ide: add ide_no_data_taskfile() helper
[deliverable/linux.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
1977f032 50#include <linux/bitops.h>
1da177e4
LT
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
1da177e4 56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
bbc615b1 58 int uptodate, unsigned int nr_bytes, int dequeue)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
bbc615b1
BZ
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
ba027def 88 end_that_request_last(rq, uptodate);
1da177e4
LT
89 ret = 0;
90 }
8672d571 91
1da177e4
LT
92 return ret;
93}
1da177e4
LT
94
95/**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
41e9d344 108 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
8672d571
JA
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
1da177e4
LT
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
41e9d344
JA
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
1da177e4 126
bbc615b1 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
1da177e4
LT
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
8c2c0118
JL
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
1da177e4
LT
146 ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
c00895ab 151 struct request_pm_state *pm = rq->data;
ad3cadda 152
1da177e4
LT
153 if (drive->media != ide_disk)
154 return;
155
ad3cadda 156 switch (pm->pm_step) {
1da177e4 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
1da177e4 160 else
ad3cadda 161 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 164 pm->pm_step = ide_pm_state_completed;
1da177e4 165 break;
8c2c0118
JL
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 170 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
171 break;
172 }
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
c00895ab 177 struct request_pm_state *pm = rq->data;
1da177e4
LT
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
ad3cadda 182 switch (pm->pm_step) {
1da177e4
LT
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
650d841d 192 args->tf.command = WIN_FLUSH_CACHE_EXT;
1da177e4 193 else
650d841d 194 args->tf.command = WIN_FLUSH_CACHE;
1da177e4
LT
195 args->command_type = IDE_DRIVE_TASK_NO_DATA;
196 args->handler = &task_no_data_intr;
197 return do_rw_taskfile(drive, args);
198
199 case idedisk_pm_standby: /* Suspend step 2 (standby) */
650d841d 200 args->tf.command = WIN_STANDBYNOW1;
1da177e4
LT
201 args->command_type = IDE_DRIVE_TASK_NO_DATA;
202 args->handler = &task_no_data_intr;
203 return do_rw_taskfile(drive, args);
204
8c2c0118 205 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
26bcb879 206 ide_set_max_pio(drive);
317a46a2
BZ
207 /*
208 * skip idedisk_pm_idle for ATAPI devices
209 */
210 if (drive->media != ide_disk)
211 pm->pm_step = ide_pm_restore_dma;
212 else
213 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
214 return ide_stopped;
215
216 case idedisk_pm_idle: /* Resume step 2 (idle) */
650d841d 217 args->tf.command = WIN_IDLEIMMEDIATE;
1da177e4
LT
218 args->command_type = IDE_DRIVE_TASK_NO_DATA;
219 args->handler = task_no_data_intr;
220 return do_rw_taskfile(drive, args);
221
8c2c0118 222 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4 223 /*
0ae2e178 224 * Right now, all we do is call ide_set_dma(drive),
1da177e4
LT
225 * we could be smarter and check for current xfer_speed
226 * in struct drive etc...
227 */
0ae2e178 228 if (drive->hwif->ide_dma_on == NULL)
1da177e4 229 break;
793a9722 230 drive->hwif->dma_off_quietly(drive);
8987d21b
BZ
231 /*
232 * TODO: respect ->using_dma setting
233 */
3608b5d7 234 ide_set_dma(drive);
1da177e4
LT
235 break;
236 }
ad3cadda 237 pm->pm_step = ide_pm_state_completed;
1da177e4
LT
238 return ide_stopped;
239}
240
dbe217af
AC
241/**
242 * ide_end_dequeued_request - complete an IDE I/O
243 * @drive: IDE device for the I/O
244 * @uptodate:
245 * @nr_sectors: number of sectors completed
246 *
247 * Complete an I/O that is no longer on the request queue. This
248 * typically occurs when we pull the request and issue a REQUEST_SENSE.
249 * We must still finish the old request but we must not tamper with the
250 * queue in the meantime.
251 *
252 * NOTE: This path does not handle barrier, but barrier is not supported
253 * on ide-cd anyway.
254 */
255
256int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257 int uptodate, int nr_sectors)
258{
259 unsigned long flags;
bbc615b1 260 int ret;
dbe217af
AC
261
262 spin_lock_irqsave(&ide_lock, flags);
4aff5e23 263 BUG_ON(!blk_rq_started(rq));
bbc615b1 264 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
dbe217af 265 spin_unlock_irqrestore(&ide_lock, flags);
bbc615b1 266
dbe217af
AC
267 return ret;
268}
269EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
1da177e4
LT
272/**
273 * ide_complete_pm_request - end the current Power Management request
274 * @drive: target drive
275 * @rq: request
276 *
277 * This function cleans up the current PM request and stops the queue
278 * if necessary.
279 */
280static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281{
282 unsigned long flags;
283
284#ifdef DEBUG_PM
285 printk("%s: completing PM request, %s\n", drive->name,
286 blk_pm_suspend_request(rq) ? "suspend" : "resume");
287#endif
288 spin_lock_irqsave(&ide_lock, flags);
289 if (blk_pm_suspend_request(rq)) {
290 blk_stop_queue(drive->queue);
291 } else {
292 drive->blocked = 0;
293 blk_start_queue(drive->queue);
294 }
295 blkdev_dequeue_request(rq);
296 HWGROUP(drive)->rq = NULL;
8ffdc655 297 end_that_request_last(rq, 1);
1da177e4
LT
298 spin_unlock_irqrestore(&ide_lock, flags);
299}
300
1da177e4
LT
301/**
302 * ide_end_drive_cmd - end an explicit drive command
303 * @drive: command
304 * @stat: status bits
305 * @err: error bits
306 *
307 * Clean up after success/failure of an explicit drive command.
308 * These get thrown onto the queue so they are synchronized with
309 * real I/O operations on the drive.
310 *
311 * In LBA48 mode we have to read the register set twice to get
312 * all the extra information out.
