args[1];
891 ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
892 IDE_TFLAG_OUT_NSECT;
893 }
1da177e4 894 }
807e35d6
BZ
895 tf->command = args[0];
896 ide_tf_load(drive, &ltask);
1f2564b8 897 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
21d535c9
BZ
898 return ide_started;
899
1da177e4
LT
900done:
901 /*
902 * NULL is actually a valid way of waiting for
903 * all current requests to be flushed from the queue.
904 */
905#ifdef DEBUG
906 printk("%s: DRIVE_CMD (null)\n", drive->name);
907#endif
908 ide_end_drive_cmd(drive,
909 hwif->INB(IDE_STATUS_REG),
910 hwif->INB(IDE_ERROR_REG));
911 return ide_stopped;
912}
913
ad3cadda
JA
914static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
915{
c00895ab 916 struct request_pm_state *pm = rq->data;
ad3cadda
JA
917
918 if (blk_pm_suspend_request(rq) &&
919 pm->pm_step == ide_pm_state_start_suspend)
920 /* Mark drive blocked when starting the suspend sequence. */
921 drive->blocked = 1;
922 else if (blk_pm_resume_request(rq) &&
923 pm->pm_step == ide_pm_state_start_resume) {
924 /*
925 * The first thing we do on wakeup is to wait for BSY bit to
926 * go away (with a looong timeout) as a drive on this hwif may
927 * just be POSTing itself.
928 * We do that before even selecting as the "other" device on
929 * the bus may be broken enough to walk on our toes at this
930 * point.
931 */
932 int rc;
933#ifdef DEBUG_PM
934 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
935#endif
936 rc = ide_wait_not_busy(HWIF(drive), 35000);
937 if (rc)
938 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
939 SELECT_DRIVE(drive);
81ca6919 940 ide_set_irq(drive, 1);
178184b6 941 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
942 if (rc)
943 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
944 }
945}
946
1da177e4
LT
947/**
948 * start_request - start of I/O and command issuing for IDE
949 *
950 * start_request() initiates handling of a new I/O request. It
951 * accepts commands and I/O (read/write) requests. It also does
952 * the final remapping for weird stuff like EZDrive. Once
953 * device mapper can work sector level the EZDrive stuff can go away
954 *
955 * FIXME: this function needs a rename
956 */
957
958static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
959{
960 ide_startstop_t startstop;
961 sector_t block;
962
4aff5e23 963 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
964
965#ifdef DEBUG
966 printk("%s: start_request: current=0x%08lx\n",
967 HWIF(drive)->name, (unsigned long) rq);
968#endif
969
970 /* bail early if we've exceeded max_failures */
971 if (drive->max_failures && (drive->failures > drive->max_failures)) {
b5e1a4e2 972 rq->cmd_flags |= REQ_FAILED;
1da177e4
LT
973 goto kill_rq;
974 }
975
976 block = rq->sector;
977 if (blk_fs_request(rq) &&
978 (drive->media == ide_disk || drive->media == ide_floppy)) {
979 block += drive->sect0;
980 }
981 /* Yecch - this will shift the entire interval,
982 possibly killing some innocent following sector */
983 if (block == 0 && drive->remap_0_to_1 == 1)
984 block = 1; /* redirect MBR access to EZ-Drive partn table */
985
ad3cadda
JA
986 if (blk_pm_request(rq))
987 ide_check_pm_state(drive, rq);
1da177e4
LT
988
989 SELECT_DRIVE(drive);
990 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
991 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
992 return startstop;
993 }
994 if (!drive->special.all) {
995 ide_driver_t *drv;
996
513daadd
SS
997 /*
998 * We reset the drive so we need to issue a SETFEATURES.
999 * Do it _after_ do_special() restored device parameters.
