ide: fix registers loading order for IDE_NSECTOR_REG in execute_drive_cmd()
[deliverable/linux.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
1977f032 50#include <linux/bitops.h>
1da177e4
LT
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
1da177e4 56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
bbc615b1 58 int uptodate, unsigned int nr_bytes, int dequeue)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
bbc615b1
BZ
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
ba027def 88 end_that_request_last(rq, uptodate);
1da177e4
LT
89 ret = 0;
90 }
8672d571 91
1da177e4
LT
92 return ret;
93}
1da177e4
LT
94
95/**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
41e9d344 108 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
8672d571
JA
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
1da177e4
LT
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
41e9d344
JA
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
1da177e4 126
bbc615b1 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
1da177e4
LT
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
8c2c0118
JL
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
1da177e4
LT
146 ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
c00895ab 151 struct request_pm_state *pm = rq->data;
ad3cadda 152
1da177e4
LT
153 if (drive->media != ide_disk)
154 return;
155
ad3cadda 156 switch (pm->pm_step) {
1da177e4 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
1da177e4 160 else
ad3cadda 161 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 164 pm->pm_step = ide_pm_state_completed;
1da177e4 165 break;
8c2c0118
JL
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 170 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
171 break;
172 }
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
c00895ab 177 struct request_pm_state *pm = rq->data;
1da177e4
LT
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
ad3cadda 182 switch (pm->pm_step) {
1da177e4
LT
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
650d841d 192 args->tf.command = WIN_FLUSH_CACHE_EXT;
1da177e4 193 else
650d841d 194 args->tf.command = WIN_FLUSH_CACHE;
74095a91 195 goto out_do_tf;
1da177e4
LT
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
650d841d 198 args->tf.command = WIN_STANDBYNOW1;
74095a91 199 goto out_do_tf;
1da177e4 200
8c2c0118 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
26bcb879 202 ide_set_max_pio(drive);
317a46a2
BZ
203 /*
204 * skip idedisk_pm_idle for ATAPI devices
205 */
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
210 return ide_stopped;
211
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
650d841d 213 args->tf.command = WIN_IDLEIMMEDIATE;
74095a91 214 goto out_do_tf;
1da177e4 215
8c2c0118 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4 217 /*
0ae2e178 218 * Right now, all we do is call ide_set_dma(drive),
1da177e4
LT
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
221 */
0ae2e178 222 if (drive->hwif->ide_dma_on == NULL)
1da177e4 223 break;
793a9722 224 drive->hwif->dma_off_quietly(drive);
8987d21b
BZ
225 /*
226 * TODO: respect ->using_dma setting
227 */
3608b5d7 228 ide_set_dma(drive);
1da177e4
LT
229 break;
230 }
ad3cadda 231 pm->pm_step = ide_pm_state_completed;
1da177e4 232 return ide_stopped;
74095a91
BZ
233
234out_do_tf:
235 args->tf_flags = IDE_TFLAG_OUT_TF;
236 if (drive->addressing == 1)
237 args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
238 args->command_type = IDE_DRIVE_TASK_NO_DATA;
239 args->handler = task_no_data_intr;
240 return do_rw_taskfile(drive, args);
1da177e4
LT
241}
242
dbe217af
AC
243/**
244 * ide_end_dequeued_request - complete an IDE I/O
245 * @drive: IDE device for the I/O
246 * @uptodate:
247 * @nr_sectors: number of sectors completed
248 *
249 * Complete an I/O that is no longer on the request queue. This
250 * typically occurs when we pull the request and issue a REQUEST_SENSE.
251 * We must still finish the old request but we must not tamper with the
252 * queue in the meantime.
253 *
254 * NOTE: This path does not handle barrier, but barrier is not supported
255 * on ide-cd anyway.
256 */
257
258int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
259 int uptodate, int nr_sectors)
260{
261 unsigned long flags;
bbc615b1 262 int ret;
dbe217af
AC
263
264 spin_lock_irqsave(&ide_lock, flags);
4aff5e23 265 BUG_ON(!blk_rq_started(rq));
bbc615b1 266 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
dbe217af 267 spin_unlock_irqrestore(&ide_lock, flags);
bbc615b1 268
dbe217af
AC
269 return ret;
270}
271EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
272
273
1da177e4
LT
274/**
275 * ide_complete_pm_request - end the current Power Management request
276 * @drive: target drive
277 * @rq: request
278 *
279 * This function cleans up the current PM request and stops the queue
280 * if necessary.
281 */
282static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
283{
284 unsigned long flags;
285
286#ifdef DEBUG_PM
287 printk("%s: completing PM request, %s\n", drive->name,
288 blk_pm_suspend_request(rq) ? "suspend" : "resume");
289#endif
290 spin_lock_irqsave(&ide_lock, flags);
291 if (blk_pm_suspend_request(rq)) {
292 blk_stop_queue(drive->queue);
293 } else {
294 drive->blocked = 0;
295 blk_start_queue(drive->queue);
296 }
297 blkdev_dequeue_request(rq);
298 HWGROUP(drive)->rq = NULL;
8ffdc655 299 end_that_request_last(rq, 1);
1da177e4
LT
300 spin_unlock_irqrestore(&ide_lock, flags);
301}
302
1da177e4
LT
303/**
304 * ide_end_drive_cmd - end an explicit drive command
305 * @drive: command
306 * @stat: status bits
307 * @err: error bits
308 *
309 * Clean up after success/failure of an explicit drive command.
310 * These get thrown onto the queue so they are synchronized with
311 * real I/O operations on the drive.
312 *
313 * In LBA48 mode we have to read the register set twice to get
314 * all the extra information out.