313 */
314
315void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316{
317 ide_hwif_t *hwif = HWIF(drive);
318 unsigned long flags;
319 struct request *rq;
320
321 spin_lock_irqsave(&ide_lock, flags);
322 rq = HWGROUP(drive)->rq;
323 spin_unlock_irqrestore(&ide_lock, flags);
324
4aff5e23 325 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
326 u8 *args = (u8 *) rq->buffer;
327 if (rq->errors == 0)
328 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329
330 if (args) {
331 args[0] = stat;
332 args[1] = err;
333 args[2] = hwif->INB(IDE_NSECTOR_REG);
334 }
4aff5e23 335 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
336 u8 *args = (u8 *) rq->buffer;
337 if (rq->errors == 0)
338 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339
340 if (args) {
341 args[0] = stat;
342 args[1] = err;
1c11d241
BZ
343 /* be sure we're looking at the low order bits */
344 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
1da177e4
LT
345 args[2] = hwif->INB(IDE_NSECTOR_REG);
346 args[3] = hwif->INB(IDE_SECTOR_REG);
347 args[4] = hwif->INB(IDE_LCYL_REG);
348 args[5] = hwif->INB(IDE_HCYL_REG);
349 args[6] = hwif->INB(IDE_SELECT_REG);
350 }
4aff5e23 351 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
352 ide_task_t *args = (ide_task_t *) rq->special;
353 if (rq->errors == 0)
354 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
355
356 if (args) {
650d841d
BZ
357 struct ide_taskfile *tf = &args->tf;
358
1da177e4 359 if (args->tf_in_flags.b.data) {
650d841d
BZ
360 u16 data = hwif->INW(IDE_DATA_REG);
361
362 tf->data = data & 0xff;
363 tf->hob_data = (data >> 8) & 0xff;
1da177e4 364 }
650d841d 365 tf->error = err;
1da177e4
LT
366 /* be sure we're looking at the low order bits */
367 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
650d841d
BZ
368 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
369 tf->lbal = hwif->INB(IDE_SECTOR_REG);
370 tf->lbam = hwif->INB(IDE_LCYL_REG);
371 tf->lbah = hwif->INB(IDE_HCYL_REG);
372 tf->device = hwif->INB(IDE_SELECT_REG);
373 tf->status = stat;
1da177e4
LT
374
375 if (drive->addressing == 1) {
376 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
650d841d
BZ
377 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
378 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
379 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
380 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
381 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
1da177e4
LT
382 }
383 }
384 } else if (blk_pm_request(rq)) {
c00895ab 385 struct request_pm_state *pm = rq->data;
1da177e4
LT
386#ifdef DEBUG_PM
387 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
388 drive->name, rq->pm->pm_step, stat, err);
389#endif
390 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 391 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
392 ide_complete_pm_request(drive, rq);
393 return;
394 }
395
396 spin_lock_irqsave(&ide_lock, flags);
397 blkdev_dequeue_request(rq);
398 HWGROUP(drive)->rq = NULL;
399 rq->errors = err;
8ffdc655 400 end_that_request_last(rq, !rq->errors);
1da177e4
LT
401 spin_unlock_irqrestore(&ide_lock, flags);
402}
403
404EXPORT_SYMBOL(ide_end_drive_cmd);
405
406/**
407 * try_to_flush_leftover_data - flush junk
408 * @drive: drive to flush
409 *
410 * try_to_flush_leftover_data() is invoked in response to a drive
411 * unexpectedly having its DRQ_STAT bit set. As an alternative to
412 * resetting the drive, this routine tries to clear the condition
413 * by read a sector's worth of data from the drive. Of course,
414 * this may not help if the drive is *waiting* for data from *us*.
415 */
416static void try_to_flush_leftover_data (ide_drive_t *drive)
417{
418 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
419
420 if (drive->media != ide_disk)
421 return;
422 while (i > 0) {
423 u32 buffer[16];
424 u32 wcount = (i > 16) ? 16 : i;
425
426 i -= wcount;
427 HWIF(drive)->ata_input_data(drive, buffer, wcount);
428 }
429}
430
431static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
432{
433 if (rq->rq_disk) {
434 ide_driver_t *drv;
435
436 drv = *(ide_driver_t **)rq->rq_disk->private_data;
437 drv->end_request(drive, 0, 0);
438 } else
439 ide_end_request(drive, 0, 0);
440}
441
442static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443{
444 ide_hwif_t *hwif = drive->hwif;
445
446 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
447 /* other bits are useless when BUSY */
448 rq->errors |= ERROR_RESET;
449 } else if (stat & ERR_STAT) {
450 /* err has different meaning on cdrom and tape */
451 if (err == ABRT_ERR) {
452 if (drive->select.b.lba &&
453 /* some newer drives don't support WIN_SPECIFY */
454 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
455 return ide_stopped;
456 } else if ((err & BAD_CRC) == BAD_CRC) {
457 /* UDMA crc error, just retry the operation */
458 drive->crc_count++;
459 } else if (err & (BBD_ERR | ECC_ERR)) {
460 /* retries won't help these */
461 rq->errors = ERROR_MAX;
462 } else if (err & TRK0_ERR) {
463 /* help it find track zero */
464 rq->errors |= ERROR_RECAL;
465 }
466 }
467
ed67b923
BZ
468 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
469 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
1da177e4
LT
470 try_to_flush_leftover_data(drive);
471
513daadd
SS
472 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
473 ide_kill_rq(drive, rq);
474 return ide_stopped;
475 }
476
1da177e4 477 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 478 rq->errors |= ERROR_RESET;
1da177e4 479
513daadd 480 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 481 ++rq->errors;
513daadd 482 return ide_do_reset(drive);
1da177e4 483 }
513daadd
SS
484
485 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
486 drive->special.b.recalibrate = 1;
487
488 ++rq->errors;
489
1da177e4
LT
490 return ide_stopped;
491}
492
493static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
494{
495 ide_hwif_t *hwif = drive->hwif;
496
497 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
498 /* other bits are useless when BUSY */
499 rq->errors |= ERROR_RESET;
500 } else {
501 /* add decoding error stuff */
502 }
503
504 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
505 /* force an abort */
506 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
507
508 if (rq->errors >= ERROR_MAX) {
509 ide_kill_rq(drive, rq);
510 } else {
511 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
512 ++rq->errors;
513 return ide_do_reset(drive);
514 }
515 ++rq->errors;
516 }
517
518 return ide_stopped;
519}
520
521ide_startstop_t
522__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
523{
524 if (drive->media == ide_disk)
525 return ide_ata_error(drive, rq, stat, err);
526 return ide_atapi_error(drive, rq, stat, err);
527}
528
529EXPORT_SYMBOL_GPL(__ide_error);
530
531/**
532 * ide_error - handle an error on the IDE
533 * @drive: drive the error occurred on
534 * @msg: message to report
535 * @stat: status bits
536 *
537 * ide_error() takes action based on the error returned by the drive.
538 * For normal I/O that may well include retries. We deal with
539 * both new-style (taskfile) and old style command handling here.
