ide-pmac: dynamically allocate struct pmac_ide_hwif instances (take 2)
[deliverable/linux.git] / drivers / ide / ppc / pmac.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Support for IDE interfaces on PowerMacs.
58f189fc 3 *
1da177e4
LT
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
6 *
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
c15d5d43 8 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 * Copyright (c) 1995-1998 Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
1da177e4
LT
25#include <linux/types.h>
26#include <linux/kernel.h>
1da177e4
LT
27#include <linux/init.h>
28#include <linux/delay.h>
29#include <linux/ide.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/pci.h>
33#include <linux/adb.h>
34#include <linux/pmu.h>
35#include <linux/scatterlist.h>
36
37#include <asm/prom.h>
38#include <asm/io.h>
39#include <asm/dbdma.h>
40#include <asm/ide.h>
41#include <asm/pci-bridge.h>
42#include <asm/machdep.h>
43#include <asm/pmac_feature.h>
44#include <asm/sections.h>
45#include <asm/irq.h>
46
47#ifndef CONFIG_PPC64
48#include <asm/mediabay.h>
49#endif
50
9e5755bc 51#include "../ide-timing.h"
1da177e4
LT
52
53#undef IDE_PMAC_DEBUG
54
55#define DMA_WAIT_TIMEOUT 50
56
57typedef struct pmac_ide_hwif {
58 unsigned long regbase;
59 int irq;
60 int kind;
61 int aapl_bus_id;
62 unsigned cable_80 : 1;
63 unsigned mediabay : 1;
64 unsigned broken_dma : 1;
65 unsigned broken_dma_warn : 1;
66 struct device_node* node;
67 struct macio_dev *mdev;
68 u32 timings[4];
69 volatile u32 __iomem * *kauai_fcr;
70#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
71 /* Those fields are duplicating what is in hwif. We currently
72 * can't use the hwif ones because of some assumptions that are
73 * beeing done by the generic code about the kind of dma controller
74 * and format of the dma table. This will have to be fixed though.
75 */
76 volatile struct dbdma_regs __iomem * dma_regs;
77 struct dbdma_cmd* dma_table_cpu;
78#endif
79
80} pmac_ide_hwif_t;
81
1da177e4
LT
82enum {
83 controller_ohare, /* OHare based */
84 controller_heathrow, /* Heathrow/Paddington */
85 controller_kl_ata3, /* KeyLargo ATA-3 */
86 controller_kl_ata4, /* KeyLargo ATA-4 */
87 controller_un_ata6, /* UniNorth2 ATA-6 */
88 controller_k2_ata6, /* K2 ATA-6 */
89 controller_sh_ata6, /* Shasta ATA-6 */
90};
91
92static const char* model_name[] = {
93 "OHare ATA", /* OHare based */
94 "Heathrow ATA", /* Heathrow/Paddington */
95 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
96 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
97 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
98 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
99 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
100};
101
102/*
103 * Extra registers, both 32-bit little-endian
104 */
105#define IDE_TIMING_CONFIG 0x200
106#define IDE_INTERRUPT 0x300
107
108/* Kauai (U2) ATA has different register setup */
109#define IDE_KAUAI_PIO_CONFIG 0x200
110#define IDE_KAUAI_ULTRA_CONFIG 0x210
111#define IDE_KAUAI_POLL_CONFIG 0x220
112
113/*
114 * Timing configuration register definitions
115 */
116
117/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
118#define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
119#define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
120#define IDE_SYSCLK_NS 30 /* 33Mhz cell */
121#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
122
123/* 133Mhz cell, found in shasta.
124 * See comments about 100 Mhz Uninorth 2...
125 * Note that PIO_MASK and MDMA_MASK seem to overlap
126 */
127#define TR_133_PIOREG_PIO_MASK 0xff000fff
128#define TR_133_PIOREG_MDMA_MASK 0x00fff800
129#define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
130#define TR_133_UDMAREG_UDMA_EN 0x00000001
131
132/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
133 * this one yet, it appears as a pci device (106b/0033) on uninorth
134 * internal PCI bus and it's clock is controlled like gem or fw. It
135 * appears to be an evolution of keylargo ATA4 with a timing register
136 * extended to 2 32bits registers and a similar DBDMA channel. Other
137 * registers seem to exist but I can't tell much about them.
138 *
139 * So far, I'm using pre-calculated tables for this extracted from
140 * the values used by the MacOS X driver.
141 *
142 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
143 * register controls the UDMA timings. At least, it seems bit 0
144 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
145 * cycle time in units of 10ns. Bits 8..15 are used by I don't
146 * know their meaning yet
147 */
148#define TR_100_PIOREG_PIO_MASK 0xff000fff
149#define TR_100_PIOREG_MDMA_MASK 0x00fff000
150#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
151#define TR_100_UDMAREG_UDMA_EN 0x00000001
152
153
154/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
155 * 40 connector cable and to 4 on 80 connector one.
156 * Clock unit is 15ns (66Mhz)
157 *
158 * 3 Values can be programmed:
159 * - Write data setup, which appears to match the cycle time. They
160 * also call it DIOW setup.
161 * - Ready to pause time (from spec)
162 * - Address setup. That one is weird. I don't see where exactly
163 * it fits in UDMA cycles, I got it's name from an obscure piece
164 * of commented out code in Darwin. They leave it to 0, we do as
165 * well, despite a comment that would lead to think it has a
166 * min value of 45ns.
167 * Apple also add 60ns to the write data setup (or cycle time ?) on
168 * reads.
169 */
170#define TR_66_UDMA_MASK 0xfff00000
171#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
172#define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
173#define TR_66_UDMA_ADDRSETUP_SHIFT 29
174#define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
175#define TR_66_UDMA_RDY2PAUS_SHIFT 25
176#define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
177#define TR_66_UDMA_WRDATASETUP_SHIFT 21
178#define TR_66_MDMA_MASK 0x000ffc00
179#define TR_66_MDMA_RECOVERY_MASK 0x000f8000
180#define TR_66_MDMA_RECOVERY_SHIFT 15
181#define TR_66_MDMA_ACCESS_MASK 0x00007c00
182#define TR_66_MDMA_ACCESS_SHIFT 10
183#define TR_66_PIO_MASK 0x000003ff
184#define TR_66_PIO_RECOVERY_MASK 0x000003e0
185#define TR_66_PIO_RECOVERY_SHIFT 5
186#define TR_66_PIO_ACCESS_MASK 0x0000001f
187#define TR_66_PIO_ACCESS_SHIFT 0
188
189/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
190 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
191 *
192 * The access time and recovery time can be programmed. Some older
193 * Darwin code base limit OHare to 150ns cycle time. I decided to do
194 * the same here fore safety against broken old hardware ;)
195 * The HalfTick bit, when set, adds half a clock (15ns) to the access
196 * time and removes one from recovery. It's not supported on KeyLargo
197 * implementation afaik. The E bit appears to be set for PIO mode 0 and
198 * is used to reach long timings used in this mode.
