Merge tag 'timer' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
CommitLineData
a42d985b
BVA
1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME "ib_srpt"
54#define DRV_VERSION "2.0.0"
55#define DRV_RELDATE "2011-02-14"
56
57#define SRPT_ID_STRING "Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
486d8b9f
RD
72static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
a42d985b
BVA
74
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static struct target_fabric_configfs *srpt_target;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120 return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155{
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177{
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213}
214
215/**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218static void srpt_srq_event(struct ib_event *event, void *ctx)
219{
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221}
222
223/**
224 * srpt_qp_event() - QP event callback function.
225 */
226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227{
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326{
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413{
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450{
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460{
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512err_rsp:
513 ib_destroy_ah(ah);
514err:
515 ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584 return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618{
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635err_free_buf:
636 kfree(ioctx->buf);
637err_free_ioctx:
638 kfree(ioctx);
639err:
640 return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648{
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668{
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
715252d4 690 ring = NULL;
a42d985b
BVA
691out:
692 return ring;
693}
694
695/**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701{
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707}
708
709/**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713{
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723}
724
725/**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733{
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746}
747
748/**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756{
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770}
771
772/**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777{
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793}
794
795/**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802{
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838}
839
840/**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857{
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941out:
942 return ret;
943}
944
945/**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952{
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972}
973
974/**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986{
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000out:
1001 return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031 return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050{
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080{
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
6f9e7f01
RD
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
a42d985b
BVA
1104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = sg_dma_len(&sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = sg_dma_len(sg);
1159 }
1160 }
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1165 }
1166
1167 ++riu->sge_cnt;
1168
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1176
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1181 }
1182 }
1183
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1189 }
1190
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = sg_dma_len(&sg[0]);
1196 dma_addr = sg_dma_address(&sg[0]);
1197
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1204
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1214
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = sg_dma_len(sg);
1220 dma_addr = sg_dma_address(sg);
1221 }
1222 }
1223 } else {
1224 sge->length = (tsize < rsize) ? tsize : rsize;
1225 tsize -= rsize;
1226 dma_len -= rsize;
1227 dma_addr += rsize;
1228 rsize = 0;
1229 }
1230
1231 ++k;
1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233 ++riu;
1234 sge = riu->sge;
1235 k = 0;
1236 } else if (rsize > 0 && tsize > 0)
1237 ++sge;
1238 }
1239 }
1240
1241 return 0;
1242
1243free_mem:
1244 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246 return -ENOMEM;
1247}
1248
1249/**
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251 */
1252static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253{
1254 struct srpt_send_ioctx *ioctx;
1255 unsigned long flags;
1256
1257 BUG_ON(!ch);
1258
1259 ioctx = NULL;
1260 spin_lock_irqsave(&ch->spinlock, flags);
1261 if (!list_empty(&ch->free_list)) {
1262 ioctx = list_first_entry(&ch->free_list,
1263 struct srpt_send_ioctx, free_list);
1264 list_del(&ioctx->free_list);
1265 }
1266 spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268 if (!ioctx)
1269 return ioctx;
1270
1271 BUG_ON(ioctx->ch != ch);
1272 kref_init(&ioctx->kref);
1273 spin_lock_init(&ioctx->spinlock);
1274 ioctx->state = SRPT_STATE_NEW;
1275 ioctx->n_rbuf = 0;
1276 ioctx->rbufs = NULL;
1277 ioctx->n_rdma = 0;
1278 ioctx->n_rdma_ius = 0;
1279 ioctx->rdma_ius = NULL;
1280 ioctx->mapped_sg_count = 0;
1281 init_completion(&ioctx->tx_done);
1282 ioctx->queue_status_only = false;
1283 /*
1284 * transport_init_se_cmd() does not initialize all fields, so do it
1285 * here.
1286 */
1287 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1288 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1289
1290 return ioctx;
1291}
1292
1293/**
1294 * srpt_put_send_ioctx() - Free up resources.
1295 */
1296static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1297{
1298 struct srpt_rdma_ch *ch;
1299 unsigned long flags;
1300
1301 BUG_ON(!ioctx);
1302 ch = ioctx->ch;
1303 BUG_ON(!ch);
1304
1305 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1306
1307 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1308 transport_generic_free_cmd(&ioctx->cmd, 0);
1309
1310 if (ioctx->n_rbuf > 1) {
1311 kfree(ioctx->rbufs);
1312 ioctx->rbufs = NULL;
1313 ioctx->n_rbuf = 0;
1314 }
1315
1316 spin_lock_irqsave(&ch->spinlock, flags);
1317 list_add(&ioctx->free_list, &ch->free_list);
1318 spin_unlock_irqrestore(&ch->spinlock, flags);
1319}
1320
1321static void srpt_put_send_ioctx_kref(struct kref *kref)
1322{
1323 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1324}
1325
1326/**
1327 * srpt_abort_cmd() - Abort a SCSI command.
1328 * @ioctx: I/O context associated with the SCSI command.
1329 * @context: Preferred execution context.