540 * In the case of taskfile command handling there is work left to
541 * do
542 */
543
544ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
545{
546 struct request *rq;
547 u8 err;
548
549 err = ide_dump_status(drive, msg, stat);
550
551 if ((rq = HWGROUP(drive)->rq) == NULL)
552 return ide_stopped;
553
554 /* retry only "normal" I/O: */
4aff5e23 555 if (!blk_fs_request(rq)) {
1da177e4
LT
556 rq->errors = 1;
557 ide_end_drive_cmd(drive, stat, err);
558 return ide_stopped;
559 }
560
561 if (rq->rq_disk) {
562 ide_driver_t *drv;
563
564 drv = *(ide_driver_t **)rq->rq_disk->private_data;
565 return drv->error(drive, rq, stat, err);
566 } else
567 return __ide_error(drive, rq, stat, err);
568}
569
570EXPORT_SYMBOL_GPL(ide_error);
571
572ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
573{
574 if (drive->media != ide_disk)
575 rq->errors |= ERROR_RESET;
576
577 ide_kill_rq(drive, rq);
578
579 return ide_stopped;
580}
581
582EXPORT_SYMBOL_GPL(__ide_abort);
583
584/**
338cec32 585 * ide_abort - abort pending IDE operations
1da177e4
LT
586 * @drive: drive the error occurred on
587 * @msg: message to report
588 *
589 * ide_abort kills and cleans up when we are about to do a
590 * host initiated reset on active commands. Longer term we
591 * want handlers to have sensible abort handling themselves
592 *
593 * This differs fundamentally from ide_error because in
594 * this case the command is doing just fine when we
595 * blow it away.
596 */
597
598ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
599{
600 struct request *rq;
601
602 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
603 return ide_stopped;
604
605 /* retry only "normal" I/O: */
4aff5e23 606 if (!blk_fs_request(rq)) {
1da177e4
LT
607 rq->errors = 1;
608 ide_end_drive_cmd(drive, BUSY_STAT, 0);
609 return ide_stopped;
610 }
611
612 if (rq->rq_disk) {
613 ide_driver_t *drv;
614
615 drv = *(ide_driver_t **)rq->rq_disk->private_data;
616 return drv->abort(drive, rq);
617 } else
618 return __ide_abort(drive, rq);
619}
620
621/**
622 * ide_cmd - issue a simple drive command
623 * @drive: drive the command is for
624 * @cmd: command byte
625 * @nsect: sector byte
626 * @handler: handler for the command completion
627 *
628 * Issue a simple drive command with interrupts.
629 * The drive must be selected beforehand.
630 */
631
632static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
633 ide_handler_t *handler)
634{
635 ide_hwif_t *hwif = HWIF(drive);
636 if (IDE_CONTROL_REG)
637 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
638 SELECT_MASK(drive,0);
639 hwif->OUTB(nsect,IDE_NSECTOR_REG);
640 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
641}
642
643/**
644 * drive_cmd_intr - drive command completion interrupt
645 * @drive: drive the completion interrupt occurred on
646 *
647 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 648 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
649 * go non busy. At that point we may read the error data and complete
650 * the request
651 */
652
653static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
654{
655 struct request *rq = HWGROUP(drive)->rq;
656 ide_hwif_t *hwif = HWIF(drive);
657 u8 *args = (u8 *) rq->buffer;
658 u8 stat = hwif->INB(IDE_STATUS_REG);
659 int retries = 10;
660
366c7f55 661 local_irq_enable_in_hardirq();
320112bd
BZ
662 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
663 (stat & DRQ_STAT) && args && args[3]) {
1da177e4
LT
664 u8 io_32bit = drive->io_32bit;
665 drive->io_32bit = 0;
666 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
667 drive->io_32bit = io_32bit;
668 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
669 udelay(100);
670 }
671
672 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
673 return ide_error(drive, "drive_cmd", stat);
674 /* calls ide_end_drive_cmd */
675 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
676 return ide_stopped;
677}
678
679static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
680{
650d841d
BZ
681 task->tf.nsect = drive->sect;
682 task->tf.lbal = drive->sect;
683 task->tf.lbam = drive->cyl;
684 task->tf.lbah = drive->cyl >> 8;
685 task->tf.device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
686 task->tf.command = WIN_SPECIFY;
1da177e4
LT
687
688 task->handler = &set_geometry_intr;
689}
690
691static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
692{
650d841d
BZ
693 task->tf.nsect = drive->sect;
694 task->tf.command = WIN_RESTORE;
1da177e4
LT
695
696 task->handler = &recal_intr;
697}
698
699static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
700{
650d841d
BZ
701 task->tf.nsect = drive->mult_req;
702 task->tf.command = WIN_SETMULT;
1da177e4
LT
703
704 task->handler = &set_multmode_intr;
705}
706
707static ide_startstop_t ide_disk_special(ide_drive_t *drive)
708{
709 special_t *s = &drive->special;
710 ide_task_t args;
711
712 memset(&args, 0, sizeof(ide_task_t));
713 args.command_type = IDE_DRIVE_TASK_NO_DATA;
714
715 if (s->b.set_geometry) {
716 s->b.set_geometry = 0;
717 ide_init_specify_cmd(drive, &args);
718 } else if (s->b.recalibrate) {
719 s->b.recalibrate = 0;
720 ide_init_restore_cmd(drive, &args);
721 } else if (s->b.set_multmode) {
722 s->b.set_multmode = 0;
723 if (drive->mult_req > drive->id->max_multsect)
724 drive->mult_req = drive->id->max_multsect;
725 ide_init_setmult_cmd(drive, &args);
726 } else if (s->all) {
727 int special = s->all;
728 s->all = 0;
729 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
730 return ide_stopped;
731 }
732
733 do_rw_taskfile(drive, &args);
734
735 return ide_started;
736}
737
26bcb879
BZ
738/*
739 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
740 */
741static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
742{
743 switch (req_pio) {
744 case 202:
745 case 201:
746 case 200:
747 case 102:
748 case 101:
749 case 100:
750 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
751 case 9:
752 case 8:
753 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
754 case 7:
755 case 6:
756 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
757 default:
758 return 0;
759 }
760}
761
1da177e4
LT
762/**
763 * do_special - issue some special commands
764 * @drive: drive the command is for
765 *
766 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
767 * commands to a drive. It used to do much more, but has been scaled
768 * back.