1000 */
1001 if (drive->current_speed == 0xff)
1002 ide_config_drive_speed(drive, drive->desired_speed);
1003
4aff5e23 1004 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
4aff5e23 1005 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1006 return execute_drive_cmd(drive, rq);
1007 else if (blk_pm_request(rq)) {
c00895ab 1008 struct request_pm_state *pm = rq->data;
1da177e4
LT
1009#ifdef DEBUG_PM
1010 printk("%s: start_power_step(step: %d)\n",
1011 drive->name, rq->pm->pm_step);
1012#endif
1013 startstop = ide_start_power_step(drive, rq);
1014 if (startstop == ide_stopped &&
ad3cadda 1015 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1016 ide_complete_pm_request(drive, rq);
1017 return startstop;
1018 }
1019
1020 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1021 return drv->do_request(drive, rq, block);
1022 }
1023 return do_special(drive);
1024kill_rq:
1025 ide_kill_rq(drive, rq);
1026 return ide_stopped;
1027}
1028
1029/**
1030 * ide_stall_queue - pause an IDE device
1031 * @drive: drive to stall
1032 * @timeout: time to stall for (jiffies)
1033 *
1034 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1035 * to the hwgroup by sleeping for timeout jiffies.
1036 */
1037
1038void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1039{
1040 if (timeout > WAIT_WORSTCASE)
1041 timeout = WAIT_WORSTCASE;
1042 drive->sleep = timeout + jiffies;
1043 drive->sleeping = 1;
1044}
1045
1046EXPORT_SYMBOL(ide_stall_queue);
1047
1048#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1049
1050/**
1051 * choose_drive - select a drive to service
1052 * @hwgroup: hardware group to select on
1053 *
1054 * choose_drive() selects the next drive which will be serviced.
1055 * This is necessary because the IDE layer can't issue commands
1056 * to both drives on the same cable, unlike SCSI.
1057 */
1058
1059static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1060{
1061 ide_drive_t *drive, *best;
1062
1063repeat:
1064 best = NULL;
1065 drive = hwgroup->drive;
1066
1067 /*
1068 * drive is doing pre-flush, ordered write, post-flush sequence. even
1069 * though that is 3 requests, it must be seen as a single transaction.
1070 * we must not preempt this drive until that is complete
1071 */
1072 if (blk_queue_flushing(drive->queue)) {
1073 /*
1074 * small race where queue could get replugged during
1075 * the 3-request flush cycle, just yank the plug since
1076 * we want it to finish asap
1077 */
1078 blk_remove_plug(drive->queue);
1079 return drive;
1080 }
1081
1082 do {
1083 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1084 && !elv_queue_empty(drive->queue)) {
1085 if (!best
1086 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1087 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1088 {
1089 if (!blk_queue_plugged(drive->queue))
1090 best = drive;
1091 }
1092 }
1093 } while ((drive = drive->next) != hwgroup->drive);
1094 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1095 long t = (signed long)(WAKEUP(best) - jiffies);
1096 if (t >= WAIT_MIN_SLEEP) {
1097 /*
1098 * We *may* have some time to spare, but first let's see if
1099 * someone can potentially benefit from our nice mood today..
1100 */
1101 drive = best->next;
1102 do {
1103 if (!drive->sleeping
1104 && time_before(jiffies - best->service_time, WAKEUP(drive))
1105 && time_before(WAKEUP(drive), jiffies + t))
1106 {
1107 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1108 goto repeat;
1109 }
1110 } while ((drive = drive->next) != best);
1111 }
1112 }
1113 return best;
1114}
1115
1116/*
1117 * Issue a new request to a drive from hwgroup
1118 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1119 *
1120 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1121 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1122 * may have both interfaces in a single hwgroup to "serialize" access.
1123 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1124 * together into one hwgroup for serialized access.
1125 *
1126 * Note also that several hwgroups can end up sharing a single IRQ,
1127 * possibly along with many other devices. This is especially common in
1128 * PCI-based systems with off-board IDE controller cards.
