ide: use __ide_end_request() in ide_end_dequeued_request()
[deliverable/linux.git] / drivers / ide / ide-iops.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
3 *
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
6 *
7 */
8
1da177e4
LT
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
1e86240f 26#include <linux/nmi.h>
1da177e4
LT
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 * Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39 return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44 return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49 insw(port, addr, count);
50}
51
1da177e4
LT
52static void ide_insl (unsigned long port, void *addr, u32 count)
53{
54 insl(port, addr, count);
55}
56
57static void ide_outb (u8 val, unsigned long port)
58{
59 outb(val, port);
60}
61
62static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63{
64 outb(addr, port);
65}
66
67static void ide_outw (u16 val, unsigned long port)
68{
69 outw(val, port);
70}
71
72static void ide_outsw (unsigned long port, void *addr, u32 count)
73{
74 outsw(port, addr, count);
75}
76
1da177e4
LT
77static void ide_outsl (unsigned long port, void *addr, u32 count)
78{
79 outsl(port, addr, count);
80}
81
82void default_hwif_iops (ide_hwif_t *hwif)
83{
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
1da177e4
LT
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
89 hwif->INB = ide_inb;
90 hwif->INW = ide_inw;
1da177e4
LT
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
93}
94
1da177e4
LT
95/*
96 * MMIO operations, typically used for SATA controllers
97 */
98
99static u8 ide_mm_inb (unsigned long port)
100{
101 return (u8) readb((void __iomem *) port);
102}
103
104static u16 ide_mm_inw (unsigned long port)
105{
106 return (u16) readw((void __iomem *) port);
107}
108
109static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110{
111 __ide_mm_insw((void __iomem *) port, addr, count);
112}
113
1da177e4
LT
114static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115{
116 __ide_mm_insl((void __iomem *) port, addr, count);
117}
118
119static void ide_mm_outb (u8 value, unsigned long port)
120{
121 writeb(value, (void __iomem *) port);
122}
123
124static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125{
126 writeb(value, (void __iomem *) port);
127}
128
129static void ide_mm_outw (u16 value, unsigned long port)
130{
131 writew(value, (void __iomem *) port);
132}
133
134static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135{
136 __ide_mm_outsw((void __iomem *) port, addr, count);
137}
138
1da177e4
LT
139static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140{
141 __ide_mm_outsl((void __iomem *) port, addr, count);
142}
143
144void default_hwif_mmiops (ide_hwif_t *hwif)
145{
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
1da177e4
LT
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
1da177e4
LT
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
157}
158
159EXPORT_SYMBOL(default_hwif_mmiops);
160
161u32 ide_read_24 (ide_drive_t *drive)
162{
163 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166 return (hcyl<<16)|(lcyl<<8)|sect;
167}
168
169void SELECT_DRIVE (ide_drive_t *drive)
170{
171 if (HWIF(drive)->selectproc)
172 HWIF(drive)->selectproc(drive);
173 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174}
175
176EXPORT_SYMBOL(SELECT_DRIVE);
177
178void SELECT_INTERRUPT (ide_drive_t *drive)
179{
180 if (HWIF(drive)->intrproc)
181 HWIF(drive)->intrproc(drive);
182 else
183 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184}
185
186void SELECT_MASK (ide_drive_t *drive, int mask)
187{
188 if (HWIF(drive)->maskproc)
189 HWIF(drive)->maskproc(drive, mask);
190}
191
192void QUIRK_LIST (ide_drive_t *drive)
193{
194 if (HWIF(drive)->quirkproc)
195 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196}
197
198/*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206{
207 (void) HWIF(drive)->INB(port);
208 (void) HWIF(drive)->INB(port);
209 (void) HWIF(drive)->INB(port);
210}
211
212/*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216{
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
219
220 if (io_32bit) {
221 if (io_32bit & 2) {
222 unsigned long flags;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->INSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
227 } else
228 hwif->INSL(IDE_DATA_REG, buffer, wcount);
229 } else {
230 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231 }
232}
233
234/*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238{
239 ide_hwif_t *hwif = HWIF(drive);
240 u8 io_32bit = drive->io_32bit;
241
242 if (io_32bit) {
243 if (io_32bit & 2) {
244 unsigned long flags;
245 local_irq_save(flags);
246 ata_vlb_sync(drive, IDE_NSECTOR_REG);
247 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248 local_irq_restore(flags);
249 } else
250 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251 } else {
252 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253 }
254}
255
256/*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266 ide_hwif_t *hwif = HWIF(drive);
267
268 ++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI || MACH_IS_Q40) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273 return;
274 }
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif->ata_input_data(drive, buffer, bytecount / 4);
277 if ((bytecount & 0x03) >= 2)
278 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279}
280
281static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282{
283 ide_hwif_t *hwif = HWIF(drive);
284
285 ++bytecount;
286#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI || MACH_IS_Q40) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290 return;
291 }
292#endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif->ata_output_data(drive, buffer, bytecount / 4);
294 if ((bytecount & 0x03) >= 2)
295 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296}
297
298void default_hwif_transport(ide_hwif_t *hwif)
299{
300 hwif->ata_input_data = ata_input_data;
301 hwif->ata_output_data = ata_output_data;
302 hwif->atapi_input_bytes = atapi_input_bytes;
303 hwif->atapi_output_bytes = atapi_output_bytes;
304}
305
1da177e4
LT
306/*
307 * Beginning of Taskfile OPCODE Library and feature sets.