315 */
316
317void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
318{
319 ide_hwif_t *hwif = HWIF(drive);
320 unsigned long flags;
321 struct request *rq;
322
323 spin_lock_irqsave(&ide_lock, flags);
324 rq = HWGROUP(drive)->rq;
325 spin_unlock_irqrestore(&ide_lock, flags);
326
4aff5e23 327 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
328 u8 *args = (u8 *) rq->buffer;
329 if (rq->errors == 0)
330 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
331
332 if (args) {
333 args[0] = stat;
334 args[1] = err;
335 args[2] = hwif->INB(IDE_NSECTOR_REG);
336 }
4aff5e23 337 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
338 u8 *args = (u8 *) rq->buffer;
339 if (rq->errors == 0)
340 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341
342 if (args) {
343 args[0] = stat;
344 args[1] = err;
1c11d241
BZ
345 /* be sure we're looking at the low order bits */
346 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
1da177e4
LT
347 args[2] = hwif->INB(IDE_NSECTOR_REG);
348 args[3] = hwif->INB(IDE_SECTOR_REG);
349 args[4] = hwif->INB(IDE_LCYL_REG);
350 args[5] = hwif->INB(IDE_HCYL_REG);
351 args[6] = hwif->INB(IDE_SELECT_REG);
352 }
4aff5e23 353 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
354 ide_task_t *args = (ide_task_t *) rq->special;
355 if (rq->errors == 0)
356 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357
358 if (args) {
650d841d
BZ
359 struct ide_taskfile *tf = &args->tf;
360
1da177e4 361 if (args->tf_in_flags.b.data) {
650d841d
BZ
362 u16 data = hwif->INW(IDE_DATA_REG);
363
364 tf->data = data & 0xff;
365 tf->hob_data = (data >> 8) & 0xff;
1da177e4 366 }
650d841d 367 tf->error = err;
1da177e4
LT
368 /* be sure we're looking at the low order bits */
369 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
650d841d
BZ
370 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
371 tf->lbal = hwif->INB(IDE_SECTOR_REG);
372 tf->lbam = hwif->INB(IDE_LCYL_REG);
373 tf->lbah = hwif->INB(IDE_HCYL_REG);
374 tf->device = hwif->INB(IDE_SELECT_REG);
375 tf->status = stat;
1da177e4
LT
376
377 if (drive->addressing == 1) {
378 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
650d841d
BZ
379 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
380 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
381 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
382 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
383 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
1da177e4
LT
384 }
385 }
386 } else if (blk_pm_request(rq)) {
c00895ab 387 struct request_pm_state *pm = rq->data;
1da177e4
LT
388#ifdef DEBUG_PM
389 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390 drive->name, rq->pm->pm_step, stat, err);
391#endif
392 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 393 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
394 ide_complete_pm_request(drive, rq);
395 return;
396 }
397
398 spin_lock_irqsave(&ide_lock, flags);
399 blkdev_dequeue_request(rq);
400 HWGROUP(drive)->rq = NULL;
401 rq->errors = err;
8ffdc655 402 end_that_request_last(rq, !rq->errors);
1da177e4
LT
403 spin_unlock_irqrestore(&ide_lock, flags);
404}
405
406EXPORT_SYMBOL(ide_end_drive_cmd);
407
408/**
409 * try_to_flush_leftover_data - flush junk
410 * @drive: drive to flush
411 *
412 * try_to_flush_leftover_data() is invoked in response to a drive
413 * unexpectedly having its DRQ_STAT bit set. As an alternative to
414 * resetting the drive, this routine tries to clear the condition
415 * by read a sector's worth of data from the drive. Of course,
416 * this may not help if the drive is *waiting* for data from *us*.
417 */
418static void try_to_flush_leftover_data (ide_drive_t *drive)
419{
420 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
421
422 if (drive->media != ide_disk)
423 return;
424 while (i > 0) {
425 u32 buffer[16];
426 u32 wcount = (i > 16) ? 16 : i;
427
428 i -= wcount;
429 HWIF(drive)->ata_input_data(drive, buffer, wcount);
430 }
431}
432
433static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
434{
435 if (rq->rq_disk) {
436 ide_driver_t *drv;
437
438 drv = *(ide_driver_t **)rq->rq_disk->private_data;
439 drv->end_request(drive, 0, 0);
440 } else
441 ide_end_request(drive, 0, 0);
442}
443
444static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
445{
446 ide_hwif_t *hwif = drive->hwif;
447
448 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
449 /* other bits are useless when BUSY */
450 rq->errors |= ERROR_RESET;
451 } else if (stat & ERR_STAT) {
452 /* err has different meaning on cdrom and tape */
453 if (err == ABRT_ERR) {
454 if (drive->select.b.lba &&
455 /* some newer drives don't support WIN_SPECIFY */
456 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
457 return ide_stopped;
458 } else if ((err & BAD_CRC) == BAD_CRC) {
459 /* UDMA crc error, just retry the operation */
460 drive->crc_count++;
461 } else if (err & (BBD_ERR | ECC_ERR)) {
462 /* retries won't help these */
463 rq->errors = ERROR_MAX;
464 } else if (err & TRK0_ERR) {
465 /* help it find track zero */
466 rq->errors |= ERROR_RECAL;
467 }
468 }
469
ed67b923
BZ
470 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
471 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
1da177e4
LT
472 try_to_flush_leftover_data(drive);
473
513daadd
SS
474 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
475 ide_kill_rq(drive, rq);
476 return ide_stopped;
477 }
478
1da177e4 479 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 480 rq->errors |= ERROR_RESET;
1da177e4 481
513daadd 482 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 483 ++rq->errors;
513daadd 484 return ide_do_reset(drive);
1da177e4 485 }
513daadd
SS
486
487 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
488 drive->special.b.recalibrate = 1;
489
490 ++rq->errors;
491
1da177e4
LT
492 return ide_stopped;
493}
494
495static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
496{
497 ide_hwif_t *hwif = drive->hwif;
498
499 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
500 /* other bits are useless when BUSY */
501 rq->errors |= ERROR_RESET;
502 } else {
503 /* add decoding error stuff */
504 }
505
506 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
507 /* force an abort */
508 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
509
510 if (rq->errors >= ERROR_MAX) {
511 ide_kill_rq(drive, rq);
512 } else {
513 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
514 ++rq->errors;
515 return ide_do_reset(drive);
516 }
517 ++rq->errors;
518 }
519
520 return ide_stopped;
521}
522
523ide_startstop_t
524__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
525{
526 if (drive->media == ide_disk)
527 return ide_ata_error(drive, rq, stat, err);
528 return ide_atapi_error(drive, rq, stat, err);
529}
530
531EXPORT_SYMBOL_GPL(__ide_error);
532
533/**
534 * ide_error - handle an error on the IDE
535 * @drive: drive the error occurred on
536 * @msg: message to report
537 * @stat: status bits
538 *
539 * ide_error() takes action based on the error returned by the drive.
540 * For normal I/O that may well include retries. We deal with
541 * both new-style (taskfile) and old style command handling here.
542 * In the case of taskfile command handling there is work left to
543 * do
544 */
545
546ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
547{
548 struct request *rq;
549 u8 err;
550
551 err = ide_dump_status(drive, msg, stat);
552
553 if ((rq = HWGROUP(drive)->rq) == NULL)
554 return ide_stopped;
555
556 /* retry only "normal" I/O: */
4aff5e23 557 if (!blk_fs_request(rq)) {
1da177e4
LT
558 rq->errors = 1;
559 ide_end_drive_cmd(drive, stat, err);
560 return ide_stopped;
561 }
562
563 if (rq->rq_disk) {
564 ide_driver_t *drv;
565
566 drv = *(ide_driver_t **)rq->rq_disk->private_data;
567 return drv->error(drive, rq, stat, err);
568 } else
569 return __ide_error(drive, rq, stat, err);
570}
571
572EXPORT_SYMBOL_GPL(ide_error);
573
574ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
575{
576 if (drive->media != ide_disk)
577 rq->errors |= ERROR_RESET;
578
579 ide_kill_rq(drive, rq);
580
581 return ide_stopped;
582}
583
584EXPORT_SYMBOL_GPL(__ide_abort);
585
586/**
338cec32 587 * ide_abort - abort pending IDE operations
1da177e4
LT
588 * @drive: drive the error occurred on
589 * @msg: message to report
590 *
591 * ide_abort kills and cleans up when we are about to do a
592 * host initiated reset on active commands. Longer term we
593 * want handlers to have sensible abort handling themselves
594 *
595 * This differs fundamentally from ide_error because in
596 * this case the command is doing just fine when we
597 * blow it away.