1129 *
1130 * The IDE driver uses the single global ide_lock spinlock to protect
1131 * access to the request queues, and to protect the hwgroup->busy flag.
1132 *
1133 * The first thread into the driver for a particular hwgroup sets the
1134 * hwgroup->busy flag to indicate that this hwgroup is now active,
1135 * and then initiates processing of the top request from the request queue.
1136 *
1137 * Other threads attempting entry notice the busy setting, and will simply
1138 * queue their new requests and exit immediately. Note that hwgroup->busy
1139 * remains set even when the driver is merely awaiting the next interrupt.
1140 * Thus, the meaning is "this hwgroup is busy processing a request".
1141 *
1142 * When processing of a request completes, the completing thread or IRQ-handler
1143 * will start the next request from the queue. If no more work remains,
1144 * the driver will clear the hwgroup->busy flag and exit.
1145 *
1146 * The ide_lock (spinlock) is used to protect all access to the
1147 * hwgroup->busy flag, but is otherwise not needed for most processing in
1148 * the driver. This makes the driver much more friendlier to shared IRQs
1149 * than previous designs, while remaining 100% (?) SMP safe and capable.
1150 */
1151static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1152{
1153 ide_drive_t *drive;
1154 ide_hwif_t *hwif;
1155 struct request *rq;
1156 ide_startstop_t startstop;
867f8b4e 1157 int loops = 0;
1da177e4
LT
1158
1159 /* for atari only: POSSIBLY BROKEN HERE(?) */
1160 ide_get_lock(ide_intr, hwgroup);
1161
1162 /* caller must own ide_lock */
1163 BUG_ON(!irqs_disabled());
1164
1165 while (!hwgroup->busy) {
1166 hwgroup->busy = 1;
1167 drive = choose_drive(hwgroup);
1168 if (drive == NULL) {
1169 int sleeping = 0;
1170 unsigned long sleep = 0; /* shut up, gcc */
1171 hwgroup->rq = NULL;
1172 drive = hwgroup->drive;
1173 do {
1174 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1175 sleeping = 1;
1176 sleep = drive->sleep;
1177 }
1178 } while ((drive = drive->next) != hwgroup->drive);
1179 if (sleeping) {
1180 /*
1181 * Take a short snooze, and then wake up this hwgroup again.
1182 * This gives other hwgroups on the same a chance to
1183 * play fairly with us, just in case there are big differences
1184 * in relative throughputs.. don't want to hog the cpu too much.
1185 */
1186 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1187 sleep = jiffies + WAIT_MIN_SLEEP;
1188#if 1
1189 if (timer_pending(&hwgroup->timer))
1190 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1191#endif
1192 /* so that ide_timer_expiry knows what to do */
1193 hwgroup->sleeping = 1;
23450319 1194 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1195 mod_timer(&hwgroup->timer, sleep);
1196 /* we purposely leave hwgroup->busy==1
1197 * while sleeping */
1198 } else {
1199 /* Ugly, but how can we sleep for the lock
1200 * otherwise? perhaps from tq_disk?
1201 */
1202
1203 /* for atari only */
1204 ide_release_lock();
1205 hwgroup->busy = 0;
1206 }
1207
1208 /* no more work for this hwgroup (for now) */
1209 return;
1210 }
867f8b4e 1211 again:
1da177e4 1212 hwif = HWIF(drive);
81ca6919 1213 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
7299a391
BZ
1214 /*
1215 * set nIEN for previous hwif, drives in the
1216 * quirk_list may not like intr setups/cleanups
1217 */
1218 if (drive->quirk_list != 1)
81ca6919 1219 ide_set_irq(drive, 0);
1da177e4
LT
1220 }
1221 hwgroup->hwif = hwif;
1222 hwgroup->drive = drive;
1223 drive->sleeping = 0;
1224 drive->service_start = jiffies;
1225
1226 if (blk_queue_plugged(drive->queue)) {
1227 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1228 break;
1229 }
1230
1231 /*
1232 * we know that the queue isn't empty, but this can happen
1233 * if the q->prep_rq_fn() decides to kill a request
1234 */
1235 rq = elv_next_request(drive->queue);
1236 if (!rq) {
1237 hwgroup->busy = 0;
1238 break;
1239 }
1240
1241 /*
1242 * Sanity: don't accept a request that isn't a PM request
1243 * if we are currently power managed. This is very important as
1244 * blk_stop_queue() doesn't prevent the elv_next_request()
1245 * above to return us whatever is in the queue. Since we call
1246 * ide_do_request() ourselves, we end up taking requests while
1247 * the queue is blocked...
