Remove version strings from eth1394, ohci1394, sbp2.
[deliverable/linux.git] / drivers / ieee1394 / ohci1394.c
CommitLineData
1da177e4
LT
1/*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22/*
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
31 *
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
35 *
36 * Things not implemented:
37 * . DMA error recovery
38 *
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42 */
43
44/*
45 * Acknowledgments:
46 *
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
49 *
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
52 *
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
55 *
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
58 *
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
61 *
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
64 *
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
67 *
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
70 *
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
75 *
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
79 *
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
82 *
83 */
84
85#include <linux/config.h>
86#include <linux/kernel.h>
87#include <linux/list.h>
88#include <linux/slab.h>
89#include <linux/interrupt.h>
90#include <linux/wait.h>
91#include <linux/errno.h>
92#include <linux/module.h>
93#include <linux/moduleparam.h>
94#include <linux/pci.h>
95#include <linux/fs.h>
96#include <linux/poll.h>
97#include <asm/byteorder.h>
98#include <asm/atomic.h>
99#include <asm/uaccess.h>
100#include <linux/delay.h>
101#include <linux/spinlock.h>
102
103#include <asm/pgtable.h>
104#include <asm/page.h>
105#include <asm/irq.h>
106#include <linux/sched.h>
107#include <linux/types.h>
108#include <linux/vmalloc.h>
109#include <linux/init.h>
110
111#ifdef CONFIG_PPC_PMAC
112#include <asm/machdep.h>
113#include <asm/pmac_feature.h>
114#include <asm/prom.h>
115#include <asm/pci-bridge.h>
116#endif
117
118#include "csr1212.h"
119#include "ieee1394.h"
120#include "ieee1394_types.h"
121#include "hosts.h"
122#include "dma.h"
123#include "iso.h"
124#include "ieee1394_core.h"
125#include "highlevel.h"
126#include "ohci1394.h"
127
128#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
129#define OHCI1394_DEBUG
130#endif
131
132#ifdef DBGMSG
133#undef DBGMSG
134#endif
135
136#ifdef OHCI1394_DEBUG
137#define DBGMSG(fmt, args...) \
138printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
139#else
140#define DBGMSG(fmt, args...)
141#endif
142
143#ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
144#define OHCI_DMA_ALLOC(fmt, args...) \
145 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
146 ++global_outstanding_dmas, ## args)
147#define OHCI_DMA_FREE(fmt, args...) \
148 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
149 --global_outstanding_dmas, ## args)
150static int global_outstanding_dmas = 0;
151#else
152#define OHCI_DMA_ALLOC(fmt, args...)
153#define OHCI_DMA_FREE(fmt, args...)
154#endif
155
156/* print general (card independent) information */
157#define PRINT_G(level, fmt, args...) \
158printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
159
160/* print card specific information */
161#define PRINT(level, fmt, args...) \
162printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
163
1da177e4
LT
164/* Module Parameters */
165static int phys_dma = 1;
166module_param(phys_dma, int, 0644);
167MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
168
169static void dma_trm_tasklet(unsigned long data);
170static void dma_trm_reset(struct dma_trm_ctx *d);
171
172static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
173 enum context_type type, int ctx, int num_desc,
174 int buf_size, int split_buf_size, int context_base);
175static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
176static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
177
178static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
179 enum context_type type, int ctx, int num_desc,
180 int context_base);
181
182static void ohci1394_pci_remove(struct pci_dev *pdev);
183
184#ifndef __LITTLE_ENDIAN
185static unsigned hdr_sizes[] =
186{
187 3, /* TCODE_WRITEQ */
188 4, /* TCODE_WRITEB */
189 3, /* TCODE_WRITE_RESPONSE */
190 0, /* ??? */
191 3, /* TCODE_READQ */
192 4, /* TCODE_READB */
193 3, /* TCODE_READQ_RESPONSE */
194 4, /* TCODE_READB_RESPONSE */
195 1, /* TCODE_CYCLE_START (???) */
196 4, /* TCODE_LOCK_REQUEST */
197 2, /* TCODE_ISO_DATA */
198 4, /* TCODE_LOCK_RESPONSE */
199};
200
201/* Swap headers */
202static inline void packet_swab(quadlet_t *data, int tcode)
203{
204 size_t size = hdr_sizes[tcode];
205
206 if (tcode > TCODE_LOCK_RESPONSE || hdr_sizes[tcode] == 0)
207 return;
208
209 while (size--)
210 data[size] = swab32(data[size]);
211}
212#else
213/* Don't waste cycles on same sex byte swaps */
214#define packet_swab(w,x)
215#endif /* !LITTLE_ENDIAN */
216
217/***********************************
218 * IEEE-1394 functionality section *
219 ***********************************/
220
221static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
222{
223 int i;
224 unsigned long flags;
225 quadlet_t r;
226
227 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
228
229 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
230
231 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
232 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
233 break;
234
235 mdelay(1);
236 }
237
238 r = reg_read(ohci, OHCI1394_PhyControl);
239
240 if (i >= OHCI_LOOP_COUNT)
241 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
242 r, r & 0x80000000, i);
243
244 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
245
246 return (r & 0x00ff0000) >> 16;
247}
248
249static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
250{
251 int i;
252 unsigned long flags;
253 u32 r = 0;
254
255 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
256
257 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
258
259 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
260 r = reg_read(ohci, OHCI1394_PhyControl);
261 if (!(r & 0x00004000))
262 break;
263
264 mdelay(1);
265 }
266
267 if (i == OHCI_LOOP_COUNT)
268 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
269 r, r & 0x00004000, i);
270
271 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
272
273 return;
274}
275
276/* Or's our value into the current value */
277static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
278{
279 u8 old;
280
281 old = get_phy_reg (ohci, addr);
282 old |= data;
283 set_phy_reg (ohci, addr, old);
284
285 return;
286}
287
288static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
289 int phyid, int isroot)
290{
291 quadlet_t *q = ohci->selfid_buf_cpu;
292 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
293 size_t size;
294 quadlet_t q0, q1;
295
296 /* Check status of self-id reception */
297
298 if (ohci->selfid_swap)
299 q0 = le32_to_cpu(q[0]);
300 else
301 q0 = q[0];
302
303 if ((self_id_count & 0x80000000) ||
304 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
305 PRINT(KERN_ERR,
306 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
307 self_id_count, q0, ohci->self_id_errors);
308
309 /* Tip by James Goodwin <jamesg@Filanet.com>:
310 * We had an error, generate another bus reset in response. */
311 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
312 set_phy_reg_mask (ohci, 1, 0x40);
313 ohci->self_id_errors++;
314 } else {
315 PRINT(KERN_ERR,
316 "Too many errors on SelfID error reception, giving up!");
317 }
318 return;
319 }
320
321 /* SelfID Ok, reset error counter. */
322 ohci->self_id_errors = 0;
323
324 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
325 q++;
326
327 while (size > 0) {
328 if (ohci->selfid_swap) {
329 q0 = le32_to_cpu(q[0]);
330 q1 = le32_to_cpu(q[1]);
331 } else {
332 q0 = q[0];
333 q1 = q[1];
334 }
335
336 if (q0 == ~q1) {
337 DBGMSG ("SelfID packet 0x%x received", q0);
338 hpsb_selfid_received(host, cpu_to_be32(q0));
339 if (((q0 & 0x3f000000) >> 24) == phyid)
340 DBGMSG ("SelfID for this node is 0x%08x", q0);
341 } else {
342 PRINT(KERN_ERR,
343 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
344 }
345 q += 2;
346 size -= 2;
347 }
348
349 DBGMSG("SelfID complete");
350
351 return;
352}
353
354static void ohci_soft_reset(struct ti_ohci *ohci) {
355 int i;
356
357 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
358
359 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
360 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
361 break;
362 mdelay(1);
363 }
364 DBGMSG ("Soft reset finished");
365}
366
367
368/* Generate the dma receive prgs and start the context */
369static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
370{
371 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
372 int i;
373
374 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
375
376 for (i=0; i<d->num_desc; i++) {
377 u32 c;
378
379 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
380 if (generate_irq)
381 c |= DMA_CTL_IRQ;
382
383 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
384
385 /* End of descriptor list? */
386 if (i + 1 < d->num_desc) {
387 d->prg_cpu[i]->branchAddress =
388 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
389 } else {
390 d->prg_cpu[i]->branchAddress =
391 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
392 }
393
394 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
395 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
396 }
397
398 d->buf_ind = 0;
399 d->buf_offset = 0;
400
401 if (d->type == DMA_CTX_ISO) {
402 /* Clear contextControl */
403 reg_write(ohci, d->ctrlClear, 0xffffffff);
404
405 /* Set bufferFill, isochHeader, multichannel for IR context */
406 reg_write(ohci, d->ctrlSet, 0xd0000000);
407
408 /* Set the context match register to match on all tags */
409 reg_write(ohci, d->ctxtMatch, 0xf0000000);
410
411 /* Clear the multi channel mask high and low registers */
412 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
413 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
414
415 /* Set up isoRecvIntMask to generate interrupts */
416 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
417 }
418
419 /* Tell the controller where the first AR program is */
420 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
421
422 /* Run context */
423 reg_write(ohci, d->ctrlSet, 0x00008000);
424
425 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
426}
427
428/* Initialize the dma transmit context */
429static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
430{
431 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
432
433 /* Stop the context */
434 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
435
436 d->prg_ind = 0;
437 d->sent_ind = 0;
438 d->free_prgs = d->num_desc;
439 d->branchAddrPtr = NULL;
440 INIT_LIST_HEAD(&d->fifo_list);
441 INIT_LIST_HEAD(&d->pending_list);
442
443 if (d->type == DMA_CTX_ISO) {
444 /* enable interrupts */
445 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
446 }
447
448 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
449}
450
451/* Count the number of available iso contexts */
452static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
453{
454 int i,ctx=0;
455 u32 tmp;
456
457 reg_write(ohci, reg, 0xffffffff);
458 tmp = reg_read(ohci, reg);
459
460 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
461
462 /* Count the number of contexts */
463 for (i=0; i<32; i++) {
464 if (tmp & 1) ctx++;
465 tmp >>= 1;
466 }
467 return ctx;
468}
469
470/* Global initialization */
471static void ohci_initialize(struct ti_ohci *ohci)
472{
473 char irq_buf[16];
474 quadlet_t buf;
475 int num_ports, i;
476
477 spin_lock_init(&ohci->phy_reg_lock);
1da177e4
LT
478
479 /* Put some defaults to these undefined bus options */
480 buf = reg_read(ohci, OHCI1394_BusOptions);
481 buf |= 0x60000000; /* Enable CMC and ISC */
1934b8b6
BC
482 if (hpsb_disable_irm)
483 buf &= ~0x80000000;
484 else
1da177e4
LT
485 buf |= 0x80000000; /* Enable IRMC */
486 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
487 buf &= ~0x18000000; /* Disable PMC and BMC */
488 reg_write(ohci, OHCI1394_BusOptions, buf);
489
490 /* Set the bus number */
491 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
492
493 /* Enable posted writes */
494 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
495
496 /* Clear link control register */
497 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
498
499 /* Enable cycle timer and cycle master and set the IRM
500 * contender bit in our self ID packets if appropriate. */
501 reg_write(ohci, OHCI1394_LinkControlSet,
502 OHCI1394_LinkControl_CycleTimerEnable |
503 OHCI1394_LinkControl_CycleMaster);
1934b8b6
BC
504 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
505 if (hpsb_disable_irm)
506 i &= ~PHY_04_CONTENDER;
507 else
508 i |= PHY_04_CONTENDER;
509 set_phy_reg(ohci, 4, i);
1da177e4
LT
510
511 /* Set up self-id dma buffer */
512 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
513
514 /* enable self-id and phys */
515 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
516 OHCI1394_LinkControl_RcvPhyPkt);
517
518 /* Set the Config ROM mapping register */
519 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
520
521 /* Now get our max packet size */
522 ohci->max_packet_size =
523 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
524
525 /* Don't accept phy packets into AR request context */
526 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
527
528 /* Clear the interrupt mask */
529 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
530 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
531
532 /* Clear the interrupt mask */
533 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
534 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
535
536 /* Initialize AR dma */
537 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
538 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
539
540 /* Initialize AT dma */
541 initialize_dma_trm_ctx(&ohci->at_req_context);
542 initialize_dma_trm_ctx(&ohci->at_resp_context);
543
e4ec0f23 544 /* Initialize IR Legacy DMA channel mask */
1da177e4 545 ohci->ir_legacy_channels = 0;
1da177e4
LT
546
547 /*
548 * Accept AT requests from all nodes. This probably
549 * will have to be controlled from the subsystem
550 * on a per node basis.