199 */
200#define TR_33_MDMA_MASK 0x003ff800
201#define TR_33_MDMA_RECOVERY_MASK 0x001f0000
202#define TR_33_MDMA_RECOVERY_SHIFT 16
203#define TR_33_MDMA_ACCESS_MASK 0x0000f800
204#define TR_33_MDMA_ACCESS_SHIFT 11
205#define TR_33_MDMA_HALFTICK 0x00200000
206#define TR_33_PIO_MASK 0x000007ff
207#define TR_33_PIO_E 0x00000400
208#define TR_33_PIO_RECOVERY_MASK 0x000003e0
209#define TR_33_PIO_RECOVERY_SHIFT 5
210#define TR_33_PIO_ACCESS_MASK 0x0000001f
211#define TR_33_PIO_ACCESS_SHIFT 0
212
213/*
214 * Interrupt register definitions
215 */
216#define IDE_INTR_DMA 0x80000000
217#define IDE_INTR_DEVICE 0x40000000
218
219/*
220 * FCR Register on Kauai. Not sure what bit 0x4 is ...
221 */
222#define KAUAI_FCR_UATA_MAGIC 0x00000004
223#define KAUAI_FCR_UATA_RESET_N 0x00000002
224#define KAUAI_FCR_UATA_ENABLE 0x00000001
225
226#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
227
228/* Rounded Multiword DMA timings
229 *
230 * I gave up finding a generic formula for all controller
231 * types and instead, built tables based on timing values
232 * used by Apple in Darwin's implementation.
233 */
234struct mdma_timings_t {
235 int accessTime;
236 int recoveryTime;
237 int cycleTime;
238};
239
aacaf9bd 240struct mdma_timings_t mdma_timings_33[] =
1da177e4
LT
241{
242 { 240, 240, 480 },
243 { 180, 180, 360 },
244 { 135, 135, 270 },
245 { 120, 120, 240 },
246 { 105, 105, 210 },
247 { 90, 90, 180 },
248 { 75, 75, 150 },
249 { 75, 45, 120 },
250 { 0, 0, 0 }
251};
252
aacaf9bd 253struct mdma_timings_t mdma_timings_33k[] =
1da177e4
LT
254{
255 { 240, 240, 480 },
256 { 180, 180, 360 },
257 { 150, 150, 300 },
258 { 120, 120, 240 },
259 { 90, 120, 210 },
260 { 90, 90, 180 },
261 { 90, 60, 150 },
262 { 90, 30, 120 },
263 { 0, 0, 0 }
264};
265
aacaf9bd 266struct mdma_timings_t mdma_timings_66[] =
1da177e4
LT
267{
268 { 240, 240, 480 },
269 { 180, 180, 360 },
270 { 135, 135, 270 },
271 { 120, 120, 240 },
272 { 105, 105, 210 },
273 { 90, 90, 180 },
274 { 90, 75, 165 },
275 { 75, 45, 120 },
276 { 0, 0, 0 }
277};
278
279/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
280struct {
281 int addrSetup; /* ??? */
282 int rdy2pause;
283 int wrDataSetup;
aacaf9bd 284} kl66_udma_timings[] =
1da177e4
LT
285{
286 { 0, 180, 120 }, /* Mode 0 */
287 { 0, 150, 90 }, /* 1 */
288 { 0, 120, 60 }, /* 2 */
289 { 0, 90, 45 }, /* 3 */
290 { 0, 90, 30 } /* 4 */
291};
292
293/* UniNorth 2 ATA/100 timings */
294struct kauai_timing {
295 int cycle_time;
296 u32 timing_reg;
297};
298
aacaf9bd 299static struct kauai_timing kauai_pio_timings[] =
1da177e4
LT
300{
301 { 930 , 0x08000fff },
302 { 600 , 0x08000a92 },
303 { 383 , 0x0800060f },
304 { 360 , 0x08000492 },
305 { 330 , 0x0800048f },
306 { 300 , 0x080003cf },
307 { 270 , 0x080003cc },
308 { 240 , 0x0800038b },
309 { 239 , 0x0800030c },
310 { 180 , 0x05000249 },
c15d5d43
BZ
311 { 120 , 0x04000148 },
312 { 0 , 0 },
1da177e4
LT
313};
314
aacaf9bd 315static struct kauai_timing kauai_mdma_timings[] =
1da177e4
LT
316{
317 { 1260 , 0x00fff000 },
318 { 480 , 0x00618000 },
319 { 360 , 0x00492000 },
320 { 270 , 0x0038e000 },
321 { 240 , 0x0030c000 },
322 { 210 , 0x002cb000 },
323 { 180 , 0x00249000 },
324 { 150 , 0x00209000 },
325 { 120 , 0x00148000 },
326 { 0 , 0 },
327};
328
aacaf9bd 329static struct kauai_timing kauai_udma_timings[] =
1da177e4
LT
330{
331 { 120 , 0x000070c0 },
332 { 90 , 0x00005d80 },
333 { 60 , 0x00004a60 },
334 { 45 , 0x00003a50 },
335 { 30 , 0x00002a30 },
336 { 20 , 0x00002921 },
337 { 0 , 0 },
338};
339
aacaf9bd 340static struct kauai_timing shasta_pio_timings[] =
1da177e4
LT
341{
342 { 930 , 0x08000fff },
343 { 600 , 0x0A000c97 },
344 { 383 , 0x07000712 },
345 { 360 , 0x040003cd },
346 { 330 , 0x040003cd },
347 { 300 , 0x040003cd },
348 { 270 , 0x040003cd },
349 { 240 , 0x040003cd },
350 { 239 , 0x040003cd },
351 { 180 , 0x0400028b },
c15d5d43
BZ
352 { 120 , 0x0400010a },
353 { 0 , 0 },
1da177e4
LT
354};
355
aacaf9bd 356static struct kauai_timing shasta_mdma_timings[] =
1da177e4
LT
357{
358 { 1260 , 0x00fff000 },
359 { 480 , 0x00820800 },
360 { 360 , 0x00820800 },
361 { 270 , 0x00820800 },
362 { 240 , 0x00820800 },
363 { 210 , 0x00820800 },
364 { 180 , 0x00820800 },
365 { 150 , 0x0028b000 },
366 { 120 , 0x001ca000 },
367 { 0 , 0 },
368};
369
aacaf9bd 370static struct kauai_timing shasta_udma133_timings[] =
1da177e4
LT
371{
372 { 120 , 0x00035901, },
373 { 90 , 0x000348b1, },
374 { 60 , 0x00033881, },
375 { 45 , 0x00033861, },
376 { 30 , 0x00033841, },
377 { 20 , 0x00033031, },
378 { 15 , 0x00033021, },
379 { 0 , 0 },
380};
381
382
383static inline u32
384kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
385{
386 int i;
387
388 for (i=0; table[i].cycle_time; i++)
389 if (cycle_time > table[i+1].cycle_time)
390 return table[i].timing_reg;
90a87ea4 391 BUG();
1da177e4
LT
392 return 0;
393}
394
395/* allow up to 256 DBDMA commands per xfer */
396#define MAX_DCMDS 256
397
398/*
399 * Wait 1s for disk to answer on IDE bus after a hard reset
400 * of the device (via GPIO/FCR).
401 *
402 * Some devices seem to "pollute" the bus even after dropping
403 * the BSY bit (typically some combo drives slave on the UDMA
404 * bus) after a hard reset. Since we hard reset all drives on
405 * KeyLargo ATA66, we have to keep that delay around. I may end
406 * up not hard resetting anymore on these and keep the delay only
407 * for older interfaces instead (we have to reset when coming
408 * from MacOS...) --BenH.