598 */
599
600ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
601{
602 struct request *rq;
603
604 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
605 return ide_stopped;
606
607 /* retry only "normal" I/O: */
4aff5e23 608 if (!blk_fs_request(rq)) {
1da177e4
LT
609 rq->errors = 1;
610 ide_end_drive_cmd(drive, BUSY_STAT, 0);
611 return ide_stopped;
612 }
613
614 if (rq->rq_disk) {
615 ide_driver_t *drv;
616
617 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618 return drv->abort(drive, rq);
619 } else
620 return __ide_abort(drive, rq);
621}
622
623/**
624 * ide_cmd - issue a simple drive command
625 * @drive: drive the command is for
626 * @cmd: command byte
1da177e4
LT
627 * @handler: handler for the command completion
628 *
629 * Issue a simple drive command with interrupts.
630 * The drive must be selected beforehand.
631 */
632
6dd87233 633static void ide_cmd(ide_drive_t *drive, u8 cmd, ide_handler_t *handler)
1da177e4
LT
634{
635 ide_hwif_t *hwif = HWIF(drive);
636 if (IDE_CONTROL_REG)
637 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
638 SELECT_MASK(drive,0);
1da177e4
LT
639 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
640}
641
642/**
643 * drive_cmd_intr - drive command completion interrupt
644 * @drive: drive the completion interrupt occurred on
645 *
646 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 647 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
648 * go non busy. At that point we may read the error data and complete
649 * the request
650 */
651
652static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
653{
654 struct request *rq = HWGROUP(drive)->rq;
655 ide_hwif_t *hwif = HWIF(drive);
656 u8 *args = (u8 *) rq->buffer;
657 u8 stat = hwif->INB(IDE_STATUS_REG);
658 int retries = 10;
659
366c7f55 660 local_irq_enable_in_hardirq();
320112bd
BZ
661 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
662 (stat & DRQ_STAT) && args && args[3]) {
1da177e4
LT
663 u8 io_32bit = drive->io_32bit;
664 drive->io_32bit = 0;
665 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
666 drive->io_32bit = io_32bit;
667 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
668 udelay(100);
669 }
670
671 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
672 return ide_error(drive, "drive_cmd", stat);
673 /* calls ide_end_drive_cmd */
674 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
675 return ide_stopped;
676}
677
678static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
679{
650d841d
BZ
680 task->tf.nsect = drive->sect;
681 task->tf.lbal = drive->sect;
682 task->tf.lbam = drive->cyl;
683 task->tf.lbah = drive->cyl >> 8;
684 task->tf.device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
685 task->tf.command = WIN_SPECIFY;
1da177e4
LT
686
687 task->handler = &set_geometry_intr;
688}
689
690static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
691{
650d841d
BZ
692 task->tf.nsect = drive->sect;
693 task->tf.command = WIN_RESTORE;
1da177e4
LT
694
695 task->handler = &recal_intr;
696}
697
698static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
699{
650d841d
BZ
700 task->tf.nsect = drive->mult_req;
701 task->tf.command = WIN_SETMULT;
1da177e4
LT
702
703 task->handler = &set_multmode_intr;
704}
705
706static ide_startstop_t ide_disk_special(ide_drive_t *drive)
707{
708 special_t *s = &drive->special;
709 ide_task_t args;
710
711 memset(&args, 0, sizeof(ide_task_t));
712 args.command_type = IDE_DRIVE_TASK_NO_DATA;
713
714 if (s->b.set_geometry) {
715 s->b.set_geometry = 0;
716 ide_init_specify_cmd(drive, &args);
717 } else if (s->b.recalibrate) {
718 s->b.recalibrate = 0;
719 ide_init_restore_cmd(drive, &args);
720 } else if (s->b.set_multmode) {
721 s->b.set_multmode = 0;
722 if (drive->mult_req > drive->id->max_multsect)
723 drive->mult_req = drive->id->max_multsect;
724 ide_init_setmult_cmd(drive, &args);
725 } else if (s->all) {
726 int special = s->all;
727 s->all = 0;
728 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
729 return ide_stopped;
730 }
731
74095a91
BZ
732 args.tf_flags = IDE_TFLAG_OUT_TF;
733 if (drive->addressing == 1)
734 args.tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
735
1da177e4
LT
736 do_rw_taskfile(drive, &args);
737
738 return ide_started;
739}
740
26bcb879
BZ
741/*
742 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
743 */
744static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
745{
746 switch (req_pio) {
747 case 202:
748 case 201:
749 case 200:
750 case 102:
751 case 101:
752 case 100:
753 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
754 case 9:
755 case 8:
756 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
757 case 7:
758 case 6:
759 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
760 default:
761 return 0;
762 }
763}
764
1da177e4
LT
765/**
766 * do_special - issue some special commands
767 * @drive: drive the command is for
768 *
769 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
770 * commands to a drive. It used to do much more, but has been scaled
771 * back.