1330 */
1331static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1332{
1333 enum srpt_command_state state;
1334 unsigned long flags;
1335
1336 BUG_ON(!ioctx);
1337
1338 /*
1339 * If the command is in a state where the target core is waiting for
1340 * the ib_srpt driver, change the state to the next state. Changing
1341 * the state of the command from SRPT_STATE_NEED_DATA to
1342 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1343 * function a second time.
1344 */
1345
1346 spin_lock_irqsave(&ioctx->spinlock, flags);
1347 state = ioctx->state;
1348 switch (state) {
1349 case SRPT_STATE_NEED_DATA:
1350 ioctx->state = SRPT_STATE_DATA_IN;
1351 break;
1352 case SRPT_STATE_DATA_IN:
1353 case SRPT_STATE_CMD_RSP_SENT:
1354 case SRPT_STATE_MGMT_RSP_SENT:
1355 ioctx->state = SRPT_STATE_DONE;
1356 break;
1357 default:
1358 break;
1359 }
1360 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1361
1362 if (state == SRPT_STATE_DONE)
1363 goto out;
1364
1365 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1366 ioctx->tag);
1367
1368 switch (state) {
1369 case SRPT_STATE_NEW:
1370 case SRPT_STATE_DATA_IN:
1371 case SRPT_STATE_MGMT:
1372 /*
1373 * Do nothing - defer abort processing until
1374 * srpt_queue_response() is invoked.
1375 */
1376 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1377 break;
1378 case SRPT_STATE_NEED_DATA:
1379 /* DMA_TO_DEVICE (write) - RDMA read error. */
e672a47f
CH
1380
1381 /* XXX(hch): this is a horrible layering violation.. */
7d680f3b
CH
1382 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1383 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
e672a47f 1384 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
7d680f3b 1385 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
e672a47f
CH
1386
1387 complete(&ioctx->cmd.transport_lun_stop_comp);
a42d985b
BVA
1388 break;
1389 case SRPT_STATE_CMD_RSP_SENT:
1390 /*
1391 * SRP_RSP sending failed or the SRP_RSP send completion has
1392 * not been received in time.
1393 */
1394 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
7d680f3b
CH
1395 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1396 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1397 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
a42d985b
BVA
1398 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1399 break;
1400 case SRPT_STATE_MGMT_RSP_SENT:
1401 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1402 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1403 break;
1404 default:
1405 WARN_ON("ERROR: unexpected command state");
1406 break;
1407 }
1408
1409out:
1410 return state;
1411}
1412
1413/**
1414 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1415 */
1416static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1417{
1418 struct srpt_send_ioctx *ioctx;
1419 enum srpt_command_state state;
1420 struct se_cmd *cmd;
1421 u32 index;
1422
1423 atomic_inc(&ch->sq_wr_avail);
1424
1425 index = idx_from_wr_id(wr_id);
1426 ioctx = ch->ioctx_ring[index];
1427 state = srpt_get_cmd_state(ioctx);
1428 cmd = &ioctx->cmd;
1429
1430 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1431 && state != SRPT_STATE_MGMT_RSP_SENT
1432 && state != SRPT_STATE_NEED_DATA
1433 && state != SRPT_STATE_DONE);
1434
1435 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1436 if (state == SRPT_STATE_CMD_RSP_SENT
1437 || state == SRPT_STATE_MGMT_RSP_SENT)
1438 atomic_dec(&ch->req_lim);
1439
1440 srpt_abort_cmd(ioctx);
1441}
1442
1443/**
1444 * srpt_handle_send_comp() - Process an IB send completion notification.
1445 */
1446static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1447 struct srpt_send_ioctx *ioctx)
1448{
1449 enum srpt_command_state state;
1450
1451 atomic_inc(&ch->sq_wr_avail);
1452
1453 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1454
1455 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1456 && state != SRPT_STATE_MGMT_RSP_SENT
1457 && state != SRPT_STATE_DONE))
1458 pr_debug("state = %d\n", state);
1459
1460 if (state != SRPT_STATE_DONE)
1461 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1462 else
1463 printk(KERN_ERR "IB completion has been received too late for"
1464 " wr_id = %u.\n", ioctx->ioctx.index);
1465}
1466
1467/**
1468 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1469 *
e672a47f
CH
1470 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1471 * the data that has been transferred via IB RDMA had to be postponed until the
1472 * check_stop_free() callback. None of this is nessecary anymore and needs to
1473 * be cleaned up.