409 */
410#define IDE_WAKEUP_DELAY (1*HZ)
411
c413b9b9 412static int pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
1da177e4 413static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
1da177e4
LT
414static void pmac_ide_selectproc(ide_drive_t *drive);
415static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
416
417#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
418
23579a2a
BZ
419#define PMAC_IDE_REG(x) \
420 ((void __iomem *)((drive)->hwif->io_ports[IDE_DATA_OFFSET] + (x)))
1da177e4
LT
421
422/*
423 * Apply the timings of the proper unit (master/slave) to the shared
424 * timing register when selecting that unit. This version is for
425 * ASICs with a single timing register
426 */
aacaf9bd 427static void
1da177e4
LT
428pmac_ide_selectproc(ide_drive_t *drive)
429{
430 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
431
432 if (pmif == NULL)
433 return;
434
435 if (drive->select.b.unit & 0x01)
436 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
437 else
438 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
439 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
440}
441
442/*
443 * Apply the timings of the proper unit (master/slave) to the shared
444 * timing register when selecting that unit. This version is for
445 * ASICs with a dual timing register (Kauai)
446 */
aacaf9bd 447static void
1da177e4
LT
448pmac_ide_kauai_selectproc(ide_drive_t *drive)
449{
450 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
451
452 if (pmif == NULL)
453 return;
454
455 if (drive->select.b.unit & 0x01) {
456 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
457 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
458 } else {
459 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
460 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
461 }
462 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
463}
464
465/*
466 * Force an update of controller timing values for a given drive
467 */
aacaf9bd 468static void
1da177e4
LT
469pmac_ide_do_update_timings(ide_drive_t *drive)
470{
471 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
472
473 if (pmif == NULL)
474 return;
475
476 if (pmif->kind == controller_sh_ata6 ||
477 pmif->kind == controller_un_ata6 ||
478 pmif->kind == controller_k2_ata6)
479 pmac_ide_kauai_selectproc(drive);
480 else
481 pmac_ide_selectproc(drive);
482}
483
484static void
485pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
486{
487 u32 tmp;
488
489 writeb(value, (void __iomem *) port);
490 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
491}
492
1da177e4
LT
493/*
494 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
495 */
aacaf9bd 496static void
26bcb879 497pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
1da177e4 498{
0b46ff2e 499 u32 *timings, t;
1da177e4
LT
500 unsigned accessTicks, recTicks;
501 unsigned accessTime, recTime;
502 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
7dd00083
BZ
503 unsigned int cycle_time;
504
1da177e4
LT
505 if (pmif == NULL)
506 return;
507
508 /* which drive is it ? */
509 timings = &pmif->timings[drive->select.b.unit & 0x01];
0b46ff2e 510 t = *timings;
1da177e4 511
7dd00083 512 cycle_time = ide_pio_cycle_time(drive, pio);
1da177e4
LT
513
514 switch (pmif->kind) {
515 case controller_sh_ata6: {
516 /* 133Mhz cell */
7dd00083 517 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
0b46ff2e 518 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
1da177e4
LT
519 break;
520 }
521 case controller_un_ata6:
522 case controller_k2_ata6: {
523 /* 100Mhz cell */
7dd00083 524 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
0b46ff2e 525 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
1da177e4
LT
526 break;
527 }
528 case controller_kl_ata4:
529 /* 66Mhz cell */
7dd00083 530 recTime = cycle_time - ide_pio_timings[pio].active_time
1da177e4
LT
531 - ide_pio_timings[pio].setup_time;
532 recTime = max(recTime, 150U);
533 accessTime = ide_pio_timings[pio].active_time;
534 accessTime = max(accessTime, 150U);
535 accessTicks = SYSCLK_TICKS_66(accessTime);
536 accessTicks = min(accessTicks, 0x1fU);
537 recTicks = SYSCLK_TICKS_66(recTime);
538 recTicks = min(recTicks, 0x1fU);
0b46ff2e
BH
539 t = (t & ~TR_66_PIO_MASK) |
540 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
541 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
1da177e4
LT
542 break;
543 default: {
544 /* 33Mhz cell */
545 int ebit = 0;
7dd00083 546 recTime = cycle_time - ide_pio_timings[pio].active_time
1da177e4
LT
547 - ide_pio_timings[pio].setup_time;
548 recTime = max(recTime, 150U);
549 accessTime = ide_pio_timings[pio].active_time;
550 accessTime = max(accessTime, 150U);
551 accessTicks = SYSCLK_TICKS(accessTime);
552 accessTicks = min(accessTicks, 0x1fU);
553 accessTicks = max(accessTicks, 4U);
554 recTicks = SYSCLK_TICKS(recTime);
555 recTicks = min(recTicks, 0x1fU);
556 recTicks = max(recTicks, 5U) - 4;
557 if (recTicks > 9) {
558 recTicks--; /* guess, but it's only for PIO0, so... */
559 ebit = 1;
560 }
0b46ff2e 561 t = (t & ~TR_33_PIO_MASK) |
1da177e4
LT
562 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
563 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
564 if (ebit)
0b46ff2e 565 t |= TR_33_PIO_E;
1da177e4
LT
566 break;
567 }
568 }
569
570#ifdef IDE_PMAC_DEBUG
571 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
572 drive->name, pio, *timings);
573#endif
574
0b46ff2e 575 *timings = t;
c15d5d43 576 pmac_ide_do_update_timings(drive);
1da177e4
LT
577}
578
579#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
580
581/*
582 * Calculate KeyLargo ATA/66 UDMA timings
583 */
aacaf9bd 584static int
1da177e4
LT
585set_timings_udma_ata4(u32 *timings, u8 speed)
586{
587 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
588
589 if (speed > XFER_UDMA_4)
590 return 1;
591
592 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
593 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
594 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
595
596 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
597 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
598 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
599 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
600 TR_66_UDMA_EN;
601#ifdef IDE_PMAC_DEBUG
602 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
603 speed & 0xf, *timings);
604#endif
605
606 return 0;
607}
608
609/*
610 * Calculate Kauai ATA/100 UDMA timings
611 */
aacaf9bd 612static int
1da177e4
LT
613set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
614{
615 struct ide_timing *t = ide_timing_find_mode(speed);
616 u32 tr;
617
618 if (speed > XFER_UDMA_5 || t == NULL)
619 return 1;
620 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
1da177e4
LT
621 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
622 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
623
624 return 0;
625}
626
627/*
628 * Calculate Shasta ATA/133 UDMA timings
629 */
aacaf9bd 630static int
1da177e4
LT
631set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
632{
633 struct ide_timing *t = ide_timing_find_mode(speed);
634 u32 tr;
635
636 if (speed > XFER_UDMA_6 || t == NULL)
637 return 1;
638 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
1da177e4
LT
639 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
640 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
641
642 return 0;
643}
644
645/*
646 * Calculate MDMA timings for all cells
647 */
90f72eca 648static void
1da177e4 649set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
90f72eca 650 u8 speed)
1da177e4
LT
651{
652 int cycleTime, accessTime = 0, recTime = 0;
653 unsigned accessTicks, recTicks;
90f72eca 654 struct hd_driveid *id = drive->id;
1da177e4
LT
655 struct mdma_timings_t* tm = NULL;
656 int i;
657
658 /* Get default cycle time for mode */
659 switch(speed & 0xf) {
660 case 0: cycleTime = 480; break;
661 case 1: cycleTime = 150; break;
662 case 2: cycleTime = 120; break;
663 default:
90f72eca
BZ
664 BUG();
665 break;
1da177e4 666 }
90f72eca
BZ
667
668 /* Check if drive provides explicit DMA cycle time */
669 if ((id->field_valid & 2) && id->eide_dma_time)
670 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
671
1da177e4
LT
672 /* OHare limits according to some old Apple sources */