1248 *
1249 * We let requests forced at head of queue with ide-preempt
1250 * though. I hope that doesn't happen too much, hopefully not
1251 * unless the subdriver triggers such a thing in its own PM
1252 * state machine.
867f8b4e
BH
1253 *
1254 * We count how many times we loop here to make sure we service
1255 * all drives in the hwgroup without looping for ever
1da177e4 1256 */
4aff5e23 1257 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1258 drive = drive->next ? drive->next : hwgroup->drive;
1259 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1260 goto again;
1da177e4
LT
1261 /* We clear busy, there should be no pending ATA command at this point. */
1262 hwgroup->busy = 0;
1263 break;
1264 }
1265
1266 hwgroup->rq = rq;
1267
1268 /*
1269 * Some systems have trouble with IDE IRQs arriving while
1270 * the driver is still setting things up. So, here we disable
1271 * the IRQ used by this interface while the request is being started.
1272 * This may look bad at first, but pretty much the same thing
1273 * happens anyway when any interrupt comes in, IDE or otherwise
1274 * -- the kernel masks the IRQ while it is being handled.
1275 */
1276 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1277 disable_irq_nosync(hwif->irq);
1278 spin_unlock(&ide_lock);
366c7f55 1279 local_irq_enable_in_hardirq();
1da177e4
LT
1280 /* allow other IRQs while we start this request */
1281 startstop = start_request(drive, rq);
1282 spin_lock_irq(&ide_lock);
1283 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1284 enable_irq(hwif->irq);
1285 if (startstop == ide_stopped)
1286 hwgroup->busy = 0;
1287 }
1288}
1289
1290/*
1291 * Passes the stuff to ide_do_request
1292 */
165125e1 1293void do_ide_request(struct request_queue *q)
1da177e4
LT
1294{
1295 ide_drive_t *drive = q->queuedata;
1296
1297 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1298}
1299
1300/*
1301 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1302 * retry the current request in pio mode instead of risking tossing it
1303 * all away
1304 */
1305static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1306{
1307 ide_hwif_t *hwif = HWIF(drive);
1308 struct request *rq;
1309 ide_startstop_t ret = ide_stopped;
1310
1311 /*
1312 * end current dma transaction
1313 */
1314
1315 if (error < 0) {
1316 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1317 (void)HWIF(drive)->ide_dma_end(drive);
1318 ret = ide_error(drive, "dma timeout error",
1319 hwif->INB(IDE_STATUS_REG));
1320 } else {
1321 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1322 hwif->dma_timeout(drive);
1da177e4
LT
1323 }
1324
1325 /*
1326 * disable dma for now, but remember that we did so because of
1327 * a timeout -- we'll reenable after we finish this next request
1328 * (or rather the first chunk of it) in pio.
