iio: magn: bmc150_magn: add locking comment for runtime resume
[deliverable/linux.git] / drivers / iio / magnetometer / bmc150_magn.c
CommitLineData
c91746a2
IT
1/*
2 * Bosch BMC150 three-axis magnetic field sensor driver
3 *
4 * Copyright (c) 2015, Intel Corporation.
5 *
6 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7 *
8 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 */
19
20#include <linux/module.h>
21#include <linux/i2c.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/slab.h>
25#include <linux/acpi.h>
26#include <linux/gpio/consumer.h>
27#include <linux/pm.h>
28#include <linux/pm_runtime.h>
29#include <linux/iio/iio.h>
30#include <linux/iio/sysfs.h>
31#include <linux/iio/buffer.h>
32#include <linux/iio/events.h>
33#include <linux/iio/trigger.h>
34#include <linux/iio/trigger_consumer.h>
35#include <linux/iio/triggered_buffer.h>
36#include <linux/regmap.h>
37
38#define BMC150_MAGN_DRV_NAME "bmc150_magn"
39#define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
40#define BMC150_MAGN_GPIO_INT "interrupt"
41
42#define BMC150_MAGN_REG_CHIP_ID 0x40
43#define BMC150_MAGN_CHIP_ID_VAL 0x32
44
45#define BMC150_MAGN_REG_X_L 0x42
46#define BMC150_MAGN_REG_X_M 0x43
47#define BMC150_MAGN_REG_Y_L 0x44
48#define BMC150_MAGN_REG_Y_M 0x45
49#define BMC150_MAGN_SHIFT_XY_L 3
50#define BMC150_MAGN_REG_Z_L 0x46
51#define BMC150_MAGN_REG_Z_M 0x47
52#define BMC150_MAGN_SHIFT_Z_L 1
53#define BMC150_MAGN_REG_RHALL_L 0x48
54#define BMC150_MAGN_REG_RHALL_M 0x49
55#define BMC150_MAGN_SHIFT_RHALL_L 2
56
57#define BMC150_MAGN_REG_INT_STATUS 0x4A
58
59#define BMC150_MAGN_REG_POWER 0x4B
60#define BMC150_MAGN_MASK_POWER_CTL BIT(0)
61
62#define BMC150_MAGN_REG_OPMODE_ODR 0x4C
63#define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
64#define BMC150_MAGN_SHIFT_OPMODE 1
65#define BMC150_MAGN_MODE_NORMAL 0x00
66#define BMC150_MAGN_MODE_FORCED 0x01
67#define BMC150_MAGN_MODE_SLEEP 0x03
68#define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
69#define BMC150_MAGN_SHIFT_ODR 3
70
71#define BMC150_MAGN_REG_INT 0x4D
72
73#define BMC150_MAGN_REG_INT_DRDY 0x4E
74#define BMC150_MAGN_MASK_DRDY_EN BIT(7)
75#define BMC150_MAGN_SHIFT_DRDY_EN 7
76#define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
77#define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
78#define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
79#define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
80#define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
81#define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
82#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
83
84#define BMC150_MAGN_REG_LOW_THRESH 0x4F
85#define BMC150_MAGN_REG_HIGH_THRESH 0x50
86#define BMC150_MAGN_REG_REP_XY 0x51
87#define BMC150_MAGN_REG_REP_Z 0x52
1506f3cd 88#define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
c91746a2
IT
89
90#define BMC150_MAGN_REG_TRIM_START 0x5D
91#define BMC150_MAGN_REG_TRIM_END 0x71
92
93#define BMC150_MAGN_XY_OVERFLOW_VAL -4096
94#define BMC150_MAGN_Z_OVERFLOW_VAL -16384
95
96/* Time from SUSPEND to SLEEP */
97#define BMC150_MAGN_START_UP_TIME_MS 3
98
99#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
100
101#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
102#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
103#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
104#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
105
106enum bmc150_magn_axis {
107 AXIS_X,
108 AXIS_Y,
109 AXIS_Z,
110 RHALL,
111 AXIS_XYZ_MAX = RHALL,
112 AXIS_XYZR_MAX,
113};
114
115enum bmc150_magn_power_modes {
116 BMC150_MAGN_POWER_MODE_SUSPEND,
117 BMC150_MAGN_POWER_MODE_SLEEP,
118 BMC150_MAGN_POWER_MODE_NORMAL,
119};
120
121struct bmc150_magn_trim_regs {
122 s8 x1;
123 s8 y1;
124 __le16 reserved1;
125 u8 reserved2;
126 __le16 z4;
127 s8 x2;
128 s8 y2;
129 __le16 reserved3;
130 __le16 z2;
131 __le16 z1;
132 __le16 xyz1;
133 __le16 z3;
134 s8 xy2;
135 u8 xy1;
136} __packed;
137
138struct bmc150_magn_data {
139 struct i2c_client *client;
140 /*
141 * 1. Protect this structure.