673 if ((intf_type == controller_ohare) && (cycleTime < 150))
674 cycleTime = 150;
675 /* Get the proper timing array for this controller */
676 switch(intf_type) {
677 case controller_sh_ata6:
678 case controller_un_ata6:
679 case controller_k2_ata6:
680 break;
681 case controller_kl_ata4:
682 tm = mdma_timings_66;
683 break;
684 case controller_kl_ata3:
685 tm = mdma_timings_33k;
686 break;
687 default:
688 tm = mdma_timings_33;
689 break;
690 }
691 if (tm != NULL) {
692 /* Lookup matching access & recovery times */
693 i = -1;
694 for (;;) {
695 if (tm[i+1].cycleTime < cycleTime)
696 break;
697 i++;
698 }
1da177e4
LT
699 cycleTime = tm[i].cycleTime;
700 accessTime = tm[i].accessTime;
701 recTime = tm[i].recoveryTime;
702
703#ifdef IDE_PMAC_DEBUG
704 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
705 drive->name, cycleTime, accessTime, recTime);
706#endif
707 }
708 switch(intf_type) {
709 case controller_sh_ata6: {
710 /* 133Mhz cell */
711 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
1da177e4
LT
712 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
713 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
714 }
715 case controller_un_ata6:
716 case controller_k2_ata6: {
717 /* 100Mhz cell */
718 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
1da177e4
LT
719 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
720 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
721 }
722 break;
723 case controller_kl_ata4:
724 /* 66Mhz cell */
725 accessTicks = SYSCLK_TICKS_66(accessTime);
726 accessTicks = min(accessTicks, 0x1fU);
727 accessTicks = max(accessTicks, 0x1U);
728 recTicks = SYSCLK_TICKS_66(recTime);
729 recTicks = min(recTicks, 0x1fU);
730 recTicks = max(recTicks, 0x3U);
731 /* Clear out mdma bits and disable udma */
732 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
733 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
734 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
735 break;
736 case controller_kl_ata3:
737 /* 33Mhz cell on KeyLargo */
738 accessTicks = SYSCLK_TICKS(accessTime);
739 accessTicks = max(accessTicks, 1U);
740 accessTicks = min(accessTicks, 0x1fU);
741 accessTime = accessTicks * IDE_SYSCLK_NS;
742 recTicks = SYSCLK_TICKS(recTime);
743 recTicks = max(recTicks, 1U);
744 recTicks = min(recTicks, 0x1fU);
745 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
746 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
747 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
748 break;
749 default: {
750 /* 33Mhz cell on others */
751 int halfTick = 0;
752 int origAccessTime = accessTime;
753 int origRecTime = recTime;
754
755 accessTicks = SYSCLK_TICKS(accessTime);
756 accessTicks = max(accessTicks, 1U);
757 accessTicks = min(accessTicks, 0x1fU);
758 accessTime = accessTicks * IDE_SYSCLK_NS;
759 recTicks = SYSCLK_TICKS(recTime);
760 recTicks = max(recTicks, 2U) - 1;
761 recTicks = min(recTicks, 0x1fU);
762 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
763 if ((accessTicks > 1) &&
764 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
765 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
766 halfTick = 1;
767 accessTicks--;
768 }
769 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
770 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
771 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
772 if (halfTick)
773 *timings |= TR_33_MDMA_HALFTICK;
774 }
775 }
776#ifdef IDE_PMAC_DEBUG
777 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
778 drive->name, speed & 0xf, *timings);
779#endif
1da177e4
LT
780}
781#endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
782
88b2b32b 783static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
1da177e4
LT
784{
785 int unit = (drive->select.b.unit & 0x01);
786 int ret = 0;
787 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
085798b1 788 u32 *timings, *timings2, tl[2];
1da177e4 789
1da177e4
LT
790 timings = &pmif->timings[unit];
791 timings2 = &pmif->timings[unit+2];
085798b1
BZ
792
793 /* Copy timings to local image */
794 tl[0] = *timings;
795 tl[1] = *timings2;
796
1da177e4 797#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
4db90a14
BZ
798 if (speed >= XFER_UDMA_0) {
799 if (pmif->kind == controller_kl_ata4)
800 ret = set_timings_udma_ata4(&tl[0], speed);
801 else if (pmif->kind == controller_un_ata6
802 || pmif->kind == controller_k2_ata6)
803 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
804 else if (pmif->kind == controller_sh_ata6)
805 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
806 else
807 ret = -1;
808 } else
809 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
1da177e4 810#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1da177e4 811 if (ret)
88b2b32b 812 return;
085798b1
BZ
813
814 /* Apply timings to controller */
815 *timings = tl[0];
816 *timings2 = tl[1];
817
1da177e4 818 pmac_ide_do_update_timings(drive);
1da177e4
LT
819}
820
821/*
822 * Blast some well known "safe" values to the timing registers at init or
823 * wakeup from sleep time, before we do real calculation
824 */
aacaf9bd 825static void
1da177e4
LT
826sanitize_timings(pmac_ide_hwif_t *pmif)
827{
828 unsigned int value, value2 = 0;
829
830 switch(pmif->kind) {
831 case controller_sh_ata6:
832 value = 0x0a820c97;
833 value2 = 0x00033031;
834 break;
835 case controller_un_ata6:
836 case controller_k2_ata6:
837 value = 0x08618a92;
838 value2 = 0x00002921;
839 break;
840 case controller_kl_ata4:
841 value = 0x0008438c;
842 break;
843 case controller_kl_ata3:
844 value = 0x00084526;
845 break;
846 case controller_heathrow:
847 case controller_ohare:
848 default:
849 value = 0x00074526;
850 break;
851 }
852 pmif->timings[0] = pmif->timings[1] = value;
853 pmif->timings[2] = pmif->timings[3] = value2;
854}
855
1da177e4
LT
856/* Suspend call back, should be called after the child devices
857 * have actually been suspended
858 */
859static int
860pmac_ide_do_suspend(ide_hwif_t *hwif)
861{
862 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
863
864 /* We clear the timings */
865 pmif->timings[0] = 0;
866 pmif->timings[1] = 0;
867
616299af
BH
868 disable_irq(pmif->irq);
869
1da177e4
LT
870 /* The media bay will handle itself just fine */
871 if (pmif->mediabay)
872 return 0;
873
874 /* Kauai has bus control FCRs directly here */
875 if (pmif->kauai_fcr) {
876 u32 fcr = readl(pmif->kauai_fcr);
877 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
878 writel(fcr, pmif->kauai_fcr);
879 }
880
881 /* Disable the bus on older machines and the cell on kauai */
882 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
883 0);
884
885 return 0;
886}
887
888/* Resume call back, should be called before the child devices
889 * are resumed
890 */
891static int
892pmac_ide_do_resume(ide_hwif_t *hwif)
893{
894 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
895
896 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
897 if (!pmif->mediabay) {
898 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
899 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
900 msleep(10);
901 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
1da177e4
LT
902
903 /* Kauai has it different */
904 if (pmif->kauai_fcr) {
905 u32 fcr = readl(pmif->kauai_fcr);
906 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
907 writel(fcr, pmif->kauai_fcr);
908 }
616299af
BH
909
910 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1da177e4
LT
911 }
912
913 /* Sanitize drive timings */
914 sanitize_timings(pmif);
915
616299af
BH
916 enable_irq(pmif->irq);
917
1da177e4
LT
918 return 0;
919}
920
c413b9b9
BZ
921static const struct ide_port_info pmac_port_info = {
922 .chipset = ide_pmac,
923 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
924 IDE_HFLAG_PIO_NO_DOWNGRADE |
925 IDE_HFLAG_POST_SET_MODE |
926 IDE_HFLAG_NO_DMA | /* no SFF-style DMA */
927 IDE_HFLAG_UNMASK_IRQS,
928 .pio_mask = ATA_PIO4,
929 .mwdma_mask = ATA_MWDMA2,
930};
931
1da177e4
LT
932/*
933 * Setup, register & probe an IDE channel driven by this driver, this is
934 * called by one of the 2 probe functions (macio or PCI). Note that a channel
935 * that ends up beeing free of any device is not kept around by this driver
936 * (it is kept in 2.4). This introduce an interface numbering change on some
937 * rare machines unfortunately, but it's better this way.