1329 */
1330 drive->retry_pio++;
1331 drive->state = DMA_PIO_RETRY;
4a546e04 1332 ide_dma_off_quietly(drive);
1da177e4
LT
1333
1334 /*
1335 * un-busy drive etc (hwgroup->busy is cleared on return) and
1336 * make sure request is sane
1337 */
1338 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1339
1340 if (!rq)
1341 goto out;
1342
1da177e4
LT
1343 HWGROUP(drive)->rq = NULL;
1344
1345 rq->errors = 0;
1346
1347 if (!rq->bio)
1348 goto out;
1349
1350 rq->sector = rq->bio->bi_sector;
1351 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1352 rq->hard_cur_sectors = rq->current_nr_sectors;
1353 rq->buffer = bio_data(rq->bio);
1354out:
1355 return ret;
1356}
1357
1358/**
1359 * ide_timer_expiry - handle lack of an IDE interrupt
1360 * @data: timer callback magic (hwgroup)
1361 *
1362 * An IDE command has timed out before the expected drive return
1363 * occurred. At this point we attempt to clean up the current
1364 * mess. If the current handler includes an expiry handler then
1365 * we invoke the expiry handler, and providing it is happy the
1366 * work is done. If that fails we apply generic recovery rules
1367 * invoking the handler and checking the drive DMA status. We
1368 * have an excessively incestuous relationship with the DMA
1369 * logic that wants cleaning up.
1370 */
1371
1372void ide_timer_expiry (unsigned long data)
1373{
1374 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1375 ide_handler_t *handler;
1376 ide_expiry_t *expiry;
1377 unsigned long flags;
1378 unsigned long wait = -1;
1379
1380 spin_lock_irqsave(&ide_lock, flags);
1381
23450319
SS
1382 if (((handler = hwgroup->handler) == NULL) ||
1383 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1384 /*
1385 * Either a marginal timeout occurred
1386 * (got the interrupt just as timer expired),
1387 * or we were "sleeping" to give other devices a chance.
1388 * Either way, we don't really want to complain about anything.
1389 */
1390 if (hwgroup->sleeping) {
1391 hwgroup->sleeping = 0;
1392 hwgroup->busy = 0;
1393 }
1394 } else {
1395 ide_drive_t *drive = hwgroup->drive;
1396 if (!drive) {
1397 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1398 hwgroup->handler = NULL;
1399 } else {
1400 ide_hwif_t *hwif;
1401 ide_startstop_t startstop = ide_stopped;
1402 if (!hwgroup->busy) {
1403 hwgroup->busy = 1; /* paranoia */
1404 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1405 }
1406 if ((expiry = hwgroup->expiry) != NULL) {
1407 /* continue */
1408 if ((wait = expiry(drive)) > 0) {
1409 /* reset timer */
1410 hwgroup->timer.expires = jiffies + wait;
23450319 1411 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1412 add_timer(&hwgroup->timer);
1413 spin_unlock_irqrestore(&ide_lock, flags);
1414 return;
1415 }
1416 }
1417 hwgroup->handler = NULL;
1418 /*
1419 * We need to simulate a real interrupt when invoking
1420 * the handler() function, which means we need to
1421 * globally mask the specific IRQ:
1422 */
1423 spin_unlock(&ide_lock);
1424 hwif = HWIF(drive);
1da177e4
LT
1425 /* disable_irq_nosync ?? */
1426 disable_irq(hwif->irq);
1da177e4
LT
1427 /* local CPU only,
1428 * as if we were handling an interrupt */
1429 local_irq_disable();
1430 if (hwgroup->polling) {
1431 startstop = handler(drive);
1432 } else if (drive_is_ready(drive)) {
1433 if (drive->waiting_for_dma)
841d2a9b 1434 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1435 (void)ide_ack_intr(hwif);
1436 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1437 startstop = handler(drive);
1438 } else {
1439 if (drive->waiting_for_dma) {
1440 startstop = ide_dma_timeout_retry(drive, wait);
1441 } else
1442 startstop =
1443 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1444 }
1445 drive->service_time = jiffies - drive->service_start;
1446 spin_lock_irq(&ide_lock);
1447 enable_irq(hwif->irq);
1448 if (startstop == ide_stopped)
1449 hwgroup->busy = 0;
1450 }
1451 }
1452 ide_do_request(hwgroup, IDE_NO_IRQ);
1453 spin_unlock_irqrestore(&ide_lock, flags);
1454}
1455
1456/**
1457 * unexpected_intr - handle an unexpected IDE interrupt
1458 * @irq: interrupt line
1459 * @hwgroup: hwgroup being processed
1460 *
1461 * There's nothing really useful we can do with an unexpected interrupt,
1462 * other than reading the status register (to clear it), and logging it.