769 */
770
771static ide_startstop_t do_special (ide_drive_t *drive)
772{
773 special_t *s = &drive->special;
774
775#ifdef DEBUG
776 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
777#endif
778 if (s->b.set_tune) {
26bcb879
BZ
779 ide_hwif_t *hwif = drive->hwif;
780 u8 req_pio = drive->tune_req;
781
1da177e4 782 s->b.set_tune = 0;
26bcb879
BZ
783
784 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
d393aa03
BZ
785
786 if (hwif->set_pio_mode == NULL)
787 return ide_stopped;
788
789 /*
790 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
791 */
792 if (req_pio == 8 || req_pio == 9) {
793 unsigned long flags;
794
795 spin_lock_irqsave(&ide_lock, flags);
796 hwif->set_pio_mode(drive, req_pio);
797 spin_unlock_irqrestore(&ide_lock, flags);
798 } else
26bcb879 799 hwif->set_pio_mode(drive, req_pio);
aedea591
BZ
800 } else {
801 int keep_dma = drive->using_dma;
802
26bcb879
BZ
803 ide_set_pio(drive, req_pio);
804
aedea591
BZ
805 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
806 if (keep_dma)
807 hwif->ide_dma_on(drive);
808 }
809 }
810
1da177e4
LT
811 return ide_stopped;
812 } else {
813 if (drive->media == ide_disk)
814 return ide_disk_special(drive);
815
816 s->all = 0;
817 drive->mult_req = 0;
818 return ide_stopped;
819 }
820}
821
822void ide_map_sg(ide_drive_t *drive, struct request *rq)
823{
824 ide_hwif_t *hwif = drive->hwif;
825 struct scatterlist *sg = hwif->sg_table;
826
827 if (hwif->sg_mapped) /* needed by ide-scsi */
828 return;
829
4aff5e23 830 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
831 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
832 } else {
833 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
834 hwif->sg_nents = 1;
835 }
836}
837
838EXPORT_SYMBOL_GPL(ide_map_sg);
839
840void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
841{
842 ide_hwif_t *hwif = drive->hwif;
843
844 hwif->nsect = hwif->nleft = rq->nr_sectors;
55c16a70
JA
845 hwif->cursg_ofs = 0;
846 hwif->cursg = NULL;
1da177e4
LT
847}
848
849EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
850
851/**
852 * execute_drive_command - issue special drive command
338cec32 853 * @drive: the drive to issue the command on
1da177e4
LT
854 * @rq: the request structure holding the command
855 *
856 * execute_drive_cmd() issues a special drive command, usually
857 * initiated by ioctl() from the external hdparm program. The
858 * command can be a drive command, drive task or taskfile
859 * operation. Weirdly you can call it with NULL to wait for
860 * all commands to finish. Don't do this as that is due to change
861 */
862
863static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
864 struct request *rq)
865{
866 ide_hwif_t *hwif = HWIF(drive);
4aff5e23 867 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
868 ide_task_t *args = rq->special;
869
870 if (!args)
871 goto done;
872
873 hwif->data_phase = args->data_phase;
874
875 switch (hwif->data_phase) {
876 case TASKFILE_MULTI_OUT:
877 case TASKFILE_OUT:
878 case TASKFILE_MULTI_IN:
879 case TASKFILE_IN:
880 ide_init_sg_cmd(drive, rq);
881 ide_map_sg(drive, rq);
882 default:
883 break;
884 }
885
886 if (args->tf_out_flags.all != 0)
887 return flagged_taskfile(drive, args);
888 return do_rw_taskfile(drive, args);
4aff5e23 889 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4 890 u8 *args = rq->buffer;
1da177e4
LT
891
892 if (!args)
893 goto done;
894#ifdef DEBUG
895 printk("%s: DRIVE_TASK_CMD ", drive->name);
896 printk("cmd=0x%02x ", args[0]);
897 printk("fr=0x%02x ", args[1]);
898 printk("ns=0x%02x ", args[2]);
899 printk("sc=0x%02x ", args[3]);
900 printk("lcyl=0x%02x ", args[4]);
901 printk("hcyl=0x%02x ", args[5]);
902 printk("sel=0x%02x\n", args[6]);
903#endif
904 hwif->OUTB(args[1], IDE_FEATURE_REG);
905 hwif->OUTB(args[3], IDE_SECTOR_REG);
906 hwif->OUTB(args[4], IDE_LCYL_REG);
907 hwif->OUTB(args[5], IDE_HCYL_REG);
c1f50cbb 908 hwif->OUTB((args[6] & 0xEF)|drive->select.all, IDE_SELECT_REG);
1da177e4
LT
909 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
910 return ide_started;
4aff5e23 911 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
912 u8 *args = rq->buffer;
913
914 if (!args)
915 goto done;
916#ifdef DEBUG
917 printk("%s: DRIVE_CMD ", drive->name);
918 printk("cmd=0x%02x ", args[0]);
919 printk("sc=0x%02x ", args[1]);
920 printk("fr=0x%02x ", args[2]);
921 printk("xx=0x%02x\n", args[3]);
922#endif
923 if (args[0] == WIN_SMART) {
924 hwif->OUTB(0x4f, IDE_LCYL_REG);
925 hwif->OUTB(0xc2, IDE_HCYL_REG);
926 hwif->OUTB(args[2],IDE_FEATURE_REG);
927 hwif->OUTB(args[1],IDE_SECTOR_REG);
928 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
929 return ide_started;
930 }
931 hwif->OUTB(args[2],IDE_FEATURE_REG);
932 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
933 return ide_started;
934 }
935
936done:
937 /*
938 * NULL is actually a valid way of waiting for
939 * all current requests to be flushed from the queue.
940 */
941#ifdef DEBUG
942 printk("%s: DRIVE_CMD (null)\n", drive->name);
943#endif
944 ide_end_drive_cmd(drive,
945 hwif->INB(IDE_STATUS_REG),
946 hwif->INB(IDE_ERROR_REG));
947 return ide_stopped;
948}
949
ad3cadda
JA
950static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
951{
c00895ab 952 struct request_pm_state *pm = rq->data;
ad3cadda
JA
953
954 if (blk_pm_suspend_request(rq) &&
955 pm->pm_step == ide_pm_state_start_suspend)
956 /* Mark drive blocked when starting the suspend sequence. */
957 drive->blocked = 1;
958 else if (blk_pm_resume_request(rq) &&
959 pm->pm_step == ide_pm_state_start_resume) {
960 /*
961 * The first thing we do on wakeup is to wait for BSY bit to
962 * go away (with a looong timeout) as a drive on this hwif may
963 * just be POSTing itself.
964 * We do that before even selecting as the "other" device on
965 * the bus may be broken enough to walk on our toes at this
966 * point.
967 */
968 int rc;
969#ifdef DEBUG_PM
970 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
971#endif
972 rc = ide_wait_not_busy(HWIF(drive), 35000);
973 if (rc)
974 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
975 SELECT_DRIVE(drive);
ad0e74d3
BZ
976 if (IDE_CONTROL_REG)
977 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
178184b6 978 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
979 if (rc)
980 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
981 }
982}
983
1da177e4
LT
984/**
985 * start_request - start of I/O and command issuing for IDE
986 *
987 * start_request() initiates handling of a new I/O request. It
988 * accepts commands and I/O (read/write) requests. It also does
989 * the final remapping for weird stuff like EZDrive. Once
990 * device mapper can work sector level the EZDrive stuff can go away
991 *
992 * FIXME: this function needs a rename
993 */
994
995static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
996{
997 ide_startstop_t startstop;
998 sector_t block;
999
4aff5e23 1000 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
1001
1002#ifdef DEBUG
1003 printk("%s: start_request: current=0x%08lx\n",
1004 HWIF(drive)->name, (unsigned long) rq);
1005#endif
1006
1007 /* bail early if we've exceeded max_failures */
1008 if (drive->max_failures && (drive->failures > drive->max_failures)) {
b5e1a4e2 1009 rq->cmd_flags |= REQ_FAILED;
1da177e4
LT
1010 goto kill_rq;
1011 }
1012
1013 block = rq->sector;
1014 if (blk_fs_request(rq) &&
1015 (drive->media == ide_disk || drive->media == ide_floppy)) {
1016 block += drive->sect0;
1017 }
1018 /* Yecch - this will shift the entire interval,
1019 possibly killing some innocent following sector */
1020 if (block == 0 && drive->remap_0_to_1 == 1)
1021 block = 1; /* redirect MBR access to EZ-Drive partn table */
1022
ad3cadda
JA
1023 if (blk_pm_request(rq))
1024 ide_check_pm_state(drive, rq);
1da177e4
LT
1025
1026 SELECT_DRIVE(drive);
1027 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1028 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1029 return startstop;
1030 }
1031 if (!drive->special.all) {
1032 ide_driver_t *drv;
1033
513daadd
SS
1034 /*
1035 * We reset the drive so we need to issue a SETFEATURES.