938 */
468e4681 939static int __devinit
57c802e8 940pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
1da177e4
LT
941{
942 struct device_node *np = pmif->node;
018a3d1d 943 const int *bidp;
8447d9d5 944 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
c413b9b9 945 struct ide_port_info d = pmac_port_info;
1da177e4
LT
946
947 pmif->cable_80 = 0;
948 pmif->broken_dma = pmif->broken_dma_warn = 0;
c413b9b9 949 if (of_device_is_compatible(np, "shasta-ata")) {
1da177e4 950 pmif->kind = controller_sh_ata6;
c413b9b9
BZ
951 d.udma_mask = ATA_UDMA6;
952 } else if (of_device_is_compatible(np, "kauai-ata")) {
1da177e4 953 pmif->kind = controller_un_ata6;
c413b9b9
BZ
954 d.udma_mask = ATA_UDMA5;
955 } else if (of_device_is_compatible(np, "K2-UATA")) {
1da177e4 956 pmif->kind = controller_k2_ata6;
c413b9b9
BZ
957 d.udma_mask = ATA_UDMA5;
958 } else if (of_device_is_compatible(np, "keylargo-ata")) {
959 if (strcmp(np->name, "ata-4") == 0) {
1da177e4 960 pmif->kind = controller_kl_ata4;
c413b9b9
BZ
961 d.udma_mask = ATA_UDMA4;
962 } else
1da177e4 963 pmif->kind = controller_kl_ata3;
c413b9b9 964 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1da177e4 965 pmif->kind = controller_heathrow;
c413b9b9 966 } else {
1da177e4
LT
967 pmif->kind = controller_ohare;
968 pmif->broken_dma = 1;
969 }
970
40cd3a45 971 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1da177e4
LT
972 pmif->aapl_bus_id = bidp ? *bidp : 0;
973
974 /* Get cable type from device-tree */
975 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
976 || pmif->kind == controller_k2_ata6
977 || pmif->kind == controller_sh_ata6) {
40cd3a45 978 const char* cable = of_get_property(np, "cable-type", NULL);
1da177e4
LT
979 if (cable && !strncmp(cable, "80-", 3))
980 pmif->cable_80 = 1;
981 }
982 /* G5's seem to have incorrect cable type in device-tree. Let's assume
983 * they have a 80 conductor cable, this seem to be always the case unless
984 * the user mucked around
985 */
55b61fec
SR
986 if (of_device_is_compatible(np, "K2-UATA") ||
987 of_device_is_compatible(np, "shasta-ata"))
1da177e4
LT
988 pmif->cable_80 = 1;
989
990 /* On Kauai-type controllers, we make sure the FCR is correct */
991 if (pmif->kauai_fcr)
992 writel(KAUAI_FCR_UATA_MAGIC |
993 KAUAI_FCR_UATA_RESET_N |
994 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
995
996 pmif->mediabay = 0;
997
998 /* Make sure we have sane timings */
999 sanitize_timings(pmif);
1000
1001#ifndef CONFIG_PPC64
1002 /* XXX FIXME: Media bay stuff need re-organizing */
1003 if (np->parent && np->parent->name
1004 && strcasecmp(np->parent->name, "media-bay") == 0) {
8c870933 1005#ifdef CONFIG_PMAC_MEDIABAY
2dde7861
BZ
1006 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1007 hwif);
8c870933 1008#endif /* CONFIG_PMAC_MEDIABAY */
1da177e4
LT
1009 pmif->mediabay = 1;
1010 if (!bidp)
1011 pmif->aapl_bus_id = 1;
1012 } else if (pmif->kind == controller_ohare) {
1013 /* The code below is having trouble on some ohare machines
1014 * (timing related ?). Until I can put my hand on one of these
1015 * units, I keep the old way
1016 */
1017 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1018 } else
1019#endif
1020 {
1021 /* This is necessary to enable IDE when net-booting */
1022 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1023 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1024 msleep(10);
1025 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1026 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1027 }
1028
1029 /* Setup MMIO ops */
1030 default_hwif_mmiops(hwif);
1031 hwif->OUTBSYNC = pmac_outbsync;
1032
1033 /* Tell common code _not_ to mess with resources */
2ad1e558 1034 hwif->mmio = 1;
1da177e4 1035 hwif->hwif_data = pmif;
57c802e8
BZ
1036 ide_init_port_hw(hwif, hw);
1037 hwif->noprobe = pmif->mediabay;
49521f97 1038 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
26bcb879 1039 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1da177e4
LT
1040 if (pmif->kind == controller_un_ata6
1041 || pmif->kind == controller_k2_ata6
1042 || pmif->kind == controller_sh_ata6)
1043 hwif->selectproc = pmac_ide_kauai_selectproc;
1044 else
1045 hwif->selectproc = pmac_ide_selectproc;
88b2b32b 1046 hwif->set_dma_mode = pmac_ide_set_dma_mode;
1da177e4 1047
1da177e4
LT
1048 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1049 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1050 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1051
8c870933 1052#ifdef CONFIG_PMAC_MEDIABAY
1da177e4
LT
1053 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1054 hwif->noprobe = 0;
8c870933 1055#endif /* CONFIG_PMAC_MEDIABAY */
1da177e4 1056
1da177e4 1057#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
c413b9b9
BZ
1058 if (pmif->cable_80 == 0)
1059 d.udma_mask &= ATA_UDMA2;
1da177e4 1060 /* has a DBDMA controller channel */
c413b9b9
BZ
1061 if (pmif->dma_regs == 0 || pmac_ide_setup_dma(pmif, hwif) < 0)
1062#endif
1063 d.udma_mask = d.mwdma_mask = 0;
1da177e4 1064
8447d9d5 1065 idx[0] = hwif->index;
1da177e4 1066
c413b9b9 1067 ide_device_add(idx, &d);
5cbf79cd 1068
1da177e4
LT
1069 return 0;
1070}
1071
5c58666f
BZ
1072static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1073{
1074 int i;
1075
1076 for (i = 0; i < 8; ++i)
1077 hw->io_ports[i] = base + i * 0x10;
1078 hw->io_ports[8] = base + 0x160;
1079}
1080
1da177e4
LT
1081/*
1082 * Attach to a macio probed interface
1083 */
1084static int __devinit
5e655772 1085pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1da177e4
LT
1086{
1087 void __iomem *base;
1088 unsigned long regbase;
1089 int irq;
1090 ide_hwif_t *hwif;
1091 pmac_ide_hwif_t *pmif;
1092 int i, rc;
57c802e8 1093 hw_regs_t hw;
1da177e4 1094
5297a3e5
BZ
1095 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1096 if (pmif == NULL)
1097 return -ENOMEM;
1098
1da177e4 1099 i = 0;
5297a3e5 1100 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0))
1da177e4
LT
1101 ++i;
1102 if (i >= MAX_HWIFS) {
1103 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1104 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
5297a3e5
BZ
1105 rc = -ENODEV;
1106 goto out_free_pmif;
1da177e4
LT
1107 }
1108
1da177e4
LT
1109 hwif = &ide_hwifs[i];
1110
cc5d0189 1111 if (macio_resource_count(mdev) == 0) {
1da177e4
LT
1112 printk(KERN_WARNING "ide%d: no address for %s\n",
1113 i, mdev->ofdev.node->full_name);
5297a3e5
BZ
1114 rc = -ENXIO;
1115 goto out_free_pmif;
1da177e4
LT
1116 }