1463 * There should be no way that an irq can happen before we're ready for it,
1464 * so we needn't worry much about losing an "important" interrupt here.
1465 *
1466 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1467 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1468 * looks "good", we just ignore the interrupt completely.
1469 *
1470 * This routine assumes __cli() is in effect when called.
1471 *
1472 * If an unexpected interrupt happens on irq15 while we are handling irq14
1473 * and if the two interfaces are "serialized" (CMD640), then it looks like
1474 * we could screw up by interfering with a new request being set up for
1475 * irq15.
1476 *
1477 * In reality, this is a non-issue. The new command is not sent unless
1478 * the drive is ready to accept one, in which case we know the drive is
1479 * not trying to interrupt us. And ide_set_handler() is always invoked
1480 * before completing the issuance of any new drive command, so we will not
1481 * be accidentally invoked as a result of any valid command completion
1482 * interrupt.
1483 *
1484 * Note that we must walk the entire hwgroup here. We know which hwif
1485 * is doing the current command, but we don't know which hwif burped
1486 * mysteriously.
1487 */
1488
1489static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1490{
1491 u8 stat;
1492 ide_hwif_t *hwif = hwgroup->hwif;
1493
1494 /*
1495 * handle the unexpected interrupt
1496 */
1497 do {
1498 if (hwif->irq == irq) {
1499 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1500 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1501 /* Try to not flood the console with msgs */
1502 static unsigned long last_msgtime, count;
1503 ++count;
1504 if (time_after(jiffies, last_msgtime + HZ)) {
1505 last_msgtime = jiffies;
1506 printk(KERN_ERR "%s%s: unexpected interrupt, "
1507 "status=0x%02x, count=%ld\n",
1508 hwif->name,
1509 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1510 }
1511 }
1512 }
1513 } while ((hwif = hwif->next) != hwgroup->hwif);
1514}
1515
1516/**
1517 * ide_intr - default IDE interrupt handler
1518 * @irq: interrupt number
1519 * @dev_id: hwif group
1520 * @regs: unused weirdness from the kernel irq layer
1521 *
1522 * This is the default IRQ handler for the IDE layer. You should
1523 * not need to override it. If you do be aware it is subtle in
1524 * places
1525 *
1526 * hwgroup->hwif is the interface in the group currently performing
1527 * a command. hwgroup->drive is the drive and hwgroup->handler is
1528 * the IRQ handler to call. As we issue a command the handlers
1529 * step through multiple states, reassigning the handler to the
1530 * next step in the process. Unlike a smart SCSI controller IDE
1531 * expects the main processor to sequence the various transfer
1532 * stages. We also manage a poll timer to catch up with most
1533 * timeout situations. There are still a few where the handlers
1534 * don't ever decide to give up.
1535 *
1536 * The handler eventually returns ide_stopped to indicate the
1537 * request completed. At this point we issue the next request
1538 * on the hwgroup and the process begins again.
1539 */
1540
7d12e780 1541irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1542{
1543 unsigned long flags;
1544 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1545 ide_hwif_t *hwif;
1546 ide_drive_t *drive;
1547 ide_handler_t *handler;
1548 ide_startstop_t startstop;
1549
1550 spin_lock_irqsave(&ide_lock, flags);
1551 hwif = hwgroup->hwif;
1552
1553 if (!ide_ack_intr(hwif)) {
1554 spin_unlock_irqrestore(&ide_lock, flags);
1555 return IRQ_NONE;
1556 }
1557
1558 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1559 /*
1560 * Not expecting an interrupt from this drive.