a42d985b
BVA
1474 */
1475static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1476 struct srpt_send_ioctx *ioctx,
1477 enum srpt_opcode opcode)
1478{
1479 WARN_ON(ioctx->n_rdma <= 0);
1480 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1481
1482 if (opcode == SRPT_RDMA_READ_LAST) {
1483 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1484 SRPT_STATE_DATA_IN))
e672a47f 1485 target_execute_cmd(&ioctx->cmd);
a42d985b
BVA
1486 else
1487 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1488 __LINE__, srpt_get_cmd_state(ioctx));
1489 } else if (opcode == SRPT_RDMA_ABORT) {
1490 ioctx->rdma_aborted = true;
1491 } else {
1492 WARN(true, "unexpected opcode %d\n", opcode);
1493 }
1494}
1495
1496/**
1497 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1498 */
1499static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1500 struct srpt_send_ioctx *ioctx,
1501 enum srpt_opcode opcode)
1502{
1503 struct se_cmd *cmd;
1504 enum srpt_command_state state;
7d680f3b 1505 unsigned long flags;
a42d985b
BVA
1506
1507 cmd = &ioctx->cmd;
1508 state = srpt_get_cmd_state(ioctx);
1509 switch (opcode) {
1510 case SRPT_RDMA_READ_LAST:
1511 if (ioctx->n_rdma <= 0) {
1512 printk(KERN_ERR "Received invalid RDMA read"
1513 " error completion with idx %d\n",
1514 ioctx->ioctx.index);
1515 break;
1516 }
1517 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1518 if (state == SRPT_STATE_NEED_DATA)
1519 srpt_abort_cmd(ioctx);
1520 else
1521 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1522 __func__, __LINE__, state);
1523 break;
1524 case SRPT_RDMA_WRITE_LAST:
7d680f3b
CH
1525 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1526 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1527 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
a42d985b
BVA
1528 break;
1529 default:
1530 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1531 __LINE__, opcode);
1532 break;
1533 }
1534}
1535
1536/**
1537 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1538 * @ch: RDMA channel through which the request has been received.
1539 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1540 * be built in the buffer ioctx->buf points at and hence this function will
1541 * overwrite the request data.
1542 * @tag: tag of the request for which this response is being generated.
1543 * @status: value for the STATUS field of the SRP_RSP information unit.
1544 *
1545 * Returns the size in bytes of the SRP_RSP response.
1546 *
1547 * An SRP_RSP response contains a SCSI status or service response. See also
1548 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1549 * response. See also SPC-2 for more information about sense data.
1550 */
1551static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1552 struct srpt_send_ioctx *ioctx, u64 tag,
1553 int status)
1554{
1555 struct srp_rsp *srp_rsp;
1556 const u8 *sense_data;
1557 int sense_data_len, max_sense_len;
1558
1559 /*
1560 * The lowest bit of all SAM-3 status codes is zero (see also
1561 * paragraph 5.3 in SAM-3).
1562 */
1563 WARN_ON(status & 1);
1564
1565 srp_rsp = ioctx->ioctx.buf;
1566 BUG_ON(!srp_rsp);
1567
1568 sense_data = ioctx->sense_data;
1569 sense_data_len = ioctx->cmd.scsi_sense_length;
1570 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1571
1572 memset(srp_rsp, 0, sizeof *srp_rsp);
1573 srp_rsp->opcode = SRP_RSP;
1574 srp_rsp->req_lim_delta =
1575 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1576 srp_rsp->tag = tag;
1577 srp_rsp->status = status;
1578
1579 if (sense_data_len) {
1580 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1581 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1582 if (sense_data_len > max_sense_len) {
1583 printk(KERN_WARNING "truncated sense data from %d to %d"
1584 " bytes\n", sense_data_len, max_sense_len);
1585 sense_data_len = max_sense_len;
1586 }
1587
1588 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1589 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1590 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1591 }
1592
1593 return sizeof(*srp_rsp) + sense_data_len;
1594}
1595
1596/**
1597 * srpt_build_tskmgmt_rsp() - Build a task management response.
1598 * @ch: RDMA channel through which the request has been received.
1599 * @ioctx: I/O context in which the SRP_RSP response will be built.
1600 * @rsp_code: RSP_CODE that will be stored in the response.
1601 * @tag: Tag of the request for which this response is being generated.
1602 *
1603 * Returns the size in bytes of the SRP_RSP response.
1604 *
1605 * An SRP_RSP response contains a SCSI status or service response. See also
1606 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1607 * response.
1608 */
1609static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1610 struct srpt_send_ioctx *ioctx,
1611 u8 rsp_code, u64 tag)
1612{
1613 struct srp_rsp *srp_rsp;
1614 int resp_data_len;
1615 int resp_len;
1616
1617 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1618 resp_len = sizeof(*srp_rsp) + resp_data_len;
1619
1620 srp_rsp = ioctx->ioctx.buf;
1621 BUG_ON(!srp_rsp);
1622 memset(srp_rsp, 0, sizeof *srp_rsp);
1623
1624 srp_rsp->opcode = SRP_RSP;
1625 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1626 + atomic_xchg(&ch->req_lim_delta, 0));
1627 srp_rsp->tag = tag;
1628
1629 if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1630 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1631 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1632 srp_rsp->data[3] = rsp_code;
1633 }
1634
1635 return resp_len;
1636}
1637
1638#define NO_SUCH_LUN ((uint64_t)-1LL)
1639
1640/*
1641 * SCSI LUN addressing method. See also SAM-2 and the section about
1642 * eight byte LUNs.