308 */
309void ide_fix_driveid (struct hd_driveid *id)
310{
311#ifndef __LITTLE_ENDIAN
312# ifdef __BIG_ENDIAN
313 int i;
314 u16 *stringcast;
315
316 id->config = __le16_to_cpu(id->config);
317 id->cyls = __le16_to_cpu(id->cyls);
318 id->reserved2 = __le16_to_cpu(id->reserved2);
319 id->heads = __le16_to_cpu(id->heads);
320 id->track_bytes = __le16_to_cpu(id->track_bytes);
321 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
322 id->sectors = __le16_to_cpu(id->sectors);
323 id->vendor0 = __le16_to_cpu(id->vendor0);
324 id->vendor1 = __le16_to_cpu(id->vendor1);
325 id->vendor2 = __le16_to_cpu(id->vendor2);
326 stringcast = (u16 *)&id->serial_no[0];
327 for (i = 0; i < (20/2); i++)
328 stringcast[i] = __le16_to_cpu(stringcast[i]);
329 id->buf_type = __le16_to_cpu(id->buf_type);
330 id->buf_size = __le16_to_cpu(id->buf_size);
331 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
332 stringcast = (u16 *)&id->fw_rev[0];
333 for (i = 0; i < (8/2); i++)
334 stringcast[i] = __le16_to_cpu(stringcast[i]);
335 stringcast = (u16 *)&id->model[0];
336 for (i = 0; i < (40/2); i++)
337 stringcast[i] = __le16_to_cpu(stringcast[i]);
338 id->dword_io = __le16_to_cpu(id->dword_io);
339 id->reserved50 = __le16_to_cpu(id->reserved50);
340 id->field_valid = __le16_to_cpu(id->field_valid);
341 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
342 id->cur_heads = __le16_to_cpu(id->cur_heads);
343 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
344 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
345 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
346 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
347 id->dma_1word = __le16_to_cpu(id->dma_1word);
348 id->dma_mword = __le16_to_cpu(id->dma_mword);
349 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
351 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
352 id->eide_pio = __le16_to_cpu(id->eide_pio);
353 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354 for (i = 0; i < 2; ++i)
355 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356 for (i = 0; i < 4; ++i)
357 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358 id->queue_depth = __le16_to_cpu(id->queue_depth);
359 for (i = 0; i < 4; ++i)
360 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
362 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
363 id->command_set_1 = __le16_to_cpu(id->command_set_1);
364 id->command_set_2 = __le16_to_cpu(id->command_set_2);
365 id->cfsse = __le16_to_cpu(id->cfsse);
366 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
367 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
368 id->csf_default = __le16_to_cpu(id->csf_default);
369 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
370 id->trseuc = __le16_to_cpu(id->trseuc);
371 id->trsEuc = __le16_to_cpu(id->trsEuc);
372 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
373 id->mprc = __le16_to_cpu(id->mprc);
374 id->hw_config = __le16_to_cpu(id->hw_config);
375 id->acoustic = __le16_to_cpu(id->acoustic);
376 id->msrqs = __le16_to_cpu(id->msrqs);
377 id->sxfert = __le16_to_cpu(id->sxfert);
378 id->sal = __le16_to_cpu(id->sal);
379 id->spg = __le32_to_cpu(id->spg);
380 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381 for (i = 0; i < 22; i++)
382 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
383 id->last_lun = __le16_to_cpu(id->last_lun);
384 id->word127 = __le16_to_cpu(id->word127);
385 id->dlf = __le16_to_cpu(id->dlf);
386 id->csfo = __le16_to_cpu(id->csfo);
387 for (i = 0; i < 26; i++)
388 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389 id->word156 = __le16_to_cpu(id->word156);
390 for (i = 0; i < 3; i++)
391 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392 id->cfa_power = __le16_to_cpu(id->cfa_power);
393 for (i = 0; i < 14; i++)