551 */
552 reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0x80000000);
553
554 /* Specify AT retries */
555 reg_write(ohci, OHCI1394_ATRetries,
556 OHCI1394_MAX_AT_REQ_RETRIES |
557 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
558 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
559
560 /* We don't want hardware swapping */
561 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
562
563 /* Enable interrupts */
564 reg_write(ohci, OHCI1394_IntMaskSet,
565 OHCI1394_unrecoverableError |
566 OHCI1394_masterIntEnable |
567 OHCI1394_busReset |
568 OHCI1394_selfIDComplete |
569 OHCI1394_RSPkt |
570 OHCI1394_RQPkt |
571 OHCI1394_respTxComplete |
572 OHCI1394_reqTxComplete |
573 OHCI1394_isochRx |
574 OHCI1394_isochTx |
575 OHCI1394_cycleInconsistent);
576
577 /* Enable link */
578 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
579
580 buf = reg_read(ohci, OHCI1394_Version);
581#ifndef __sparc__
582 sprintf (irq_buf, "%d", ohci->dev->irq);
583#else
584 sprintf (irq_buf, "%s", __irq_itoa(ohci->dev->irq));
585#endif
586 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
587 "MMIO=[%lx-%lx] Max Packet=[%d]",
588 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
589 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
590 pci_resource_start(ohci->dev, 0),
591 pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
592 ohci->max_packet_size);
593
594 /* Check all of our ports to make sure that if anything is
595 * connected, we enable that port. */
596 num_ports = get_phy_reg(ohci, 2) & 0xf;
597 for (i = 0; i < num_ports; i++) {
598 unsigned int status;
599
600 set_phy_reg(ohci, 7, i);
601 status = get_phy_reg(ohci, 8);
602
603 if (status & 0x20)
604 set_phy_reg(ohci, 8, status & ~1);
605 }
606
607 /* Serial EEPROM Sanity check. */
608 if ((ohci->max_packet_size < 512) ||
609 (ohci->max_packet_size > 4096)) {
610 /* Serial EEPROM contents are suspect, set a sane max packet
611 * size and print the raw contents for bug reports if verbose
612 * debug is enabled. */
613#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
614 int i;
615#endif
616
617 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
618 "attempting to setting max_packet_size to 512 bytes");
619 reg_write(ohci, OHCI1394_BusOptions,
620 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
621 ohci->max_packet_size = 512;
622#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
623 PRINT(KERN_DEBUG, " EEPROM Present: %d",
624 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
625 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
626
627 for (i = 0;
628 ((i < 1000) &&
629 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
630 udelay(10);
631
632 for (i = 0; i < 0x20; i++) {
633 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
634 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
635 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
636 }
637#endif
638 }
639}
640
641/*
642 * Insert a packet in the DMA fifo and generate the DMA prg
643 * FIXME: rewrite the program in order to accept packets crossing
644 * page boundaries.
645 * check also that a single dma descriptor doesn't cross a
646 * page boundary.
647 */
648static void insert_packet(struct ti_ohci *ohci,
649 struct dma_trm_ctx *d, struct hpsb_packet *packet)
650{
651 u32 cycleTimer;
652 int idx = d->prg_ind;
653
654 DBGMSG("Inserting packet for node " NODE_BUS_FMT
655 ", tlabel=%d, tcode=0x%x, speed=%d",
656 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
657 packet->tcode, packet->speed_code);
658
659 d->prg_cpu[idx]->begin.address = 0;
660 d->prg_cpu[idx]->begin.branchAddress = 0;
661
662 if (d->type == DMA_CTX_ASYNC_RESP) {
663 /*
664 * For response packets, we need to put a timeout value in
665 * the 16 lower bits of the status... let's try 1 sec timeout
666 */
667 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
668 d->prg_cpu[idx]->begin.status = cpu_to_le32(
669 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
670 ((cycleTimer&0x01fff000)>>12));
671
672 DBGMSG("cycleTimer: %08x timeStamp: %08x",
673 cycleTimer, d->prg_cpu[idx]->begin.status);
674 } else
675 d->prg_cpu[idx]->begin.status = 0;
676
677 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
678
679 if (packet->type == hpsb_raw) {
680 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
681 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
682 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
683 } else {
684 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
685 (packet->header[0] & 0xFFFF);
686
687 if (packet->tcode == TCODE_ISO_DATA) {
688 /* Sending an async stream packet */
689 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
690 } else {
691 /* Sending a normal async request or response */
692 d->prg_cpu[idx]->data[1] =
693 (packet->header[1] & 0xFFFF) |
694 (packet->header[0] & 0xFFFF0000);
695 d->prg_cpu[idx]->data[2] = packet->header[2];
696 d->prg_cpu[idx]->data[3] = packet->header[3];
697 }
698 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
699 }
700
701 if (packet->data_size) { /* block transmit */
702 if (packet->tcode == TCODE_STREAM_DATA){
703 d->prg_cpu[idx]->begin.control =
704 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
705 DMA_CTL_IMMEDIATE | 0x8);
706 } else {
707 d->prg_cpu[idx]->begin.control =
708 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
709 DMA_CTL_IMMEDIATE | 0x10);
710 }
711 d->prg_cpu[idx]->end.control =
712 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
713 DMA_CTL_IRQ |
714 DMA_CTL_BRANCH |
715 packet->data_size);
716 /*
717 * Check that the packet data buffer
718 * does not cross a page boundary.
719 *
720 * XXX Fix this some day. eth1394 seems to trigger
721 * it, but ignoring it doesn't seem to cause a
722 * problem.
723 */
724#if 0
725 if (cross_bound((unsigned long)packet->data,
726 packet->data_size)>0) {
727 /* FIXME: do something about it */
728 PRINT(KERN_ERR,
729 "%s: packet data addr: %p size %Zd bytes "
730 "cross page boundary", __FUNCTION__,
731 packet->data, packet->data_size);
732 }
733#endif
734 d->prg_cpu[idx]->end.address = cpu_to_le32(
735 pci_map_single(ohci->dev, packet->data,
736 packet->data_size,
737 PCI_DMA_TODEVICE));
738 OHCI_DMA_ALLOC("single, block transmit packet");
739
740 d->prg_cpu[idx]->end.branchAddress = 0;
741 d->prg_cpu[idx]->end.status = 0;
742 if (d->branchAddrPtr)
743 *(d->branchAddrPtr) =
744 cpu_to_le32(d->prg_bus[idx] | 0x3);
745 d->branchAddrPtr =
746 &(d->prg_cpu[idx]->end.branchAddress);
747 } else { /* quadlet transmit */
748 if (packet->type == hpsb_raw)
749 d->prg_cpu[idx]->begin.control =
750 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
751 DMA_CTL_IMMEDIATE |
752 DMA_CTL_IRQ |
753 DMA_CTL_BRANCH |
754 (packet->header_size + 4));
755 else
756 d->prg_cpu[idx]->begin.control =
757 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
758 DMA_CTL_IMMEDIATE |
759 DMA_CTL_IRQ |
760 DMA_CTL_BRANCH |
761 packet->header_size);
762
763 if (d->branchAddrPtr)
764 *(d->branchAddrPtr) =
765 cpu_to_le32(d->prg_bus[idx] | 0x2);
766 d->branchAddrPtr =
767 &(d->prg_cpu[idx]->begin.branchAddress);
768 }
769
770 } else { /* iso packet */
771 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
772 (packet->header[0] & 0xFFFF);
773 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
774 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
775
776 d->prg_cpu[idx]->begin.control =
777 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
778 DMA_CTL_IMMEDIATE | 0x8);
779 d->prg_cpu[idx]->end.control =
780 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
781 DMA_CTL_UPDATE |
782 DMA_CTL_IRQ |
783 DMA_CTL_BRANCH |
784 packet->data_size);
785 d->prg_cpu[idx]->end.address = cpu_to_le32(
786 pci_map_single(ohci->dev, packet->data,
787 packet->data_size, PCI_DMA_TODEVICE));
788 OHCI_DMA_ALLOC("single, iso transmit packet");
789
790 d->prg_cpu[idx]->end.branchAddress = 0;
791 d->prg_cpu[idx]->end.status = 0;
792 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
793 " begin=%08x %08x %08x %08x\n"
794 " %08x %08x %08x %08x\n"
795 " end =%08x %08x %08x %08x",
796 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
797 d->prg_cpu[idx]->begin.control,
798 d->prg_cpu[idx]->begin.address,
799 d->prg_cpu[idx]->begin.branchAddress,
800 d->prg_cpu[idx]->begin.status,
801 d->prg_cpu[idx]->data[0],
802 d->prg_cpu[idx]->data[1],
803 d->prg_cpu[idx]->data[2],
804 d->prg_cpu[idx]->data[3],
805 d->prg_cpu[idx]->end.control,
806 d->prg_cpu[idx]->end.address,
807 d->prg_cpu[idx]->end.branchAddress,
808 d->prg_cpu[idx]->end.status);
809 if (d->branchAddrPtr)
810 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
811 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
812 }
813 d->free_prgs--;
814
815 /* queue the packet in the appropriate context queue */
816 list_add_tail(&packet->driver_list, &d->fifo_list);
817 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
818}
819
820/*
821 * This function fills the FIFO with the (eventual) pending packets
822 * and runs or wakes up the DMA prg if necessary.
823 *
824 * The function MUST be called with the d->lock held.
825 */
826static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
827{
828 struct hpsb_packet *packet, *ptmp;
829 int idx = d->prg_ind;
830 int z = 0;
831
832 /* insert the packets into the dma fifo */
833 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
834 if (!d->free_prgs)
835 break;
836
837 /* For the first packet only */
838 if (!z)
839 z = (packet->data_size) ? 3 : 2;
840
841 /* Insert the packet */
842 list_del_init(&packet->driver_list);
843 insert_packet(ohci, d, packet);
844 }
845
846 /* Nothing must have been done, either no free_prgs or no packets */
847 if (z == 0)
848 return;
849
850 /* Is the context running ? (should be unless it is
851 the first packet to be sent in this context) */
852 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
853 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
854
855 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
856 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
857
858 /* Check that the node id is valid, and not 63 */
859 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
860 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
861 else
862 reg_write(ohci, d->ctrlSet, 0x8000);
863 } else {
864 /* Wake up the dma context if necessary */
865 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
866 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
867
868 /* do this always, to avoid race condition */
869 reg_write(ohci, d->ctrlSet, 0x1000);
870 }
871
872 return;
873}
874
875/* Transmission of an async or iso packet */
876static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
877{
878 struct ti_ohci *ohci = host->hostdata;
879 struct dma_trm_ctx *d;
880 unsigned long flags;
881
882 if (packet->data_size > ohci->max_packet_size) {
883 PRINT(KERN_ERR,
884 "Transmit packet size %Zd is too big",
885 packet->data_size);
886 return -EOVERFLOW;
887 }
888
889 /* Decide whether we have an iso, a request, or a response packet */
890 if (packet->type == hpsb_raw)
891 d = &ohci->at_req_context;
892 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
893 /* The legacy IT DMA context is initialized on first
894 * use. However, the alloc cannot be run from
895 * interrupt context, so we bail out if that is the
896 * case. I don't see anyone sending ISO packets from
897 * interrupt context anyway... */
898
899 if (ohci->it_legacy_context.ohci == NULL) {
900 if (in_interrupt()) {
901 PRINT(KERN_ERR,
902 "legacy IT context cannot be initialized during interrupt");
903 return -EINVAL;
904 }
905
906 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
907 DMA_CTX_ISO, 0, IT_NUM_DESC,
908 OHCI1394_IsoXmitContextBase) < 0) {
909 PRINT(KERN_ERR,
910 "error initializing legacy IT context");
911 return -ENOMEM;
912 }
913
914 initialize_dma_trm_ctx(&ohci->it_legacy_context);
915 }
916
917 d = &ohci->it_legacy_context;
918 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
919 d = &ohci->at_resp_context;
920 else
921 d = &ohci->at_req_context;
922
923 spin_lock_irqsave(&d->lock,flags);
924
925 list_add_tail(&packet->driver_list, &d->pending_list);
926
927 dma_trm_flush(ohci, d);
928