772 */
773
774static ide_startstop_t do_special (ide_drive_t *drive)
775{
776 special_t *s = &drive->special;
777
778#ifdef DEBUG
779 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
780#endif
781 if (s->b.set_tune) {
26bcb879
BZ
782 ide_hwif_t *hwif = drive->hwif;
783 u8 req_pio = drive->tune_req;
784
1da177e4 785 s->b.set_tune = 0;
26bcb879
BZ
786
787 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
d393aa03
BZ
788
789 if (hwif->set_pio_mode == NULL)
790 return ide_stopped;
791
792 /*
793 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
794 */
795 if (req_pio == 8 || req_pio == 9) {
796 unsigned long flags;
797
798 spin_lock_irqsave(&ide_lock, flags);
799 hwif->set_pio_mode(drive, req_pio);
800 spin_unlock_irqrestore(&ide_lock, flags);
801 } else
26bcb879 802 hwif->set_pio_mode(drive, req_pio);
aedea591
BZ
803 } else {
804 int keep_dma = drive->using_dma;
805
26bcb879
BZ
806 ide_set_pio(drive, req_pio);
807
aedea591
BZ
808 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
809 if (keep_dma)
810 hwif->ide_dma_on(drive);
811 }
812 }
813
1da177e4
LT
814 return ide_stopped;
815 } else {
816 if (drive->media == ide_disk)
817 return ide_disk_special(drive);
818
819 s->all = 0;
820 drive->mult_req = 0;
821 return ide_stopped;
822 }
823}
824
825void ide_map_sg(ide_drive_t *drive, struct request *rq)
826{
827 ide_hwif_t *hwif = drive->hwif;
828 struct scatterlist *sg = hwif->sg_table;
829
830 if (hwif->sg_mapped) /* needed by ide-scsi */
831 return;
832
4aff5e23 833 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
834 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
835 } else {
836 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
837 hwif->sg_nents = 1;
838 }
839}
840
841EXPORT_SYMBOL_GPL(ide_map_sg);
842
843void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
844{
845 ide_hwif_t *hwif = drive->hwif;
846
847 hwif->nsect = hwif->nleft = rq->nr_sectors;
55c16a70
JA
848 hwif->cursg_ofs = 0;
849 hwif->cursg = NULL;
1da177e4
LT
850}
851
852EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
853
854/**
855 * execute_drive_command - issue special drive command
338cec32 856 * @drive: the drive to issue the command on
1da177e4
LT
857 * @rq: the request structure holding the command
858 *
859 * execute_drive_cmd() issues a special drive command, usually
860 * initiated by ioctl() from the external hdparm program. The
861 * command can be a drive command, drive task or taskfile
862 * operation. Weirdly you can call it with NULL to wait for
863 * all commands to finish. Don't do this as that is due to change
864 */
865
866static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
867 struct request *rq)
868{
869 ide_hwif_t *hwif = HWIF(drive);
4aff5e23 870 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
871 ide_task_t *args = rq->special;
872
873 if (!args)
874 goto done;
875
876 hwif->data_phase = args->data_phase;
877
878 switch (hwif->data_phase) {
879 case TASKFILE_MULTI_OUT:
880 case TASKFILE_OUT:
881 case TASKFILE_MULTI_IN:
882 case TASKFILE_IN:
883 ide_init_sg_cmd(drive, rq);
884 ide_map_sg(drive, rq);
885 default:
886 break;
887 }
888
74095a91 889 if (args->tf_flags & IDE_TFLAG_FLAGGED)
1da177e4 890 return flagged_taskfile(drive, args);
74095a91
BZ
891
892 args->tf_flags |= IDE_TFLAG_OUT_TF;
893 if (drive->addressing == 1)
894 args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
895
1da177e4 896 return do_rw_taskfile(drive, args);
4aff5e23 897 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4 898 u8 *args = rq->buffer;
1da177e4
LT
899
900 if (!args)
901 goto done;
902#ifdef DEBUG
903 printk("%s: DRIVE_TASK_CMD ", drive->name);
904 printk("cmd=0x%02x ", args[0]);
905 printk("fr=0x%02x ", args[1]);
906 printk("ns=0x%02x ", args[2]);
907 printk("sc=0x%02x ", args[3]);
908 printk("lcyl=0x%02x ", args[4]);
909 printk("hcyl=0x%02x ", args[5]);
910 printk("sel=0x%02x\n", args[6]);
911#endif
912 hwif->OUTB(args[1], IDE_FEATURE_REG);
6dd87233 913 hwif->OUTB(args[2], IDE_NSECTOR_REG);
1da177e4
LT
914 hwif->OUTB(args[3], IDE_SECTOR_REG);
915 hwif->OUTB(args[4], IDE_LCYL_REG);
916 hwif->OUTB(args[5], IDE_HCYL_REG);
c1f50cbb 917 hwif->OUTB((args[6] & 0xEF)|drive->select.all, IDE_SELECT_REG);
6dd87233 918 ide_cmd(drive, args[0], &drive_cmd_intr);
1da177e4 919 return ide_started;
4aff5e23 920 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
921 u8 *args = rq->buffer;
922
923 if (!args)
924 goto done;
925#ifdef DEBUG
926 printk("%s: DRIVE_CMD ", drive->name);
927 printk("cmd=0x%02x ", args[0]);
928 printk("sc=0x%02x ", args[1]);
929 printk("fr=0x%02x ", args[2]);
930 printk("xx=0x%02x\n", args[3]);
931#endif
6dd87233 932 hwif->OUTB(args[2], IDE_FEATURE_REG);
1da177e4 933 if (args[0] == WIN_SMART) {
6dd87233 934 hwif->OUTB(args[3],IDE_NSECTOR_REG);
1da177e4 935 hwif->OUTB(args[1],IDE_SECTOR_REG);
46f26c36
BZ
936 hwif->OUTB(0x4f, IDE_LCYL_REG);
937 hwif->OUTB(0xc2, IDE_HCYL_REG);
6dd87233
BZ
938 } else
939 hwif->OUTB(args[1], IDE_NSECTOR_REG);
940 ide_cmd(drive, args[0], &drive_cmd_intr);
1da177e4
LT
941 return ide_started;
942 }
943
944done:
945 /*
946 * NULL is actually a valid way of waiting for
947 * all current requests to be flushed from the queue.
948 */
949#ifdef DEBUG
950 printk("%s: DRIVE_CMD (null)\n", drive->name);
951#endif
952 ide_end_drive_cmd(drive,
953 hwif->INB(IDE_STATUS_REG),
954 hwif->INB(IDE_ERROR_REG));
955 return ide_stopped;
956}
957
ad3cadda
JA
958static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
959{
c00895ab 960 struct request_pm_state *pm = rq->data;
ad3cadda
JA
961
962 if (blk_pm_suspend_request(rq) &&
963 pm->pm_step == ide_pm_state_start_suspend)
964 /* Mark drive blocked when starting the suspend sequence. */
965 drive->blocked = 1;
966 else if (blk_pm_resume_request(rq) &&
967 pm->pm_step == ide_pm_state_start_resume) {
968 /*
969 * The first thing we do on wakeup is to wait for BSY bit to
970 * go away (with a looong timeout) as a drive on this hwif may
971 * just be POSTing itself.
972 * We do that before even selecting as the "other" device on
973 * the bus may be broken enough to walk on our toes at this
974 * point.