1643 */
1644enum scsi_lun_addr_method {
1645 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1646 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1647 SCSI_LUN_ADDR_METHOD_LUN = 2,
1648 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1649};
1650
1651/*
1652 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1653 *
1654 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1655 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1656 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1657 */
1658static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1659{
1660 uint64_t res = NO_SUCH_LUN;
1661 int addressing_method;
1662
1663 if (unlikely(len < 2)) {
1664 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1665 "more", len);
1666 goto out;
1667 }
1668
1669 switch (len) {
1670 case 8:
1671 if ((*((__be64 *)lun) &
1672 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1673 goto out_err;
1674 break;
1675 case 4:
1676 if (*((__be16 *)&lun[2]) != 0)
1677 goto out_err;
1678 break;
1679 case 6:
1680 if (*((__be32 *)&lun[2]) != 0)
1681 goto out_err;
1682 break;
1683 case 2:
1684 break;
1685 default:
1686 goto out_err;
1687 }
1688
1689 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1690 switch (addressing_method) {
1691 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1692 case SCSI_LUN_ADDR_METHOD_FLAT:
1693 case SCSI_LUN_ADDR_METHOD_LUN:
1694 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1695 break;
1696
1697 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1698 default:
1699 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1700 addressing_method);
1701 break;
1702 }
1703
1704out:
1705 return res;
1706
1707out_err:
1708 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1709 " implemented");
1710 goto out;
1711}
1712
1713static int srpt_check_stop_free(struct se_cmd *cmd)
1714{
1715 struct srpt_send_ioctx *ioctx;
1716
1717 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1718 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1719}
1720
1721/**
1722 * srpt_handle_cmd() - Process SRP_CMD.
1723 */
1724static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1725 struct srpt_recv_ioctx *recv_ioctx,
1726 struct srpt_send_ioctx *send_ioctx)
1727{
1728 struct se_cmd *cmd;
1729 struct srp_cmd *srp_cmd;
1730 uint64_t unpacked_lun;
1731 u64 data_len;
1732 enum dma_data_direction dir;
1733 int ret;
1734
1735 BUG_ON(!send_ioctx);
1736
1737 srp_cmd = recv_ioctx->ioctx.buf;
1738 kref_get(&send_ioctx->kref);
1739 cmd = &send_ioctx->cmd;
1740 send_ioctx->tag = srp_cmd->tag;
1741
1742 switch (srp_cmd->task_attr) {
1743 case SRP_CMD_SIMPLE_Q:
1744 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1745 break;
1746 case SRP_CMD_ORDERED_Q:
1747 default:
1748 cmd->sam_task_attr = MSG_ORDERED_TAG;
1749 break;
1750 case SRP_CMD_HEAD_OF_Q:
1751 cmd->sam_task_attr = MSG_HEAD_TAG;
1752 break;
1753 case SRP_CMD_ACA:
1754 cmd->sam_task_attr = MSG_ACA_TAG;
1755 break;
1756 }
1757
1758 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
1759 if (ret) {
1760 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1761 srp_cmd->tag);
1762 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1763 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
187e70a5 1764 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
a42d985b
BVA
1765 goto send_sense;
1766 }
1767
1768 cmd->data_length = data_len;
1769 cmd->data_direction = dir;
1770 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1771 sizeof(srp_cmd->lun));
187e70a5
NB
1772 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) {
1773 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
a42d985b 1774 goto send_sense;
187e70a5 1775 }
a12f41f8 1776 ret = target_setup_cmd_from_cdb(cmd, srp_cmd->cdb);
187e70a5
NB
1777 if (ret < 0) {
1778 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
1779 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) {
1780 srpt_queue_status(cmd);
1781 return 0;
1782 } else
1783 goto send_sense;
1784 }
a42d985b
BVA
1785
1786 transport_handle_cdb_direct(cmd);
1787 return 0;
1788
1789send_sense:
1790 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
1791 0);
1792 return -1;
1793}
1794
1795/**
1796 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1797 * @ch: RDMA channel of the task management request.
1798 * @fn: Task management function to perform.
1799 * @req_tag: Tag of the SRP task management request.
1800 * @mgmt_ioctx: I/O context of the task management request.
1801 *
1802 * Returns zero if the target core will process the task management
1803 * request asynchronously.
1804 *
1805 * Note: It is assumed that the initiator serializes tag-based task management
1806 * requests.