929 spin_unlock_irqrestore(&d->lock,flags);
930
931 return 0;
932}
933
934static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
935{
936 struct ti_ohci *ohci = host->hostdata;
937 int retval = 0;
938 unsigned long flags;
939 int phy_reg;
940
941 switch (cmd) {
942 case RESET_BUS:
943 switch (arg) {
944 case SHORT_RESET:
945 phy_reg = get_phy_reg(ohci, 5);
946 phy_reg |= 0x40;
947 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
948 break;
949 case LONG_RESET:
950 phy_reg = get_phy_reg(ohci, 1);
951 phy_reg |= 0x40;
952 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
953 break;
954 case SHORT_RESET_NO_FORCE_ROOT:
955 phy_reg = get_phy_reg(ohci, 1);
956 if (phy_reg & 0x80) {
957 phy_reg &= ~0x80;
958 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
959 }
960
961 phy_reg = get_phy_reg(ohci, 5);
962 phy_reg |= 0x40;
963 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
964 break;
965 case LONG_RESET_NO_FORCE_ROOT:
966 phy_reg = get_phy_reg(ohci, 1);
967 phy_reg &= ~0x80;
968 phy_reg |= 0x40;
969 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
970 break;
971 case SHORT_RESET_FORCE_ROOT:
972 phy_reg = get_phy_reg(ohci, 1);
973 if (!(phy_reg & 0x80)) {
974 phy_reg |= 0x80;
975 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
976 }
977
978 phy_reg = get_phy_reg(ohci, 5);
979 phy_reg |= 0x40;
980 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
981 break;
982 case LONG_RESET_FORCE_ROOT:
983 phy_reg = get_phy_reg(ohci, 1);
984 phy_reg |= 0xc0;
985 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
986 break;
987 default:
988 retval = -1;
989 }
990 break;
991
992 case GET_CYCLE_COUNTER:
993 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
994 break;
995
996 case SET_CYCLE_COUNTER:
997 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
998 break;
999
1000 case SET_BUS_ID:
1001 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1002 break;
1003
1004 case ACT_CYCLE_MASTER:
1005 if (arg) {
1006 /* check if we are root and other nodes are present */
1007 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1008 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1009 /*
1010 * enable cycleTimer, cycleMaster
1011 */
1012 DBGMSG("Cycle master enabled");
1013 reg_write(ohci, OHCI1394_LinkControlSet,
1014 OHCI1394_LinkControl_CycleTimerEnable |
1015 OHCI1394_LinkControl_CycleMaster);
1016 }
1017 } else {
1018 /* disable cycleTimer, cycleMaster, cycleSource */
1019 reg_write(ohci, OHCI1394_LinkControlClear,
1020 OHCI1394_LinkControl_CycleTimerEnable |
1021 OHCI1394_LinkControl_CycleMaster |
1022 OHCI1394_LinkControl_CycleSource);
1023 }
1024 break;
1025
1026 case CANCEL_REQUESTS:
1027 DBGMSG("Cancel request received");
1028 dma_trm_reset(&ohci->at_req_context);
1029 dma_trm_reset(&ohci->at_resp_context);
1030 break;
1031
1032 case ISO_LISTEN_CHANNEL:
1033 {
1034 u64 mask;
e4ec0f23
JM
1035 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1036 int ir_legacy_active;
1da177e4
LT
1037
1038 if (arg<0 || arg>63) {
1039 PRINT(KERN_ERR,
1040 "%s: IS0 listen channel %d is out of range",
1041 __FUNCTION__, arg);
1042 return -EFAULT;
1043 }
1044
1045 mask = (u64)0x1<<arg;
1046
1047 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1048
1049 if (ohci->ISO_channel_usage & mask) {
1050 PRINT(KERN_ERR,
1051 "%s: IS0 listen channel %d is already used",
1052 __FUNCTION__, arg);
1053 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1054 return -EFAULT;
1055 }
1056
e4ec0f23
JM
1057 ir_legacy_active = ohci->ir_legacy_channels;
1058
1da177e4
LT
1059 ohci->ISO_channel_usage |= mask;
1060 ohci->ir_legacy_channels |= mask;
1061
e4ec0f23
JM
1062 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1063
1064 if (!ir_legacy_active) {
1065 if (ohci1394_register_iso_tasklet(ohci,
1066 &ohci->ir_legacy_tasklet) < 0) {
1067 PRINT(KERN_ERR, "No IR DMA context available");
1068 return -EBUSY;
1069 }
1070
1071 /* the IR context can be assigned to any DMA context
1072 * by ohci1394_register_iso_tasklet */
1073 d->ctx = ohci->ir_legacy_tasklet.context;
1074 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1075 32*d->ctx;
1076 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1077 32*d->ctx;
1078 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1079 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1080
1081 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1082
98848fa8 1083 if (printk_ratelimit())
32e7a04f 1084 DBGMSG("IR legacy activated");
e4ec0f23
JM
1085 }
1086
1087 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1088
1da177e4
LT
1089 if (arg>31)
1090 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1091 1<<(arg-32));
1092 else
1093 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1094 1<<arg);
1095
1096 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1097 DBGMSG("Listening enabled on channel %d", arg);
1098 break;
1099 }
1100 case ISO_UNLISTEN_CHANNEL:
1101 {
1102 u64 mask;
1103
1104 if (arg<0 || arg>63) {
1105 PRINT(KERN_ERR,
1106 "%s: IS0 unlisten channel %d is out of range",
1107 __FUNCTION__, arg);
1108 return -EFAULT;
1109 }
1110
1111 mask = (u64)0x1<<arg;
1112
1113 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1114
1115 if (!(ohci->ISO_channel_usage & mask)) {
1116 PRINT(KERN_ERR,
1117 "%s: IS0 unlisten channel %d is not used",
1118 __FUNCTION__, arg);
1119 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1120 return -EFAULT;
1121 }
1122
1123 ohci->ISO_channel_usage &= ~mask;
1124 ohci->ir_legacy_channels &= ~mask;
1125
1126 if (arg>31)
1127 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1128 1<<(arg-32));
1129 else
1130 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1131 1<<arg);
1132
1133 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1134 DBGMSG("Listening disabled on channel %d", arg);
e4ec0f23
JM
1135
1136 if (ohci->ir_legacy_channels == 0) {
1137 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1138 DBGMSG("ISO legacy receive context stopped");
1139 }
1140
1da177e4
LT
1141 break;
1142 }
1143 default:
1144 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1145 cmd);
1146 break;
1147 }
1148 return retval;
1149}
1150
1151/***********************************
1152 * rawiso ISO reception *
1153 ***********************************/
1154
1155/*
1156 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1157 buffer is split into "blocks" (regions described by one DMA
1158 descriptor). Each block must be one page or less in size, and
1159 must not cross a page boundary.
1160
1161 There is one little wrinkle with buffer-fill mode: a packet that
1162 starts in the final block may wrap around into the first block. But
1163 the user API expects all packets to be contiguous. Our solution is
1164 to keep the very last page of the DMA buffer in reserve - if a
1165 packet spans the gap, we copy its tail into this page.
1166*/
1167
1168struct ohci_iso_recv {
1169 struct ti_ohci *ohci;
1170
1171 struct ohci1394_iso_tasklet task;
1172 int task_active;
1173
1174 enum { BUFFER_FILL_MODE = 0,
1175 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1176
1177 /* memory and PCI mapping for the DMA descriptors */
1178 struct dma_prog_region prog;
1179 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1180
1181 /* how many DMA blocks fit in the buffer */
1182 unsigned int nblocks;
1183
1184 /* stride of DMA blocks */
1185 unsigned int buf_stride;
1186
1187 /* number of blocks to batch between interrupts */
1188 int block_irq_interval;
1189
1190 /* block that DMA will finish next */
1191 int block_dma;
1192
1193 /* (buffer-fill only) block that the reader will release next */
1194 int block_reader;
1195
1196 /* (buffer-fill only) bytes of buffer the reader has released,
1197 less than one block */
1198 int released_bytes;
1199
1200 /* (buffer-fill only) buffer offset at which the next packet will appear */
1201 int dma_offset;
1202
1203 /* OHCI DMA context control registers */
1204 u32 ContextControlSet;
1205 u32 ContextControlClear;
1206 u32 CommandPtr;
1207 u32 ContextMatch;
1208};
1209
1210static void ohci_iso_recv_task(unsigned long data);
1211static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1212static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1213static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1214static void ohci_iso_recv_program(struct hpsb_iso *iso);
1215
1216static int ohci_iso_recv_init(struct hpsb_iso *iso)
1217{
1218 struct ti_ohci *ohci = iso->host->hostdata;
1219 struct ohci_iso_recv *recv;
1220 int ctx;
1221 int ret = -ENOMEM;
1222
1223 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1224 if (!recv)
1225 return -ENOMEM;
1226
1227 iso->hostdata = recv;
1228 recv->ohci = ohci;
1229 recv->task_active = 0;
1230 dma_prog_region_init(&recv->prog);
1231 recv->block = NULL;
1232
1233 /* use buffer-fill mode, unless irq_interval is 1
1234 (note: multichannel requires buffer-fill) */
1235
1236 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1237 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1238 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1239 } else {
1240 recv->dma_mode = BUFFER_FILL_MODE;
1241 }
1242
1243 /* set nblocks, buf_stride, block_irq_interval */
1244
1245 if (recv->dma_mode == BUFFER_FILL_MODE) {
1246 recv->buf_stride = PAGE_SIZE;
1247
1248 /* one block per page of data in the DMA buffer, minus the final guard page */
1249 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1250 if (recv->nblocks < 3) {
1251 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1252 goto err;
1253 }
1254
1255 /* iso->irq_interval is in packets - translate that to blocks */
1256 if (iso->irq_interval == 1)
1257 recv->block_irq_interval = 1;
1258 else
1259 recv->block_irq_interval = iso->irq_interval *
1260 ((recv->nblocks+1)/iso->buf_packets);
1261 if (recv->block_irq_interval*4 > recv->nblocks)
1262 recv->block_irq_interval = recv->nblocks/4;
1263 if (recv->block_irq_interval < 1)
1264 recv->block_irq_interval = 1;
1265
1266 } else {
1267 int max_packet_size;
1268
1269 recv->nblocks = iso->buf_packets;
1270 recv->block_irq_interval = iso->irq_interval;
1271 if (recv->block_irq_interval * 4 > iso->buf_packets)
1272 recv->block_irq_interval = iso->buf_packets / 4;
1273 if (recv->block_irq_interval < 1)
1274 recv->block_irq_interval = 1;
1275
1276 /* choose a buffer stride */
1277 /* must be a power of 2, and <= PAGE_SIZE */
1278
1279 max_packet_size = iso->buf_size / iso->buf_packets;
1280
1281 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1282 recv->buf_stride *= 2);
1283
1284 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1285 recv->buf_stride > PAGE_SIZE) {
1286 /* this shouldn't happen, but anyway... */
1287 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1288 goto err;
1289 }
1290 }
1291
1292 recv->block_reader = 0;
1293 recv->released_bytes = 0;
1294 recv->block_dma = 0;
1295 recv->dma_offset = 0;
1296
1297 /* size of DMA program = one descriptor per block */
1298 if (dma_prog_region_alloc(&recv->prog,
1299 sizeof(struct dma_cmd) * recv->nblocks,
1300 recv->ohci->dev))
1301 goto err;
1302
1303 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1304
1305 ohci1394_init_iso_tasklet(&recv->task,
1306 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1307 OHCI_ISO_RECEIVE,
1308 ohci_iso_recv_task, (unsigned long) iso);
1309
e4ec0f23
JM
1310 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1311 ret = -EBUSY;
1da177e4 1312 goto err;
e4ec0f23 1313 }
1da177e4
LT
1314
1315 recv->task_active = 1;
1316
1317 /* recv context registers are spaced 32 bytes apart */
1318 ctx = recv->task.context;
1319 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1320 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1321 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1322 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1323
1324 if (iso->channel == -1) {
1325 /* clear multi-channel selection mask */
1326 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1327 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1328 }
1329
1330 /* write the DMA program */
1331 ohci_iso_recv_program(iso);
1332
1333 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1334 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1335 recv->dma_mode == BUFFER_FILL_MODE ?