142 * 2. Serialize sequences that power on/off the device and access HW.
143 */
144 struct mutex mutex;
145 struct regmap *regmap;
146 /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
147 s32 buffer[6];
148 struct iio_trigger *dready_trig;
149 bool dready_trigger_on;
5990dc97 150 int max_odr;
c91746a2
IT
151};
152
153static const struct {
154 int freq;
155 u8 reg_val;
156} bmc150_magn_samp_freq_table[] = { {2, 0x01},
157 {6, 0x02},
158 {8, 0x03},
159 {10, 0x00},
160 {15, 0x04},
161 {20, 0x05},
162 {25, 0x06},
163 {30, 0x07} };
164
165enum bmc150_magn_presets {
166 LOW_POWER_PRESET,
167 REGULAR_PRESET,
168 ENHANCED_REGULAR_PRESET,
169 HIGH_ACCURACY_PRESET
170};
171
172static const struct bmc150_magn_preset {
173 u8 rep_xy;
174 u8 rep_z;
175 u8 odr;
176} bmc150_magn_presets_table[] = {
177 [LOW_POWER_PRESET] = {3, 3, 10},
178 [REGULAR_PRESET] = {9, 15, 10},
179 [ENHANCED_REGULAR_PRESET] = {15, 27, 10},
180 [HIGH_ACCURACY_PRESET] = {47, 83, 20},
181};
182
183#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
184
185static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
186{
187 switch (reg) {
188 case BMC150_MAGN_REG_POWER:
189 case BMC150_MAGN_REG_OPMODE_ODR:
190 case BMC150_MAGN_REG_INT:
191 case BMC150_MAGN_REG_INT_DRDY:
192 case BMC150_MAGN_REG_LOW_THRESH:
193 case BMC150_MAGN_REG_HIGH_THRESH:
194 case BMC150_MAGN_REG_REP_XY:
195 case BMC150_MAGN_REG_REP_Z:
196 return true;
197 default:
198 return false;
199 };
200}
201
202static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
203{
204 switch (reg) {
205 case BMC150_MAGN_REG_X_L:
206 case BMC150_MAGN_REG_X_M:
207 case BMC150_MAGN_REG_Y_L:
208 case BMC150_MAGN_REG_Y_M:
209 case BMC150_MAGN_REG_Z_L:
210 case BMC150_MAGN_REG_Z_M:
211 case BMC150_MAGN_REG_RHALL_L:
212 case BMC150_MAGN_REG_RHALL_M:
213 case BMC150_MAGN_REG_INT_STATUS:
214 return true;
215 default:
216 return false;
217 }
218}
219
220static const struct regmap_config bmc150_magn_regmap_config = {
221 .reg_bits = 8,
222 .val_bits = 8,
223
224 .max_register = BMC150_MAGN_REG_TRIM_END,
225 .cache_type = REGCACHE_RBTREE,
226
227 .writeable_reg = bmc150_magn_is_writeable_reg,
228 .volatile_reg = bmc150_magn_is_volatile_reg,
229};
230
231static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
232 enum bmc150_magn_power_modes mode,
233 bool state)
234{
235 int ret;
236
237 switch (mode) {
238 case BMC150_MAGN_POWER_MODE_SUSPEND:
239 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
240 BMC150_MAGN_MASK_POWER_CTL, !state);
241 if (ret < 0)
242 return ret;
243 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
244 return 0;
245 case BMC150_MAGN_POWER_MODE_SLEEP:
246 return regmap_update_bits(data->regmap,
247 BMC150_MAGN_REG_OPMODE_ODR,
248 BMC150_MAGN_MASK_OPMODE,
249 BMC150_MAGN_MODE_SLEEP <<
250 BMC150_MAGN_SHIFT_OPMODE);
251 case BMC150_MAGN_POWER_MODE_NORMAL:
252 return regmap_update_bits(data->regmap,
253 BMC150_MAGN_REG_OPMODE_ODR,
254 BMC150_MAGN_MASK_OPMODE,
255 BMC150_MAGN_MODE_NORMAL <<
256 BMC150_MAGN_SHIFT_OPMODE);
257 }
258
259 return -EINVAL;
260}
261
262static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
263{
264#ifdef CONFIG_PM
265 int ret;
266
267 if (on) {
268 ret = pm_runtime_get_sync(&data->client->dev);
269 } else {
270 pm_runtime_mark_last_busy(&data->client->dev);
271 ret = pm_runtime_put_autosuspend(&data->client->dev);
272 }
273
274 if (ret < 0) {
275 dev_err(&data->client->dev,
276 "failed to change power state to %d\n", on);
277 if (on)
278 pm_runtime_put_noidle(&data->client->dev);
279
280 return ret;
281 }
282#endif
283
284 return 0;
285}
286
287static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
288{
289 int ret, reg_val;
290 u8 i, odr_val;
291
292 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
293 if (ret < 0)
294 return ret;
295 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