1117
1118 /* Request memory resource for IO ports */
1119 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1120 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
5297a3e5
BZ
1121 rc = -EBUSY;
1122 goto out_free_pmif;
1da177e4
LT
1123 }
1124
1125 /* XXX This is bogus. Should be fixed in the registry by checking
1126 * the kind of host interrupt controller, a bit like gatwick
1127 * fixes in irq.c. That works well enough for the single case
1128 * where that happens though...
1129 */
1130 if (macio_irq_count(mdev) == 0) {
1131 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1132 i, mdev->ofdev.node->full_name);
69917c26 1133 irq = irq_create_mapping(NULL, 13);
1da177e4
LT
1134 } else
1135 irq = macio_irq(mdev, 0);
1136
1137 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1138 regbase = (unsigned long) base;
1139
36501650 1140 hwif->dev = &mdev->bus->pdev->dev;
1da177e4
LT
1141
1142 pmif->mdev = mdev;
1143 pmif->node = mdev->ofdev.node;
1144 pmif->regbase = regbase;
1145 pmif->irq = irq;
1146 pmif->kauai_fcr = NULL;
1147#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1148 if (macio_resource_count(mdev) >= 2) {
1149 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1150 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1151 else
1152 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1153 } else
1154 pmif->dma_regs = NULL;
1155#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1156 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1157
57c802e8 1158 memset(&hw, 0, sizeof(hw));
5c58666f 1159 pmac_ide_init_ports(&hw, pmif->regbase);
57c802e8
BZ
1160 hw.irq = irq;
1161 hw.dev = &mdev->ofdev.dev;
1162
1163 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1da177e4
LT
1164 if (rc != 0) {
1165 /* The inteface is released to the common IDE layer */
1166 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1167 iounmap(base);
ed908fa1 1168 if (pmif->dma_regs) {
1da177e4 1169 iounmap(pmif->dma_regs);
ed908fa1
BZ
1170 macio_release_resource(mdev, 1);
1171 }
1da177e4 1172 macio_release_resource(mdev, 0);
5297a3e5 1173 kfree(pmif);
1da177e4
LT
1174 }
1175
1176 return rc;
5297a3e5
BZ
1177
1178out_free_pmif:
1179 kfree(pmif);
1180 return rc;
1da177e4
LT
1181}
1182
1183static int
8b4b8a24 1184pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1da177e4
LT
1185{
1186 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1187 int rc = 0;
1188
8b4b8a24 1189 if (mesg.event != mdev->ofdev.dev.power.power_state.event
3a2d5b70 1190 && (mesg.event & PM_EVENT_SLEEP)) {
1da177e4
LT
1191 rc = pmac_ide_do_suspend(hwif);
1192 if (rc == 0)
8b4b8a24 1193 mdev->ofdev.dev.power.power_state = mesg;
1da177e4
LT
1194 }
1195
1196 return rc;
1197}
1198
1199static int
1200pmac_ide_macio_resume(struct macio_dev *mdev)
1201{
1202 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1203 int rc = 0;
1204
ca078bae 1205 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1da177e4
LT
1206 rc = pmac_ide_do_resume(hwif);
1207 if (rc == 0)
829ca9a3 1208 mdev->ofdev.dev.power.power_state = PMSG_ON;
1da177e4
LT
1209 }
1210
1211 return rc;
1212}
1213
1214/*
1215 * Attach to a PCI probed interface
1216 */
1217static int __devinit
1218pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1219{
1220 ide_hwif_t *hwif;
1221 struct device_node *np;
1222 pmac_ide_hwif_t *pmif;
1223 void __iomem *base;
1224 unsigned long rbase, rlen;
1225 int i, rc;
57c802e8 1226 hw_regs_t hw;
1da177e4
LT
1227
1228 np = pci_device_to_OF_node(pdev);
1229 if (np == NULL) {
1230 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1231 return -ENODEV;
1232 }
5297a3e5
BZ
1233
1234 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1235 if (pmif == NULL)
1236 return -ENOMEM;
1237
1da177e4 1238 i = 0;
5297a3e5 1239 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0))
1da177e4
LT
1240 ++i;
1241 if (i >= MAX_HWIFS) {
1242 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1243 printk(KERN_ERR " %s\n", np->full_name);
5297a3e5
BZ
1244 rc = -ENODEV;
1245 goto out_free_pmif;
1da177e4
LT
1246 }
1247
1da177e4
LT
1248 hwif = &ide_hwifs[i];
1249
1250 if (pci_enable_device(pdev)) {
1251 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1252 i, np->full_name);
5297a3e5
BZ
1253 rc = -ENXIO;
1254 goto out_free_pmif;
1da177e4
LT
1255 }
1256 pci_set_master(pdev);
1257
1258 if (pci_request_regions(pdev, "Kauai ATA")) {
1259 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1260 i, np->full_name);
5297a3e5
BZ
1261 rc = -ENXIO;
1262 goto out_free_pmif;
1da177e4
LT
1263 }
1264
36501650 1265 hwif->dev = &pdev->dev;
1da177e4
LT
1266 pmif->mdev = NULL;
1267 pmif->node = np;
1268
1269 rbase = pci_resource_start(pdev, 0);
1270 rlen = pci_resource_len(pdev, 0);
1271
1272 base = ioremap(rbase, rlen);
1273 pmif->regbase = (unsigned long) base + 0x2000;
1274#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1275 pmif->dma_regs = base + 0x1000;
1276#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1277 pmif->kauai_fcr = base;
1278 pmif->irq = pdev->irq;
1279
1280 pci_set_drvdata(pdev, hwif);
1281
57c802e8 1282 memset(&hw, 0, sizeof(hw));
5c58666f 1283 pmac_ide_init_ports(&hw, pmif->regbase);
57c802e8
BZ
1284 hw.irq = pdev->irq;
1285 hw.dev = &pdev->dev;
1286
1287 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1da177e4
LT
1288 if (rc != 0) {
1289 /* The inteface is released to the common IDE layer */
1290 pci_set_drvdata(pdev, NULL);
1291 iounmap(base);
1da177e4 1292 pci_release_regions(pdev);
5297a3e5 1293 kfree(pmif);
1da177e4
LT
1294 }
1295
1296 return rc;
5297a3e5
BZ
1297
1298out_free_pmif:
1299 kfree(pmif);
1300 return rc;
1da177e4
LT
1301}
1302
1303static int
8b4b8a24 1304pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1da177e4
LT
1305{
1306 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1307 int rc = 0;
1308
8b4b8a24 1309 if (mesg.event != pdev->dev.power.power_state.event
3a2d5b70 1310 && (mesg.event & PM_EVENT_SLEEP)) {
1da177e4
LT
1311 rc = pmac_ide_do_suspend(hwif);
1312 if (rc == 0)
8b4b8a24 1313 pdev->dev.power.power_state = mesg;
1da177e4
LT
1314 }
1315
1316 return rc;
1317}
1318
1319static int
1320pmac_ide_pci_resume(struct pci_dev *pdev)
1321{
1322 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1323 int rc = 0;
1324
ca078bae 1325 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1da177e4
LT
1326 rc = pmac_ide_do_resume(hwif);
1327 if (rc == 0)
829ca9a3 1328 pdev->dev.power.power_state = PMSG_ON;
1da177e4