975 */
976 int rc;
977#ifdef DEBUG_PM
978 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
979#endif
980 rc = ide_wait_not_busy(HWIF(drive), 35000);
981 if (rc)
982 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
983 SELECT_DRIVE(drive);
ad0e74d3
BZ
984 if (IDE_CONTROL_REG)
985 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
178184b6 986 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
987 if (rc)
988 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
989 }
990}
991
1da177e4
LT
992/**
993 * start_request - start of I/O and command issuing for IDE
994 *
995 * start_request() initiates handling of a new I/O request. It
996 * accepts commands and I/O (read/write) requests. It also does
997 * the final remapping for weird stuff like EZDrive. Once
998 * device mapper can work sector level the EZDrive stuff can go away
999 *
1000 * FIXME: this function needs a rename
1001 */
1002
1003static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
1004{
1005 ide_startstop_t startstop;
1006 sector_t block;
1007
4aff5e23 1008 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
1009
1010#ifdef DEBUG
1011 printk("%s: start_request: current=0x%08lx\n",
1012 HWIF(drive)->name, (unsigned long) rq);
1013#endif
1014
1015 /* bail early if we've exceeded max_failures */
1016 if (drive->max_failures && (drive->failures > drive->max_failures)) {
b5e1a4e2 1017 rq->cmd_flags |= REQ_FAILED;
1da177e4
LT
1018 goto kill_rq;
1019 }
1020
1021 block = rq->sector;
1022 if (blk_fs_request(rq) &&
1023 (drive->media == ide_disk || drive->media == ide_floppy)) {
1024 block += drive->sect0;
1025 }
1026 /* Yecch - this will shift the entire interval,
1027 possibly killing some innocent following sector */
1028 if (block == 0 && drive->remap_0_to_1 == 1)
1029 block = 1; /* redirect MBR access to EZ-Drive partn table */
1030
ad3cadda
JA
1031 if (blk_pm_request(rq))
1032 ide_check_pm_state(drive, rq);
1da177e4
LT
1033
1034 SELECT_DRIVE(drive);
1035 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1036 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1037 return startstop;
1038 }
1039 if (!drive->special.all) {
1040 ide_driver_t *drv;
1041
513daadd
SS
1042 /*
1043 * We reset the drive so we need to issue a SETFEATURES.
1044 * Do it _after_ do_special() restored device parameters.
1045 */
1046 if (drive->current_speed == 0xff)
1047 ide_config_drive_speed(drive, drive->desired_speed);
1048
4aff5e23
JA
1049 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1050 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1051 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1052 return execute_drive_cmd(drive, rq);
1053 else if (blk_pm_request(rq)) {
c00895ab 1054 struct request_pm_state *pm = rq->data;
1da177e4
LT
1055#ifdef DEBUG_PM
1056 printk("%s: start_power_step(step: %d)\n",
1057 drive->name, rq->pm->pm_step);
1058#endif
1059 startstop = ide_start_power_step(drive, rq);
1060 if (startstop == ide_stopped &&
ad3cadda 1061 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1062 ide_complete_pm_request(drive, rq);
1063 return startstop;
1064 }
1065
1066 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1067 return drv->do_request(drive, rq, block);
1068 }
1069 return do_special(drive);
1070kill_rq:
1071 ide_kill_rq(drive, rq);
1072 return ide_stopped;
1073}
1074
1075/**
1076 * ide_stall_queue - pause an IDE device
1077 * @drive: drive to stall
1078 * @timeout: time to stall for (jiffies)
1079 *
1080 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1081 * to the hwgroup by sleeping for timeout jiffies.
1082 */
1083
1084void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1085{
1086 if (timeout > WAIT_WORSTCASE)
1087 timeout = WAIT_WORSTCASE;
1088 drive->sleep = timeout + jiffies;
1089 drive->sleeping = 1;
1090}
1091
1092EXPORT_SYMBOL(ide_stall_queue);
1093
1094#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1095
1096/**
1097 * choose_drive - select a drive to service
1098 * @hwgroup: hardware group to select on
1099 *
1100 * choose_drive() selects the next drive which will be serviced.
1101 * This is necessary because the IDE layer can't issue commands
1102 * to both drives on the same cable, unlike SCSI.
1103 */
1104
1105static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1106{
1107 ide_drive_t *drive, *best;
1108
1109repeat:
1110 best = NULL;
1111 drive = hwgroup->drive;
1112
1113 /*
1114 * drive is doing pre-flush, ordered write, post-flush sequence. even
1115 * though that is 3 requests, it must be seen as a single transaction.
1116 * we must not preempt this drive until that is complete
1117 */
1118 if (blk_queue_flushing(drive->queue)) {
1119 /*
1120 * small race where queue could get replugged during
1121 * the 3-request flush cycle, just yank the plug since
1122 * we want it to finish asap
1123 */
1124 blk_remove_plug(drive->queue);
1125 return drive;
1126 }
1127
1128 do {
1129 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1130 && !elv_queue_empty(drive->queue)) {
1131 if (!best
1132 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1133 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1134 {
1135 if (!blk_queue_plugged(drive->queue))
1136 best = drive;
1137 }
1138 }
1139 } while ((drive = drive->next) != hwgroup->drive);
1140 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1141 long t = (signed long)(WAKEUP(best) - jiffies);
1142 if (t >= WAIT_MIN_SLEEP) {
1143 /*
1144 * We *may* have some time to spare, but first let's see if
1145 * someone can potentially benefit from our nice mood today..
1146 */
1147 drive = best->next;
1148 do {
1149 if (!drive->sleeping
1150 && time_before(jiffies - best->service_time, WAKEUP(drive))
1151 && time_before(WAKEUP(drive), jiffies + t))
1152 {
1153 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1154 goto repeat;
1155 }
1156 } while ((drive = drive->next) != best);
1157 }
1158 }
1159 return best;
1160}
1161
1162/*
1163 * Issue a new request to a drive from hwgroup
1164 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1165 *
1166 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1167 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1168 * may have both interfaces in a single hwgroup to "serialize" access.
1169 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1170 * together into one hwgroup for serialized access.
1171 *
1172 * Note also that several hwgroups can end up sharing a single IRQ,
1173 * possibly along with many other devices. This is especially common in
1174 * PCI-based systems with off-board IDE controller cards.
1175 *
1176 * The IDE driver uses the single global ide_lock spinlock to protect
1177 * access to the request queues, and to protect the hwgroup->busy flag.
1178 *
1179 * The first thread into the driver for a particular hwgroup sets the
1180 * hwgroup->busy flag to indicate that this hwgroup is now active,
1181 * and then initiates processing of the top request from the request queue.
1182 *
1183 * Other threads attempting entry notice the busy setting, and will simply
1184 * queue their new requests and exit immediately. Note that hwgroup->busy
1185 * remains set even when the driver is merely awaiting the next interrupt.
1186 * Thus, the meaning is "this hwgroup is busy processing a request".
1187 *
1188 * When processing of a request completes, the completing thread or IRQ-handler
1189 * will start the next request from the queue. If no more work remains,
1190 * the driver will clear the hwgroup->busy flag and exit.
1191 *
1192 * The ide_lock (spinlock) is used to protect all access to the
1193 * hwgroup->busy flag, but is otherwise not needed for most processing in
1194 * the driver. This makes the driver much more friendlier to shared IRQs
1195 * than previous designs, while remaining 100% (?) SMP safe and capable.
1196 */
1197static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1198{
1199 ide_drive_t *drive;
1200 ide_hwif_t *hwif;
1201 struct request *rq;
1202 ide_startstop_t startstop;
867f8b4e 1203 int loops = 0;
1da177e4
LT
1204
1205 /* for atari only: POSSIBLY BROKEN HERE(?) */
1206 ide_get_lock(ide_intr, hwgroup);
1207
1208 /* caller must own ide_lock */
1209 BUG_ON(!irqs_disabled());
1210
1211 while (!hwgroup->busy) {
1212 hwgroup->busy = 1;
1213 drive = choose_drive(hwgroup);
1214 if (drive == NULL) {
1215 int sleeping = 0;
1216 unsigned long sleep = 0; /* shut up, gcc */
1217 hwgroup->rq = NULL;
1218 drive = hwgroup->drive;
1219 do {
1220 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1221 sleeping = 1;
1222 sleep = drive->sleep;
1223 }
1224 } while ((drive = drive->next) != hwgroup->drive);
1225 if (sleeping) {
1226 /*
1227 * Take a short snooze, and then wake up this hwgroup again.