296
297 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
298 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
299 *val = bmc150_magn_samp_freq_table[i].freq;
300 return 0;
301 }
302
303 return -EINVAL;
304}
305
306static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
307{
308 int ret;
309 u8 i;
310
311 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
312 if (bmc150_magn_samp_freq_table[i].freq == val) {
313 ret = regmap_update_bits(data->regmap,
314 BMC150_MAGN_REG_OPMODE_ODR,
315 BMC150_MAGN_MASK_ODR,
316 bmc150_magn_samp_freq_table[i].
317 reg_val <<
318 BMC150_MAGN_SHIFT_ODR);
319 if (ret < 0)
320 return ret;
321 return 0;
322 }
323 }
324
325 return -EINVAL;
326}
327
5990dc97
IT
328static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
329 int rep_z, int odr)
330{
331 int ret, reg_val, max_odr;
332
333 if (rep_xy <= 0) {
334 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
335 &reg_val);
336 if (ret < 0)
337 return ret;
338 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
339 }
340 if (rep_z <= 0) {
341 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
342 &reg_val);
343 if (ret < 0)
344 return ret;
345 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
346 }
347 if (odr <= 0) {
348 ret = bmc150_magn_get_odr(data, &odr);
349 if (ret < 0)
350 return ret;
351 }
352 /* the maximum selectable read-out frequency from datasheet */
353 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
354 if (odr > max_odr) {
355 dev_err(&data->client->dev,
356 "Can't set oversampling with sampling freq %d\n",
357 odr);
358 return -EINVAL;
359 }
360 data->max_odr = max_odr;
361
362 return 0;
363}
364
c91746a2
IT
365static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
366 u16 rhall)
367{
368 s16 val;
369 u16 xyz1 = le16_to_cpu(tregs->xyz1);
370
371 if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
372 return S32_MIN;
373
374 if (!rhall)
375 rhall = xyz1;
376
377 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
378 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
379 ((s32)val)) >> 7)) + (((s32)val) *
380 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
381 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
382 (((s16)tregs->x1) << 3);
383
384 return (s32)val;
385}
386
387static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
388 u16 rhall)
389{
390 s16 val;
391 u16 xyz1 = le16_to_cpu(tregs->xyz1);
392
393 if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
394 return S32_MIN;
395
396 if (!rhall)
397 rhall = xyz1;
398
399 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
400 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
401 ((s32)val)) >> 7)) + (((s32)val) *
402 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
403 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
404 (((s16)tregs->y1) << 3);
405
406 return (s32)val;
407}
408
409static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
410 u16 rhall)
411{
412 s32 val;
413 u16 xyz1 = le16_to_cpu(tregs->xyz1);
414 u16 z1 = le16_to_cpu(tregs->z1);
415 s16 z2 = le16_to_cpu(tregs->z2);
416 s16 z3 = le16_to_cpu(tregs->z3);
417 s16 z4 = le16_to_cpu(tregs->z4);
418
419 if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
420 return S32_MIN;
421
422 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
423 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
424 ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
425
426 return val;
427}
428
429static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
430{
431 int ret;
432 __le16 values[AXIS_XYZR_MAX];
433 s16 raw_x, raw_y, raw_z;
434 u16 rhall;
435 struct bmc150_magn_trim_regs tregs;
436
437 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
438 values, sizeof(values));
439 if (ret < 0)
440 return ret;
441