1807 */
1808static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1809{
1810 struct srpt_device *sdev;
1811 struct srpt_rdma_ch *ch;
1812 struct srpt_send_ioctx *target;
1813 int ret, i;
1814
1815 ret = -EINVAL;
1816 ch = ioctx->ch;
1817 BUG_ON(!ch);
1818 BUG_ON(!ch->sport);
1819 sdev = ch->sport->sdev;
1820 BUG_ON(!sdev);
1821 spin_lock_irq(&sdev->spinlock);
1822 for (i = 0; i < ch->rq_size; ++i) {
1823 target = ch->ioctx_ring[i];
1824 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1825 target->tag == tag &&
1826 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1827 ret = 0;
1828 /* now let the target core abort &target->cmd; */
1829 break;
1830 }
1831 }
1832 spin_unlock_irq(&sdev->spinlock);
1833 return ret;
1834}
1835
1836static int srp_tmr_to_tcm(int fn)
1837{
1838 switch (fn) {
1839 case SRP_TSK_ABORT_TASK:
1840 return TMR_ABORT_TASK;
1841 case SRP_TSK_ABORT_TASK_SET:
1842 return TMR_ABORT_TASK_SET;
1843 case SRP_TSK_CLEAR_TASK_SET:
1844 return TMR_CLEAR_TASK_SET;
1845 case SRP_TSK_LUN_RESET:
1846 return TMR_LUN_RESET;
1847 case SRP_TSK_CLEAR_ACA:
1848 return TMR_CLEAR_ACA;
1849 default:
1850 return -1;
1851 }
1852}
1853
1854/**
1855 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1856 *
1857 * Returns 0 if and only if the request will be processed by the target core.
1858 *
1859 * For more information about SRP_TSK_MGMT information units, see also section
1860 * 6.7 in the SRP r16a document.
1861 */
1862static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1863 struct srpt_recv_ioctx *recv_ioctx,
1864 struct srpt_send_ioctx *send_ioctx)
1865{
1866 struct srp_tsk_mgmt *srp_tsk;
1867 struct se_cmd *cmd;
1868 uint64_t unpacked_lun;
1869 int tcm_tmr;
1870 int res;
1871
1872 BUG_ON(!send_ioctx);
1873
1874 srp_tsk = recv_ioctx->ioctx.buf;
1875 cmd = &send_ioctx->cmd;
1876
1877 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1878 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1879 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1880
1881 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1882 send_ioctx->tag = srp_tsk->tag;
1883 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1884 if (tcm_tmr < 0) {
1885 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1886 send_ioctx->cmd.se_tmr_req->response =
1887 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1888 goto process_tmr;
1889 }
c8e31f26
AG
1890 res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1891 if (res < 0) {
a42d985b
BVA
1892 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1893 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1894 goto process_tmr;
1895 }
1896
1897 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1898 sizeof(srp_tsk->lun));
1899 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1900 if (res) {
1901 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
1902 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1903 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1904 goto process_tmr;
1905 }
1906
1907 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1908 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1909
1910process_tmr:
1911 kref_get(&send_ioctx->kref);
1912 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
1913 transport_generic_handle_tmr(&send_ioctx->cmd);
1914 else
1915 transport_send_check_condition_and_sense(cmd,
1916 cmd->scsi_sense_reason, 0);
1917
1918}
1919
1920/**
1921 * srpt_handle_new_iu() - Process a newly received information unit.
1922 * @ch: RDMA channel through which the information unit has been received.
1923 * @ioctx: SRPT I/O context associated with the information unit.
1924 */
1925static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1926 struct srpt_recv_ioctx *recv_ioctx,
1927 struct srpt_send_ioctx *send_ioctx)
1928{
1929 struct srp_cmd *srp_cmd;
1930 enum rdma_ch_state ch_state;
1931
1932 BUG_ON(!ch);
1933 BUG_ON(!recv_ioctx);
1934
1935 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1936 recv_ioctx->ioctx.dma, srp_max_req_size,
1937 DMA_FROM_DEVICE);
1938
1939 ch_state = srpt_get_ch_state(ch);
1940 if (unlikely(ch_state == CH_CONNECTING)) {
1941 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1942 goto out;
1943 }
1944
1945 if (unlikely(ch_state != CH_LIVE))
1946 goto out;
1947
1948 srp_cmd = recv_ioctx->ioctx.buf;
1949 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1950 if (!send_ioctx)
1951 send_ioctx = srpt_get_send_ioctx(ch);
1952 if (unlikely(!send_ioctx)) {
1953 list_add_tail(&recv_ioctx->wait_list,
1954 &ch->cmd_wait_list);
1955 goto out;
1956 }
1957 }
1958
1959 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1960 0, DMA_NONE, MSG_SIMPLE_TAG,
1961 send_ioctx->sense_data);
1962
1963 switch (srp_cmd->opcode) {
1964 case SRP_CMD:
1965 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1966 break;
1967 case SRP_TSK_MGMT:
1968 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1969 break;
1970 case SRP_I_LOGOUT:
1971 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1972 break;
1973 case SRP_CRED_RSP:
1974 pr_debug("received SRP_CRED_RSP\n");
1975 break;
1976 case SRP_AER_RSP:
1977 pr_debug("received SRP_AER_RSP\n");
1978 break;
1979 case SRP_RSP:
1980 printk(KERN_ERR "Received SRP_RSP\n");
1981 break;
1982 default:
1983 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1984 srp_cmd->opcode);
1985 break;
1986 }
1987
1988 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1989out:
1990 return;
1991}
1992
1993static void srpt_process_rcv_completion(struct ib_cq *cq,
1994 struct srpt_rdma_ch *ch,
1995 struct ib_wc *wc)
1996{
1997 struct srpt_device *sdev = ch->sport->sdev;
1998 struct srpt_recv_ioctx *ioctx;
1999 u32 index;
2000
2001 index = idx_from_wr_id(wc->wr_id);
2002 if (wc->status == IB_WC_SUCCESS) {
2003 int req_lim;
2004
2005 req_lim = atomic_dec_return(&ch->req_lim);
2006 if (unlikely(req_lim < 0))
2007 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
2008 ioctx = sdev->ioctx_ring[index];
2009 srpt_handle_new_iu(ch, ioctx, NULL);
2010 } else {
2011 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
2012 index, wc->status);
2013 }
2014}
2015
2016/**
2017 * srpt_process_send_completion() - Process an IB send completion.