1336 "buffer-fill" : "packet-per-buffer",
1337 iso->buf_size/PAGE_SIZE, iso->buf_size,
1338 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1339
1340 return 0;
1341
1342err:
1343 ohci_iso_recv_shutdown(iso);
1344 return ret;
1345}
1346
1347static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1348{
1349 struct ohci_iso_recv *recv = iso->hostdata;
1350
1351 /* disable interrupts */
1352 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1353
1354 /* halt DMA */
1355 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1356}
1357
1358static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1359{
1360 struct ohci_iso_recv *recv = iso->hostdata;
1361
1362 if (recv->task_active) {
1363 ohci_iso_recv_stop(iso);
1364 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1365 recv->task_active = 0;
1366 }
1367
1368 dma_prog_region_free(&recv->prog);
1369 kfree(recv);
1370 iso->hostdata = NULL;
1371}
1372
1373/* set up a "gapped" ring buffer DMA program */
1374static void ohci_iso_recv_program(struct hpsb_iso *iso)
1375{
1376 struct ohci_iso_recv *recv = iso->hostdata;
1377 int blk;
1378
1379 /* address of 'branch' field in previous DMA descriptor */
1380 u32 *prev_branch = NULL;
1381
1382 for (blk = 0; blk < recv->nblocks; blk++) {
1383 u32 control;
1384
1385 /* the DMA descriptor */
1386 struct dma_cmd *cmd = &recv->block[blk];
1387
1388 /* offset of the DMA descriptor relative to the DMA prog buffer */
1389 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1390
1391 /* offset of this packet's data within the DMA buffer */
1392 unsigned long buf_offset = blk * recv->buf_stride;
1393
1394 if (recv->dma_mode == BUFFER_FILL_MODE) {
1395 control = 2 << 28; /* INPUT_MORE */
1396 } else {
1397 control = 3 << 28; /* INPUT_LAST */
1398 }
1399
1400 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1401
1402 /* interrupt on last block, and at intervals */
1403 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1404 control |= 3 << 20; /* want interrupt */
1405 }
1406
1407 control |= 3 << 18; /* enable branch to address */
1408 control |= recv->buf_stride;
1409
1410 cmd->control = cpu_to_le32(control);
1411 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1412 cmd->branchAddress = 0; /* filled in on next loop */
1413 cmd->status = cpu_to_le32(recv->buf_stride);
1414
1415 /* link the previous descriptor to this one */
1416 if (prev_branch) {
1417 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1418 }
1419
1420 prev_branch = &cmd->branchAddress;
1421 }
1422
1423 /* the final descriptor's branch address and Z should be left at 0 */
1424}
1425
1426/* listen or unlisten to a specific channel (multi-channel mode only) */
1427static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1428{
1429 struct ohci_iso_recv *recv = iso->hostdata;
1430 int reg, i;
1431
1432 if (channel < 32) {
1433 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1434 i = channel;
1435 } else {
1436 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1437 i = channel - 32;
1438 }
1439
1440 reg_write(recv->ohci, reg, (1 << i));
1441
1442 /* issue a dummy read to force all PCI writes to be posted immediately */
1443 mb();
1444 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1445}
1446
1447static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1448{
1449 struct ohci_iso_recv *recv = iso->hostdata;
1450 int i;
1451
1452 for (i = 0; i < 64; i++) {
1453 if (mask & (1ULL << i)) {
1454 if (i < 32)
1455 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1456 else
1457 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1458 } else {
1459 if (i < 32)
1460 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1461 else
1462 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1463 }
1464 }
1465
1466 /* issue a dummy read to force all PCI writes to be posted immediately */
1467 mb();
1468 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1469}
1470
1471static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1472{
1473 struct ohci_iso_recv *recv = iso->hostdata;
1474 struct ti_ohci *ohci = recv->ohci;
1475 u32 command, contextMatch;
1476
1477 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1478 wmb();
1479
1480 /* always keep ISO headers */
1481 command = (1 << 30);
1482
1483 if (recv->dma_mode == BUFFER_FILL_MODE)
1484 command |= (1 << 31);
1485
1486 reg_write(recv->ohci, recv->ContextControlSet, command);
1487
1488 /* match on specified tags */
1489 contextMatch = tag_mask << 28;
1490
1491 if (iso->channel == -1) {
1492 /* enable multichannel reception */
1493 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1494 } else {
1495 /* listen on channel */
1496 contextMatch |= iso->channel;
1497 }
1498
1499 if (cycle != -1) {
1500 u32 seconds;
1501
1502 /* enable cycleMatch */
1503 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1504
1505 /* set starting cycle */
1506 cycle &= 0x1FFF;
1507
1508 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1509 just snarf them from the current time */
1510 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1511
1512 /* advance one second to give some extra time for DMA to start */
1513 seconds += 1;
1514
1515 cycle |= (seconds & 3) << 13;
1516
1517 contextMatch |= cycle << 12;
1518 }
1519
1520 if (sync != -1) {
1521 /* set sync flag on first DMA descriptor */
1522 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1523 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1524
1525 /* match sync field */
1526 contextMatch |= (sync&0xf)<<8;
1527 }
1528
1529 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1530
1531 /* address of first descriptor block */
1532 command = dma_prog_region_offset_to_bus(&recv->prog,
1533 recv->block_dma * sizeof(struct dma_cmd));
1534 command |= 1; /* Z=1 */
1535
1536 reg_write(recv->ohci, recv->CommandPtr, command);
1537
1538 /* enable interrupts */
1539 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1540
1541 wmb();
1542
1543 /* run */
1544 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1545
1546 /* issue a dummy read of the cycle timer register to force
1547 all PCI writes to be posted immediately */
1548 mb();
1549 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1550
1551 /* check RUN */
1552 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1553 PRINT(KERN_ERR,
1554 "Error starting IR DMA (ContextControl 0x%08x)\n",
1555 reg_read(recv->ohci, recv->ContextControlSet));
1556 return -1;
1557 }
1558
1559 return 0;
1560}
1561
1562static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1563{
1564 /* re-use the DMA descriptor for the block */
1565 /* by linking the previous descriptor to it */
1566
1567 int next_i = block;
1568 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1569
1570 struct dma_cmd *next = &recv->block[next_i];
1571 struct dma_cmd *prev = &recv->block[prev_i];
1934b8b6
BC
1572
1573 /* ignore out-of-range requests */
1574 if ((block < 0) || (block > recv->nblocks))
1575 return;
1da177e4
LT
1576
1577 /* 'next' becomes the new end of the DMA chain,
1578 so disable branch and enable interrupt */
1579 next->branchAddress = 0;
1580 next->control |= cpu_to_le32(3 << 20);
1581 next->status = cpu_to_le32(recv->buf_stride);
1582
1583 /* link prev to next */
1584 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1585 sizeof(struct dma_cmd) * next_i)
1586 | 1); /* Z=1 */
1587
1588 /* disable interrupt on previous DMA descriptor, except at intervals */
1589 if ((prev_i % recv->block_irq_interval) == 0) {
1590 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1591 } else {
1592 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1593 }
1594 wmb();
1595
1596 /* wake up DMA in case it fell asleep */
1597 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1598}
1599
1600static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1601 struct hpsb_iso_packet_info *info)
1602{
1da177e4 1603 /* release the memory where the packet was */
1934b8b6 1604 recv->released_bytes += info->total_len;
1da177e4
LT
1605
1606 /* have we released enough memory for one block? */
1607 while (recv->released_bytes > recv->buf_stride) {
1608 ohci_iso_recv_release_block(recv, recv->block_reader);
1609 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1610 recv->released_bytes -= recv->buf_stride;
1611 }
1612}
1613
1614static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1615{
1616 struct ohci_iso_recv *recv = iso->hostdata;
1617 if (recv->dma_mode == BUFFER_FILL_MODE) {
1618 ohci_iso_recv_bufferfill_release(recv, info);
1619 } else {
1620 ohci_iso_recv_release_block(recv, info - iso->infos);
1621 }
1622}
1623
1624/* parse all packets from blocks that have been fully received */
1625static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1626{
1627 int wake = 0;
1628 int runaway = 0;
1629 struct ti_ohci *ohci = recv->ohci;
1630
1631 while (1) {
1632 /* we expect the next parsable packet to begin at recv->dma_offset */
1633 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1634
1635 unsigned int offset;
1934b8b6 1636 unsigned short len, cycle, total_len;
1da177e4
LT
1637 unsigned char channel, tag, sy;
1638
1639 unsigned char *p = iso->data_buf.kvirt;
1640
1641 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1642
1643 /* don't loop indefinitely */
1644 if (runaway++ > 100000) {
1645 atomic_inc(&iso->overflows);
1646 PRINT(KERN_ERR,
1647 "IR DMA error - Runaway during buffer parsing!\n");
1648 break;
1649 }
1650
1651 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1652 if (this_block == recv->block_dma)
1653 break;
1654
1655 wake = 1;
1656
1657 /* parse data length, tag, channel, and sy */
1658
1659 /* note: we keep our own local copies of 'len' and 'offset'
1660 so the user can't mess with them by poking in the mmap area */
1661
1662 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1663
1664 if (len > 4096) {
1665 PRINT(KERN_ERR,
1666 "IR DMA error - bogus 'len' value %u\n", len);
1667 }
1668
1669 channel = p[recv->dma_offset+1] & 0x3F;
1670 tag = p[recv->dma_offset+1] >> 6;
1671 sy = p[recv->dma_offset+0] & 0xF;
1672
1673 /* advance to data payload */
1674 recv->dma_offset += 4;
1675
1676 /* check for wrap-around */
1677 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1678 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1679 }
1680
1681 /* dma_offset now points to the first byte of the data payload */
1682 offset = recv->dma_offset;
1683
1684 /* advance to xferStatus/timeStamp */
1685 recv->dma_offset += len;
1686
1934b8b6 1687 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1da177e4
LT
1688 /* payload is padded to 4 bytes */
1689 if (len % 4) {
1690 recv->dma_offset += 4 - (len%4);
1934b8b6 1691 total_len += 4 - (len%4);
1da177e4
LT
1692 }
1693
1694 /* check for wrap-around */
1695 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1696 /* uh oh, the packet data wraps from the last
1697 to the first DMA block - make the packet
1698 contiguous by copying its "tail" into the
1699 guard page */
1700
1701 int guard_off = recv->buf_stride*recv->nblocks;
1702 int tail_len = len - (guard_off - offset);
1703
1704 if (tail_len > 0 && tail_len < recv->buf_stride) {
1705 memcpy(iso->data_buf.kvirt + guard_off,
1706 iso->data_buf.kvirt,
1707 tail_len);
1708 }
1709
1710 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1711 }
1712
1713 /* parse timestamp */
1714 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1715 cycle &= 0x1FFF;
1716
1717 /* advance to next packet */
1718 recv->dma_offset += 4;
1719
1720 /* check for wrap-around */
1721 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1722 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1723 }
1724
1934b8b6 1725 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1da177e4
LT
1726 }
1727
1728 if (wake)
1729 hpsb_iso_wake(iso);
1730}
1731
1732static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1733{
1734 int loop;
1735 struct ti_ohci *ohci = recv->ohci;
1736
1737 /* loop over all blocks */
1738 for (loop = 0; loop < recv->nblocks; loop++) {
1739
1740 /* check block_dma to see if it's done */
1741 struct dma_cmd *im = &recv->block[recv->block_dma];
1742
1743 /* check the DMA descriptor for new writes to xferStatus */
1744 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1745
1746 /* rescount is the number of bytes *remaining to be written* in the block */
1747 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1748
1749 unsigned char event = xferstatus & 0x1F;
1750
1751 if (!event) {
1752 /* nothing has happened to this block yet */
1753 break;
1754 }
1755
1756 if (event != 0x11) {
1757 atomic_inc(&iso->overflows);
1758 PRINT(KERN_ERR,
1759 "IR DMA error - OHCI error code 0x%02x\n", event);
1760 }
1761
1762 if (rescount != 0) {
1763 /* the card is still writing to this block;
1764 we can't touch it until it's done */
1765 break;
1766 }
1767
1768 /* OK, the block is finished... */
1769
1770 /* sync our view of the block */
1771 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1772
1773 /* reset the DMA descriptor */
1774 im->status = recv->buf_stride;
1775
1776 /* advance block_dma */
1777 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1778
1779 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1780 atomic_inc(&iso->overflows);
1781 DBGMSG("ISO reception overflow - "
1782 "ran out of DMA blocks");
1783 }
1784 }
1785
1786 /* parse any packets that have arrived */
1787 ohci_iso_recv_bufferfill_parse(iso, recv);
1788}
1789
1790static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1791{
1792 int count;
1793 int wake = 0;
1794 struct ti_ohci *ohci = recv->ohci;
1795
1796 /* loop over the entire buffer */
1797 for (count = 0; count < recv->nblocks; count++) {
1798 u32 packet_len = 0;
1799
1800 /* pointer to the DMA descriptor */
1801 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1802
1803 /* check the DMA descriptor for new writes to xferStatus */
1804 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1805 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1806
1807 unsigned char event = xferstatus & 0x1F;
1808
1809 if (!event) {
1810 /* this packet hasn't come in yet; we are done for now */
1811 goto out;
1812 }
1813
1814 if (event == 0x11) {
1815 /* packet received successfully! */
1816
1817 /* rescount is the number of bytes *remaining* in the packet buffer,
1818 after the packet was written */
1819 packet_len = recv->buf_stride - rescount;
1820
1821 } else if (event == 0x02) {
1822 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1823 } else if (event) {
1824 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1825 }
1826
1827 /* sync our view of the buffer */
1828 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1829
1830 /* record the per-packet info */
1831 {
1832 /* iso header is 8 bytes ahead of the data payload */
1833 unsigned char *hdr;
1834
1835 unsigned int offset;
1836 unsigned short cycle;
1837 unsigned char channel, tag, sy;
1838
1839 offset = iso->pkt_dma * recv->buf_stride;