442 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
443 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
444 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
445 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
446
447 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
448 &tregs, sizeof(tregs));
449 if (ret < 0)
450 return ret;
451
452 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
453 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
454 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
455
456 return 0;
457}
458
459static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
460 struct iio_chan_spec const *chan,
461 int *val, int *val2, long mask)
462{
463 struct bmc150_magn_data *data = iio_priv(indio_dev);
5990dc97 464 int ret, tmp;
c91746a2
IT
465 s32 values[AXIS_XYZ_MAX];
466
467 switch (mask) {
468 case IIO_CHAN_INFO_RAW:
469 if (iio_buffer_enabled(indio_dev))
470 return -EBUSY;
471 mutex_lock(&data->mutex);
472
473 ret = bmc150_magn_set_power_state(data, true);
474 if (ret < 0) {
475 mutex_unlock(&data->mutex);
476 return ret;
477 }
478
479 ret = bmc150_magn_read_xyz(data, values);
480 if (ret < 0) {
481 bmc150_magn_set_power_state(data, false);
482 mutex_unlock(&data->mutex);
483 return ret;
484 }
485 *val = values[chan->scan_index];
486
487 ret = bmc150_magn_set_power_state(data, false);
488 if (ret < 0) {
489 mutex_unlock(&data->mutex);
490 return ret;
491 }
492
493 mutex_unlock(&data->mutex);
494 return IIO_VAL_INT;
495 case IIO_CHAN_INFO_SCALE:
496 /*
497 * The API/driver performs an off-chip temperature
498 * compensation and outputs x/y/z magnetic field data in
499 * 16 LSB/uT to the upper application layer.
500 */
501 *val = 0;
502 *val2 = 625;
503 return IIO_VAL_INT_PLUS_MICRO;
504 case IIO_CHAN_INFO_SAMP_FREQ:
505 ret = bmc150_magn_get_odr(data, val);
506 if (ret < 0)
507 return ret;
508 return IIO_VAL_INT;
5990dc97
IT
509 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
510 switch (chan->channel2) {
511 case IIO_MOD_X:
512 case IIO_MOD_Y:
513 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
514 &tmp);
515 if (ret < 0)
516 return ret;
517 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
518 return IIO_VAL_INT;
519 case IIO_MOD_Z:
520 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
521 &tmp);
522 if (ret < 0)
523 return ret;
524 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
525 return IIO_VAL_INT;
526 default:
527 return -EINVAL;
528 }
c91746a2
IT
529 default:
530 return -EINVAL;
531 }
532}
533
534static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
535 struct iio_chan_spec const *chan,
536 int val, int val2, long mask)
537{
538 struct bmc150_magn_data *data = iio_priv(indio_dev);
539 int ret;
540
541 switch (mask) {
542 case IIO_CHAN_INFO_SAMP_FREQ:
5990dc97
IT
543 if (val > data->max_odr)
544 return -EINVAL;
c91746a2
IT
545 mutex_lock(&data->mutex);
546 ret = bmc150_magn_set_odr(data, val);
547 mutex_unlock(&data->mutex);
548 return ret;
5990dc97
IT
549 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
550 switch (chan->channel2) {
551 case IIO_MOD_X:
552 case IIO_MOD_Y:
553 if (val < 1 || val > 511)
554 return -EINVAL;
555 mutex_lock(&data->mutex);
556 ret = bmc150_magn_set_max_odr(data, val, 0, 0);
557 if (ret < 0) {
558 mutex_unlock(&data->mutex);
559 return ret;
560 }
561 ret = regmap_update_bits(data->regmap,
562 BMC150_MAGN_REG_REP_XY,
1506f3cd 563 BMC150_MAGN_REG_REP_DATAMASK,
5990dc97
IT
564 BMC150_MAGN_REPXY_TO_REGVAL
565 (val));
566 mutex_unlock(&data->mutex);
567 return ret;
568 case IIO_MOD_Z:
569 if (val < 1 || val > 256)
570 return -EINVAL;
571 mutex_lock(&data->mutex);
572 ret = bmc150_magn_set_max_odr(data, 0, val, 0);
573 if (ret < 0) {
574 mutex_unlock(&data->mutex);
575 return ret;
576 }
577 ret = regmap_update_bits(data->regmap,
578 BMC150_MAGN_REG_REP_Z,