1561 * That means this could be:
1562 * (1) an interrupt from another PCI device
1563 * sharing the same PCI INT# as us.
1564 * or (2) a drive just entered sleep or standby mode,
1565 * and is interrupting to let us know.
1566 * or (3) a spurious interrupt of unknown origin.
1567 *
1568 * For PCI, we cannot tell the difference,
1569 * so in that case we just ignore it and hope it goes away.
1570 *
1571 * FIXME: unexpected_intr should be hwif-> then we can
1572 * remove all the ifdef PCI crap
1573 */
1574#ifdef CONFIG_BLK_DEV_IDEPCI
1575 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1576#endif /* CONFIG_BLK_DEV_IDEPCI */
1577 {
1578 /*
1579 * Probably not a shared PCI interrupt,
1580 * so we can safely try to do something about it:
1581 */
1582 unexpected_intr(irq, hwgroup);
1583#ifdef CONFIG_BLK_DEV_IDEPCI
1584 } else {
1585 /*
1586 * Whack the status register, just in case
1587 * we have a leftover pending IRQ.
1588 */
1589 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1590#endif /* CONFIG_BLK_DEV_IDEPCI */
1591 }
1592 spin_unlock_irqrestore(&ide_lock, flags);
1593 return IRQ_NONE;
1594 }
1595 drive = hwgroup->drive;
1596 if (!drive) {
1597 /*
1598 * This should NEVER happen, and there isn't much
1599 * we could do about it here.
1600 *
1601 * [Note - this can occur if the drive is hot unplugged]
1602 */
1603 spin_unlock_irqrestore(&ide_lock, flags);
1604 return IRQ_HANDLED;
1605 }
1606 if (!drive_is_ready(drive)) {
1607 /*
1608 * This happens regularly when we share a PCI IRQ with
1609 * another device. Unfortunately, it can also happen
1610 * with some buggy drives that trigger the IRQ before
1611 * their status register is up to date. Hopefully we have
1612 * enough advance overhead that the latter isn't a problem.
1613 */
1614 spin_unlock_irqrestore(&ide_lock, flags);
1615 return IRQ_NONE;
1616 }
1617 if (!hwgroup->busy) {
1618 hwgroup->busy = 1; /* paranoia */
1619 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1620 }
1621 hwgroup->handler = NULL;
23450319 1622 hwgroup->req_gen++;
1da177e4
LT
1623 del_timer(&hwgroup->timer);
1624 spin_unlock(&ide_lock);
1625
f0dd8712
AL
1626 /* Some controllers might set DMA INTR no matter DMA or PIO;
1627 * bmdma status might need to be cleared even for
1628 * PIO interrupts to prevent spurious/lost irq.
1629 */
1630 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1631 /* ide_dma_end() needs bmdma status for error checking.
1632 * So, skip clearing bmdma status here and leave it
1633 * to ide_dma_end() if this is dma interrupt.
1634 */
1635 hwif->ide_dma_clear_irq(drive);
1636
1da177e4 1637 if (drive->unmask)
366c7f55 1638 local_irq_enable_in_hardirq();
1da177e4
LT
1639 /* service this interrupt, may set handler for next interrupt */
1640 startstop = handler(drive);
1641 spin_lock_irq(&ide_lock);
1642
1643 /*
1644 * Note that handler() may have set things up for another
1645 * interrupt to occur soon, but it cannot happen until
1646 * we exit from this routine, because it will be the
1647 * same irq as is currently being serviced here, and Linux
1648 * won't allow another of the same (on any CPU) until we return.