1036 * Do it _after_ do_special() restored device parameters.
1037 */
1038 if (drive->current_speed == 0xff)
1039 ide_config_drive_speed(drive, drive->desired_speed);
1040
4aff5e23
JA
1041 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1042 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1043 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1044 return execute_drive_cmd(drive, rq);
1045 else if (blk_pm_request(rq)) {
c00895ab 1046 struct request_pm_state *pm = rq->data;
1da177e4
LT
1047#ifdef DEBUG_PM
1048 printk("%s: start_power_step(step: %d)\n",
1049 drive->name, rq->pm->pm_step);
1050#endif
1051 startstop = ide_start_power_step(drive, rq);
1052 if (startstop == ide_stopped &&
ad3cadda 1053 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1054 ide_complete_pm_request(drive, rq);
1055 return startstop;
1056 }
1057
1058 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1059 return drv->do_request(drive, rq, block);
1060 }
1061 return do_special(drive);
1062kill_rq:
1063 ide_kill_rq(drive, rq);
1064 return ide_stopped;
1065}
1066
1067/**
1068 * ide_stall_queue - pause an IDE device
1069 * @drive: drive to stall
1070 * @timeout: time to stall for (jiffies)
1071 *
1072 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1073 * to the hwgroup by sleeping for timeout jiffies.
1074 */
1075
1076void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1077{
1078 if (timeout > WAIT_WORSTCASE)
1079 timeout = WAIT_WORSTCASE;
1080 drive->sleep = timeout + jiffies;
1081 drive->sleeping = 1;
1082}
1083
1084EXPORT_SYMBOL(ide_stall_queue);
1085
1086#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1087
1088/**
1089 * choose_drive - select a drive to service
1090 * @hwgroup: hardware group to select on
1091 *
1092 * choose_drive() selects the next drive which will be serviced.
1093 * This is necessary because the IDE layer can't issue commands
1094 * to both drives on the same cable, unlike SCSI.
1095 */
1096
1097static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1098{
1099 ide_drive_t *drive, *best;
1100
1101repeat:
1102 best = NULL;
1103 drive = hwgroup->drive;
1104
1105 /*
1106 * drive is doing pre-flush, ordered write, post-flush sequence. even
1107 * though that is 3 requests, it must be seen as a single transaction.
1108 * we must not preempt this drive until that is complete
1109 */
1110 if (blk_queue_flushing(drive->queue)) {
1111 /*
1112 * small race where queue could get replugged during
1113 * the 3-request flush cycle, just yank the plug since
1114 * we want it to finish asap
1115 */
1116 blk_remove_plug(drive->queue);
1117 return drive;
1118 }
1119
1120 do {
1121 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1122 && !elv_queue_empty(drive->queue)) {
1123 if (!best
1124 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1125 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1126 {
1127 if (!blk_queue_plugged(drive->queue))
1128 best = drive;
1129 }
1130 }
1131 } while ((drive = drive->next) != hwgroup->drive);
1132 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1133 long t = (signed long)(WAKEUP(best) - jiffies);
1134 if (t >= WAIT_MIN_SLEEP) {
1135 /*
1136 * We *may* have some time to spare, but first let's see if
1137 * someone can potentially benefit from our nice mood today..
1138 */
1139 drive = best->next;
1140 do {
1141 if (!drive->sleeping
1142 && time_before(jiffies - best->service_time, WAKEUP(drive))
1143 && time_before(WAKEUP(drive), jiffies + t))
1144 {
1145 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1146 goto repeat;
1147 }
1148 } while ((drive = drive->next) != best);
1149 }
1150 }
1151 return best;
1152}
1153
1154/*
1155 * Issue a new request to a drive from hwgroup
1156 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1157 *
1158 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1159 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1160 * may have both interfaces in a single hwgroup to "serialize" access.
1161 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1162 * together into one hwgroup for serialized access.
1163 *
1164 * Note also that several hwgroups can end up sharing a single IRQ,
1165 * possibly along with many other devices. This is especially common in
1166 * PCI-based systems with off-board IDE controller cards.
1167 *
1168 * The IDE driver uses the single global ide_lock spinlock to protect
1169 * access to the request queues, and to protect the hwgroup->busy flag.
1170 *
1171 * The first thread into the driver for a particular hwgroup sets the
1172 * hwgroup->busy flag to indicate that this hwgroup is now active,
1173 * and then initiates processing of the top request from the request queue.
1174 *
1175 * Other threads attempting entry notice the busy setting, and will simply
1176 * queue their new requests and exit immediately. Note that hwgroup->busy
1177 * remains set even when the driver is merely awaiting the next interrupt.
1178 * Thus, the meaning is "this hwgroup is busy processing a request".
1179 *
1180 * When processing of a request completes, the completing thread or IRQ-handler
1181 * will start the next request from the queue. If no more work remains,
1182 * the driver will clear the hwgroup->busy flag and exit.
1183 *
1184 * The ide_lock (spinlock) is used to protect all access to the
1185 * hwgroup->busy flag, but is otherwise not needed for most processing in
1186 * the driver. This makes the driver much more friendlier to shared IRQs
1187 * than previous designs, while remaining 100% (?) SMP safe and capable.
1188 */
1189static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1190{
1191 ide_drive_t *drive;
1192 ide_hwif_t *hwif;
1193 struct request *rq;
1194 ide_startstop_t startstop;
867f8b4e 1195 int loops = 0;
1da177e4
LT
1196
1197 /* for atari only: POSSIBLY BROKEN HERE(?) */
1198 ide_get_lock(ide_intr, hwgroup);
1199
1200 /* caller must own ide_lock */
1201 BUG_ON(!irqs_disabled());
1202
1203 while (!hwgroup->busy) {
1204 hwgroup->busy = 1;
1205 drive = choose_drive(hwgroup);
1206 if (drive == NULL) {
1207 int sleeping = 0;
1208 unsigned long sleep = 0; /* shut up, gcc */
1209 hwgroup->rq = NULL;
1210 drive = hwgroup->drive;
1211 do {
1212 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1213 sleeping = 1;
1214 sleep = drive->sleep;
1215 }
1216 } while ((drive = drive->next) != hwgroup->drive);
1217 if (sleeping) {
1218 /*
1219 * Take a short snooze, and then wake up this hwgroup again.