1506f3cd 579 BMC150_MAGN_REG_REP_DATAMASK,
5990dc97
IT
580 BMC150_MAGN_REPZ_TO_REGVAL
581 (val));
582 mutex_unlock(&data->mutex);
583 return ret;
584 default:
585 return -EINVAL;
586 }
c91746a2
IT
587 default:
588 return -EINVAL;
589 }
590}
591
5990dc97
IT
592static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
593 struct device_attribute *attr,
594 char *buf)
595{
596 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
597 struct bmc150_magn_data *data = iio_priv(indio_dev);
598 size_t len = 0;
599 u8 i;
600
601 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
602 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
603 break;
604 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
605 bmc150_magn_samp_freq_table[i].freq);
606 }
607 /* replace last space with a newline */
608 buf[len - 1] = '\n';
609
610 return len;
611}
612
613static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
c91746a2
IT
614
615static struct attribute *bmc150_magn_attributes[] = {
5990dc97 616 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
c91746a2
IT
617 NULL,
618};
619
620static const struct attribute_group bmc150_magn_attrs_group = {
621 .attrs = bmc150_magn_attributes,
622};
623
624#define BMC150_MAGN_CHANNEL(_axis) { \
625 .type = IIO_MAGN, \
626 .modified = 1, \
627 .channel2 = IIO_MOD_##_axis, \
5990dc97
IT
628 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
629 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
c91746a2
IT
630 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
631 BIT(IIO_CHAN_INFO_SCALE), \
632 .scan_index = AXIS_##_axis, \
633 .scan_type = { \
634 .sign = 's', \
635 .realbits = 32, \
636 .storagebits = 32, \
637 .endianness = IIO_LE \
638 }, \
639}
640
641static const struct iio_chan_spec bmc150_magn_channels[] = {
642 BMC150_MAGN_CHANNEL(X),
643 BMC150_MAGN_CHANNEL(Y),
644 BMC150_MAGN_CHANNEL(Z),
645 IIO_CHAN_SOFT_TIMESTAMP(3),
646};
647
648static const struct iio_info bmc150_magn_info = {
649 .attrs = &bmc150_magn_attrs_group,
650 .read_raw = bmc150_magn_read_raw,
651 .write_raw = bmc150_magn_write_raw,
c91746a2
IT
652 .driver_module = THIS_MODULE,
653};
654
47764c79
HK
655static const unsigned long bmc150_magn_scan_masks[] = {
656 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
657 0};
c91746a2
IT
658
659static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
660{
661 struct iio_poll_func *pf = p;
662 struct iio_dev *indio_dev = pf->indio_dev;
663 struct bmc150_magn_data *data = iio_priv(indio_dev);
664 int ret;
665
666 mutex_lock(&data->mutex);
667 ret = bmc150_magn_read_xyz(data, data->buffer);
c91746a2
IT
668 if (ret < 0)
669 goto err;
670
671 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
672 pf->timestamp);
673
674err:
3021678a 675 mutex_unlock(&data->mutex);
9d174b49 676 iio_trigger_notify_done(indio_dev->trig);
c91746a2
IT
677
678 return IRQ_HANDLED;
679}
680
681static int bmc150_magn_init(struct bmc150_magn_data *data)
682{
683 int ret, chip_id;
684 struct bmc150_magn_preset preset;
685
686 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
687 false);
688 if (ret < 0) {
689 dev_err(&data->client->dev,
690 "Failed to bring up device from suspend mode\n");
691 return ret;
692 }
693
694 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
695 if (ret < 0) {
696 dev_err(&data->client->dev, "Failed reading chip id\n");
697 goto err_poweroff;
698 }
699 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
700 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", ret);
701 ret = -ENODEV;
702 goto err_poweroff;
703 }
704 dev_dbg(&data->client->dev, "Chip id %x\n", ret);
705
706 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
707 ret = bmc150_magn_set_odr(data, preset.odr);
708 if (ret < 0) {
709 dev_err(&data->client->dev, "Failed to set ODR to %d\n",
710 preset.odr);