1649 */
1650 drive->service_time = jiffies - drive->service_start;
1651 if (startstop == ide_stopped) {
1652 if (hwgroup->handler == NULL) { /* paranoia */
1653 hwgroup->busy = 0;
1654 ide_do_request(hwgroup, hwif->irq);
1655 } else {
1656 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1657 "on exit\n", drive->name);
1658 }
1659 }
1660 spin_unlock_irqrestore(&ide_lock, flags);
1661 return IRQ_HANDLED;
1662}
1663
1664/**
1665 * ide_init_drive_cmd - initialize a drive command request
1666 * @rq: request object
1667 *
1668 * Initialize a request before we fill it in and send it down to
1669 * ide_do_drive_cmd. Commands must be set up by this function. Right
1670 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1671 * nasty surprise.
1da177e4
LT
1672 */
1673
1674void ide_init_drive_cmd (struct request *rq)
1675{
1676 memset(rq, 0, sizeof(*rq));
4aff5e23 1677 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1678 rq->ref_count = 1;
1679}
1680
1681EXPORT_SYMBOL(ide_init_drive_cmd);
1682
1683/**
1684 * ide_do_drive_cmd - issue IDE special command
1685 * @drive: device to issue command
1686 * @rq: request to issue
1687 * @action: action for processing
1688 *
1689 * This function issues a special IDE device request
1690 * onto the request queue.
1691 *
1692 * If action is ide_wait, then the rq is queued at the end of the
1693 * request queue, and the function sleeps until it has been processed.
1694 * This is for use when invoked from an ioctl handler.
1695 *
1696 * If action is ide_preempt, then the rq is queued at the head of
1697 * the request queue, displacing the currently-being-processed
1698 * request and this function returns immediately without waiting
1699 * for the new rq to be completed. This is VERY DANGEROUS, and is
1700 * intended for careful use by the ATAPI tape/cdrom driver code.
1701 *
1da177e4
LT
1702 * If action is ide_end, then the rq is queued at the end of the
1703 * request queue, and the function returns immediately without waiting
1704 * for the new rq to be completed. This is again intended for careful
1705 * use by the ATAPI tape/cdrom driver code.
1706 */
1707
1708int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1709{
1710 unsigned long flags;
1711 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1712 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1713 int where = ELEVATOR_INSERT_BACK, err;
1714 int must_wait = (action == ide_wait || action == ide_head_wait);
1715
1716 rq->errors = 0;
1da177e4
LT
1717
1718 /*
1719 * we need to hold an extra reference to request for safe inspection
1720 * after completion
1721 */
1722 if (must_wait) {
1723 rq->ref_count++;
c00895ab 1724 rq->end_io_data = &wait;
1da177e4
LT
1725 rq->end_io = blk_end_sync_rq;
1726 }
1727
1728 spin_lock_irqsave(&ide_lock, flags);
1729 if (action == ide_preempt)
1730 hwgroup->rq = NULL;
1731 if (action == ide_preempt || action == ide_head_wait) {
1732 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1733 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1734 }
1735 __elv_add_request(drive->queue, rq, where, 0);
1736 ide_do_request(hwgroup, IDE_NO_IRQ);
1737 spin_unlock_irqrestore(&ide_lock, flags);
1738
1739 err = 0;
1740 if (must_wait) {
1741 wait_for_completion(&wait);
1da177e4
LT
1742 if (rq->errors)
1743 err = -EIO;
1744
1745 blk_put_request(rq);
1746 }
1747
1748 return err;
1749}
1750
1751EXPORT_SYMBOL(ide_do_drive_cmd);
2fc57388
BZ
1752
1753void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1754{
1755 ide_task_t task;
1756
1757 memset(&task, 0, sizeof(task));
1758 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1759 IDE_TFLAG_OUT_FEATURE | tf_flags;
1760 task.tf.feature = dma; /* Use PIO/DMA */
1761 task.tf.lbam = bcount & 0xff;
1762 task.tf.lbah = (bcount >> 8) & 0xff;
1763
1764 ide_tf_load(drive, &task);
1765}
1766
1767EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
This page took 0.359401 seconds and 5 git commands to generate.