net/mlx5_core: HW data structs/types definitions cleanup
[deliverable/linux.git] / drivers / infiniband / hw / mlx5 / odp.c
CommitLineData
8cdd312c 1/*
6cf0a15f 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
8cdd312c
HE
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
7bdf65d4
HE
33#include <rdma/ib_umem.h>
34#include <rdma/ib_umem_odp.h>
35
8cdd312c
HE
36#include "mlx5_ib.h"
37
eab668a6
HE
38#define MAX_PREFETCH_LEN (4*1024*1024U)
39
b4cfe447
HE
40/* Timeout in ms to wait for an active mmu notifier to complete when handling
41 * a pagefault. */
42#define MMU_NOTIFIER_TIMEOUT 1000
43
6aec21f6
HE
44struct workqueue_struct *mlx5_ib_page_fault_wq;
45
b4cfe447
HE
46void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
47 unsigned long end)
48{
49 struct mlx5_ib_mr *mr;
50 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1;
51 u64 idx = 0, blk_start_idx = 0;
52 int in_block = 0;
53 u64 addr;
54
55 if (!umem || !umem->odp_data) {
56 pr_err("invalidation called on NULL umem or non-ODP umem\n");
57 return;
58 }
59
60 mr = umem->odp_data->private;
61
62 if (!mr || !mr->ibmr.pd)
63 return;
64
65 start = max_t(u64, ib_umem_start(umem), start);
66 end = min_t(u64, ib_umem_end(umem), end);
67
68 /*
69 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
70 * while we are doing the invalidation, no page fault will attempt to
71 * overwrite the same MTTs. Concurent invalidations might race us,
72 * but they will write 0s as well, so no difference in the end result.
73 */
74
75 for (addr = start; addr < end; addr += (u64)umem->page_size) {
76 idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
77 /*
78 * Strive to write the MTTs in chunks, but avoid overwriting
79 * non-existing MTTs. The huristic here can be improved to
80 * estimate the cost of another UMR vs. the cost of bigger
81 * UMR.
82 */
83 if (umem->odp_data->dma_list[idx] &
84 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
85 if (!in_block) {
86 blk_start_idx = idx;
87 in_block = 1;
88 }
89 } else {
90 u64 umr_offset = idx & umr_block_mask;
91
92 if (in_block && umr_offset == 0) {
93 mlx5_ib_update_mtt(mr, blk_start_idx,
94 idx - blk_start_idx, 1);
95 in_block = 0;
96 }
97 }
98 }
99 if (in_block)
100 mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1,
101 1);
102
103 /*
104 * We are now sure that the device will not access the
105 * memory. We can safely unmap it, and mark it as dirty if
106 * needed.
107 */
108
109 ib_umem_odp_unmap_dma_pages(umem, start, end);
110}
111
8cdd312c
HE
112#define COPY_ODP_BIT_MLX_TO_IB(reg, ib_caps, field_name, bit_name) do { \
113 if (be32_to_cpu(reg.field_name) & MLX5_ODP_SUPPORT_##bit_name) \
114 ib_caps->field_name |= IB_ODP_SUPPORT_##bit_name; \
115} while (0)
116
117int mlx5_ib_internal_query_odp_caps(struct mlx5_ib_dev *dev)
118{
119 int err;
120 struct mlx5_odp_caps hw_caps;
121 struct ib_odp_caps *caps = &dev->odp_caps;
122
123 memset(caps, 0, sizeof(*caps));
124
125 if (!(dev->mdev->caps.gen.flags & MLX5_DEV_CAP_FLAG_ON_DMND_PG))
126 return 0;
127
128 err = mlx5_query_odp_caps(dev->mdev, &hw_caps);
129 if (err)
130 goto out;
131
b4cfe447
HE
132 caps->general_caps = IB_ODP_SUPPORT;
133 COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.ud_odp_caps,
134 SEND);
135 COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
136 SEND);
137 COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
138 RECV);
139 COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
140 WRITE);
141 COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
142 READ);
143
8cdd312c
HE
144out:
145 return err;
146}
6aec21f6
HE
147
148static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
149 u32 key)
150{
151 u32 base_key = mlx5_base_mkey(key);
152 struct mlx5_core_mr *mmr = __mlx5_mr_lookup(dev->mdev, base_key);
b4cfe447 153 struct mlx5_ib_mr *mr = container_of(mmr, struct mlx5_ib_mr, mmr);
6aec21f6 154
b4cfe447 155 if (!mmr || mmr->key != key || !mr->live)
6aec21f6
HE
156 return NULL;
157
158 return container_of(mmr, struct mlx5_ib_mr, mmr);
159}
160
161static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp,
162 struct mlx5_ib_pfault *pfault,
163 int error) {
164 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
165 int ret = mlx5_core_page_fault_resume(dev->mdev, qp->mqp.qpn,
166 pfault->mpfault.flags,
167 error);
168 if (ret)
169 pr_err("Failed to resolve the page fault on QP 0x%x\n",
170 qp->mqp.qpn);
171}
172
7bdf65d4
HE
173/*
174 * Handle a single data segment in a page-fault WQE.