394 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395 for (i = 0; i < 31; i++)
396 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397 for (i = 0; i < 48; i++)
398 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399 id->integrity_word = __le16_to_cpu(id->integrity_word);
400# else
401# error "Please fix <asm/byteorder.h>"
402# endif
403#endif
404}
405
406/* FIXME: exported for use by the USB storage (isd200.c) code only */
407EXPORT_SYMBOL(ide_fix_driveid);
408
409void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410{
411 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413 if (byteswap) {
414 /* convert from big-endian to host byte order */
415 for (p = end ; p != s;) {
416 unsigned short *pp = (unsigned short *) (p -= 2);
417 *pp = ntohs(*pp);
418 }
419 }
420 /* strip leading blanks */
421 while (s != end && *s == ' ')
422 ++s;
423 /* compress internal blanks and strip trailing blanks */
424 while (s != end && *s) {
425 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426 *p++ = *(s-1);
427 }
428 /* wipe out trailing garbage */
429 while (p != end)
430 *p++ = '\0';
431}
432
433EXPORT_SYMBOL(ide_fixstring);
434
435/*
436 * Needed for PCI irq sharing
437 */
438int drive_is_ready (ide_drive_t *drive)
439{
440 ide_hwif_t *hwif = HWIF(drive);
441 u8 stat = 0;
442
443 if (drive->waiting_for_dma)
444 return hwif->ide_dma_test_irq(drive);
445
446#if 0
447 /* need to guarantee 400ns since last command was issued */
448 udelay(1);
449#endif
450
451#ifdef CONFIG_IDEPCI_SHARE_IRQ
452 /*
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
457 */
458 if (IDE_CONTROL_REG)
459 stat = hwif->INB(IDE_ALTSTATUS_REG);
460 else
461#endif /* CONFIG_IDEPCI_SHARE_IRQ */
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->INB(IDE_STATUS_REG);
464
465 if (stat & BUSY_STAT)
466 /* drive busy: definitely not interrupting */
467 return 0;
468
469 /* drive ready: *might* be interrupting */
470 return 1;
471}
472
473EXPORT_SYMBOL(drive_is_ready);
474
1da177e4
LT
475/*
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0. All other
74af21cf 479 * cases return error -- caller may then invoke ide_error().
1da177e4
LT
480 *
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
485 */
aedea591 486static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
1da177e4 487{
74af21cf 488 ide_hwif_t *hwif = drive->hwif;
1da177e4 489 unsigned long flags;
74af21cf
BZ
490 int i;
491 u8 stat;
1da177e4
LT
492
493 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
494 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
495 local_irq_set(flags);
496 timeout += jiffies;
497 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
498 if (time_after(jiffies, timeout)) {
499 /*
500 * One last read after the timeout in case
501 * heavy interrupt load made us not make any
502 * progress during the timeout..
503 */
504 stat = hwif->INB(IDE_STATUS_REG);
505 if (!(stat & BUSY_STAT))
506 break;
507
508 local_irq_restore(flags);
74af21cf
BZ
509 *rstat = stat;
510 return -EBUSY;
1da177e4
LT
511 }
512 }
513 local_irq_restore(flags);
514 }
515 /*
516 * Allow status to settle, then read it again.
517 * A few rare drives vastly violate the 400ns spec here,
518 * so we'll wait up to 10usec for a "good" status
519 * rather than expensively fail things immediately.
520 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
521 */
522 for (i = 0; i < 10; i++) {
523 udelay(1);
74af21cf
BZ
524 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
525 *rstat = stat;
1da177e4 526 return 0;
74af21cf 527 }
1da177e4 528 }
74af21cf
BZ
529 *rstat = stat;
530 return -EFAULT;
531}
532
533/*
534 * In case of error returns error value after doing "*startstop = ide_error()".
535 * The caller should return the updated value of "startstop" in this case,
536 * "startstop" is unchanged when the function returns 0.