2018 *
2019 * Note: Although this has not yet been observed during tests, at least in
2020 * theory it is possible that the srpt_get_send_ioctx() call invoked by
2021 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2022 * value in each response is set to one, and it is possible that this response
2023 * makes the initiator send a new request before the send completion for that
2024 * response has been processed. This could e.g. happen if the call to
2025 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2026 * if IB retransmission causes generation of the send completion to be
2027 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2028 * are queued on cmd_wait_list. The code below processes these delayed
2029 * requests one at a time.
2030 */
2031static void srpt_process_send_completion(struct ib_cq *cq,
2032 struct srpt_rdma_ch *ch,
2033 struct ib_wc *wc)
2034{
2035 struct srpt_send_ioctx *send_ioctx;
2036 uint32_t index;
2037 enum srpt_opcode opcode;
2038
2039 index = idx_from_wr_id(wc->wr_id);
2040 opcode = opcode_from_wr_id(wc->wr_id);
2041 send_ioctx = ch->ioctx_ring[index];
2042 if (wc->status == IB_WC_SUCCESS) {
2043 if (opcode == SRPT_SEND)
2044 srpt_handle_send_comp(ch, send_ioctx);
2045 else {
2046 WARN_ON(opcode != SRPT_RDMA_ABORT &&
2047 wc->opcode != IB_WC_RDMA_READ);
2048 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2049 }
2050 } else {
2051 if (opcode == SRPT_SEND) {
2052 printk(KERN_INFO "sending response for idx %u failed"
2053 " with status %d\n", index, wc->status);
2054 srpt_handle_send_err_comp(ch, wc->wr_id);
2055 } else if (opcode != SRPT_RDMA_MID) {
2056 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2057 " status %d", opcode, index, wc->status);
2058 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2059 }
2060 }
2061
2062 while (unlikely(opcode == SRPT_SEND
2063 && !list_empty(&ch->cmd_wait_list)
2064 && srpt_get_ch_state(ch) == CH_LIVE
2065 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2066 struct srpt_recv_ioctx *recv_ioctx;
2067
2068 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2069 struct srpt_recv_ioctx,
2070 wait_list);
2071 list_del(&recv_ioctx->wait_list);
2072 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2073 }
2074}
2075
2076static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2077{
2078 struct ib_wc *const wc = ch->wc;
2079 int i, n;
2080
2081 WARN_ON(cq != ch->cq);
2082
2083 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2084 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2085 for (i = 0; i < n; i++) {
2086 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2087 srpt_process_rcv_completion(cq, ch, &wc[i]);
2088 else
2089 srpt_process_send_completion(cq, ch, &wc[i]);
2090 }
2091 }
2092}
2093
2094/**
2095 * srpt_completion() - IB completion queue callback function.
2096 *
2097 * Notes:
2098 * - It is guaranteed that a completion handler will never be invoked
2099 * concurrently on two different CPUs for the same completion queue. See also
2100 * Documentation/infiniband/core_locking.txt and the implementation of
2101 * handle_edge_irq() in kernel/irq/chip.c.
2102 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2103 * context instead of interrupt context.
2104 */
2105static void srpt_completion(struct ib_cq *cq, void *ctx)
2106{
2107 struct srpt_rdma_ch *ch = ctx;
2108
2109 wake_up_interruptible(&ch->wait_queue);
2110}
2111
2112static int srpt_compl_thread(void *arg)
2113{
2114 struct srpt_rdma_ch *ch;
2115
2116 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2117 current->flags |= PF_NOFREEZE;
2118
2119 ch = arg;
2120 BUG_ON(!ch);
2121 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2122 ch->sess_name, ch->thread->comm, current->pid);
2123 while (!kthread_should_stop()) {
2124 wait_event_interruptible(ch->wait_queue,
2125 (srpt_process_completion(ch->cq, ch),
2126 kthread_should_stop()));
2127 }
2128 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2129 ch->sess_name, ch->thread->comm, current->pid);
2130 return 0;
2131}
2132
2133/**
2134 * srpt_create_ch_ib() - Create receive and send completion queues.