1228 * This gives other hwgroups on the same a chance to
1229 * play fairly with us, just in case there are big differences
1230 * in relative throughputs.. don't want to hog the cpu too much.
1231 */
1232 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1233 sleep = jiffies + WAIT_MIN_SLEEP;
1234#if 1
1235 if (timer_pending(&hwgroup->timer))
1236 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1237#endif
1238 /* so that ide_timer_expiry knows what to do */
1239 hwgroup->sleeping = 1;
23450319 1240 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1241 mod_timer(&hwgroup->timer, sleep);
1242 /* we purposely leave hwgroup->busy==1
1243 * while sleeping */
1244 } else {
1245 /* Ugly, but how can we sleep for the lock
1246 * otherwise? perhaps from tq_disk?
1247 */
1248
1249 /* for atari only */
1250 ide_release_lock();
1251 hwgroup->busy = 0;
1252 }
1253
1254 /* no more work for this hwgroup (for now) */
1255 return;
1256 }
867f8b4e 1257 again:
1da177e4
LT
1258 hwif = HWIF(drive);
1259 if (hwgroup->hwif->sharing_irq &&
1260 hwif != hwgroup->hwif &&
1261 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1262 /* set nIEN for previous hwif */
1263 SELECT_INTERRUPT(drive);
1264 }
1265 hwgroup->hwif = hwif;
1266 hwgroup->drive = drive;
1267 drive->sleeping = 0;
1268 drive->service_start = jiffies;
1269
1270 if (blk_queue_plugged(drive->queue)) {
1271 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1272 break;
1273 }
1274
1275 /*
1276 * we know that the queue isn't empty, but this can happen
1277 * if the q->prep_rq_fn() decides to kill a request
1278 */
1279 rq = elv_next_request(drive->queue);
1280 if (!rq) {
1281 hwgroup->busy = 0;
1282 break;
1283 }
1284
1285 /*
1286 * Sanity: don't accept a request that isn't a PM request
1287 * if we are currently power managed. This is very important as
1288 * blk_stop_queue() doesn't prevent the elv_next_request()
1289 * above to return us whatever is in the queue. Since we call
1290 * ide_do_request() ourselves, we end up taking requests while
1291 * the queue is blocked...
1292 *
1293 * We let requests forced at head of queue with ide-preempt
1294 * though. I hope that doesn't happen too much, hopefully not
1295 * unless the subdriver triggers such a thing in its own PM
1296 * state machine.
867f8b4e
BH
1297 *
1298 * We count how many times we loop here to make sure we service
1299 * all drives in the hwgroup without looping for ever
1da177e4 1300 */
4aff5e23 1301 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1302 drive = drive->next ? drive->next : hwgroup->drive;
1303 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1304 goto again;
1da177e4
LT
1305 /* We clear busy, there should be no pending ATA command at this point. */
1306 hwgroup->busy = 0;
1307 break;
1308 }
1309
1310 hwgroup->rq = rq;
1311
1312 /*
1313 * Some systems have trouble with IDE IRQs arriving while
1314 * the driver is still setting things up. So, here we disable
1315 * the IRQ used by this interface while the request is being started.
1316 * This may look bad at first, but pretty much the same thing
1317 * happens anyway when any interrupt comes in, IDE or otherwise
1318 * -- the kernel masks the IRQ while it is being handled.
1319 */
1320 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1321 disable_irq_nosync(hwif->irq);
1322 spin_unlock(&ide_lock);
366c7f55 1323 local_irq_enable_in_hardirq();
1da177e4
LT
1324 /* allow other IRQs while we start this request */
1325 startstop = start_request(drive, rq);
1326 spin_lock_irq(&ide_lock);
1327 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1328 enable_irq(hwif->irq);
1329 if (startstop == ide_stopped)
1330 hwgroup->busy = 0;
1331 }
1332}
1333
1334/*
1335 * Passes the stuff to ide_do_request
1336 */
165125e1 1337void do_ide_request(struct request_queue *q)
1da177e4
LT
1338{
1339 ide_drive_t *drive = q->queuedata;
1340
1341 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1342}
1343
1344/*
1345 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1346 * retry the current request in pio mode instead of risking tossing it
1347 * all away
1348 */
1349static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1350{
1351 ide_hwif_t *hwif = HWIF(drive);
1352 struct request *rq;
1353 ide_startstop_t ret = ide_stopped;
1354
1355 /*
1356 * end current dma transaction
1357 */
1358
1359 if (error < 0) {
1360 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1361 (void)HWIF(drive)->ide_dma_end(drive);
1362 ret = ide_error(drive, "dma timeout error",
1363 hwif->INB(IDE_STATUS_REG));
1364 } else {
1365 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1366 hwif->dma_timeout(drive);
1da177e4
LT
1367 }
1368
1369 /*
1370 * disable dma for now, but remember that we did so because of
1371 * a timeout -- we'll reenable after we finish this next request
1372 * (or rather the first chunk of it) in pio.
1373 */
1374 drive->retry_pio++;
1375 drive->state = DMA_PIO_RETRY;
7469aaf6 1376 hwif->dma_off_quietly(drive);
1da177e4
LT
1377
1378 /*
1379 * un-busy drive etc (hwgroup->busy is cleared on return) and
1380 * make sure request is sane
1381 */
1382 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1383
1384 if (!rq)
1385 goto out;
1386
1da177e4
LT
1387 HWGROUP(drive)->rq = NULL;
1388
1389 rq->errors = 0;
1390
1391 if (!rq->bio)
1392 goto out;
1393
1394 rq->sector = rq->bio->bi_sector;
1395 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1396 rq->hard_cur_sectors = rq->current_nr_sectors;
1397 rq->buffer = bio_data(rq->bio);
1398out:
1399 return ret;
1400}
1401
1402/**
1403 * ide_timer_expiry - handle lack of an IDE interrupt
1404 * @data: timer callback magic (hwgroup)
1405 *
1406 * An IDE command has timed out before the expected drive return
1407 * occurred. At this point we attempt to clean up the current
1408 * mess. If the current handler includes an expiry handler then
1409 * we invoke the expiry handler, and providing it is happy the
1410 * work is done. If that fails we apply generic recovery rules
1411 * invoking the handler and checking the drive DMA status. We
1412 * have an excessively incestuous relationship with the DMA
1413 * logic that wants cleaning up.