1840 hdr = iso->data_buf.kvirt + offset;
1841
1842 /* skip iso header */
1843 offset += 8;
1844 packet_len -= 8;
1845
1846 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1847 channel = hdr[5] & 0x3F;
1848 tag = hdr[5] >> 6;
1849 sy = hdr[4] & 0xF;
1850
1934b8b6
BC
1851 hpsb_iso_packet_received(iso, offset, packet_len,
1852 recv->buf_stride, cycle, channel, tag, sy);
1da177e4
LT
1853 }
1854
1855 /* reset the DMA descriptor */
1856 il->status = recv->buf_stride;
1857
1858 wake = 1;
1859 recv->block_dma = iso->pkt_dma;
1860 }
1861
1862out:
1863 if (wake)
1864 hpsb_iso_wake(iso);
1865}
1866
1867static void ohci_iso_recv_task(unsigned long data)
1868{
1869 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1870 struct ohci_iso_recv *recv = iso->hostdata;
1871
1872 if (recv->dma_mode == BUFFER_FILL_MODE)
1873 ohci_iso_recv_bufferfill_task(iso, recv);
1874 else
1875 ohci_iso_recv_packetperbuf_task(iso, recv);
1876}
1877
1878/***********************************
1879 * rawiso ISO transmission *
1880 ***********************************/
1881
1882struct ohci_iso_xmit {
1883 struct ti_ohci *ohci;
1884 struct dma_prog_region prog;
1885 struct ohci1394_iso_tasklet task;
1886 int task_active;
1887
1888 u32 ContextControlSet;
1889 u32 ContextControlClear;
1890 u32 CommandPtr;
1891};
1892
1893/* transmission DMA program:
1894 one OUTPUT_MORE_IMMEDIATE for the IT header
1895 one OUTPUT_LAST for the buffer data */
1896
1897struct iso_xmit_cmd {
1898 struct dma_cmd output_more_immediate;
1899 u8 iso_hdr[8];
1900 u32 unused[2];
1901 struct dma_cmd output_last;
1902};
1903
1904static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1905static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1906static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1907static void ohci_iso_xmit_task(unsigned long data);
1908
1909static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1910{
1911 struct ohci_iso_xmit *xmit;
1912 unsigned int prog_size;
1913 int ctx;
1914 int ret = -ENOMEM;
1915
1916 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1917 if (!xmit)
1918 return -ENOMEM;
1919
1920 iso->hostdata = xmit;
1921 xmit->ohci = iso->host->hostdata;
1922 xmit->task_active = 0;
1923
1924 dma_prog_region_init(&xmit->prog);
1925
1926 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1927
1928 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1929 goto err;
1930
1931 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1932 ohci_iso_xmit_task, (unsigned long) iso);
1933
e4ec0f23
JM
1934 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1935 ret = -EBUSY;
1da177e4 1936 goto err;
e4ec0f23 1937 }
1da177e4
LT
1938
1939 xmit->task_active = 1;
1940
1941 /* xmit context registers are spaced 16 bytes apart */
1942 ctx = xmit->task.context;
1943 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1944 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1945 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1946
1947 return 0;
1948
1949err:
1950 ohci_iso_xmit_shutdown(iso);
1951 return ret;
1952}
1953
1954static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1955{
1956 struct ohci_iso_xmit *xmit = iso->hostdata;
1957 struct ti_ohci *ohci = xmit->ohci;
1958
1959 /* disable interrupts */
1960 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1961
1962 /* halt DMA */
1963 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1964 /* XXX the DMA context will lock up if you try to send too much data! */
1965 PRINT(KERN_ERR,
1966 "you probably exceeded the OHCI card's bandwidth limit - "
1967 "reload the module and reduce xmit bandwidth");
1968 }
1969}
1970
1971static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1972{
1973 struct ohci_iso_xmit *xmit = iso->hostdata;
1974
1975 if (xmit->task_active) {
1976 ohci_iso_xmit_stop(iso);
1977 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1978 xmit->task_active = 0;
1979 }
1980
1981 dma_prog_region_free(&xmit->prog);
1982 kfree(xmit);
1983 iso->hostdata = NULL;
1984}
1985
1986static void ohci_iso_xmit_task(unsigned long data)
1987{
1988 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1989 struct ohci_iso_xmit *xmit = iso->hostdata;
1990 struct ti_ohci *ohci = xmit->ohci;
1991 int wake = 0;
1992 int count;
1993
1994 /* check the whole buffer if necessary, starting at pkt_dma */
1995 for (count = 0; count < iso->buf_packets; count++) {
1996 int cycle;
1997
1998 /* DMA descriptor */
1999 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2000
2001 /* check for new writes to xferStatus */
2002 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2003 u8 event = xferstatus & 0x1F;
2004
2005 if (!event) {
2006 /* packet hasn't been sent yet; we are done for now */
2007 break;
2008 }
2009
2010 if (event != 0x11)
2011 PRINT(KERN_ERR,
2012 "IT DMA error - OHCI error code 0x%02x\n", event);
2013
2014 /* at least one packet went out, so wake up the writer */
2015 wake = 1;
2016
2017 /* parse cycle */
2018 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2019
2020 /* tell the subsystem the packet has gone out */
2021 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2022
2023 /* reset the DMA descriptor for next time */
2024 cmd->output_last.status = 0;
2025 }
2026
2027 if (wake)
2028 hpsb_iso_wake(iso);
2029}
2030
2031static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2032{
2033 struct ohci_iso_xmit *xmit = iso->hostdata;
2034 struct ti_ohci *ohci = xmit->ohci;
2035
2036 int next_i, prev_i;
2037 struct iso_xmit_cmd *next, *prev;
2038
2039 unsigned int offset;
2040 unsigned short len;
2041 unsigned char tag, sy;
2042
2043 /* check that the packet doesn't cross a page boundary
2044 (we could allow this if we added OUTPUT_MORE descriptor support) */
2045 if (cross_bound(info->offset, info->len)) {
2046 PRINT(KERN_ERR,
2047 "rawiso xmit: packet %u crosses a page boundary",
2048 iso->first_packet);
2049 return -EINVAL;
2050 }
2051
2052 offset = info->offset;
2053 len = info->len;
2054 tag = info->tag;
2055 sy = info->sy;
2056
2057 /* sync up the card's view of the buffer */
2058 dma_region_sync_for_device(&iso->data_buf, offset, len);
2059
2060 /* append first_packet to the DMA chain */
2061 /* by linking the previous descriptor to it */
2062 /* (next will become the new end of the DMA chain) */
2063
2064 next_i = iso->first_packet;
2065 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2066
2067 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2068 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2069
2070 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2071 memset(next, 0, sizeof(struct iso_xmit_cmd));
2072 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2073
2074 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2075
2076 /* tcode = 0xA, and sy */
2077 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2078
2079 /* tag and channel number */
2080 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2081
2082 /* transmission speed */
2083 next->iso_hdr[2] = iso->speed & 0x7;
2084
2085 /* payload size */
2086 next->iso_hdr[6] = len & 0xFF;
2087 next->iso_hdr[7] = len >> 8;
2088
2089 /* set up the OUTPUT_LAST */
2090 next->output_last.control = cpu_to_le32(1 << 28);
2091 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2092 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2093 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2094 next->output_last.control |= cpu_to_le32(len);
2095
2096 /* payload bus address */
2097 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2098
2099 /* leave branchAddress at zero for now */
2100
2101 /* re-write the previous DMA descriptor to chain to this one */
2102
2103 /* set prev branch address to point to next (Z=3) */
2104 prev->output_last.branchAddress = cpu_to_le32(
2105 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2106
2107 /* disable interrupt, unless required by the IRQ interval */
2108 if (prev_i % iso->irq_interval) {
2109 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2110 } else {
2111 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2112 }
2113
2114 wmb();
2115
2116 /* wake DMA in case it is sleeping */
2117 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2118
2119 /* issue a dummy read of the cycle timer to force all PCI
2120 writes to be posted immediately */
2121 mb();
2122 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2123
2124 return 0;
2125}
2126
2127static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2128{
2129 struct ohci_iso_xmit *xmit = iso->hostdata;
2130 struct ti_ohci *ohci = xmit->ohci;
2131
2132 /* clear out the control register */
2133 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2134 wmb();
2135
2136 /* address and length of first descriptor block (Z=3) */
2137 reg_write(xmit->ohci, xmit->CommandPtr,
2138 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2139
2140 /* cycle match */
2141 if (cycle != -1) {
2142 u32 start = cycle & 0x1FFF;
2143
2144 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2145 just snarf them from the current time */
2146 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2147
2148 /* advance one second to give some extra time for DMA to start */
2149 seconds += 1;
2150
2151 start |= (seconds & 3) << 13;
2152
2153 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2154 }
2155
2156 /* enable interrupts */
2157 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2158
2159 /* run */
2160 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2161 mb();
2162
2163 /* wait 100 usec to give the card time to go active */
2164 udelay(100);
2165
2166 /* check the RUN bit */
2167 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2168 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2169 reg_read(xmit->ohci, xmit->ContextControlSet));
2170 return -1;
2171 }
2172
2173 return 0;
2174}
2175
2176static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2177{
2178
2179 switch(cmd) {
2180 case XMIT_INIT:
2181 return ohci_iso_xmit_init(iso);
2182 case XMIT_START:
2183 return ohci_iso_xmit_start(iso, arg);
2184 case XMIT_STOP:
2185 ohci_iso_xmit_stop(iso);
2186 return 0;
2187 case XMIT_QUEUE:
2188 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2189 case XMIT_SHUTDOWN:
2190 ohci_iso_xmit_shutdown(iso);
2191 return 0;
2192
2193 case RECV_INIT:
2194 return ohci_iso_recv_init(iso);
2195 case RECV_START: {
2196 int *args = (int*) arg;
2197 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2198 }
2199 case RECV_STOP:
2200 ohci_iso_recv_stop(iso);
2201 return 0;
2202 case RECV_RELEASE:
2203 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2204 return 0;
2205 case RECV_FLUSH:
2206 ohci_iso_recv_task((unsigned long) iso);
2207 return 0;
2208 case RECV_SHUTDOWN:
2209 ohci_iso_recv_shutdown(iso);
2210 return 0;
2211 case RECV_LISTEN_CHANNEL:
2212 ohci_iso_recv_change_channel(iso, arg, 1);
2213 return 0;
2214 case RECV_UNLISTEN_CHANNEL:
2215 ohci_iso_recv_change_channel(iso, arg, 0);
2216 return 0;
2217 case RECV_SET_CHANNEL_MASK:
2218 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2219 return 0;
2220
2221 default:
2222 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2223 cmd);
2224 break;
2225 }
2226 return -EINVAL;
2227}
2228
2229/***************************************
2230 * IEEE-1394 functionality section END *
2231 ***************************************/
2232
2233
2234/********************************************************
2235 * Global stuff (interrupt handler, init/shutdown code) *
2236 ********************************************************/
2237
2238static void dma_trm_reset(struct dma_trm_ctx *d)
2239{
2240 unsigned long flags;
2241 LIST_HEAD(packet_list);
2242 struct ti_ohci *ohci = d->ohci;
2243 struct hpsb_packet *packet, *ptmp;
2244
2245 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2246
2247 /* Lock the context, reset it and release it. Move the packets
2248 * that were pending in the context to packet_list and free
2249 * them after releasing the lock. */
2250
2251 spin_lock_irqsave(&d->lock, flags);
2252
2253 list_splice(&d->fifo_list, &packet_list);
2254 list_splice(&d->pending_list, &packet_list);
2255 INIT_LIST_HEAD(&d->fifo_list);
2256 INIT_LIST_HEAD(&d->pending_list);
2257
2258 d->branchAddrPtr = NULL;
2259 d->sent_ind = d->prg_ind;
2260 d->free_prgs = d->num_desc;
2261
2262 spin_unlock_irqrestore(&d->lock, flags);
2263
2264 if (list_empty(&packet_list))
2265 return;
2266
2267 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2268
2269 /* Now process subsystem callbacks for the packets from this
2270 * context. */
2271 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2272 list_del_init(&packet->driver_list);
2273 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2274 }
2275}
2276
2277static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2278 quadlet_t rx_event,
2279 quadlet_t tx_event)
2280{
2281 struct ohci1394_iso_tasklet *t;
2282 unsigned long mask;
4a9949d7 2283 unsigned long flags;
1da177e4 2284
4a9949d7 2285 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
1da177e4
LT
2286
2287 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2288 mask = 1 << t->context;
2289
2290 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2291 tasklet_schedule(&t->tasklet);
2292 else if (rx_event & mask)
2293 tasklet_schedule(&t->tasklet);
2294 }
2295
4a9949d7 2296 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
1da177e4
LT
2297}
2298
2299static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2300 struct pt_regs *regs_are_unused)
2301{
2302 quadlet_t event, node_id;
2303 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2304 struct hpsb_host *host = ohci->host;
2305 int phyid = -1, isroot = 0;
2306 unsigned long flags;
2307
2308 /* Read and clear the interrupt event register. Don't clear
2309 * the busReset event, though. This is done when we get the
2310 * selfIDComplete interrupt. */
2311 spin_lock_irqsave(&ohci->event_lock, flags);
2312 event = reg_read(ohci, OHCI1394_IntEventClear);
2313 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2314 spin_unlock_irqrestore(&ohci->event_lock, flags);
2315
2316 if (!event)
2317 return IRQ_NONE;
2318
2319 /* If event is ~(u32)0 cardbus card was ejected. In this case
2320 * we just return, and clean up in the ohci1394_pci_remove
2321 * function. */
2322 if (event == ~(u32) 0) {
2323 DBGMSG("Device removed.");
2324 return IRQ_NONE;
2325 }
2326
2327 DBGMSG("IntEvent: %08x", event);
2328
2329 if (event & OHCI1394_unrecoverableError) {
2330 int ctx;
2331 PRINT(KERN_ERR, "Unrecoverable error!");
2332
2333 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2334 PRINT(KERN_ERR, "Async Req Tx Context died: "
2335 "ctrl[%08x] cmdptr[%08x]",
2336 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2337 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2338
2339 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2340 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2341 "ctrl[%08x] cmdptr[%08x]",