LT
1329 }
1330
1331 return rc;
1332}
1333
5e655772 1334static struct of_device_id pmac_ide_macio_match[] =
1da177e4
LT
1335{
1336 {
1337 .name = "IDE",
1da177e4
LT
1338 },
1339 {
1340 .name = "ATA",
1da177e4
LT
1341 },
1342 {
1da177e4 1343 .type = "ide",
1da177e4
LT
1344 },
1345 {
1da177e4 1346 .type = "ata",
1da177e4
LT
1347 },
1348 {},
1349};
1350
1351static struct macio_driver pmac_ide_macio_driver =
1352{
1353 .name = "ide-pmac",
1354 .match_table = pmac_ide_macio_match,
1355 .probe = pmac_ide_macio_attach,
1356 .suspend = pmac_ide_macio_suspend,
1357 .resume = pmac_ide_macio_resume,
1358};
1359
9cbcc5e3
BZ
1360static const struct pci_device_id pmac_ide_pci_match[] = {
1361 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1362 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1363 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1364 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1365 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
71e4eda8 1366 {},
1da177e4
LT
1367};
1368
1369static struct pci_driver pmac_ide_pci_driver = {
1370 .name = "ide-pmac",
1371 .id_table = pmac_ide_pci_match,
1372 .probe = pmac_ide_pci_attach,
1373 .suspend = pmac_ide_pci_suspend,
1374 .resume = pmac_ide_pci_resume,
1375};
1376MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1377
9e5755bc 1378int __init pmac_ide_probe(void)
1da177e4 1379{
9e5755bc
AM
1380 int error;
1381
e8222502 1382 if (!machine_is(powermac))
9e5755bc 1383 return -ENODEV;
1da177e4
LT
1384
1385#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
9e5755bc
AM
1386 error = pci_register_driver(&pmac_ide_pci_driver);
1387 if (error)
1388 goto out;
1389 error = macio_register_driver(&pmac_ide_macio_driver);
1390 if (error) {
1391 pci_unregister_driver(&pmac_ide_pci_driver);
1392 goto out;
1393 }
1da177e4 1394#else
9e5755bc
AM
1395 error = macio_register_driver(&pmac_ide_macio_driver);
1396 if (error)
1397 goto out;
1398 error = pci_register_driver(&pmac_ide_pci_driver);
1399 if (error) {
1400 macio_unregister_driver(&pmac_ide_macio_driver);
1401 goto out;
1402 }
1beb6a7d 1403#endif
9e5755bc
AM
1404out:
1405 return error;
1da177e4
LT
1406}
1407
1408#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1409
1410/*
1411 * pmac_ide_build_dmatable builds the DBDMA command list
1412 * for a transfer and sets the DBDMA channel to point to it.
1413 */
aacaf9bd 1414static int
1da177e4
LT
1415pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1416{
1417 struct dbdma_cmd *table;
1418 int i, count = 0;
1419 ide_hwif_t *hwif = HWIF(drive);
1420 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1421 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1422 struct scatterlist *sg;
1423 int wr = (rq_data_dir(rq) == WRITE);
1424
1425 /* DMA table is already aligned */
1426 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1427
1428 /* Make sure DMA controller is stopped (necessary ?) */
1429 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1430 while (readl(&dma->status) & RUN)
1431 udelay(1);
1432
1433 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1434
1435 if (!i)
1436 return 0;
1437
1438 /* Build DBDMA commands list */
1439 sg = hwif->sg_table;
1440 while (i && sg_dma_len(sg)) {
1441 u32 cur_addr;
1442 u32 cur_len;
1443
1444 cur_addr = sg_dma_address(sg);
1445 cur_len = sg_dma_len(sg);
1446
1447 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1448 if (pmif->broken_dma_warn == 0) {
aca38a51 1449 printk(KERN_WARNING "%s: DMA on non aligned address, "
1da177e4
LT
1450 "switching to PIO on Ohare chipset\n", drive->name);
1451 pmif->broken_dma_warn = 1;
1452 }
1453 goto use_pio_instead;
1454 }
1455 while (cur_len) {
1456 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1457
1458 if (count++ >= MAX_DCMDS) {
1459 printk(KERN_WARNING "%s: DMA table too small\n",
1460 drive->name);
1461 goto use_pio_instead;
1462 }
1463 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1464 st_le16(&table->req_count, tc);
1465 st_le32(&table->phy_addr, cur_addr);
1466 table->cmd_dep = 0;
1467 table->xfer_status = 0;
1468 table->res_count = 0;
1469 cur_addr += tc;
1470 cur_len -= tc;
1471 ++table;
1472 }
55c16a70 1473 sg = sg_next(sg);
1da177e4
LT
1474 i--;
1475 }
1476
1477 /* convert the last command to an input/output last command */
1478 if (count) {
1479 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1480 /* add the stop command to the end of the list */
1481 memset(table, 0, sizeof(struct dbdma_cmd));
1482 st_le16(&table->command, DBDMA_STOP);
1483 mb();
1484 writel(hwif->dmatable_dma, &dma->cmdptr);
1485 return 1;
1486 }
1487
1488 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
f6fb786d
BZ
1489
1490use_pio_instead:
1491 ide_destroy_dmatable(drive);
1492
1da177e4
LT
1493 return 0; /* revert to PIO for this request */
1494}
1495
1496/* Teardown mappings after DMA has completed. */
aacaf9bd 1497static void
1da177e4
LT
1498pmac_ide_destroy_dmatable (ide_drive_t *drive)
1499{
1500 ide_hwif_t *hwif = drive->hwif;
1da177e4 1501
f6fb786d
BZ
1502 if (hwif->sg_nents) {
1503 ide_destroy_dmatable(drive);
1da177e4
LT
1504 hwif->sg_nents = 0;
1505 }
1506}
1507
1da177e4
LT
1508/*
1509 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1510 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1511 */
aacaf9bd 1512static int
1da177e4
LT
1513pmac_ide_dma_setup(ide_drive_t *drive)
1514{
1515 ide_hwif_t *hwif = HWIF(drive);
1516 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1517 struct request *rq = HWGROUP(drive)->rq;
1518 u8 unit = (drive->select.b.unit & 0x01);
1519 u8 ata4;
1520
1521 if (pmif == NULL)
1522 return 1;
1523 ata4 = (pmif->kind == controller_kl_ata4);
1524
1525 if (!pmac_ide_build_dmatable(drive, rq)) {
1526 ide_map_sg(drive, rq);
1527 return 1;
1528 }
1529
1530 /* Apple adds 60ns to wrDataSetup on reads */
1531 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1532 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1533 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1534 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1535 }
1536
1537 drive->waiting_for_dma = 1;
1538
1539 return 0;
1540}
1541
aacaf9bd 1542static void
1da177e4
LT
1543pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1544{
1545 /* issue cmd to drive */
1546 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1547}
1548
1549/*
1550 * Kick the DMA controller into life after the DMA command has been issued
1551 * to the drive.