537 */
538int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
539{
540 int err;
541 u8 stat;
542
543 /* bail early if we've exceeded max_failures */
544 if (drive->max_failures && (drive->failures > drive->max_failures)) {
545 *startstop = ide_stopped;
546 return 1;
547 }
548
549 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
550
551 if (err) {
552 char *s = (err == -EBUSY) ? "status timeout" : "status error";
553 *startstop = ide_error(drive, s, stat);
554 }
555
556 return err;
1da177e4
LT
557}
558
559EXPORT_SYMBOL(ide_wait_stat);
560
a5b7e70d
BZ
561/**
562 * ide_in_drive_list - look for drive in black/white list
563 * @id: drive identifier
564 * @drive_table: list to inspect
565 *
566 * Look for a drive in the blacklist and the whitelist tables
567 * Returns 1 if the drive is found in the table.
568 */
569
570int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
571{
572 for ( ; drive_table->id_model; drive_table++)
573 if ((!strcmp(drive_table->id_model, id->model)) &&
574 (!drive_table->id_firmware ||
575 strstr(id->fw_rev, drive_table->id_firmware)))
576 return 1;
577 return 0;
578}
579
b0244a00
BZ
580EXPORT_SYMBOL_GPL(ide_in_drive_list);
581
a5b7e70d
BZ
582/*
583 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
584 * We list them here and depend on the device side cable detection for them.
585 */
586static const struct drive_list_entry ivb_list[] = {
587 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
588 { NULL , NULL }
589};
590
1da177e4
LT
591/*
592 * All hosts that use the 80c ribbon must use!
593 * The name is derived from upper byte of word 93 and the 80c ribbon.
594 */
595u8 eighty_ninty_three (ide_drive_t *drive)
596{
7f8f48af
BZ
597 ide_hwif_t *hwif = drive->hwif;
598 struct hd_driveid *id = drive->id;
a5b7e70d 599 int ivb = ide_in_drive_list(id, ivb_list);
7f8f48af 600
49521f97
BZ
601 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
602 return 1;
603
a5b7e70d
BZ
604 if (ivb)
605 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
606 drive->name);
607
608 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
7f8f48af 609 goto no_80w;
1a1276e7 610
6c3c22f3 611 if (ide_dev_is_sata(id))
1a1276e7 612 return 1;
7f8f48af 613
f68d9320
BZ
614 /*
615 * FIXME:
a5b7e70d 616 * - force bit13 (80c cable present) check also for !ivb devices
f68d9320
BZ
617 * (unless the slave device is pre-ATA3)
618 */
a5b7e70d 619 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
7f8f48af
BZ
620 return 1;
621
622no_80w:
623 if (drive->udma33_warned == 1)
624 return 0;
625
626 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
627 "limiting max speed to UDMA33\n",
49521f97
BZ
628 drive->name,
629 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
7f8f48af
BZ
630
631 drive->udma33_warned = 1;
632
633 return 0;
1da177e4
LT
634}
635
1da177e4
LT
636int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
637{
638 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
639 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
640 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
7f8f48af
BZ
641 if (eighty_ninty_three(drive) == 0) {
642 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
643 "be set\n", drive->name);
1da177e4
LT
644 return 1;
645 }
646 }
7f8f48af 647
1da177e4
LT
648 return 0;
649}
650
651/*
652 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
653 * 1 : Safe to update drive->id DMA registers.
654 * 0 : OOPs not allowed.
655 */
656int set_transfer (ide_drive_t *drive, ide_task_t *args)
657{
658 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
659 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
660 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
661 (drive->id->dma_ultra ||
662 drive->id->dma_mword ||
663 drive->id->dma_1word))
664 return 1;
665
666 return 0;
667}
668
669#ifdef CONFIG_BLK_DEV_IDEDMA
670static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
671{
672 if (!drive->crc_count)
673 return drive->current_speed;
674 drive->crc_count = 0;
675
676 switch(drive->current_speed) {
677 case XFER_UDMA_7: return XFER_UDMA_6;
678 case XFER_UDMA_6: return XFER_UDMA_5;
679 case XFER_UDMA_5: return XFER_UDMA_4;
680 case XFER_UDMA_4: return XFER_UDMA_3;
681 case XFER_UDMA_3: return XFER_UDMA_2;
682 case XFER_UDMA_2: return XFER_UDMA_1;
683 case XFER_UDMA_1: return XFER_UDMA_0;
684 /*
685 * OOPS we do not goto non Ultra DMA modes
686 * without iCRC's available we force
687 * the system to PIO and make the user
688 * invoke the ATA-1 ATA-2 DMA modes.