711 goto err_poweroff;
712 }
713
714 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
715 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
716 if (ret < 0) {
717 dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
718 preset.rep_xy);
719 goto err_poweroff;
720 }
721
722 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
723 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
724 if (ret < 0) {
725 dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
726 preset.rep_z);
727 goto err_poweroff;
728 }
729
5990dc97
IT
730 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
731 preset.odr);
732 if (ret < 0)
733 goto err_poweroff;
734
c91746a2
IT
735 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
736 true);
737 if (ret < 0) {
738 dev_err(&data->client->dev, "Failed to power on device\n");
739 goto err_poweroff;
740 }
741
742 return 0;
743
744err_poweroff:
745 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
746 return ret;
747}
748
749static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
750{
751 int tmp;
752
753 /*
754 * Data Ready (DRDY) is always cleared after
755 * readout of data registers ends.
756 */
757 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
758}
759
760static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
761{
762 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
763 struct bmc150_magn_data *data = iio_priv(indio_dev);
764 int ret;
765
766 if (!data->dready_trigger_on)
767 return 0;
768
769 mutex_lock(&data->mutex);
770 ret = bmc150_magn_reset_intr(data);
771 mutex_unlock(&data->mutex);
772
773 return ret;
774}
775
776static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
777 bool state)
778{
779 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
780 struct bmc150_magn_data *data = iio_priv(indio_dev);
781 int ret = 0;
782
783 mutex_lock(&data->mutex);
784 if (state == data->dready_trigger_on)
785 goto err_unlock;
786
787 ret = bmc150_magn_set_power_state(data, state);
788 if (ret < 0)
789 goto err_unlock;
790
791 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
792 BMC150_MAGN_MASK_DRDY_EN,
793 state << BMC150_MAGN_SHIFT_DRDY_EN);
794 if (ret < 0)
795 goto err_poweroff;
796
797 data->dready_trigger_on = state;
798
799 if (state) {
800 ret = bmc150_magn_reset_intr(data);
801 if (ret < 0)
802 goto err_poweroff;
803 }
804 mutex_unlock(&data->mutex);
805
806 return 0;
807
808err_poweroff:
809 bmc150_magn_set_power_state(data, false);
810err_unlock:
811 mutex_unlock(&data->mutex);
812 return ret;
813}
814
815static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
816 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
817 .try_reenable = bmc150_magn_trig_try_reen,
818 .owner = THIS_MODULE,
819};
820
9d174b49
VD
821static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
822{
823 struct bmc150_magn_data *data = iio_priv(indio_dev);
824
825 return bmc150_magn_set_power_state(data, true);
826}
827
828static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
829{
830 struct bmc150_magn_data *data = iio_priv(indio_dev);
831
832 return bmc150_magn_set_power_state(data, false);
833}
834
835static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
836 .preenable = bmc150_magn_buffer_preenable,
837 .postenable = iio_triggered_buffer_postenable,
838 .predisable = iio_triggered_buffer_predisable,
839 .postdisable = bmc150_magn_buffer_postdisable,
840};
841
c91746a2
IT
842static int bmc150_magn_gpio_probe(struct i2c_client *client)
843{
844 struct device *dev;
845 struct gpio_desc *gpio;
846 int ret;
847
848 if (!client)
849 return -EINVAL;
850
851 dev = &client->dev;
852
853 /* data ready GPIO interrupt pin */
854 gpio = devm_gpiod_get_index(dev, BMC150_MAGN_GPIO_INT, 0);
855 if (IS_ERR(gpio)) {
856 dev_err(dev, "ACPI GPIO get index failed\n");
857 return PTR_ERR(gpio);
858 }