1552 */
aacaf9bd 1553static void
1da177e4
LT
1554pmac_ide_dma_start(ide_drive_t *drive)
1555{
1556 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1557 volatile struct dbdma_regs __iomem *dma;
1558
1559 dma = pmif->dma_regs;
1560
1561 writel((RUN << 16) | RUN, &dma->control);
1562 /* Make sure it gets to the controller right now */
1563 (void)readl(&dma->control);
1564}
1565
1566/*
1567 * After a DMA transfer, make sure the controller is stopped
1568 */
aacaf9bd 1569static int
1da177e4
LT
1570pmac_ide_dma_end (ide_drive_t *drive)
1571{
1572 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1573 volatile struct dbdma_regs __iomem *dma;
1574 u32 dstat;
1575
1576 if (pmif == NULL)
1577 return 0;
1578 dma = pmif->dma_regs;
1579
1580 drive->waiting_for_dma = 0;
1581 dstat = readl(&dma->status);
1582 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1583 pmac_ide_destroy_dmatable(drive);
1584 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1585 * in theory, but with ATAPI decices doing buffer underruns, that would
1586 * cause us to disable DMA, which isn't what we want
1587 */
1588 return (dstat & (RUN|DEAD)) != RUN;
1589}
1590
1591/*
1592 * Check out that the interrupt we got was for us. We can't always know this
1593 * for sure with those Apple interfaces (well, we could on the recent ones but
1594 * that's not implemented yet), on the other hand, we don't have shared interrupts
1595 * so it's not really a problem
1596 */
aacaf9bd 1597static int
1da177e4
LT
1598pmac_ide_dma_test_irq (ide_drive_t *drive)
1599{
1600 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1601 volatile struct dbdma_regs __iomem *dma;
1602 unsigned long status, timeout;
1603
1604 if (pmif == NULL)
1605 return 0;
1606 dma = pmif->dma_regs;
1607
1608 /* We have to things to deal with here:
1609 *
1610 * - The dbdma won't stop if the command was started
1611 * but completed with an error without transferring all
1612 * datas. This happens when bad blocks are met during
1613 * a multi-block transfer.
1614 *
1615 * - The dbdma fifo hasn't yet finished flushing to
1616 * to system memory when the disk interrupt occurs.
1617 *
1618 */
1619
1620 /* If ACTIVE is cleared, the STOP command have passed and
1621 * transfer is complete.
1622 */
1623 status = readl(&dma->status);
1624 if (!(status & ACTIVE))
1625 return 1;
1626 if (!drive->waiting_for_dma)
1627 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1628 called while not waiting\n", HWIF(drive)->index);
1629
1630 /* If dbdma didn't execute the STOP command yet, the
1631 * active bit is still set. We consider that we aren't
1632 * sharing interrupts (which is hopefully the case with
1633 * those controllers) and so we just try to flush the
1634 * channel for pending data in the fifo
1635 */
1636 udelay(1);
1637 writel((FLUSH << 16) | FLUSH, &dma->control);
1638 timeout = 0;
1639 for (;;) {
1640 udelay(1);
1641 status = readl(&dma->status);
1642 if ((status & FLUSH) == 0)
1643 break;
1644 if (++timeout > 100) {
1645 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1646 timeout flushing channel\n", HWIF(drive)->index);
1647 break;
1648 }
1649 }
1650 return 1;
1651}
1652
15ce926a 1653static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1da177e4 1654{
1da177e4
LT
1655}
1656
841d2a9b
SS
1657static void
1658pmac_ide_dma_lost_irq (ide_drive_t *drive)
1da177e4
LT
1659{
1660 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1661 volatile struct dbdma_regs __iomem *dma;
1662 unsigned long status;
1663
1664 if (pmif == NULL)
841d2a9b 1665 return;
1da177e4
LT
1666 dma = pmif->dma_regs;
1667
1668 status = readl(&dma->status);
1669 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1da177e4
LT
1670}
1671
1672/*
1673 * Allocate the data structures needed for using DMA with an interface
1674 * and fill the proper list of functions pointers
1675 */
c413b9b9 1676static int __devinit pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1da177e4 1677{
36501650
BZ
1678 struct pci_dev *dev = to_pci_dev(hwif->dev);
1679
1da177e4
LT
1680 /* We won't need pci_dev if we switch to generic consistent
1681 * DMA routines ...
1682 */
36501650 1683 if (dev == NULL)
c413b9b9 1684 return -ENODEV;
1da177e4
LT
1685 /*
1686 * Allocate space for the DBDMA commands.
1687 * The +2 is +1 for the stop command and +1 to allow for
1688 * aligning the start address to a multiple of 16 bytes.
1689 */
1690 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
36501650 1691 dev,
1da177e4
LT
1692 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1693 &hwif->dmatable_dma);
1694 if (pmif->dma_table_cpu == NULL) {
1695 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1696 hwif->name);
c413b9b9 1697 return -ENOMEM;
1da177e4
LT
1698 }
1699
4f52a329
BZ
1700 hwif->sg_max_nents = MAX_DCMDS;
1701
15ce926a 1702 hwif->dma_host_set = &pmac_ide_dma_host_set;
1da177e4
LT
1703 hwif->dma_setup = &pmac_ide_dma_setup;
1704 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
1705 hwif->dma_start = &pmac_ide_dma_start;
1706 hwif->ide_dma_end = &pmac_ide_dma_end;
1707 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
c283f5db 1708 hwif->dma_timeout = &ide_dma_timeout;
841d2a9b 1709 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
1da177e4 1710
c413b9b9 1711 return 0;
1da177e4
LT
1712}
1713
1714#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
ade2daf9
BZ
1715
1716module_init(pmac_ide_probe);
de9facbf
AB
1717
1718MODULE_LICENSE("GPL");
This page took 0.445448 seconds and 5 git commands to generate.