2135 */
2136static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2137{
2138 struct ib_qp_init_attr *qp_init;
2139 struct srpt_port *sport = ch->sport;
2140 struct srpt_device *sdev = sport->sdev;
2141 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2142 int ret;
2143
2144 WARN_ON(ch->rq_size < 1);
2145
2146 ret = -ENOMEM;
2147 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2148 if (!qp_init)
2149 goto out;
2150
2151 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2152 ch->rq_size + srp_sq_size, 0);
2153 if (IS_ERR(ch->cq)) {
2154 ret = PTR_ERR(ch->cq);
2155 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2156 ch->rq_size + srp_sq_size, ret);
2157 goto out;
2158 }
2159
2160 qp_init->qp_context = (void *)ch;
2161 qp_init->event_handler
2162 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2163 qp_init->send_cq = ch->cq;
2164 qp_init->recv_cq = ch->cq;
2165 qp_init->srq = sdev->srq;
2166 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2167 qp_init->qp_type = IB_QPT_RC;
2168 qp_init->cap.max_send_wr = srp_sq_size;
2169 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2170
2171 ch->qp = ib_create_qp(sdev->pd, qp_init);
2172 if (IS_ERR(ch->qp)) {
2173 ret = PTR_ERR(ch->qp);
2174 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2175 goto err_destroy_cq;
2176 }
2177
2178 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2179
2180 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2181 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2182 qp_init->cap.max_send_wr, ch->cm_id);
2183
2184 ret = srpt_init_ch_qp(ch, ch->qp);
2185 if (ret)
2186 goto err_destroy_qp;
2187
2188 init_waitqueue_head(&ch->wait_queue);
2189
2190 pr_debug("creating thread for session %s\n", ch->sess_name);
2191
2192 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2193 if (IS_ERR(ch->thread)) {
2194 printk(KERN_ERR "failed to create kernel thread %ld\n",
2195 PTR_ERR(ch->thread));
2196 ch->thread = NULL;
2197 goto err_destroy_qp;
2198 }
2199
2200out:
2201 kfree(qp_init);
2202 return ret;
2203
2204err_destroy_qp:
2205 ib_destroy_qp(ch->qp);
2206err_destroy_cq:
2207 ib_destroy_cq(ch->cq);
2208 goto out;
2209}
2210
2211static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2212{
2213 if (ch->thread)
2214 kthread_stop(ch->thread);
2215
2216 ib_destroy_qp(ch->qp);
2217 ib_destroy_cq(ch->cq);
2218}
2219
2220/**
2221 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2222 *
2223 * Reset the QP and make sure all resources associated with the channel will
2224 * be deallocated at an appropriate time.
2225 *
2226 * Note: The caller must hold ch->sport->sdev->spinlock.
2227 */
2228static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2229{
2230 struct srpt_device *sdev;
2231 enum rdma_ch_state prev_state;
2232 unsigned long flags;
2233
2234 sdev = ch->sport->sdev;
2235
2236 spin_lock_irqsave(&ch->spinlock, flags);
2237 prev_state = ch->state;
2238 switch (prev_state) {
2239 case CH_CONNECTING:
2240 case CH_LIVE:
2241 ch->state = CH_DISCONNECTING;
2242 break;
2243 default:
2244 break;
2245 }
2246 spin_unlock_irqrestore(&ch->spinlock, flags);
2247
2248 switch (prev_state) {
2249 case CH_CONNECTING:
2250 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2251 NULL, 0);
2252 /* fall through */
2253 case CH_LIVE:
2254 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2255 printk(KERN_ERR "sending CM DREQ failed.\n");
2256 break;
2257 case CH_DISCONNECTING:
2258 break;
2259 case CH_DRAINING:
2260 case CH_RELEASING:
2261 break;
2262 }
2263}
2264
2265/**
2266 * srpt_close_ch() - Close an RDMA channel.
2267 */
2268static void srpt_close_ch(struct srpt_rdma_ch *ch)
2269{
2270 struct srpt_device *sdev;
2271
2272 sdev = ch->sport->sdev;
2273 spin_lock_irq(&sdev->spinlock);
2274 __srpt_close_ch(ch);
2275 spin_unlock_irq(&sdev->spinlock);
2276}
2277
2278/**
2279 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2280 * @cm_id: Pointer to the CM ID of the channel to be drained.
2281 *
2282 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2283 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2284 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2285 * waits until all target sessions for the associated IB device have been
2286 * unregistered and target session registration involves a call to
2287 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2288 * this function has finished).
2289 */
2290static void srpt_drain_channel(struct ib_cm_id *cm_id)
2291{
2292 struct srpt_device *sdev;
2293 struct srpt_rdma_ch *ch;
2294 int ret;
2295 bool do_reset = false;
2296
2297 WARN_ON_ONCE(irqs_disabled());
2298
2299 sdev = cm_id->context;
2300 BUG_ON(!sdev);
2301 spin_lock_irq(&sdev->spinlock);
2302 list_for_each_entry(ch, &sdev->rch_list, list) {
2303 if (ch->cm_id == cm_id) {
2304 do_reset = srpt_test_and_set_ch_state(ch,
2305 CH_CONNECTING, CH_DRAINING) ||
2306 srpt_test_and_set_ch_state(ch,
2307 CH_LIVE, CH_DRAINING) ||
2308 srpt_test_and_set_ch_state(ch,
2309 CH_DISCONNECTING, CH_DRAINING);
2310 break;
2311 }
2312 }
2313 spin_unlock_irq(&sdev->spinlock);
2314
2315 if (do_reset) {
2316 ret = srpt_ch_qp_err(ch);
2317 if (ret < 0)
2318 printk(KERN_ERR "Setting queue pair in error state"
2319 " failed: %d\n", ret);
2320 }
2321}
2322
2323/**
2324 * srpt_find_channel() - Look up an RDMA channel.