859
860 ret = gpiod_direction_input(gpio);
861 if (ret)
862 return ret;
863
864 ret = gpiod_to_irq(gpio);
865
866 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
867
868 return ret;
869}
870
871static const char *bmc150_magn_match_acpi_device(struct device *dev)
872{
873 const struct acpi_device_id *id;
874
875 id = acpi_match_device(dev->driver->acpi_match_table, dev);
876 if (!id)
877 return NULL;
878
879 return dev_name(dev);
880}
881
882static int bmc150_magn_probe(struct i2c_client *client,
883 const struct i2c_device_id *id)
884{
885 struct bmc150_magn_data *data;
886 struct iio_dev *indio_dev;
887 const char *name = NULL;
888 int ret;
889
890 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
891 if (!indio_dev)
892 return -ENOMEM;
893
894 data = iio_priv(indio_dev);
895 i2c_set_clientdata(client, indio_dev);
896 data->client = client;
897
898 if (id)
899 name = id->name;
900 else if (ACPI_HANDLE(&client->dev))
901 name = bmc150_magn_match_acpi_device(&client->dev);
902 else
903 return -ENOSYS;
904
905 mutex_init(&data->mutex);
906 data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
907 if (IS_ERR(data->regmap)) {
908 dev_err(&client->dev, "Failed to allocate register map\n");
909 return PTR_ERR(data->regmap);
910 }
911
912 ret = bmc150_magn_init(data);
913 if (ret < 0)
914 return ret;
915
916 indio_dev->dev.parent = &client->dev;
917 indio_dev->channels = bmc150_magn_channels;
918 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
919 indio_dev->available_scan_masks = bmc150_magn_scan_masks;
920 indio_dev->name = name;
921 indio_dev->modes = INDIO_DIRECT_MODE;
922 indio_dev->info = &bmc150_magn_info;
923
924 if (client->irq <= 0)
925 client->irq = bmc150_magn_gpio_probe(client);
926
927 if (client->irq > 0) {
928 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
929 "%s-dev%d",
930 indio_dev->name,
931 indio_dev->id);
932 if (!data->dready_trig) {
933 ret = -ENOMEM;
934 dev_err(&client->dev, "iio trigger alloc failed\n");
935 goto err_poweroff;
936 }
937
938 data->dready_trig->dev.parent = &client->dev;
939 data->dready_trig->ops = &bmc150_magn_trigger_ops;
940 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
941 ret = iio_trigger_register(data->dready_trig);
942 if (ret) {
943 dev_err(&client->dev, "iio trigger register failed\n");
944 goto err_poweroff;
945 }
946
c91746a2
IT
947 ret = request_threaded_irq(client->irq,
948 iio_trigger_generic_data_rdy_poll,
949 NULL,
950 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
951 BMC150_MAGN_IRQ_NAME,
952 data->dready_trig);
953 if (ret < 0) {
954 dev_err(&client->dev, "request irq %d failed\n",
955 client->irq);
9d174b49 956 goto err_trigger_unregister;
c91746a2
IT
957 }
958 }
959
9d174b49
VD
960 ret = iio_triggered_buffer_setup(indio_dev,
961 iio_pollfunc_store_time,
962 bmc150_magn_trigger_handler,
963 &bmc150_magn_buffer_setup_ops);
964 if (ret < 0) {
965 dev_err(&client->dev,
966 "iio triggered buffer setup failed\n");
967 goto err_free_irq;
968 }
969
c91746a2
IT
970 ret = iio_device_register(indio_dev);
971 if (ret < 0) {
972 dev_err(&client->dev, "unable to register iio device\n");
9d174b49 973 goto err_buffer_cleanup;
c91746a2
IT
974 }
975
976 ret = pm_runtime_set_active(&client->dev);
977 if (ret)
978 goto err_iio_unregister;
979
980 pm_runtime_enable(&client->dev);
981 pm_runtime_set_autosuspend_delay(&client->dev,
982 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
983 pm_runtime_use_autosuspend(&client->dev);
984
985 dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
986
987 return 0;
988
989err_iio_unregister:
990 iio_device_unregister(indio_dev);
9d174b49
VD
991err_buffer_cleanup:
992 iio_triggered_buffer_cleanup(indio_dev);
c91746a2
IT
993err_free_irq:
994 if (client->irq > 0)
995 free_irq(client->irq, data->dready_trig);
c91746a2
IT