689 */
690 case XFER_UDMA_0:
691 default: return XFER_PIO_4;
692 }
693}
694#endif /* CONFIG_BLK_DEV_IDEDMA */
695
696/*
697 * Update the
698 */
699int ide_driveid_update (ide_drive_t *drive)
700{
701 ide_hwif_t *hwif = HWIF(drive);
702 struct hd_driveid *id;
703#if 0
704 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
705 if (!id)
706 return 0;
707
708 taskfile_lib_get_identify(drive, (char *)&id);
709
710 ide_fix_driveid(id);
711 if (id) {
712 drive->id->dma_ultra = id->dma_ultra;
713 drive->id->dma_mword = id->dma_mword;
714 drive->id->dma_1word = id->dma_1word;
715 /* anything more ? */
716 kfree(id);
717 }
718 return 1;
719#else
720 /*
721 * Re-read drive->id for possible DMA mode
722 * change (copied from ide-probe.c)
723 */
724 unsigned long timeout, flags;
725
726 SELECT_MASK(drive, 1);
727 if (IDE_CONTROL_REG)
728 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
729 msleep(50);
730 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
731 timeout = jiffies + WAIT_WORSTCASE;
732 do {
733 if (time_after(jiffies, timeout)) {
734 SELECT_MASK(drive, 0);
735 return 0; /* drive timed-out */
736 }
737 msleep(50); /* give drive a breather */
738 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
739 msleep(50); /* wait for IRQ and DRQ_STAT */
740 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
741 SELECT_MASK(drive, 0);
742 printk("%s: CHECK for good STATUS\n", drive->name);
743 return 0;
744 }
745 local_irq_save(flags);
746 SELECT_MASK(drive, 0);
747 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
748 if (!id) {
749 local_irq_restore(flags);
750 return 0;
751 }
752 ata_input_data(drive, id, SECTOR_WORDS);
753 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
754 local_irq_enable();
755 local_irq_restore(flags);
756 ide_fix_driveid(id);
757 if (id) {
758 drive->id->dma_ultra = id->dma_ultra;
759 drive->id->dma_mword = id->dma_mword;
760 drive->id->dma_1word = id->dma_1word;
761 /* anything more ? */
762 kfree(id);
763 }
764
765 return 1;
766#endif
767}
768
74af21cf 769int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
1da177e4 770{
74af21cf
BZ
771 ide_hwif_t *hwif = drive->hwif;
772 int error;
1da177e4
LT
773 u8 stat;
774
775// while (HWGROUP(drive)->busy)
776// msleep(50);
777
778#ifdef CONFIG_BLK_DEV_IDEDMA
0ae2e178 779 if (hwif->ide_dma_on) /* check if host supports DMA */
7469aaf6 780 hwif->dma_host_off(drive);
1da177e4
LT
781#endif
782
783 /*
784 * Don't use ide_wait_cmd here - it will
785 * attempt to set_geometry and recalibrate,
786 * but for some reason these don't work at
787 * this point (lost interrupt).
788 */
789 /*
790 * Select the drive, and issue the SETFEATURES command
791 */
792 disable_irq_nosync(hwif->irq);
793
794 /*
795 * FIXME: we race against the running IRQ here if
796 * this is called from non IRQ context. If we use
797 * disable_irq() we hang on the error path. Work
798 * is needed.
799 */
800
801 udelay(1);
802 SELECT_DRIVE(drive);
803 SELECT_MASK(drive, 0);
804 udelay(1);
805 if (IDE_CONTROL_REG)
806 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
807 hwif->OUTB(speed, IDE_NSECTOR_REG);
808 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
adcd33d4 809 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
1da177e4
LT
810 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
811 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
1da177e4 812
74af21cf
BZ
813 error = __ide_wait_stat(drive, drive->ready_stat,
814 BUSY_STAT|DRQ_STAT|ERR_STAT,
815 WAIT_CMD, &stat);
1da177e4
LT
816
817 SELECT_MASK(drive, 0);
818
819 enable_irq(hwif->irq);
820
821 if (error) {
822 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
823 return error;
824 }
825
826 drive->id->dma_ultra &= ~0xFF00;
827 drive->id->dma_mword &= ~0x0F00;
828 drive->id->dma_1word &= ~0x0F00;
829
830#ifdef CONFIG_BLK_DEV_IDEDMA
831 if (speed >= XFER_SW_DMA_0)
ccf35289 832 hwif->dma_host_on(drive);
0ae2e178 833 else if (hwif->ide_dma_on) /* check if host supports DMA */
7469aaf6 834 hwif->dma_off_quietly(drive);
1da177e4
LT
835#endif
836
837 switch(speed) {
838 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
839 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
840 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
841 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
842 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
843 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
844 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
845 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
846 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
847 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
848 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
849 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
850 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
851 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
852 default: break;
853 }
854 if (!drive->init_speed)
855 drive->init_speed = speed;
856 drive->current_speed = speed;
857 return error;
858}
859
1da177e4
LT
860/*
861 * This should get invoked any time we exit the driver to
862 * wait for an interrupt response from a drive. handler() points
863 * at the appropriate code to handle the next interrupt, and a
864 * timer is started to prevent us from waiting forever in case
865 * something goes wrong (see the ide_timer_expiry() handler later on).