1414 */
1415
1416void ide_timer_expiry (unsigned long data)
1417{
1418 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1419 ide_handler_t *handler;
1420 ide_expiry_t *expiry;
1421 unsigned long flags;
1422 unsigned long wait = -1;
1423
1424 spin_lock_irqsave(&ide_lock, flags);
1425
23450319
SS
1426 if (((handler = hwgroup->handler) == NULL) ||
1427 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1428 /*
1429 * Either a marginal timeout occurred
1430 * (got the interrupt just as timer expired),
1431 * or we were "sleeping" to give other devices a chance.
1432 * Either way, we don't really want to complain about anything.
1433 */
1434 if (hwgroup->sleeping) {
1435 hwgroup->sleeping = 0;
1436 hwgroup->busy = 0;
1437 }
1438 } else {
1439 ide_drive_t *drive = hwgroup->drive;
1440 if (!drive) {
1441 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1442 hwgroup->handler = NULL;
1443 } else {
1444 ide_hwif_t *hwif;
1445 ide_startstop_t startstop = ide_stopped;
1446 if (!hwgroup->busy) {
1447 hwgroup->busy = 1; /* paranoia */
1448 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1449 }
1450 if ((expiry = hwgroup->expiry) != NULL) {
1451 /* continue */
1452 if ((wait = expiry(drive)) > 0) {
1453 /* reset timer */
1454 hwgroup->timer.expires = jiffies + wait;
23450319 1455 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1456 add_timer(&hwgroup->timer);
1457 spin_unlock_irqrestore(&ide_lock, flags);
1458 return;
1459 }
1460 }
1461 hwgroup->handler = NULL;
1462 /*
1463 * We need to simulate a real interrupt when invoking
1464 * the handler() function, which means we need to
1465 * globally mask the specific IRQ:
1466 */
1467 spin_unlock(&ide_lock);
1468 hwif = HWIF(drive);
1da177e4
LT
1469 /* disable_irq_nosync ?? */
1470 disable_irq(hwif->irq);
1da177e4
LT
1471 /* local CPU only,
1472 * as if we were handling an interrupt */
1473 local_irq_disable();
1474 if (hwgroup->polling) {
1475 startstop = handler(drive);
1476 } else if (drive_is_ready(drive)) {
1477 if (drive->waiting_for_dma)
841d2a9b 1478 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1479 (void)ide_ack_intr(hwif);
1480 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1481 startstop = handler(drive);
1482 } else {
1483 if (drive->waiting_for_dma) {
1484 startstop = ide_dma_timeout_retry(drive, wait);
1485 } else
1486 startstop =
1487 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1488 }
1489 drive->service_time = jiffies - drive->service_start;
1490 spin_lock_irq(&ide_lock);
1491 enable_irq(hwif->irq);
1492 if (startstop == ide_stopped)
1493 hwgroup->busy = 0;
1494 }
1495 }
1496 ide_do_request(hwgroup, IDE_NO_IRQ);
1497 spin_unlock_irqrestore(&ide_lock, flags);
1498}
1499
1500/**
1501 * unexpected_intr - handle an unexpected IDE interrupt
1502 * @irq: interrupt line
1503 * @hwgroup: hwgroup being processed
1504 *
1505 * There's nothing really useful we can do with an unexpected interrupt,
1506 * other than reading the status register (to clear it), and logging it.
1507 * There should be no way that an irq can happen before we're ready for it,
1508 * so we needn't worry much about losing an "important" interrupt here.
1509 *
1510 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1511 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1512 * looks "good", we just ignore the interrupt completely.
1513 *
1514 * This routine assumes __cli() is in effect when called.
1515 *
1516 * If an unexpected interrupt happens on irq15 while we are handling irq14
1517 * and if the two interfaces are "serialized" (CMD640), then it looks like
1518 * we could screw up by interfering with a new request being set up for
1519 * irq15.
1520 *
1521 * In reality, this is a non-issue. The new command is not sent unless
1522 * the drive is ready to accept one, in which case we know the drive is
1523 * not trying to interrupt us. And ide_set_handler() is always invoked
1524 * before completing the issuance of any new drive command, so we will not
1525 * be accidentally invoked as a result of any valid command completion
1526 * interrupt.
1527 *
1528 * Note that we must walk the entire hwgroup here. We know which hwif
1529 * is doing the current command, but we don't know which hwif burped
1530 * mysteriously.
1531 */
1532
1533static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1534{
1535 u8 stat;
1536 ide_hwif_t *hwif = hwgroup->hwif;
1537
1538 /*
1539 * handle the unexpected interrupt
1540 */
1541 do {
1542 if (hwif->irq == irq) {
1543 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1544 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1545 /* Try to not flood the console with msgs */
1546 static unsigned long last_msgtime, count;
1547 ++count;
1548 if (time_after(jiffies, last_msgtime + HZ)) {
1549 last_msgtime = jiffies;
1550 printk(KERN_ERR "%s%s: unexpected interrupt, "
1551 "status=0x%02x, count=%ld\n",
1552 hwif->name,
1553 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1554 }
1555 }
1556 }
1557 } while ((hwif = hwif->next) != hwgroup->hwif);
1558}
1559
1560/**
1561 * ide_intr - default IDE interrupt handler
1562 * @irq: interrupt number
1563 * @dev_id: hwif group
1564 * @regs: unused weirdness from the kernel irq layer
1565 *
1566 * This is the default IRQ handler for the IDE layer. You should
1567 * not need to override it. If you do be aware it is subtle in
1568 * places
1569 *
1570 * hwgroup->hwif is the interface in the group currently performing
1571 * a command. hwgroup->drive is the drive and hwgroup->handler is
1572 * the IRQ handler to call. As we issue a command the handlers
1573 * step through multiple states, reassigning the handler to the
1574 * next step in the process. Unlike a smart SCSI controller IDE
1575 * expects the main processor to sequence the various transfer
1576 * stages. We also manage a poll timer to catch up with most
1577 * timeout situations. There are still a few where the handlers
1578 * don't ever decide to give up.
1579 *
1580 * The handler eventually returns ide_stopped to indicate the
1581 * request completed. At this point we issue the next request
1582 * on the hwgroup and the process begins again.
1583 */
1584
7d12e780 1585irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1586{
1587 unsigned long flags;
1588 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1589 ide_hwif_t *hwif;
1590 ide_drive_t *drive;
1591 ide_handler_t *handler;
1592 ide_startstop_t startstop;
1593
1594 spin_lock_irqsave(&ide_lock, flags);
1595 hwif = hwgroup->hwif;
1596
1597 if (!ide_ack_intr(hwif)) {
1598 spin_unlock_irqrestore(&ide_lock, flags);
1599 return IRQ_NONE;
1600 }
1601
1602 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1603 /*
1604 * Not expecting an interrupt from this drive.
1605 * That means this could be:
1606 * (1) an interrupt from another PCI device
1607 * sharing the same PCI INT# as us.
1608 * or (2) a drive just entered sleep or standby mode,
1609 * and is interrupting to let us know.