175 *
176 * Returns number of pages retrieved on success. The caller will continue to
177 * the next data segment.
178 * Can return the following error codes:
179 * -EAGAIN to designate a temporary error. The caller will abort handling the
180 * page fault and resolve it.
181 * -EFAULT when there's an error mapping the requested pages. The caller will
182 * abort the page fault handling and possibly move the QP to an error state.
183 * On other errors the QP should also be closed with an error.
184 */
185static int pagefault_single_data_segment(struct mlx5_ib_qp *qp,
186 struct mlx5_ib_pfault *pfault,
187 u32 key, u64 io_virt, size_t bcnt,
188 u32 *bytes_mapped)
189{
190 struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device);
191 int srcu_key;
192 unsigned int current_seq;
193 u64 start_idx;
194 int npages = 0, ret = 0;
195 struct mlx5_ib_mr *mr;
196 u64 access_mask = ODP_READ_ALLOWED_BIT;
197
198 srcu_key = srcu_read_lock(&mib_dev->mr_srcu);
199 mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key);
200 /*
201 * If we didn't find the MR, it means the MR was closed while we were
202 * handling the ODP event. In this case we return -EFAULT so that the
203 * QP will be closed.
204 */
205 if (!mr || !mr->ibmr.pd) {
206 pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
207 key);
208 ret = -EFAULT;
209 goto srcu_unlock;
210 }
211 if (!mr->umem->odp_data) {
212 pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
213 key);
214 if (bytes_mapped)
215 *bytes_mapped +=
216 (bcnt - pfault->mpfault.bytes_committed);
217 goto srcu_unlock;
218 }
219 if (mr->ibmr.pd != qp->ibqp.pd) {
220 pr_err("Page-fault with different PDs for QP and MR.\n");
221 ret = -EFAULT;
222 goto srcu_unlock;
223 }
224
225 current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq);
b4cfe447
HE
226 /*
227 * Ensure the sequence number is valid for some time before we call
228 * gup.
229 */
230 smp_rmb();
7bdf65d4
HE
231
232 /*
233 * Avoid branches - this code will perform correctly
234 * in all iterations (in iteration 2 and above,
235 * bytes_committed == 0).
236 */
237 io_virt += pfault->mpfault.bytes_committed;
238 bcnt -= pfault->mpfault.bytes_committed;
239
240 start_idx = (io_virt - (mr->mmr.iova & PAGE_MASK)) >> PAGE_SHIFT;
241
242 if (mr->umem->writable)
243 access_mask |= ODP_WRITE_ALLOWED_BIT;
244 npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt,
245 access_mask, current_seq);
246 if (npages < 0) {
247 ret = npages;
248 goto srcu_unlock;
249 }
250
251 if (npages > 0) {
252 mutex_lock(&mr->umem->odp_data->umem_mutex);
b4cfe447
HE
253 if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
254 /*
255 * No need to check whether the MTTs really belong to
256 * this MR, since ib_umem_odp_map_dma_pages already
257 * checks this.