1220 * This gives other hwgroups on the same a chance to
1221 * play fairly with us, just in case there are big differences
1222 * in relative throughputs.. don't want to hog the cpu too much.
1223 */
1224 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1225 sleep = jiffies + WAIT_MIN_SLEEP;
1226#if 1
1227 if (timer_pending(&hwgroup->timer))
1228 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1229#endif
1230 /* so that ide_timer_expiry knows what to do */
1231 hwgroup->sleeping = 1;
23450319 1232 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1233 mod_timer(&hwgroup->timer, sleep);
1234 /* we purposely leave hwgroup->busy==1
1235 * while sleeping */
1236 } else {
1237 /* Ugly, but how can we sleep for the lock
1238 * otherwise? perhaps from tq_disk?
1239 */
1240
1241 /* for atari only */
1242 ide_release_lock();
1243 hwgroup->busy = 0;
1244 }
1245
1246 /* no more work for this hwgroup (for now) */
1247 return;
1248 }
867f8b4e 1249 again:
1da177e4
LT
1250 hwif = HWIF(drive);
1251 if (hwgroup->hwif->sharing_irq &&
1252 hwif != hwgroup->hwif &&
1253 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1254 /* set nIEN for previous hwif */
1255 SELECT_INTERRUPT(drive);
1256 }
1257 hwgroup->hwif = hwif;
1258 hwgroup->drive = drive;
1259 drive->sleeping = 0;
1260 drive->service_start = jiffies;
1261
1262 if (blk_queue_plugged(drive->queue)) {
1263 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1264 break;
1265 }
1266
1267 /*
1268 * we know that the queue isn't empty, but this can happen
1269 * if the q->prep_rq_fn() decides to kill a request
1270 */
1271 rq = elv_next_request(drive->queue);
1272 if (!rq) {
1273 hwgroup->busy = 0;
1274 break;
1275 }
1276
1277 /*
1278 * Sanity: don't accept a request that isn't a PM request
1279 * if we are currently power managed. This is very important as
1280 * blk_stop_queue() doesn't prevent the elv_next_request()
1281 * above to return us whatever is in the queue. Since we call
1282 * ide_do_request() ourselves, we end up taking requests while
1283 * the queue is blocked...
1284 *
1285 * We let requests forced at head of queue with ide-preempt
1286 * though. I hope that doesn't happen too much, hopefully not
1287 * unless the subdriver triggers such a thing in its own PM
1288 * state machine.
867f8b4e
BH
1289 *
1290 * We count how many times we loop here to make sure we service
1291 * all drives in the hwgroup without looping for ever
1da177e4 1292 */
4aff5e23 1293 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1294 drive = drive->next ? drive->next : hwgroup->drive;
1295 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1296 goto again;
1da177e4
LT
1297 /* We clear busy, there should be no pending ATA command at this point. */
1298 hwgroup->busy = 0;
1299 break;
1300 }
1301
1302 hwgroup->rq = rq;
1303
1304 /*
1305 * Some systems have trouble with IDE IRQs arriving while
1306 * the driver is still setting things up. So, here we disable
1307 * the IRQ used by this interface while the request is being started.
1308 * This may look bad at first, but pretty much the same thing
1309 * happens anyway when any interrupt comes in, IDE or otherwise
1310 * -- the kernel masks the IRQ while it is being handled.
1311 */
1312 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1313 disable_irq_nosync(hwif->irq);
1314 spin_unlock(&ide_lock);
366c7f55 1315 local_irq_enable_in_hardirq();
1da177e4
LT
1316 /* allow other IRQs while we start this request */
1317 startstop = start_request(drive, rq);
1318 spin_lock_irq(&ide_lock);
1319 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1320 enable_irq(hwif->irq);
1321 if (startstop == ide_stopped)
1322 hwgroup->busy = 0;
1323 }
1324}
1325
1326/*
1327 * Passes the stuff to ide_do_request
1328 */
165125e1 1329void do_ide_request(struct request_queue *q)
1da177e4
LT
1330{
1331 ide_drive_t *drive = q->queuedata;
1332
1333 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1334}
1335
1336/*
1337 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1338 * retry the current request in pio mode instead of risking tossing it
1339 * all away
1340 */
1341static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1342{
1343 ide_hwif_t *hwif = HWIF(drive);
1344 struct request *rq;
1345 ide_startstop_t ret = ide_stopped;
1346
1347 /*
1348 * end current dma transaction
1349 */
1350
1351 if (error < 0) {
1352 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1353 (void)HWIF(drive)->ide_dma_end(drive);
1354 ret = ide_error(drive, "dma timeout error",
1355 hwif->INB(IDE_STATUS_REG));
1356 } else {
1357 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1358 hwif->dma_timeout(drive);
1da177e4
LT
1359 }
1360
1361 /*
1362 * disable dma for now, but remember that we did so because of
1363 * a timeout -- we'll reenable after we finish this next request
1364 * (or rather the first chunk of it) in pio.
1365 */
1366 drive->retry_pio++;
1367 drive->state = DMA_PIO_RETRY;
7469aaf6 1368 hwif->dma_off_quietly(drive);
1da177e4
LT
1369
1370 /*
1371 * un-busy drive etc (hwgroup->busy is cleared on return) and
1372 * make sure request is sane
1373 */
1374 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1375
1376 if (!rq)
1377 goto out;
1378
1da177e4
LT
1379 HWGROUP(drive)->rq = NULL;
1380
1381 rq->errors = 0;
1382
1383 if (!rq->bio)
1384 goto out;
1385
1386 rq->sector = rq->bio->bi_sector;
1387 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1388 rq->hard_cur_sectors = rq->current_nr_sectors;
1389 rq->buffer = bio_data(rq->bio);
1390out:
1391 return ret;
1392}
1393
1394/**
1395 * ide_timer_expiry - handle lack of an IDE interrupt
1396 * @data: timer callback magic (hwgroup)
1397 *
1398 * An IDE command has timed out before the expected drive return
1399 * occurred. At this point we attempt to clean up the current
1400 * mess. If the current handler includes an expiry handler then
1401 * we invoke the expiry handler, and providing it is happy the
1402 * work is done. If that fails we apply generic recovery rules
1403 * invoking the handler and checking the drive DMA status. We
1404 * have an excessively incestuous relationship with the DMA
1405 * logic that wants cleaning up.
1406 */
1407
1408void ide_timer_expiry (unsigned long data)
1409{
1410 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1411 ide_handler_t *handler;
1412 ide_expiry_t *expiry;
1413 unsigned long flags;
1414 unsigned long wait = -1;
1415
1416 spin_lock_irqsave(&ide_lock, flags);
1417
23450319
SS
1418 if (((handler = hwgroup->handler) == NULL) ||
1419 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1420 /*
1421 * Either a marginal timeout occurred
1422 * (got the interrupt just as timer expired),
1423 * or we were "sleeping" to give other devices a chance.