2342 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2343 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2344
2345 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2346 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2347 "ctrl[%08x] cmdptr[%08x]",
2348 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2349 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2350
2351 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2352 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2353 "ctrl[%08x] cmdptr[%08x]",
2354 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2355 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2356
2357 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2358 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2359 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2360 "ctrl[%08x] cmdptr[%08x]", ctx,
2361 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2362 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2363 }
2364
2365 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2366 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2367 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2368 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2369 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2370 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2371 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2372 }
2373
2374 event &= ~OHCI1394_unrecoverableError;
2375 }
2376
2377 if (event & OHCI1394_cycleInconsistent) {
2378 /* We subscribe to the cycleInconsistent event only to
2379 * clear the corresponding event bit... otherwise,
2380 * isochronous cycleMatch DMA won't work. */
2381 DBGMSG("OHCI1394_cycleInconsistent");
2382 event &= ~OHCI1394_cycleInconsistent;
2383 }
2384
2385 if (event & OHCI1394_busReset) {
2386 /* The busReset event bit can't be cleared during the
2387 * selfID phase, so we disable busReset interrupts, to
2388 * avoid burying the cpu in interrupt requests. */
2389 spin_lock_irqsave(&ohci->event_lock, flags);
2390 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2391
2392 if (ohci->check_busreset) {
2393 int loop_count = 0;
2394
2395 udelay(10);
2396
2397 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2398 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2399
2400 spin_unlock_irqrestore(&ohci->event_lock, flags);
2401 udelay(10);
2402 spin_lock_irqsave(&ohci->event_lock, flags);
2403
2404 /* The loop counter check is to prevent the driver
2405 * from remaining in this state forever. For the
2406 * initial bus reset, the loop continues for ever
2407 * and the system hangs, until some device is plugged-in
2408 * or out manually into a port! The forced reset seems
2409 * to solve this problem. This mainly effects nForce2. */
2410 if (loop_count > 10000) {
2411 ohci_devctl(host, RESET_BUS, LONG_RESET);
2412 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2413 loop_count = 0;
2414 }
2415
2416 loop_count++;
2417 }
2418 }
2419 spin_unlock_irqrestore(&ohci->event_lock, flags);
2420 if (!host->in_bus_reset) {
2421 DBGMSG("irq_handler: Bus reset requested");
2422
2423 /* Subsystem call */
2424 hpsb_bus_reset(ohci->host);
2425 }
2426 event &= ~OHCI1394_busReset;
2427 }
2428
2429 if (event & OHCI1394_reqTxComplete) {
2430 struct dma_trm_ctx *d = &ohci->at_req_context;
2431 DBGMSG("Got reqTxComplete interrupt "
2432 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2433 if (reg_read(ohci, d->ctrlSet) & 0x800)
2434 ohci1394_stop_context(ohci, d->ctrlClear,
2435 "reqTxComplete");
2436 else
2437 dma_trm_tasklet((unsigned long)d);
2438 //tasklet_schedule(&d->task);
2439 event &= ~OHCI1394_reqTxComplete;
2440 }
2441 if (event & OHCI1394_respTxComplete) {
2442 struct dma_trm_ctx *d = &ohci->at_resp_context;
2443 DBGMSG("Got respTxComplete interrupt "
2444 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2445 if (reg_read(ohci, d->ctrlSet) & 0x800)
2446 ohci1394_stop_context(ohci, d->ctrlClear,
2447 "respTxComplete");
2448 else
2449 tasklet_schedule(&d->task);
2450 event &= ~OHCI1394_respTxComplete;
2451 }
2452 if (event & OHCI1394_RQPkt) {
2453 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2454 DBGMSG("Got RQPkt interrupt status=0x%08X",
2455 reg_read(ohci, d->ctrlSet));
2456 if (reg_read(ohci, d->ctrlSet) & 0x800)
2457 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2458 else
2459 tasklet_schedule(&d->task);
2460 event &= ~OHCI1394_RQPkt;
2461 }
2462 if (event & OHCI1394_RSPkt) {
2463 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2464 DBGMSG("Got RSPkt interrupt status=0x%08X",
2465 reg_read(ohci, d->ctrlSet));
2466 if (reg_read(ohci, d->ctrlSet) & 0x800)
2467 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2468 else
2469 tasklet_schedule(&d->task);
2470 event &= ~OHCI1394_RSPkt;
2471 }
2472 if (event & OHCI1394_isochRx) {
2473 quadlet_t rx_event;
2474
2475 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2476 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2477 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2478 event &= ~OHCI1394_isochRx;
2479 }
2480 if (event & OHCI1394_isochTx) {
2481 quadlet_t tx_event;
2482
2483 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2484 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2485 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2486 event &= ~OHCI1394_isochTx;
2487 }
2488 if (event & OHCI1394_selfIDComplete) {
2489 if (host->in_bus_reset) {
2490 node_id = reg_read(ohci, OHCI1394_NodeID);
2491
2492 if (!(node_id & 0x80000000)) {
2493 PRINT(KERN_ERR,
2494 "SelfID received, but NodeID invalid "
2495 "(probably new bus reset occurred): %08X",
2496 node_id);
2497 goto selfid_not_valid;
2498 }
2499
2500 phyid = node_id & 0x0000003f;
2501 isroot = (node_id & 0x40000000) != 0;
2502
2503 DBGMSG("SelfID interrupt received "
2504 "(phyid %d, %s)", phyid,
2505 (isroot ? "root" : "not root"));
2506
2507 handle_selfid(ohci, host, phyid, isroot);
2508
2509 /* Clear the bus reset event and re-enable the
2510 * busReset interrupt. */
2511 spin_lock_irqsave(&ohci->event_lock, flags);
2512 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2513 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2514 spin_unlock_irqrestore(&ohci->event_lock, flags);
2515
2516 /* Accept Physical requests from all nodes. */
2517 reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0xffffffff);
2518 reg_write(ohci,OHCI1394_AsReqFilterLoSet, 0xffffffff);
2519
2520 /* Turn on phys dma reception.
2521 *
2522 * TODO: Enable some sort of filtering management.
2523 */
2524 if (phys_dma) {
2525 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0xffffffff);
2526 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0xffffffff);
2527 reg_write(ohci,OHCI1394_PhyUpperBound, 0xffff0000);
2528 } else {
2529 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0x00000000);
2530 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0x00000000);
2531 }
2532
2533 DBGMSG("PhyReqFilter=%08x%08x",
2534 reg_read(ohci,OHCI1394_PhyReqFilterHiSet),
2535 reg_read(ohci,OHCI1394_PhyReqFilterLoSet));
2536
2537 hpsb_selfid_complete(host, phyid, isroot);
2538 } else
2539 PRINT(KERN_ERR,
2540 "SelfID received outside of bus reset sequence");
2541
2542selfid_not_valid:
2543 event &= ~OHCI1394_selfIDComplete;
2544 }
2545
2546 /* Make sure we handle everything, just in case we accidentally
2547 * enabled an interrupt that we didn't write a handler for. */
2548 if (event)
2549 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2550 event);
2551
2552 return IRQ_HANDLED;
2553}
2554
2555/* Put the buffer back into the dma context */
2556static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2557{
2558 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2559 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2560
2561 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2562 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2563 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2564 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2565
2566 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2567 * context program descriptors before it sees the wakeup bit set. */
2568 wmb();
2569
2570 /* wake up the dma context if necessary */
2571 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2572 PRINT(KERN_INFO,
2573 "Waking dma ctx=%d ... processing is probably too slow",
2574 d->ctx);
2575 }
2576
2577 /* do this always, to avoid race condition */
2578 reg_write(ohci, d->ctrlSet, 0x1000);
2579}
2580
2581#define cond_le32_to_cpu(data, noswap) \
2582 (noswap ? data : le32_to_cpu(data))
2583
2584static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2585 -1, 0, -1, 0, -1, -1, 16, -1};
2586
2587/*
2588 * Determine the length of a packet in the buffer
2589 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2590 */
2591static __inline__ int packet_length(struct dma_rcv_ctx *d, int idx, quadlet_t *buf_ptr,
2592 int offset, unsigned char tcode, int noswap)
2593{
2594 int length = -1;
2595
2596 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2597 length = TCODE_SIZE[tcode];
2598 if (length == 0) {
2599 if (offset + 12 >= d->buf_size) {
2600 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2601 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2602 } else {
2603 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2604 }
2605 length += 20;
2606 }
2607 } else if (d->type == DMA_CTX_ISO) {
2608 /* Assumption: buffer fill mode with header/trailer */
2609 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2610 }
2611
2612 if (length > 0 && length % 4)
2613 length += 4 - (length % 4);
2614
2615 return length;
2616}
2617
2618/* Tasklet that processes dma receive buffers */
2619static void dma_rcv_tasklet (unsigned long data)
2620{
2621 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2622 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2623 unsigned int split_left, idx, offset, rescount;
2624 unsigned char tcode;
2625 int length, bytes_left, ack;
2626 unsigned long flags;
2627 quadlet_t *buf_ptr;
2628 char *split_ptr;
2629 char msg[256];
2630
2631 spin_lock_irqsave(&d->lock, flags);
2632
2633 idx = d->buf_ind;
2634 offset = d->buf_offset;
2635 buf_ptr = d->buf_cpu[idx] + offset/4;
2636
2637 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2638 bytes_left = d->buf_size - rescount - offset;
2639
2640 while (bytes_left > 0) {
2641 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2642
2643 /* packet_length() will return < 4 for an error */
2644 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2645
2646 if (length < 4) { /* something is wrong */
2647 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2648 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2649 d->ctx, length);
2650 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2651 spin_unlock_irqrestore(&d->lock, flags);
2652 return;
2653 }
2654
2655 /* The first case is where we have a packet that crosses
2656 * over more than one descriptor. The next case is where
2657 * it's all in the first descriptor. */
2658 if ((offset + length) > d->buf_size) {
2659 DBGMSG("Split packet rcv'd");
2660 if (length > d->split_buf_size) {
2661 ohci1394_stop_context(ohci, d->ctrlClear,
2662 "Split packet size exceeded");
2663 d->buf_ind = idx;
2664 d->buf_offset = offset;
2665 spin_unlock_irqrestore(&d->lock, flags);
2666 return;
2667 }
2668
2669 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2670 == d->buf_size) {
2671 /* Other part of packet not written yet.
2672 * this should never happen I think
2673 * anyway we'll get it on the next call. */
2674 PRINT(KERN_INFO,
2675 "Got only half a packet!");
2676 d->buf_ind = idx;
2677 d->buf_offset = offset;
2678 spin_unlock_irqrestore(&d->lock, flags);
2679 return;
2680 }
2681
2682 split_left = length;
2683 split_ptr = (char *)d->spb;
2684 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2685 split_left -= d->buf_size-offset;
2686 split_ptr += d->buf_size-offset;
2687 insert_dma_buffer(d, idx);
2688 idx = (idx+1) % d->num_desc;
2689 buf_ptr = d->buf_cpu[idx];
2690 offset=0;
2691
2692 while (split_left >= d->buf_size) {
2693 memcpy(split_ptr,buf_ptr,d->buf_size);
2694 split_ptr += d->buf_size;
2695 split_left -= d->buf_size;
2696 insert_dma_buffer(d, idx);
2697 idx = (idx+1) % d->num_desc;
2698 buf_ptr = d->buf_cpu[idx];
2699 }
2700
2701 if (split_left > 0) {
2702 memcpy(split_ptr, buf_ptr, split_left);
2703 offset = split_left;
2704 buf_ptr += offset/4;
2705 }
2706 } else {
2707 DBGMSG("Single packet rcv'd");
2708 memcpy(d->spb, buf_ptr, length);
2709 offset += length;
2710 buf_ptr += length/4;
2711 if (offset==d->buf_size) {
2712 insert_dma_buffer(d, idx);
2713 idx = (idx+1) % d->num_desc;
2714 buf_ptr = d->buf_cpu[idx];
2715 offset=0;
2716 }
2717 }
2718
2719 /* We get one phy packet to the async descriptor for each
2720 * bus reset. We always ignore it. */
2721 if (tcode != OHCI1394_TCODE_PHY) {
2722 if (!ohci->no_swap_incoming)
2723 packet_swab(d->spb, tcode);
2724 DBGMSG("Packet received from node"
2725 " %d ack=0x%02X spd=%d tcode=0x%X"
2726 " length=%d ctx=%d tlabel=%d",
2727 (d->spb[1]>>16)&0x3f,
2728 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2729 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2730 tcode, length, d->ctx,
dfe547ab 2731 (cond_le32_to_cpu(d->spb[0], ohci->no_swap_incoming)>>10)&0x3f);
1da177e4
LT
2732
2733 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2734 == 0x11) ? 1 : 0;
2735
2736 hpsb_packet_received(ohci->host, d->spb,
2737 length-4, ack);
2738 }
2739#ifdef OHCI1394_DEBUG
2740 else
2741 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2742 d->ctx);
2743#endif
2744
2745 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2746
2747 bytes_left = d->buf_size - rescount - offset;
2748
2749 }
2750
2751 d->buf_ind = idx;
2752 d->buf_offset = offset;
2753
2754 spin_unlock_irqrestore(&d->lock, flags);
2755}
2756
2757/* Bottom half that processes sent packets */
2758static void dma_trm_tasklet (unsigned long data)
2759{
2760 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2761 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2762 struct hpsb_packet *packet, *ptmp;
2763 unsigned long flags;
2764 u32 status, ack;
2765 size_t datasize;
2766
2767 spin_lock_irqsave(&d->lock, flags);
2768
2769 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2770 datasize = packet->data_size;
2771 if (datasize && packet->type != hpsb_raw)
2772 status = le32_to_cpu(
2773 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2774 else
2775 status = le32_to_cpu(
2776 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2777
2778 if (status == 0)
2779 /* this packet hasn't been sent yet*/
2780 break;
2781
2782#ifdef OHCI1394_DEBUG
2783 if (datasize)
2784 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2785 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2786 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2787 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2788 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2789 status&0x1f, (status>>5)&0x3,