866 *
867 * See also ide_execute_command
868 */
869static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
870 unsigned int timeout, ide_expiry_t *expiry)
871{
872 ide_hwgroup_t *hwgroup = HWGROUP(drive);
873
874 if (hwgroup->handler != NULL) {
875 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
876 "old=%p, new=%p\n",
877 drive->name, hwgroup->handler, handler);
878 }
879 hwgroup->handler = handler;
880 hwgroup->expiry = expiry;
881 hwgroup->timer.expires = jiffies + timeout;
23450319 882 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
883 add_timer(&hwgroup->timer);
884}
885
886void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
887 unsigned int timeout, ide_expiry_t *expiry)
888{
889 unsigned long flags;
890 spin_lock_irqsave(&ide_lock, flags);
891 __ide_set_handler(drive, handler, timeout, expiry);
892 spin_unlock_irqrestore(&ide_lock, flags);
893}
894
895EXPORT_SYMBOL(ide_set_handler);
896
897/**
898 * ide_execute_command - execute an IDE command
899 * @drive: IDE drive to issue the command against
900 * @command: command byte to write
901 * @handler: handler for next phase
902 * @timeout: timeout for command
903 * @expiry: handler to run on timeout
904 *
905 * Helper function to issue an IDE command. This handles the
906 * atomicity requirements, command timing and ensures that the
907 * handler and IRQ setup do not race. All IDE command kick off
908 * should go via this function or do equivalent locking.
909 */
910
911void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
912{
913 unsigned long flags;
914 ide_hwgroup_t *hwgroup = HWGROUP(drive);
915 ide_hwif_t *hwif = HWIF(drive);
916
917 spin_lock_irqsave(&ide_lock, flags);
918
125e1874 919 BUG_ON(hwgroup->handler);
1da177e4
LT
920 hwgroup->handler = handler;
921 hwgroup->expiry = expiry;
922 hwgroup->timer.expires = jiffies + timeout;
23450319 923 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
924 add_timer(&hwgroup->timer);
925 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
926 /* Drive takes 400nS to respond, we must avoid the IRQ being
927 serviced before that.
928
929 FIXME: we could skip this delay with care on non shared
930 devices
931 */
932 ndelay(400);
933 spin_unlock_irqrestore(&ide_lock, flags);
934}
935
936EXPORT_SYMBOL(ide_execute_command);
937
938
939/* needed below */
940static ide_startstop_t do_reset1 (ide_drive_t *, int);
941
942/*
943 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
944 * during an atapi drive reset operation. If the drive has not yet responded,
945 * and we have not yet hit our maximum waiting time, then the timer is restarted
946 * for another 50ms.
947 */
948static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
949{
950 ide_hwgroup_t *hwgroup = HWGROUP(drive);
951 ide_hwif_t *hwif = HWIF(drive);
952 u8 stat;
953
954 SELECT_DRIVE(drive);
955 udelay (10);
956
957 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
958 printk("%s: ATAPI reset complete\n", drive->name);
959 } else {
960 if (time_before(jiffies, hwgroup->poll_timeout)) {
125e1874 961 BUG_ON(HWGROUP(drive)->handler != NULL);
1da177e4
LT
962 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
963 /* continue polling */
964 return ide_started;
965 }
966 /* end of polling */
967 hwgroup->polling = 0;
968 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
969 drive->name, stat);
970 /* do it the old fashioned way */
971 return do_reset1(drive, 1);
972 }
973 /* done polling */
974 hwgroup->polling = 0;
913759ac 975 hwgroup->resetting = 0;
1da177e4
LT
976 return ide_stopped;
977}
978
979/*
980 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
981 * during an ide reset operation. If the drives have not yet responded,
982 * and we have not yet hit our maximum waiting time, then the timer is restarted
983 * for another 50ms.