258 */
259 ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0);
260 } else {
261 ret = -EAGAIN;
262 }
7bdf65d4
HE
263 mutex_unlock(&mr->umem->odp_data->umem_mutex);
264 if (ret < 0) {
b4cfe447
HE
265 if (ret != -EAGAIN)
266 pr_err("Failed to update mkey page tables\n");
7bdf65d4
HE
267 goto srcu_unlock;
268 }
269
270 if (bytes_mapped) {
271 u32 new_mappings = npages * PAGE_SIZE -
272 (io_virt - round_down(io_virt, PAGE_SIZE));
273 *bytes_mapped += min_t(u32, new_mappings, bcnt);
274 }
275 }
276
277srcu_unlock:
b4cfe447
HE
278 if (ret == -EAGAIN) {
279 if (!mr->umem->odp_data->dying) {
280 struct ib_umem_odp *odp_data = mr->umem->odp_data;
281 unsigned long timeout =
282 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
283
284 if (!wait_for_completion_timeout(
285 &odp_data->notifier_completion,
286 timeout)) {
287 pr_warn("timeout waiting for mmu notifier completion\n");
288 }
289 } else {
290 /* The MR is being killed, kill the QP as well. */
291 ret = -EFAULT;
292 }
293 }
7bdf65d4
HE
294 srcu_read_unlock(&mib_dev->mr_srcu, srcu_key);
295 pfault->mpfault.bytes_committed = 0;
296 return ret ? ret : npages;
297}
298
299/**
300 * Parse a series of data segments for page fault handling.
301 *
302 * @qp the QP on which the fault occurred.
303 * @pfault contains page fault information.
304 * @wqe points at the first data segment in the WQE.
305 * @wqe_end points after the end of the WQE.
306 * @bytes_mapped receives the number of bytes that the function was able to
307 * map. This allows the caller to decide intelligently whether
308 * enough memory was mapped to resolve the page fault
309 * successfully (e.g. enough for the next MTU, or the entire
310 * WQE).
311 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
312 * the committed bytes).
313 *
314 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
315 * negative error code.
316 */
317static int pagefault_data_segments(struct mlx5_ib_qp *qp,
318 struct mlx5_ib_pfault *pfault, void *wqe,
319 void *wqe_end, u32 *bytes_mapped,
320 u32 *total_wqe_bytes, int receive_queue)
321{
322 int ret = 0, npages = 0;
323 u64 io_virt;
324 u32 key;
325 u32 byte_count;
326 size_t bcnt;
327 int inline_segment;
328
329 /* Skip SRQ next-WQE segment. */
330 if (receive_queue && qp->ibqp.srq)
331 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
332
333 if (bytes_mapped)
334 *bytes_mapped = 0;
335 if (total_wqe_bytes)
336 *total_wqe_bytes = 0;
337
338 while (wqe < wqe_end) {
339 struct mlx5_wqe_data_seg *dseg = wqe;
340
341 io_virt = be64_to_cpu(dseg->addr);
342 key = be32_to_cpu(dseg->lkey);
343 byte_count = be32_to_cpu(dseg->byte_count);
344 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
345 bcnt = byte_count & ~MLX5_INLINE_SEG;
346
347 if (inline_segment) {
348 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
349 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
350 16);
351 } else {
352 wqe += sizeof(*dseg);
353 }
354
355 /* receive WQE end of sg list. */
356 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
357 io_virt == 0)
358 break;
359
360 if (!inline_segment && total_wqe_bytes) {
361 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
362 pfault->mpfault.bytes_committed);
363 }
364
365 /* A zero length data segment designates a length of 2GB. */
366 if (bcnt == 0)
367 bcnt = 1U << 31;
368
369 if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) {
370 pfault->mpfault.bytes_committed -=
371 min_t(size_t, bcnt,
372 pfault->mpfault.bytes_committed);
373 continue;
374 }
375
376 ret = pagefault_single_data_segment(qp, pfault, key, io_virt,
377 bcnt, bytes_mapped);
378 if (ret < 0)
379 break;
380 npages += ret;
381 }
382
383 return ret < 0 ? ret : npages;
384}
385
386/*
387 * Parse initiator WQE. Advances the wqe pointer to point at the
388 * scatter-gather list, and set wqe_end to the end of the WQE.