1424 * Either way, we don't really want to complain about anything.
1425 */
1426 if (hwgroup->sleeping) {
1427 hwgroup->sleeping = 0;
1428 hwgroup->busy = 0;
1429 }
1430 } else {
1431 ide_drive_t *drive = hwgroup->drive;
1432 if (!drive) {
1433 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1434 hwgroup->handler = NULL;
1435 } else {
1436 ide_hwif_t *hwif;
1437 ide_startstop_t startstop = ide_stopped;
1438 if (!hwgroup->busy) {
1439 hwgroup->busy = 1; /* paranoia */
1440 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1441 }
1442 if ((expiry = hwgroup->expiry) != NULL) {
1443 /* continue */
1444 if ((wait = expiry(drive)) > 0) {
1445 /* reset timer */
1446 hwgroup->timer.expires = jiffies + wait;
23450319 1447 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1448 add_timer(&hwgroup->timer);
1449 spin_unlock_irqrestore(&ide_lock, flags);
1450 return;
1451 }
1452 }
1453 hwgroup->handler = NULL;
1454 /*
1455 * We need to simulate a real interrupt when invoking
1456 * the handler() function, which means we need to
1457 * globally mask the specific IRQ:
1458 */
1459 spin_unlock(&ide_lock);
1460 hwif = HWIF(drive);
1461#if DISABLE_IRQ_NOSYNC
1462 disable_irq_nosync(hwif->irq);
1463#else
1464 /* disable_irq_nosync ?? */
1465 disable_irq(hwif->irq);
1466#endif /* DISABLE_IRQ_NOSYNC */
1467 /* local CPU only,
1468 * as if we were handling an interrupt */
1469 local_irq_disable();
1470 if (hwgroup->polling) {
1471 startstop = handler(drive);
1472 } else if (drive_is_ready(drive)) {
1473 if (drive->waiting_for_dma)
841d2a9b 1474 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1475 (void)ide_ack_intr(hwif);
1476 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1477 startstop = handler(drive);
1478 } else {
1479 if (drive->waiting_for_dma) {
1480 startstop = ide_dma_timeout_retry(drive, wait);
1481 } else
1482 startstop =
1483 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1484 }
1485 drive->service_time = jiffies - drive->service_start;
1486 spin_lock_irq(&ide_lock);
1487 enable_irq(hwif->irq);
1488 if (startstop == ide_stopped)
1489 hwgroup->busy = 0;
1490 }
1491 }
1492 ide_do_request(hwgroup, IDE_NO_IRQ);
1493 spin_unlock_irqrestore(&ide_lock, flags);
1494}
1495
1496/**
1497 * unexpected_intr - handle an unexpected IDE interrupt
1498 * @irq: interrupt line
1499 * @hwgroup: hwgroup being processed
1500 *
1501 * There's nothing really useful we can do with an unexpected interrupt,
1502 * other than reading the status register (to clear it), and logging it.
1503 * There should be no way that an irq can happen before we're ready for it,
1504 * so we needn't worry much about losing an "important" interrupt here.
1505 *
1506 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1507 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1508 * looks "good", we just ignore the interrupt completely.
1509 *
1510 * This routine assumes __cli() is in effect when called.
1511 *
1512 * If an unexpected interrupt happens on irq15 while we are handling irq14
1513 * and if the two interfaces are "serialized" (CMD640), then it looks like
1514 * we could screw up by interfering with a new request being set up for
1515 * irq15.
1516 *
1517 * In reality, this is a non-issue. The new command is not sent unless
1518 * the drive is ready to accept one, in which case we know the drive is
1519 * not trying to interrupt us. And ide_set_handler() is always invoked
1520 * before completing the issuance of any new drive command, so we will not
1521 * be accidentally invoked as a result of any valid command completion
1522 * interrupt.
1523 *
1524 * Note that we must walk the entire hwgroup here. We know which hwif
1525 * is doing the current command, but we don't know which hwif burped
1526 * mysteriously.
1527 */
1528
1529static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1530{
1531 u8 stat;
1532 ide_hwif_t *hwif = hwgroup->hwif;
1533
1534 /*
1535 * handle the unexpected interrupt
1536 */
1537 do {
1538 if (hwif->irq == irq) {
1539 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1540 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1541 /* Try to not flood the console with msgs */
1542 static unsigned long last_msgtime, count;
1543 ++count;
1544 if (time_after(jiffies, last_msgtime + HZ)) {
1545 last_msgtime = jiffies;
1546 printk(KERN_ERR "%s%s: unexpected interrupt, "
1547 "status=0x%02x, count=%ld\n",
1548 hwif->name,
1549 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1550 }
1551 }
1552 }
1553 } while ((hwif = hwif->next) != hwgroup->hwif);
1554}
1555
1556/**
1557 * ide_intr - default IDE interrupt handler
1558 * @irq: interrupt number
1559 * @dev_id: hwif group
1560 * @regs: unused weirdness from the kernel irq layer
1561 *
1562 * This is the default IRQ handler for the IDE layer. You should
1563 * not need to override it. If you do be aware it is subtle in
1564 * places
1565 *
1566 * hwgroup->hwif is the interface in the group currently performing
1567 * a command. hwgroup->drive is the drive and hwgroup->handler is
1568 * the IRQ handler to call. As we issue a command the handlers
1569 * step through multiple states, reassigning the handler to the
1570 * next step in the process. Unlike a smart SCSI controller IDE
1571 * expects the main processor to sequence the various transfer
1572 * stages. We also manage a poll timer to catch up with most
1573 * timeout situations. There are still a few where the handlers
1574 * don't ever decide to give up.
1575 *
1576 * The handler eventually returns ide_stopped to indicate the
1577 * request completed. At this point we issue the next request
1578 * on the hwgroup and the process begins again.
1579 */
1580
7d12e780 1581irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1582{
1583 unsigned long flags;
1584 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1585 ide_hwif_t *hwif;
1586 ide_drive_t *drive;
1587 ide_handler_t *handler;
1588 ide_startstop_t startstop;
1589
1590 spin_lock_irqsave(&ide_lock, flags);
1591 hwif = hwgroup->hwif;
1592
1593 if (!ide_ack_intr(hwif)) {
1594 spin_unlock_irqrestore(&ide_lock, flags);
1595 return IRQ_NONE;
1596 }
1597
1598 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1599 /*
1600 * Not expecting an interrupt from this drive.
1601 * That means this could be:
1602 * (1) an interrupt from another PCI device
1603 * sharing the same PCI INT# as us.
1604 * or (2) a drive just entered sleep or standby mode,
1605 * and is interrupting to let us know.