1610 * or (3) a spurious interrupt of unknown origin.
1611 *
1612 * For PCI, we cannot tell the difference,
1613 * so in that case we just ignore it and hope it goes away.
1614 *
1615 * FIXME: unexpected_intr should be hwif-> then we can
1616 * remove all the ifdef PCI crap
1617 */
1618#ifdef CONFIG_BLK_DEV_IDEPCI
1619 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1620#endif /* CONFIG_BLK_DEV_IDEPCI */
1621 {
1622 /*
1623 * Probably not a shared PCI interrupt,
1624 * so we can safely try to do something about it:
1625 */
1626 unexpected_intr(irq, hwgroup);
1627#ifdef CONFIG_BLK_DEV_IDEPCI
1628 } else {
1629 /*
1630 * Whack the status register, just in case
1631 * we have a leftover pending IRQ.
1632 */
1633 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1634#endif /* CONFIG_BLK_DEV_IDEPCI */
1635 }
1636 spin_unlock_irqrestore(&ide_lock, flags);
1637 return IRQ_NONE;
1638 }
1639 drive = hwgroup->drive;
1640 if (!drive) {
1641 /*
1642 * This should NEVER happen, and there isn't much
1643 * we could do about it here.
1644 *
1645 * [Note - this can occur if the drive is hot unplugged]
1646 */
1647 spin_unlock_irqrestore(&ide_lock, flags);
1648 return IRQ_HANDLED;
1649 }
1650 if (!drive_is_ready(drive)) {
1651 /*
1652 * This happens regularly when we share a PCI IRQ with
1653 * another device. Unfortunately, it can also happen
1654 * with some buggy drives that trigger the IRQ before
1655 * their status register is up to date. Hopefully we have
1656 * enough advance overhead that the latter isn't a problem.
1657 */
1658 spin_unlock_irqrestore(&ide_lock, flags);
1659 return IRQ_NONE;
1660 }
1661 if (!hwgroup->busy) {
1662 hwgroup->busy = 1; /* paranoia */
1663 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1664 }
1665 hwgroup->handler = NULL;
23450319 1666 hwgroup->req_gen++;
1da177e4
LT
1667 del_timer(&hwgroup->timer);
1668 spin_unlock(&ide_lock);
1669
f0dd8712
AL
1670 /* Some controllers might set DMA INTR no matter DMA or PIO;
1671 * bmdma status might need to be cleared even for
1672 * PIO interrupts to prevent spurious/lost irq.
1673 */
1674 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1675 /* ide_dma_end() needs bmdma status for error checking.
1676 * So, skip clearing bmdma status here and leave it
1677 * to ide_dma_end() if this is dma interrupt.
1678 */
1679 hwif->ide_dma_clear_irq(drive);
1680
1da177e4 1681 if (drive->unmask)
366c7f55 1682 local_irq_enable_in_hardirq();
1da177e4
LT
1683 /* service this interrupt, may set handler for next interrupt */
1684 startstop = handler(drive);
1685 spin_lock_irq(&ide_lock);
1686
1687 /*
1688 * Note that handler() may have set things up for another
1689 * interrupt to occur soon, but it cannot happen until
1690 * we exit from this routine, because it will be the
1691 * same irq as is currently being serviced here, and Linux
1692 * won't allow another of the same (on any CPU) until we return.
1693 */
1694 drive->service_time = jiffies - drive->service_start;
1695 if (startstop == ide_stopped) {
1696 if (hwgroup->handler == NULL) { /* paranoia */
1697 hwgroup->busy = 0;
1698 ide_do_request(hwgroup, hwif->irq);
1699 } else {
1700 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1701 "on exit\n", drive->name);
1702 }
1703 }
1704 spin_unlock_irqrestore(&ide_lock, flags);
1705 return IRQ_HANDLED;
1706}
1707
1708/**
1709 * ide_init_drive_cmd - initialize a drive command request
1710 * @rq: request object
1711 *
1712 * Initialize a request before we fill it in and send it down to
1713 * ide_do_drive_cmd. Commands must be set up by this function. Right
1714 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1715 * nasty surprise.
1da177e4
LT
1716 */
1717
1718void ide_init_drive_cmd (struct request *rq)
1719{
1720 memset(rq, 0, sizeof(*rq));
4aff5e23 1721 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1722 rq->ref_count = 1;
1723}
1724
1725EXPORT_SYMBOL(ide_init_drive_cmd);
1726
1727/**
1728 * ide_do_drive_cmd - issue IDE special command
1729 * @drive: device to issue command
1730 * @rq: request to issue
1731 * @action: action for processing
1732 *
1733 * This function issues a special IDE device request
1734 * onto the request queue.
1735 *
1736 * If action is ide_wait, then the rq is queued at the end of the
1737 * request queue, and the function sleeps until it has been processed.
1738 * This is for use when invoked from an ioctl handler.
1739 *
1740 * If action is ide_preempt, then the rq is queued at the head of
1741 * the request queue, displacing the currently-being-processed
1742 * request and this function returns immediately without waiting
1743 * for the new rq to be completed. This is VERY DANGEROUS, and is
1744 * intended for careful use by the ATAPI tape/cdrom driver code.
1745 *
1da177e4
LT
1746 * If action is ide_end, then the rq is queued at the end of the
1747 * request queue, and the function returns immediately without waiting
1748 * for the new rq to be completed. This is again intended for careful
1749 * use by the ATAPI tape/cdrom driver code.
1750 */
1751
1752int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1753{
1754 unsigned long flags;
1755 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1756 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1757 int where = ELEVATOR_INSERT_BACK, err;
1758 int must_wait = (action == ide_wait || action == ide_head_wait);
1759
1760 rq->errors = 0;
1da177e4
LT
1761
1762 /*
1763 * we need to hold an extra reference to request for safe inspection
1764 * after completion
1765 */
1766 if (must_wait) {
1767 rq->ref_count++;
c00895ab 1768 rq->end_io_data = &wait;
1da177e4
LT
1769 rq->end_io = blk_end_sync_rq;
1770 }
1771
1772 spin_lock_irqsave(&ide_lock, flags);
1773 if (action == ide_preempt)
1774 hwgroup->rq = NULL;
1775 if (action == ide_preempt || action == ide_head_wait) {
1776 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1777 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1778 }
1779 __elv_add_request(drive->queue, rq, where, 0);
1780 ide_do_request(hwgroup, IDE_NO_IRQ);
1781 spin_unlock_irqrestore(&ide_lock, flags);
1782
1783 err = 0;
1784 if (must_wait) {
1785 wait_for_completion(&wait);
1da177e4
LT
1786 if (rq->errors)
1787 err = -EIO;
1788
1789 blk_put_request(rq);
1790 }
1791
1792 return err;
1793}
1794
1795EXPORT_SYMBOL(ide_do_drive_cmd);
This page took 0.645554 seconds and 5 git commands to generate.