389 */
390static int mlx5_ib_mr_initiator_pfault_handler(
391 struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
392 void **wqe, void **wqe_end, int wqe_length)
393{
394 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
395 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
396 u16 wqe_index = pfault->mpfault.wqe.wqe_index;
397 unsigned ds, opcode;
398#if defined(DEBUG)
399 u32 ctrl_wqe_index, ctrl_qpn;
400#endif
401
402 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
403 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
404 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
405 ds, wqe_length);
406 return -EFAULT;
407 }
408
409 if (ds == 0) {
410 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
411 wqe_index, qp->mqp.qpn);
412 return -EFAULT;
413 }
414
415#if defined(DEBUG)
416 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
417 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
418 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
419 if (wqe_index != ctrl_wqe_index) {
420 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
421 wqe_index, qp->mqp.qpn,
422 ctrl_wqe_index);
423 return -EFAULT;
424 }
425
426 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
427 MLX5_WQE_CTRL_QPN_SHIFT;
428 if (qp->mqp.qpn != ctrl_qpn) {
429 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
430 wqe_index, qp->mqp.qpn,
431 ctrl_qpn);
432 return -EFAULT;
433 }
434#endif /* DEBUG */
435
436 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
437 *wqe += sizeof(*ctrl);
438
439 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
440 MLX5_WQE_CTRL_OPCODE_MASK;
441 switch (qp->ibqp.qp_type) {
442 case IB_QPT_RC:
443 switch (opcode) {
444 case MLX5_OPCODE_SEND:
445 case MLX5_OPCODE_SEND_IMM:
446 case MLX5_OPCODE_SEND_INVAL:
447 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
448 IB_ODP_SUPPORT_SEND))
449 goto invalid_transport_or_opcode;
450 break;
451 case MLX5_OPCODE_RDMA_WRITE:
452 case MLX5_OPCODE_RDMA_WRITE_IMM:
453 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
454 IB_ODP_SUPPORT_WRITE))
455 goto invalid_transport_or_opcode;
456 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
457 break;
458 case MLX5_OPCODE_RDMA_READ:
459 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
460 IB_ODP_SUPPORT_READ))
461 goto invalid_transport_or_opcode;
462 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
463 break;
464 default:
465 goto invalid_transport_or_opcode;
466 }
467 break;
468 case IB_QPT_UD:
469 switch (opcode) {
470 case MLX5_OPCODE_SEND:
471 case MLX5_OPCODE_SEND_IMM:
472 if (!(dev->odp_caps.per_transport_caps.ud_odp_caps &
473 IB_ODP_SUPPORT_SEND))
474 goto invalid_transport_or_opcode;
475 *wqe += sizeof(struct mlx5_wqe_datagram_seg);
476 break;
477 default:
478 goto invalid_transport_or_opcode;
479 }
480 break;
481 default:
482invalid_transport_or_opcode:
483 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n",
484 qp->ibqp.qp_type, opcode);
485 return -EFAULT;
486 }
487
488 return 0;
489}
490
491/*
492 * Parse responder WQE. Advances the wqe pointer to point at the
493 * scatter-gather list, and set wqe_end to the end of the WQE.