1606 * or (3) a spurious interrupt of unknown origin.
1607 *
1608 * For PCI, we cannot tell the difference,
1609 * so in that case we just ignore it and hope it goes away.
1610 *
1611 * FIXME: unexpected_intr should be hwif-> then we can
1612 * remove all the ifdef PCI crap
1613 */
1614#ifdef CONFIG_BLK_DEV_IDEPCI
1615 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1616#endif /* CONFIG_BLK_DEV_IDEPCI */
1617 {
1618 /*
1619 * Probably not a shared PCI interrupt,
1620 * so we can safely try to do something about it:
1621 */
1622 unexpected_intr(irq, hwgroup);
1623#ifdef CONFIG_BLK_DEV_IDEPCI
1624 } else {
1625 /*
1626 * Whack the status register, just in case
1627 * we have a leftover pending IRQ.
1628 */
1629 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1630#endif /* CONFIG_BLK_DEV_IDEPCI */
1631 }
1632 spin_unlock_irqrestore(&ide_lock, flags);
1633 return IRQ_NONE;
1634 }
1635 drive = hwgroup->drive;
1636 if (!drive) {
1637 /*
1638 * This should NEVER happen, and there isn't much
1639 * we could do about it here.
1640 *
1641 * [Note - this can occur if the drive is hot unplugged]
1642 */
1643 spin_unlock_irqrestore(&ide_lock, flags);
1644 return IRQ_HANDLED;
1645 }
1646 if (!drive_is_ready(drive)) {
1647 /*
1648 * This happens regularly when we share a PCI IRQ with
1649 * another device. Unfortunately, it can also happen
1650 * with some buggy drives that trigger the IRQ before
1651 * their status register is up to date. Hopefully we have
1652 * enough advance overhead that the latter isn't a problem.
1653 */
1654 spin_unlock_irqrestore(&ide_lock, flags);
1655 return IRQ_NONE;
1656 }
1657 if (!hwgroup->busy) {
1658 hwgroup->busy = 1; /* paranoia */
1659 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1660 }
1661 hwgroup->handler = NULL;
23450319 1662 hwgroup->req_gen++;
1da177e4
LT
1663 del_timer(&hwgroup->timer);
1664 spin_unlock(&ide_lock);
1665
f0dd8712
AL
1666 /* Some controllers might set DMA INTR no matter DMA or PIO;
1667 * bmdma status might need to be cleared even for
1668 * PIO interrupts to prevent spurious/lost irq.
1669 */
1670 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1671 /* ide_dma_end() needs bmdma status for error checking.
1672 * So, skip clearing bmdma status here and leave it
1673 * to ide_dma_end() if this is dma interrupt.
1674 */
1675 hwif->ide_dma_clear_irq(drive);
1676
1da177e4 1677 if (drive->unmask)
366c7f55 1678 local_irq_enable_in_hardirq();
1da177e4
LT
1679 /* service this interrupt, may set handler for next interrupt */
1680 startstop = handler(drive);
1681 spin_lock_irq(&ide_lock);
1682
1683 /*
1684 * Note that handler() may have set things up for another
1685 * interrupt to occur soon, but it cannot happen until
1686 * we exit from this routine, because it will be the
1687 * same irq as is currently being serviced here, and Linux
1688 * won't allow another of the same (on any CPU) until we return.
1689 */
1690 drive->service_time = jiffies - drive->service_start;
1691 if (startstop == ide_stopped) {
1692 if (hwgroup->handler == NULL) { /* paranoia */
1693 hwgroup->busy = 0;
1694 ide_do_request(hwgroup, hwif->irq);
1695 } else {
1696 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1697 "on exit\n", drive->name);
1698 }
1699 }
1700 spin_unlock_irqrestore(&ide_lock, flags);
1701 return IRQ_HANDLED;
1702}
1703
1704/**
1705 * ide_init_drive_cmd - initialize a drive command request
1706 * @rq: request object
1707 *
1708 * Initialize a request before we fill it in and send it down to
1709 * ide_do_drive_cmd. Commands must be set up by this function. Right
1710 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1711 * nasty surprise.
1da177e4
LT
1712 */
1713
1714void ide_init_drive_cmd (struct request *rq)
1715{
1716 memset(rq, 0, sizeof(*rq));
4aff5e23 1717 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1718 rq->ref_count = 1;
1719}
1720
1721EXPORT_SYMBOL(ide_init_drive_cmd);
1722
1723/**
1724 * ide_do_drive_cmd - issue IDE special command
1725 * @drive: device to issue command
1726 * @rq: request to issue
1727 * @action: action for processing
1728 *
1729 * This function issues a special IDE device request
1730 * onto the request queue.
1731 *
1732 * If action is ide_wait, then the rq is queued at the end of the
1733 * request queue, and the function sleeps until it has been processed.
1734 * This is for use when invoked from an ioctl handler.
1735 *
1736 * If action is ide_preempt, then the rq is queued at the head of
1737 * the request queue, displacing the currently-being-processed
1738 * request and this function returns immediately without waiting
1739 * for the new rq to be completed. This is VERY DANGEROUS, and is
1740 * intended for careful use by the ATAPI tape/cdrom driver code.
1741 *
1da177e4
LT
1742 * If action is ide_end, then the rq is queued at the end of the
1743 * request queue, and the function returns immediately without waiting
1744 * for the new rq to be completed. This is again intended for careful
1745 * use by the ATAPI tape/cdrom driver code.
1746 */
1747
1748int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1749{
1750 unsigned long flags;
1751 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1752 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1753 int where = ELEVATOR_INSERT_BACK, err;
1754 int must_wait = (action == ide_wait || action == ide_head_wait);
1755
1756 rq->errors = 0;
1da177e4
LT
1757
1758 /*
1759 * we need to hold an extra reference to request for safe inspection
1760 * after completion
1761 */
1762 if (must_wait) {
1763 rq->ref_count++;
c00895ab 1764 rq->end_io_data = &wait;
1da177e4
LT
1765 rq->end_io = blk_end_sync_rq;
1766 }
1767
1768 spin_lock_irqsave(&ide_lock, flags);
1769 if (action == ide_preempt)
1770 hwgroup->rq = NULL;
1771 if (action == ide_preempt || action == ide_head_wait) {
1772 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1773 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1774 }
1775 __elv_add_request(drive->queue, rq, where, 0);
1776 ide_do_request(hwgroup, IDE_NO_IRQ);
1777 spin_unlock_irqrestore(&ide_lock, flags);
1778
1779 err = 0;
1780 if (must_wait) {
1781 wait_for_completion(&wait);
1da177e4
LT
1782 if (rq->errors)
1783 err = -EIO;
1784
1785 blk_put_request(rq);
1786 }
1787
1788 return err;
1789}
1790
1791EXPORT_SYMBOL(ide_do_drive_cmd);
This page took 0.39951 seconds and 5 git commands to generate.