984 */
985static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
986{
987 ide_hwgroup_t *hwgroup = HWGROUP(drive);
988 ide_hwif_t *hwif = HWIF(drive);
989 u8 tmp;
990
991 if (hwif->reset_poll != NULL) {
992 if (hwif->reset_poll(drive)) {
993 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
994 hwif->name, drive->name);
995 return ide_stopped;
996 }
997 }
998
999 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1000 if (time_before(jiffies, hwgroup->poll_timeout)) {
125e1874 1001 BUG_ON(HWGROUP(drive)->handler != NULL);
1da177e4
LT
1002 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1003 /* continue polling */
1004 return ide_started;
1005 }
1006 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1007 drive->failures++;
1008 } else {
1009 printk("%s: reset: ", hwif->name);
1010 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1011 printk("success\n");
1012 drive->failures = 0;
1013 } else {
1014 drive->failures++;
1015 printk("master: ");
1016 switch (tmp & 0x7f) {
1017 case 1: printk("passed");
1018 break;
1019 case 2: printk("formatter device error");
1020 break;
1021 case 3: printk("sector buffer error");
1022 break;
1023 case 4: printk("ECC circuitry error");
1024 break;
1025 case 5: printk("controlling MPU error");
1026 break;
1027 default:printk("error (0x%02x?)", tmp);
1028 }
1029 if (tmp & 0x80)
1030 printk("; slave: failed");
1031 printk("\n");
1032 }
1033 }
1034 hwgroup->polling = 0; /* done polling */
913759ac 1035 hwgroup->resetting = 0; /* done reset attempt */
1da177e4
LT
1036 return ide_stopped;
1037}
1038
1039static void check_dma_crc(ide_drive_t *drive)
1040{
1041#ifdef CONFIG_BLK_DEV_IDEDMA
1042 if (drive->crc_count) {
7469aaf6 1043 drive->hwif->dma_off_quietly(drive);
1da177e4
LT
1044 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1045 if (drive->current_speed >= XFER_SW_DMA_0)
1046 (void) HWIF(drive)->ide_dma_on(drive);
1047 } else
7469aaf6 1048 ide_dma_off(drive);
1da177e4
LT
1049#endif
1050}
1051
1052static void ide_disk_pre_reset(ide_drive_t *drive)
1053{
1054 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1055
1056 drive->special.all = 0;
1057 drive->special.b.set_geometry = legacy;
1058 drive->special.b.recalibrate = legacy;
1059 if (OK_TO_RESET_CONTROLLER)
1060 drive->mult_count = 0;
1061 if (!drive->keep_settings && !drive->using_dma)
1062 drive->mult_req = 0;
1063 if (drive->mult_req != drive->mult_count)
1064 drive->special.b.set_multmode = 1;
1065}
1066
1067static void pre_reset(ide_drive_t *drive)
1068{
1069 if (drive->media == ide_disk)
1070 ide_disk_pre_reset(drive);
1071 else
1072 drive->post_reset = 1;
1073
1074 if (!drive->keep_settings) {
1075 if (drive->using_dma) {
1076 check_dma_crc(drive);
1077 } else {
1078 drive->unmask = 0;
1079 drive->io_32bit = 0;
1080 }
1081 return;
1082 }
1083 if (drive->using_dma)
1084 check_dma_crc(drive);
1085
1086 if (HWIF(drive)->pre_reset != NULL)
1087 HWIF(drive)->pre_reset(drive);
1088
513daadd
SS
1089 if (drive->current_speed != 0xff)
1090 drive->desired_speed = drive->current_speed;
1091 drive->current_speed = 0xff;
1da177e4
LT
1092}
1093
1094/*
1095 * do_reset1() attempts to recover a confused drive by resetting it.
1096 * Unfortunately, resetting a disk drive actually resets all devices on
1097 * the same interface, so it can really be thought of as resetting the
1098 * interface rather than resetting the drive.
1099 *
1100 * ATAPI devices have their own reset mechanism which allows them to be
1101 * individually reset without clobbering other devices on the same interface.
1102 *
1103 * Unfortunately, the IDE interface does not generate an interrupt to let
1104 * us know when the reset operation has finished, so we must poll for this.