494 */
495static int mlx5_ib_mr_responder_pfault_handler(
496 struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
497 void **wqe, void **wqe_end, int wqe_length)
498{
499 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
500 struct mlx5_ib_wq *wq = &qp->rq;
501 int wqe_size = 1 << wq->wqe_shift;
502
503 if (qp->ibqp.srq) {
504 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
505 return -EFAULT;
506 }
507
508 if (qp->wq_sig) {
509 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
510 return -EFAULT;
511 }
512
513 if (wqe_size > wqe_length) {
514 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
515 return -EFAULT;
516 }
517
518 switch (qp->ibqp.qp_type) {
519 case IB_QPT_RC:
520 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
521 IB_ODP_SUPPORT_RECV))
522 goto invalid_transport_or_opcode;
523 break;
524 default:
525invalid_transport_or_opcode:
526 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
527 qp->ibqp.qp_type);
528 return -EFAULT;
529 }
530
531 *wqe_end = *wqe + wqe_size;
532
533 return 0;
534}
535
536static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp,
537 struct mlx5_ib_pfault *pfault)
538{
539 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
540 int ret;
541 void *wqe, *wqe_end;
542 u32 bytes_mapped, total_wqe_bytes;
543 char *buffer = NULL;
544 int resume_with_error = 0;
545 u16 wqe_index = pfault->mpfault.wqe.wqe_index;
546 int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR;
547
548 buffer = (char *)__get_free_page(GFP_KERNEL);
549 if (!buffer) {
550 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
551 resume_with_error = 1;
552 goto resolve_page_fault;
553 }
554
555 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
556 PAGE_SIZE);
557 if (ret < 0) {
558 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n",
559 -ret, wqe_index, qp->mqp.qpn);
560 resume_with_error = 1;
561 goto resolve_page_fault;
562 }
563
564 wqe = buffer;
565 if (requestor)
566 ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe,
567 &wqe_end, ret);
568 else
569 ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe,
570 &wqe_end, ret);
571 if (ret < 0) {
572 resume_with_error = 1;
573 goto resolve_page_fault;
574 }
575
576 if (wqe >= wqe_end) {
577 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
578 resume_with_error = 1;
579 goto resolve_page_fault;
580 }
581
582 ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped,
583 &total_wqe_bytes, !requestor);
584 if (ret == -EAGAIN) {
585 goto resolve_page_fault;
586 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
587 mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n",
588 -ret);
589 resume_with_error = 1;
590 goto resolve_page_fault;
591 }
592
593resolve_page_fault:
594 mlx5_ib_page_fault_resume(qp, pfault, resume_with_error);
595 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n",
596 qp->mqp.qpn, resume_with_error, pfault->mpfault.flags);
597
598 free_page((unsigned long)buffer);
599}
600
eab668a6
HE
601static int pages_in_range(u64 address, u32 length)
602{
603 return (ALIGN(address + length, PAGE_SIZE) -
604 (address & PAGE_MASK)) >> PAGE_SHIFT;
605}
606
607static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp,
608 struct mlx5_ib_pfault *pfault)
609{
610 struct mlx5_pagefault *mpfault = &pfault->mpfault;
611 u64 address;
612 u32 length;
613 u32 prefetch_len = mpfault->bytes_committed;
614 int prefetch_activated = 0;
615 u32 rkey = mpfault->rdma.r_key;
616 int ret;
617
618 /* The RDMA responder handler handles the page fault in two parts.
619 * First it brings the necessary pages for the current packet
620 * (and uses the pfault context), and then (after resuming the QP)
621 * prefetches more pages. The second operation cannot use the pfault
622 * context and therefore uses the dummy_pfault context allocated on
623 * the stack */
624 struct mlx5_ib_pfault dummy_pfault = {};
625
626 dummy_pfault.mpfault.bytes_committed = 0;
627
628 mpfault->rdma.rdma_va += mpfault->bytes_committed;
629 mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed,
630 mpfault->rdma.rdma_op_len);
631 mpfault->bytes_committed = 0;
632
633 address = mpfault->rdma.rdma_va;
634 length = mpfault->rdma.rdma_op_len;
635
636 /* For some operations, the hardware cannot tell the exact message
637 * length, and in those cases it reports zero. Use prefetch
638 * logic. */
639 if (length == 0) {
640 prefetch_activated = 1;
641 length = mpfault->rdma.packet_size;
642 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
643 }
644
645 ret = pagefault_single_data_segment(qp, pfault, rkey, address, length,