996err_trigger_unregister:
997 if (data->dready_trig)
998 iio_trigger_unregister(data->dready_trig);
999err_poweroff:
1000 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1001 return ret;
1002}
1003
1004static int bmc150_magn_remove(struct i2c_client *client)
1005{
1006 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1007 struct bmc150_magn_data *data = iio_priv(indio_dev);
1008
1009 pm_runtime_disable(&client->dev);
1010 pm_runtime_set_suspended(&client->dev);
1011 pm_runtime_put_noidle(&client->dev);
1012
1013 iio_device_unregister(indio_dev);
9d174b49 1014 iio_triggered_buffer_cleanup(indio_dev);
c91746a2
IT
1015
1016 if (client->irq > 0)
1017 free_irq(data->client->irq, data->dready_trig);
1018
9d174b49 1019 if (data->dready_trig)
c91746a2 1020 iio_trigger_unregister(data->dready_trig);
c91746a2
IT
1021
1022 mutex_lock(&data->mutex);
1023 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1024 mutex_unlock(&data->mutex);
1025
1026 return 0;
1027}
1028
1029#ifdef CONFIG_PM
1030static int bmc150_magn_runtime_suspend(struct device *dev)
1031{
1032 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1033 struct bmc150_magn_data *data = iio_priv(indio_dev);
1034 int ret;
1035
1036 mutex_lock(&data->mutex);
1037 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1038 true);
1039 mutex_unlock(&data->mutex);
1040 if (ret < 0) {
1041 dev_err(&data->client->dev, "powering off device failed\n");
1042 return ret;
1043 }
1044 return 0;
1045}
1046
019cc46d
IT
1047/*
1048 * Should be called with data->mutex held.
1049 */
c91746a2
IT
1050static int bmc150_magn_runtime_resume(struct device *dev)
1051{
1052 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1053 struct bmc150_magn_data *data = iio_priv(indio_dev);
1054
1055 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1056 true);
1057}
1058#endif
1059
1060#ifdef CONFIG_PM_SLEEP
1061static int bmc150_magn_suspend(struct device *dev)
1062{
1063 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1064 struct bmc150_magn_data *data = iio_priv(indio_dev);
1065 int ret;
1066
1067 mutex_lock(&data->mutex);
1068 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1069 true);
1070 mutex_unlock(&data->mutex);
1071
1072 return ret;
1073}
1074
1075static int bmc150_magn_resume(struct device *dev)
1076{
1077 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1078 struct bmc150_magn_data *data = iio_priv(indio_dev);
1079 int ret;
1080
1081 mutex_lock(&data->mutex);
1082 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1083 true);
1084 mutex_unlock(&data->mutex);
1085
1086 return ret;
1087}
1088#endif
1089
1090static const struct dev_pm_ops bmc150_magn_pm_ops = {
1091 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1092 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1093 bmc150_magn_runtime_resume, NULL)
1094};
1095
1096static const struct acpi_device_id bmc150_magn_acpi_match[] = {
1097 {"BMC150B", 0},
da8ef4e7 1098 {"BMC156B", 0},
c91746a2
IT
1099 {},
1100};
1101MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
1102
1103static const struct i2c_device_id bmc150_magn_id[] = {
1104 {"bmc150_magn", 0},
da8ef4e7 1105 {"bmc156_magn", 0},
c91746a2
IT
1106 {},
1107};
1108MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
1109
1110static struct i2c_driver bmc150_magn_driver = {
1111 .driver = {
1112 .name = BMC150_MAGN_DRV_NAME,
1113 .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
1114 .pm = &bmc150_magn_pm_ops,
1115 },
1116 .probe = bmc150_magn_probe,
1117 .remove = bmc150_magn_remove,
1118 .id_table = bmc150_magn_id,
1119};
1120module_i2c_driver(bmc150_magn_driver);
1121
1122MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1123MODULE_LICENSE("GPL v2");
1124MODULE_DESCRIPTION("BMC150 magnetometer driver");
This page took 0.080114 seconds and 5 git commands to generate.