2790 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2791 d->ctx);
2792 else
2793 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
dfe547ab 2794 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
1da177e4
LT
2795 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2796 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2797 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2798 status&0x1f, (status>>5)&0x3,
2799 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2800 d->ctx);
2801 else
2802 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
dfe547ab 2803 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
1da177e4
LT
2804 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2805 >>16)&0x3f,
2806 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2807 >>4)&0xf,
2808 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2809 >>10)&0x3f,
2810 status&0x1f, (status>>5)&0x3,
2811 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2812 d->ctx);
2813#endif
2814
2815 if (status & 0x10) {
2816 ack = status & 0xf;
2817 } else {
2818 switch (status & 0x1f) {
2819 case EVT_NO_STATUS: /* that should never happen */
2820 case EVT_RESERVED_A: /* that should never happen */
2821 case EVT_LONG_PACKET: /* that should never happen */
2822 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2823 ack = ACKX_SEND_ERROR;
2824 break;
2825 case EVT_MISSING_ACK:
2826 ack = ACKX_TIMEOUT;
2827 break;
2828 case EVT_UNDERRUN:
2829 ack = ACKX_SEND_ERROR;
2830 break;
2831 case EVT_OVERRUN: /* that should never happen */
2832 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2833 ack = ACKX_SEND_ERROR;
2834 break;
2835 case EVT_DESCRIPTOR_READ:
2836 case EVT_DATA_READ:
2837 case EVT_DATA_WRITE:
2838 ack = ACKX_SEND_ERROR;
2839 break;
2840 case EVT_BUS_RESET: /* that should never happen */
2841 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2842 ack = ACKX_SEND_ERROR;
2843 break;
2844 case EVT_TIMEOUT:
2845 ack = ACKX_TIMEOUT;
2846 break;
2847 case EVT_TCODE_ERR:
2848 ack = ACKX_SEND_ERROR;
2849 break;
2850 case EVT_RESERVED_B: /* that should never happen */
2851 case EVT_RESERVED_C: /* that should never happen */
2852 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2853 ack = ACKX_SEND_ERROR;
2854 break;
2855 case EVT_UNKNOWN:
2856 case EVT_FLUSHED:
2857 ack = ACKX_SEND_ERROR;
2858 break;
2859 default:
2860 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2861 ack = ACKX_SEND_ERROR;
2862 BUG();
2863 }
2864 }
2865
2866 list_del_init(&packet->driver_list);
2867 hpsb_packet_sent(ohci->host, packet, ack);
2868
2869 if (datasize) {
2870 pci_unmap_single(ohci->dev,
2871 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2872 datasize, PCI_DMA_TODEVICE);
2873 OHCI_DMA_FREE("single Xmit data packet");
2874 }
2875
2876 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2877 d->free_prgs++;
2878 }
2879
2880 dma_trm_flush(ohci, d);
2881
2882 spin_unlock_irqrestore(&d->lock, flags);
2883}
2884
2885static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2886{
2887 if (d->ctrlClear) {
2888 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2889
2890 if (d->type == DMA_CTX_ISO) {
2891 /* disable interrupts */
2892 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2893 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2894 } else {
2895 tasklet_kill(&d->task);
2896 }
2897 }
2898}
2899
2900
2901static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2902{
2903 int i;
2904 struct ti_ohci *ohci = d->ohci;
2905
2906 if (ohci == NULL)
2907 return;
2908
2909 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2910
2911 if (d->buf_cpu) {
2912 for (i=0; i<d->num_desc; i++)
2913 if (d->buf_cpu[i] && d->buf_bus[i]) {
2914 pci_free_consistent(
2915 ohci->dev, d->buf_size,
2916 d->buf_cpu[i], d->buf_bus[i]);
2917 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2918 }
2919 kfree(d->buf_cpu);
2920 kfree(d->buf_bus);
2921 }
2922 if (d->prg_cpu) {
2923 for (i=0; i<d->num_desc; i++)
2924 if (d->prg_cpu[i] && d->prg_bus[i]) {
2925 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2926 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2927 }
2928 pci_pool_destroy(d->prg_pool);
2929 OHCI_DMA_FREE("dma_rcv prg pool");
2930 kfree(d->prg_cpu);
2931 kfree(d->prg_bus);
2932 }
616b859f 2933 kfree(d->spb);
1da177e4
LT
2934
2935 /* Mark this context as freed. */
2936 d->ohci = NULL;
2937}
2938
2939static int
2940alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2941 enum context_type type, int ctx, int num_desc,
2942 int buf_size, int split_buf_size, int context_base)
2943{
2944 int i, len;
2945 static int num_allocs;
2946 static char pool_name[20];
2947
2948 d->ohci = ohci;
2949 d->type = type;
2950 d->ctx = ctx;
2951
2952 d->num_desc = num_desc;
2953 d->buf_size = buf_size;
2954 d->split_buf_size = split_buf_size;
2955
2956 d->ctrlSet = 0;
2957 d->ctrlClear = 0;
2958 d->cmdPtr = 0;
2959
2960 d->buf_cpu = kmalloc(d->num_desc * sizeof(quadlet_t*), GFP_ATOMIC);
2961 d->buf_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_ATOMIC);
2962
2963 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2964 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2965 free_dma_rcv_ctx(d);
2966 return -ENOMEM;
2967 }
2968 memset(d->buf_cpu, 0, d->num_desc * sizeof(quadlet_t*));
2969 memset(d->buf_bus, 0, d->num_desc * sizeof(dma_addr_t));
2970
2971 d->prg_cpu = kmalloc(d->num_desc * sizeof(struct dma_cmd*),
2972 GFP_ATOMIC);
2973 d->prg_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_ATOMIC);
2974
2975 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2976 PRINT(KERN_ERR, "Failed to allocate dma prg");
2977 free_dma_rcv_ctx(d);
2978 return -ENOMEM;
2979 }
2980 memset(d->prg_cpu, 0, d->num_desc * sizeof(struct dma_cmd*));
2981 memset(d->prg_bus, 0, d->num_desc * sizeof(dma_addr_t));
2982
2983 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2984
2985 if (d->spb == NULL) {
2986 PRINT(KERN_ERR, "Failed to allocate split buffer");
2987 free_dma_rcv_ctx(d);
2988 return -ENOMEM;
2989 }
2990
2991 len = sprintf(pool_name, "ohci1394_rcv_prg");
2992 sprintf(pool_name+len, "%d", num_allocs);
2993 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2994 sizeof(struct dma_cmd), 4, 0);
2995 if(d->prg_pool == NULL)
2996 {
2997 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
2998 free_dma_rcv_ctx(d);
2999 return -ENOMEM;
3000 }
3001 num_allocs++;
3002
3003 OHCI_DMA_ALLOC("dma_rcv prg pool");
3004
3005 for (i=0; i<d->num_desc; i++) {
3006 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3007 d->buf_size,
3008 d->buf_bus+i);
3009 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3010
3011 if (d->buf_cpu[i] != NULL) {
3012 memset(d->buf_cpu[i], 0, d->buf_size);
3013 } else {
3014 PRINT(KERN_ERR,
3015 "Failed to allocate dma buffer");
3016 free_dma_rcv_ctx(d);
3017 return -ENOMEM;
3018 }
3019
3020 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3021 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3022
3023 if (d->prg_cpu[i] != NULL) {
3024 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3025 } else {
3026 PRINT(KERN_ERR,
3027 "Failed to allocate dma prg");
3028 free_dma_rcv_ctx(d);
3029 return -ENOMEM;
3030 }
3031 }
3032
3033 spin_lock_init(&d->lock);
3034
3035 if (type == DMA_CTX_ISO) {
3036 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3037 OHCI_ISO_MULTICHANNEL_RECEIVE,
3038 dma_rcv_tasklet, (unsigned long) d);
1da177e4
LT
3039 } else {
3040 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3041 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3042 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3043
3044 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3045 }
3046
3047 return 0;
3048}
3049
3050static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3051{
3052 int i;
3053 struct ti_ohci *ohci = d->ohci;
3054
3055 if (ohci == NULL)
3056 return;
3057
3058 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3059
3060 if (d->prg_cpu) {
3061 for (i=0; i<d->num_desc; i++)
3062 if (d->prg_cpu[i] && d->prg_bus[i]) {
3063 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3064 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3065 }
3066 pci_pool_destroy(d->prg_pool);
3067 OHCI_DMA_FREE("dma_trm prg pool");
3068 kfree(d->prg_cpu);
3069 kfree(d->prg_bus);
3070 }
3071
3072 /* Mark this context as freed. */
3073 d->ohci = NULL;
3074}
3075
3076static int
3077alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3078 enum context_type type, int ctx, int num_desc,
3079 int context_base)
3080{
3081 int i, len;
3082 static char pool_name[20];
3083 static int num_allocs=0;
3084
3085 d->ohci = ohci;
3086 d->type = type;
3087 d->ctx = ctx;
3088 d->num_desc = num_desc;
3089 d->ctrlSet = 0;
3090 d->ctrlClear = 0;
3091 d->cmdPtr = 0;
3092
3093 d->prg_cpu = kmalloc(d->num_desc * sizeof(struct at_dma_prg*),
3094 GFP_KERNEL);
3095 d->prg_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_KERNEL);
3096
3097 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3098 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3099 free_dma_trm_ctx(d);
3100 return -ENOMEM;
3101 }
3102 memset(d->prg_cpu, 0, d->num_desc * sizeof(struct at_dma_prg*));
3103 memset(d->prg_bus, 0, d->num_desc * sizeof(dma_addr_t));
3104
3105 len = sprintf(pool_name, "ohci1394_trm_prg");
3106 sprintf(pool_name+len, "%d", num_allocs);
3107 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3108 sizeof(struct at_dma_prg), 4, 0);
3109 if (d->prg_pool == NULL) {
3110 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3111 free_dma_trm_ctx(d);
3112 return -ENOMEM;
3113 }
3114 num_allocs++;
3115
3116 OHCI_DMA_ALLOC("dma_rcv prg pool");
3117
3118 for (i = 0; i < d->num_desc; i++) {
3119 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3120 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3121
3122 if (d->prg_cpu[i] != NULL) {
3123 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3124 } else {
3125 PRINT(KERN_ERR,
3126 "Failed to allocate at dma prg");
3127 free_dma_trm_ctx(d);
3128 return -ENOMEM;
3129 }
3130 }
3131
3132 spin_lock_init(&d->lock);
3133
3134 /* initialize tasklet */
3135 if (type == DMA_CTX_ISO) {
3136 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3137 dma_trm_tasklet, (unsigned long) d);
3138 if (ohci1394_register_iso_tasklet(ohci,
3139 &ohci->it_legacy_tasklet) < 0) {
3140 PRINT(KERN_ERR, "No IT DMA context available");
3141 free_dma_trm_ctx(d);
3142 return -EBUSY;
3143 }
3144
3145 /* IT can be assigned to any context by register_iso_tasklet */
3146 d->ctx = ohci->it_legacy_tasklet.context;
3147 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3148 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3149 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3150 } else {
3151 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3152 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3153 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3154 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3155 }
3156
3157 return 0;
3158}
3159
3160static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3161{
3162 struct ti_ohci *ohci = host->hostdata;
3163
3164 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3165 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3166
3167 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3168}
3169
3170
3171static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3172 quadlet_t data, quadlet_t compare)
3173{
3174 struct ti_ohci *ohci = host->hostdata;
3175 int i;
3176
3177 reg_write(ohci, OHCI1394_CSRData, data);
3178 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3179 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3180
3181 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3182 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3183 break;
3184
3185 mdelay(1);
3186 }
3187
3188 return reg_read(ohci, OHCI1394_CSRData);
3189}
3190
3191static struct hpsb_host_driver ohci1394_driver = {
3192 .owner = THIS_MODULE,
3193 .name = OHCI1394_DRIVER_NAME,
3194 .set_hw_config_rom = ohci_set_hw_config_rom,
3195 .transmit_packet = ohci_transmit,
3196 .devctl = ohci_devctl,
3197 .isoctl = ohci_isoctl,
3198 .hw_csr_reg = ohci_hw_csr_reg,
3199};
3200
1da177e4
LT
3201/***********************************
3202 * PCI Driver Interface functions *
3203 ***********************************/
3204
3205#define FAIL(err, fmt, args...) \
3206do { \
3207 PRINT_G(KERN_ERR, fmt , ## args); \
3208 ohci1394_pci_remove(dev); \
3209 return err; \
3210} while (0)
3211
3212static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3213 const struct pci_device_id *ent)
3214{
1da177e4
LT
3215 struct hpsb_host *host;
3216 struct ti_ohci *ohci; /* shortcut to currently handled device */
3217 unsigned long ohci_base;
3218
1da177e4
LT
3219 if (pci_enable_device(dev))
3220 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3221 pci_set_master(dev);
3222
3223 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3224 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3225
3226 ohci = host->hostdata;
3227 ohci->dev = dev;
3228 ohci->host = host;
3229 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3230 host->pdev = dev;
3231 pci_set_drvdata(dev, ohci);
3232
3233 /* We don't want hardware swapping */
3234 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3235
3236 /* Some oddball Apple controllers do not order the selfid
3237 * properly, so we make up for it here. */
3238#ifndef __LITTLE_ENDIAN
3239 /* XXX: Need a better way to check this. I'm wondering if we can
3240 * read the values of the OHCI1394_PCI_HCI_Control and the
3241 * noByteSwapData registers to see if they were not cleared to
3242 * zero. Should this work? Obviously it's not defined what these
3243 * registers will read when they aren't supported. Bleh! */
3244 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3245 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3246 ohci->no_swap_incoming = 1;
3247 ohci->selfid_swap = 0;
3248 } else
3249 ohci->selfid_swap = 1;
3250#endif
3251
3252
3253#ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3254#define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3255#endif
3256
3257 /* These chipsets require a bit of extra care when checking after
3258 * a busreset. */
3259 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3260 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3261 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3262 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3263 ohci->check_busreset = 1;
3264
3265 /* We hardwire the MMIO length, since some CardBus adaptors
3266 * fail to report the right length. Anyway, the ohci spec
3267 * clearly says it's 2kb, so this shouldn't be a problem. */
3268 ohci_base = pci_resource_start(dev, 0);
3269 if (pci_resource_len(dev, 0) != OHCI1394_REGISTER_SIZE)
3270 PRINT(KERN_WARNING, "Unexpected PCI resource length of %lx!",