646 NULL);
647 if (ret == -EAGAIN) {
648 /* We're racing with an invalidation, don't prefetch */
649 prefetch_activated = 0;
650 } else if (ret < 0 || pages_in_range(address, length) > ret) {
651 mlx5_ib_page_fault_resume(qp, pfault, 1);
652 return;
653 }
654
655 mlx5_ib_page_fault_resume(qp, pfault, 0);
656
657 /* At this point, there might be a new pagefault already arriving in
658 * the eq, switch to the dummy pagefault for the rest of the
659 * processing. We're still OK with the objects being alive as the
660 * work-queue is being fenced. */
661
662 if (prefetch_activated) {
663 ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey,
664 address,
665 prefetch_len,
666 NULL);
667 if (ret < 0) {
668 pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n",
669 ret, prefetch_activated,
670 qp->ibqp.qp_num, address, prefetch_len);
671 }
672 }
673}
674
6aec21f6
HE
675void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp,
676 struct mlx5_ib_pfault *pfault)
677{
678 u8 event_subtype = pfault->mpfault.event_subtype;
679
680 switch (event_subtype) {
7bdf65d4
HE
681 case MLX5_PFAULT_SUBTYPE_WQE:
682 mlx5_ib_mr_wqe_pfault_handler(qp, pfault);
683 break;
eab668a6
HE
684 case MLX5_PFAULT_SUBTYPE_RDMA:
685 mlx5_ib_mr_rdma_pfault_handler(qp, pfault);
686 break;
6aec21f6
HE
687 default:
688 pr_warn("Invalid page fault event subtype: 0x%x\n",
689 event_subtype);
690 mlx5_ib_page_fault_resume(qp, pfault, 1);
691 break;
692 }
693}
694
695static void mlx5_ib_qp_pfault_action(struct work_struct *work)
696{
697 struct mlx5_ib_pfault *pfault = container_of(work,
698 struct mlx5_ib_pfault,
699 work);
700 enum mlx5_ib_pagefault_context context =
701 mlx5_ib_get_pagefault_context(&pfault->mpfault);
702 struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp,
703 pagefaults[context]);
704 mlx5_ib_mr_pfault_handler(qp, pfault);
705}
706
707void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp)
708{
709 unsigned long flags;
710
711 spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
712 qp->disable_page_faults = 1;
713 spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
714
715 /*
716 * Note that at this point, we are guarenteed that no more
717 * work queue elements will be posted to the work queue with
718 * the QP we are closing.
719 */
720 flush_workqueue(mlx5_ib_page_fault_wq);
721}
722
723void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp)
724{
725 unsigned long flags;
726
727 spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
728 qp->disable_page_faults = 0;
729 spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
730}
731
732static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp,
733 struct mlx5_pagefault *pfault)
734{
735 /*
736 * Note that we will only get one fault event per QP per context
737 * (responder/initiator, read/write), until we resolve the page fault
738 * with the mlx5_ib_page_fault_resume command. Since this function is
739 * called from within the work element, there is no risk of missing
740 * events.
741 */
742 struct mlx5_ib_qp *mibqp = to_mibqp(qp);
743 enum mlx5_ib_pagefault_context context =
744 mlx5_ib_get_pagefault_context(pfault);
745 struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context];
746
747 qp_pfault->mpfault = *pfault;
748
749 /* No need to stop interrupts here since we are in an interrupt */
750 spin_lock(&mibqp->disable_page_faults_lock);
751 if (!mibqp->disable_page_faults)
752 queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work);
753 spin_unlock(&mibqp->disable_page_faults_lock);
754}
755
756void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp)
757{
758 int i;
759
760 qp->disable_page_faults = 1;
761 spin_lock_init(&qp->disable_page_faults_lock);
762
763 qp->mqp.pfault_handler = mlx5_ib_pfault_handler;
764
765 for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i)
766 INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action);
767}
768
769int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev)
770{
771 int ret;
772
773 ret = init_srcu_struct(&ibdev->mr_srcu);
774 if (ret)
775 return ret;
776
777 return 0;
778}
779
780void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev)
781{
782 cleanup_srcu_struct(&ibdev->mr_srcu);
783}
784
785int __init mlx5_ib_odp_init(void)
786{
787 mlx5_ib_page_fault_wq =
788 create_singlethread_workqueue("mlx5_ib_page_faults");
789 if (!mlx5_ib_page_fault_wq)
790 return -ENOMEM;
791
792 return 0;
793}
794
795void mlx5_ib_odp_cleanup(void)
796{
797 destroy_workqueue(mlx5_ib_page_fault_wq);
798}
This page took 0.077531 seconds and 5 git commands to generate.