1105 * Equally poor, though, is the fact that this may a very long time to complete,
1106 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1107 * we set a timer to poll at 50ms intervals.
1108 */
1109static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1110{
1111 unsigned int unit;
1112 unsigned long flags;
1113 ide_hwif_t *hwif;
1114 ide_hwgroup_t *hwgroup;
1115
1116 spin_lock_irqsave(&ide_lock, flags);
1117 hwif = HWIF(drive);
1118 hwgroup = HWGROUP(drive);
1119
1120 /* We must not reset with running handlers */
125e1874 1121 BUG_ON(hwgroup->handler != NULL);
1da177e4
LT
1122
1123 /* For an ATAPI device, first try an ATAPI SRST. */
1124 if (drive->media != ide_disk && !do_not_try_atapi) {
913759ac 1125 hwgroup->resetting = 1;
1da177e4
LT
1126 pre_reset(drive);
1127 SELECT_DRIVE(drive);
1128 udelay (20);
68ad9910
AC
1129 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1130 ndelay(400);
1da177e4
LT
1131 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1132 hwgroup->polling = 1;
1133 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1134 spin_unlock_irqrestore(&ide_lock, flags);
1135 return ide_started;
1136 }
1137
1138 /*
1139 * First, reset any device state data we were maintaining
1140 * for any of the drives on this interface.
1141 */
1142 for (unit = 0; unit < MAX_DRIVES; ++unit)
1143 pre_reset(&hwif->drives[unit]);
1144
1145#if OK_TO_RESET_CONTROLLER
1146 if (!IDE_CONTROL_REG) {
1147 spin_unlock_irqrestore(&ide_lock, flags);
1148 return ide_stopped;
1149 }
1150
913759ac 1151 hwgroup->resetting = 1;
1da177e4
LT
1152 /*
1153 * Note that we also set nIEN while resetting the device,
1154 * to mask unwanted interrupts from the interface during the reset.
1155 * However, due to the design of PC hardware, this will cause an
1156 * immediate interrupt due to the edge transition it produces.
1157 * This single interrupt gives us a "fast poll" for drives that
1158 * recover from reset very quickly, saving us the first 50ms wait time.
1159 */
1160 /* set SRST and nIEN */
1161 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1162 /* more than enough time */
1163 udelay(10);
1164 if (drive->quirk_list == 2) {
1165 /* clear SRST and nIEN */
1166 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1167 } else {
1168 /* clear SRST, leave nIEN */
1169 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1170 }
1171 /* more than enough time */
1172 udelay(10);
1173 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1174 hwgroup->polling = 1;
1175 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1176
1177 /*
1178 * Some weird controller like resetting themselves to a strange
1179 * state when the disks are reset this way. At least, the Winbond
1180 * 553 documentation says that
1181 */
1182 if (hwif->resetproc != NULL) {
1183 hwif->resetproc(drive);
1184 }
1185
1186#endif /* OK_TO_RESET_CONTROLLER */
1187
1188 spin_unlock_irqrestore(&ide_lock, flags);
1189 return ide_started;
1190}
1191
1192/*
1193 * ide_do_reset() is the entry point to the drive/interface reset code.
1194 */
1195
1196ide_startstop_t ide_do_reset (ide_drive_t *drive)
1197{
1198 return do_reset1(drive, 0);
1199}
1200
1201EXPORT_SYMBOL(ide_do_reset);
1202
1203/*
1204 * ide_wait_not_busy() waits for the currently selected device on the hwif
1205 * to report a non-busy status, see comments in probe_hwif().
1206 */
1207int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1208{
1209 u8 stat = 0;
1210
1211 while(timeout--) {
1212 /*
1213 * Turn this into a schedule() sleep once I'm sure
1214 * about locking issues (2.5 work ?).
1215 */
1216 mdelay(1);
1217 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1218 if ((stat & BUSY_STAT) == 0)
1219 return 0;
1220 /*
1221 * Assume a value of 0xff means nothing is connected to
1222 * the interface and it doesn't implement the pull-down
1223 * resistor on D7.
1224 */
1225 if (stat == 0xff)
1226 return -ENODEV;
6842f8c8 1227 touch_softlockup_watchdog();
1e86240f 1228 touch_nmi_watchdog();
1da177e4
LT
1229 }
1230 return -EBUSY;
1231}
1232
1233EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1234
This page took 0.397688 seconds and 5 git commands to generate.