3271 pci_resource_len(dev, 0));
3272
3273 /* Seems PCMCIA handles this internally. Not sure why. Seems
3274 * pretty bogus to force a driver to special case this. */
3275#ifndef PCMCIA
3276 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3277 FAIL(-ENOMEM, "MMIO resource (0x%lx - 0x%lx) unavailable",
3278 ohci_base, ohci_base + OHCI1394_REGISTER_SIZE);
3279#endif
3280 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3281
3282 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3283 if (ohci->registers == NULL)
3284 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3285 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3286 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3287
3288 /* csr_config rom allocation */
3289 ohci->csr_config_rom_cpu =
3290 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3291 &ohci->csr_config_rom_bus);
3292 OHCI_DMA_ALLOC("consistent csr_config_rom");
3293 if (ohci->csr_config_rom_cpu == NULL)
3294 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3295 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3296
3297 /* self-id dma buffer allocation */
3298 ohci->selfid_buf_cpu =
3299 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3300 &ohci->selfid_buf_bus);
3301 OHCI_DMA_ALLOC("consistent selfid_buf");
3302
3303 if (ohci->selfid_buf_cpu == NULL)
3304 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3305 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3306
3307 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3308 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3309 "8Kb boundary... may cause problems on some CXD3222 chip",
3310 ohci->selfid_buf_cpu);
3311
3312 /* No self-id errors at startup */
3313 ohci->self_id_errors = 0;
3314
3315 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3316 /* AR DMA request context allocation */
3317 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3318 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3319 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3320 OHCI1394_AsReqRcvContextBase) < 0)
3321 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3322
3323 /* AR DMA response context allocation */
3324 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3325 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3326 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3327 OHCI1394_AsRspRcvContextBase) < 0)
3328 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3329
3330 /* AT DMA request context */
3331 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3332 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3333 OHCI1394_AsReqTrContextBase) < 0)
3334 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3335
3336 /* AT DMA response context */
3337 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3338 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3339 OHCI1394_AsRspTrContextBase) < 0)
3340 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3341
3342 /* Start off with a soft reset, to clear everything to a sane
3343 * state. */
3344 ohci_soft_reset(ohci);
3345
3346 /* Now enable LPS, which we need in order to start accessing
3347 * most of the registers. In fact, on some cards (ALI M5251),
3348 * accessing registers in the SClk domain without LPS enabled
3349 * will lock up the machine. Wait 50msec to make sure we have
3350 * full link enabled. */
3351 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3352
3353 /* Disable and clear interrupts */
3354 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3355 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3356
3357 mdelay(50);
3358
3359 /* Determine the number of available IR and IT contexts. */
3360 ohci->nb_iso_rcv_ctx =
3361 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3362 DBGMSG("%d iso receive contexts available",
3363 ohci->nb_iso_rcv_ctx);
3364
3365 ohci->nb_iso_xmit_ctx =
3366 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3367 DBGMSG("%d iso transmit contexts available",
3368 ohci->nb_iso_xmit_ctx);
3369
3370 /* Set the usage bits for non-existent contexts so they can't
3371 * be allocated */
3372 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3373 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3374
3375 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3376 spin_lock_init(&ohci->iso_tasklet_list_lock);
3377 ohci->ISO_channel_usage = 0;
3378 spin_lock_init(&ohci->IR_channel_lock);
3379
3380 /* Allocate the IR DMA context right here so we don't have
3381 * to do it in interrupt path - note that this doesn't
3382 * waste much memory and avoids the jugglery required to
3383 * allocate it in IRQ path. */
3384 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3385 DMA_CTX_ISO, 0, IR_NUM_DESC,
3386 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3387 OHCI1394_IsoRcvContextBase) < 0) {
3388 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3389 }
3390
3391 /* We hopefully don't have to pre-allocate IT DMA like we did
3392 * for IR DMA above. Allocate it on-demand and mark inactive. */
3393 ohci->it_legacy_context.ohci = NULL;
3515d016 3394 spin_lock_init(&ohci->event_lock);
1da177e4 3395
3515d016
AV
3396 /*
3397 * interrupts are disabled, all right, but... due to SA_SHIRQ we
3398 * might get called anyway. We'll see no event, of course, but
3399 * we need to get to that "no event", so enough should be initialized
3400 * by that point.
3401 */
1da177e4
LT
3402 if (request_irq(dev->irq, ohci_irq_handler, SA_SHIRQ,
3403 OHCI1394_DRIVER_NAME, ohci))
3404 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3405
3406 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3407 ohci_initialize(ohci);
3408
3409 /* Set certain csr values */
3410 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3411 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3412 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3413 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3414 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3415
3416 /* Tell the highlevel this host is ready */
3417 if (hpsb_add_host(host))
3418 FAIL(-ENOMEM, "Failed to register host with highlevel");
3419
3420 ohci->init_state = OHCI_INIT_DONE;
3421
3422 return 0;
3423#undef FAIL
3424}
3425
3426static void ohci1394_pci_remove(struct pci_dev *pdev)
3427{
3428 struct ti_ohci *ohci;
3429 struct device *dev;
3430
3431 ohci = pci_get_drvdata(pdev);
3432 if (!ohci)
3433 return;
3434
3435 dev = get_device(&ohci->host->device);
3436
3437 switch (ohci->init_state) {
3438 case OHCI_INIT_DONE:
1da177e4
LT
3439 hpsb_remove_host(ohci->host);
3440
3441 /* Clear out BUS Options */
3442 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3443 reg_write(ohci, OHCI1394_BusOptions,
3444 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3445 0x00ff0000);
3446 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3447
3448 case OHCI_INIT_HAVE_IRQ:
3449 /* Clear interrupt registers */
3450 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3451 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3452 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3453 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3454 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3455 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3456
3457 /* Disable IRM Contender */
3458 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3459
3460 /* Clear link control register */
3461 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3462
3463 /* Let all other nodes know to ignore us */
3464 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3465
3466 /* Soft reset before we start - this disables
3467 * interrupts and clears linkEnable and LPS. */
3468 ohci_soft_reset(ohci);
3469 free_irq(ohci->dev->irq, ohci);
3470
3471 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3472 /* The ohci_soft_reset() stops all DMA contexts, so we
3473 * dont need to do this. */
3474 /* Free AR dma */
3475 free_dma_rcv_ctx(&ohci->ar_req_context);
3476 free_dma_rcv_ctx(&ohci->ar_resp_context);
3477
3478 /* Free AT dma */
3479 free_dma_trm_ctx(&ohci->at_req_context);
3480 free_dma_trm_ctx(&ohci->at_resp_context);
3481
3482 /* Free IR dma */
3483 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3484
3485 /* Free IT dma */
3486 free_dma_trm_ctx(&ohci->it_legacy_context);
3487
3488 /* Free IR legacy dma */
3489 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3490
3491
3492 case OHCI_INIT_HAVE_SELFID_BUFFER:
3493 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3494 ohci->selfid_buf_cpu,
3495 ohci->selfid_buf_bus);
3496 OHCI_DMA_FREE("consistent selfid_buf");
3497
3498 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3499 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3500 ohci->csr_config_rom_cpu,
3501 ohci->csr_config_rom_bus);
3502 OHCI_DMA_FREE("consistent csr_config_rom");
3503
3504 case OHCI_INIT_HAVE_IOMAPPING:
3505 iounmap(ohci->registers);
3506
3507 case OHCI_INIT_HAVE_MEM_REGION:
3508#ifndef PCMCIA
3509 release_mem_region(pci_resource_start(ohci->dev, 0),
3510 OHCI1394_REGISTER_SIZE);
3511#endif
3512
3513#ifdef CONFIG_PPC_PMAC
3514 /* On UniNorth, power down the cable and turn off the chip
3515 * clock when the module is removed to save power on
3516 * laptops. Turning it back ON is done by the arch code when
3517 * pci_enable_device() is called */
3518 {
3519 struct device_node* of_node;
3520
3521 of_node = pci_device_to_OF_node(ohci->dev);
3522 if (of_node) {
3523 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3524 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3525 }
3526 }
3527#endif /* CONFIG_PPC_PMAC */
3528
3529 case OHCI_INIT_ALLOC_HOST:
3530 pci_set_drvdata(ohci->dev, NULL);
3531 }
3532
3533 if (dev)
3534 put_device(dev);
3535}
3536
3537
3538static int ohci1394_pci_resume (struct pci_dev *pdev)
3539{
8c870933
BH
3540#ifdef CONFIG_PPC_PMAC
3541 if (_machine == _MACH_Pmac) {
1da177e4
LT
3542 struct device_node *of_node;
3543
3544 /* Re-enable 1394 */
3545 of_node = pci_device_to_OF_node (pdev);
3546 if (of_node)
3547 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3548 }
8c870933 3549#endif /* CONFIG_PPC_PMAC */
1da177e4
LT
3550
3551 pci_enable_device(pdev);
3552
3553 return 0;
3554}
3555
3556
3557static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3558{
8c870933
BH
3559#ifdef CONFIG_PPC_PMAC
3560 if (_machine == _MACH_Pmac) {
1da177e4
LT
3561 struct device_node *of_node;
3562
3563 /* Disable 1394 */
3564 of_node = pci_device_to_OF_node (pdev);
3565 if (of_node)
3566 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3567 }
3568#endif
3569
3570 return 0;
3571}
3572
3573
3574#define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3575
3576static struct pci_device_id ohci1394_pci_tbl[] = {
3577 {
3578 .class = PCI_CLASS_FIREWIRE_OHCI,
3579 .class_mask = PCI_ANY_ID,
3580 .vendor = PCI_ANY_ID,
3581 .device = PCI_ANY_ID,
3582 .subvendor = PCI_ANY_ID,
3583 .subdevice = PCI_ANY_ID,
3584 },
3585 { 0, },
3586};
3587
3588MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3589
3590static struct pci_driver ohci1394_pci_driver = {
3591 .name = OHCI1394_DRIVER_NAME,
3592 .id_table = ohci1394_pci_tbl,
3593 .probe = ohci1394_pci_probe,
3594 .remove = ohci1394_pci_remove,
3595 .resume = ohci1394_pci_resume,
3596 .suspend = ohci1394_pci_suspend,
3597};
3598
1da177e4
LT
3599/***********************************
3600 * OHCI1394 Video Interface *
3601 ***********************************/
3602
3603/* essentially the only purpose of this code is to allow another
3604 module to hook into ohci's interrupt handler */
3605
3606int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3607{
3608 int i=0;
3609
3610 /* stop the channel program if it's still running */
3611 reg_write(ohci, reg, 0x8000);
3612
3613 /* Wait until it effectively stops */
3614 while (reg_read(ohci, reg) & 0x400) {
3615 i++;
3616 if (i>5000) {
3617 PRINT(KERN_ERR,
3618 "Runaway loop while stopping context: %s...", msg ? msg : "");
3619 return 1;
3620 }
3621
3622 mb();
3623 udelay(10);
3624 }
3625 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3626 return 0;
3627}
3628
3629void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3630 void (*func)(unsigned long), unsigned long data)
3631{
3632 tasklet_init(&tasklet->tasklet, func, data);
3633 tasklet->type = type;
3634 /* We init the tasklet->link field, so we can list_del() it
3635 * without worrying whether it was added to the list or not. */
3636 INIT_LIST_HEAD(&tasklet->link);
3637}
3638
3639int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3640 struct ohci1394_iso_tasklet *tasklet)
3641{
3642 unsigned long flags, *usage;
3643 int n, i, r = -EBUSY;
3644
3645 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3646 n = ohci->nb_iso_xmit_ctx;
3647 usage = &ohci->it_ctx_usage;
3648 }
3649 else {
3650 n = ohci->nb_iso_rcv_ctx;
3651 usage = &ohci->ir_ctx_usage;
3652
3653 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3654 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3655 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3656 return r;
3657 }
3658 }
3659 }
3660
3661 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3662
3663 for (i = 0; i < n; i++)
3664 if (!test_and_set_bit(i, usage)) {
3665 tasklet->context = i;
3666 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3667 r = 0;
3668 break;
3669 }
3670
3671 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3672
3673 return r;
3674}
3675
3676void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3677 struct ohci1394_iso_tasklet *tasklet)
3678{
3679 unsigned long flags;
3680
3681 tasklet_kill(&tasklet->tasklet);
3682
3683 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3684
3685 if (tasklet->type == OHCI_ISO_TRANSMIT)
3686 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3687 else {
3688 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3689
3690 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3691 clear_bit(0, &ohci->ir_multichannel_used);
3692 }
3693 }
3694
3695 list_del(&tasklet->link);
3696
3697 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3698}
3699
3700EXPORT_SYMBOL(ohci1394_stop_context);
3701EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3702EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3703EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3704
1da177e4
LT
3705/***********************************
3706 * General module initialization *
3707 ***********************************/
3708
3709MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3710MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3711MODULE_LICENSE("GPL");
3712
3713static void __exit ohci1394_cleanup (void)
3714{
3715 pci_unregister_driver(&ohci1394_pci_driver);
3716}
3717
3718static int __init ohci1394_init(void)
3719{
3720 return pci_register_driver(&ohci1394_pci_driver);
3721}
3722
3723module_init(ohci1394_init);
3724module_exit(ohci1394_cleanup);
This page took 0.219433 seconds and 5 git commands to generate.