2325 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2326 *
2327 * Return NULL if no matching RDMA channel has been found.
2328 */
2329static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2330 struct ib_cm_id *cm_id)
2331{
2332 struct srpt_rdma_ch *ch;
2333 bool found;
2334
2335 WARN_ON_ONCE(irqs_disabled());
2336 BUG_ON(!sdev);
2337
2338 found = false;
2339 spin_lock_irq(&sdev->spinlock);
2340 list_for_each_entry(ch, &sdev->rch_list, list) {
2341 if (ch->cm_id == cm_id) {
2342 found = true;
2343 break;
2344 }
2345 }
2346 spin_unlock_irq(&sdev->spinlock);
2347
2348 return found ? ch : NULL;
2349}
2350
2351/**
2352 * srpt_release_channel() - Release channel resources.
2353 *
2354 * Schedules the actual release because:
2355 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2356 * trigger a deadlock.
2357 * - It is not safe to call TCM transport_* functions from interrupt context.
2358 */
2359static void srpt_release_channel(struct srpt_rdma_ch *ch)
2360{
2361 schedule_work(&ch->release_work);
2362}
2363
2364static void srpt_release_channel_work(struct work_struct *w)
2365{
2366 struct srpt_rdma_ch *ch;
2367 struct srpt_device *sdev;
2368
2369 ch = container_of(w, struct srpt_rdma_ch, release_work);
2370 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2371 ch->release_done);
2372
2373 sdev = ch->sport->sdev;
2374 BUG_ON(!sdev);
2375
2376 transport_deregister_session_configfs(ch->sess);
2377 transport_deregister_session(ch->sess);
2378 ch->sess = NULL;
2379
2380 srpt_destroy_ch_ib(ch);
2381
2382 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2383 ch->sport->sdev, ch->rq_size,
2384 ch->rsp_size, DMA_TO_DEVICE);
2385
2386 spin_lock_irq(&sdev->spinlock);
2387 list_del(&ch->list);
2388 spin_unlock_irq(&sdev->spinlock);
2389
2390 ib_destroy_cm_id(ch->cm_id);
2391
2392 if (ch->release_done)
2393 complete(ch->release_done);
2394
2395 wake_up(&sdev->ch_releaseQ);
2396
2397 kfree(ch);
2398}
2399
2400static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2401 u8 i_port_id[16])
2402{
2403 struct srpt_node_acl *nacl;
2404
2405 list_for_each_entry(nacl, &sport->port_acl_list, list)
2406 if (memcmp(nacl->i_port_id, i_port_id,
2407 sizeof(nacl->i_port_id)) == 0)
2408 return nacl;
2409
2410 return NULL;
2411}
2412
2413static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2414 u8 i_port_id[16])
2415{
2416 struct srpt_node_acl *nacl;
2417
2418 spin_lock_irq(&sport->port_acl_lock);
2419 nacl = __srpt_lookup_acl(sport, i_port_id);
2420 spin_unlock_irq(&sport->port_acl_lock);
2421
2422 return nacl;
2423}
2424
2425/**
2426 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2427 *
2428 * Ownership of the cm_id is transferred to the target session if this
2429 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2430 */
2431static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2432 struct ib_cm_req_event_param *param,
2433 void *private_data)
2434{
2435 struct srpt_device *sdev = cm_id->context;
2436 struct srpt_port *sport = &sdev->port[param->port - 1];
2437 struct srp_login_req *req;
2438 struct srp_login_rsp *rsp;
2439 struct srp_login_rej *rej;
2440 struct ib_cm_rep_param *rep_param;
2441 struct srpt_rdma_ch *ch, *tmp_ch;
2442 struct srpt_node_acl *nacl;
2443 u32 it_iu_len;
2444 int i;
2445 int ret = 0;
2446
2447 WARN_ON_ONCE(irqs_disabled());
2448
2449 if (WARN_ON(!sdev || !private_data))
2450 return -EINVAL;
2451
2452 req = (struct srp_login_req *)private_data;
2453
2454 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2455
2456 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2457 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2458 " (guid=0x%llx:0x%llx)\n",
2459 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2460 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2461 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2462 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2463 it_iu_len,
2464 param->port,
2465 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2466 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2467
2468 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2469 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2470 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2471
2472 if (!rsp || !rej || !rep_param) {
2473 ret = -ENOMEM;
2474 goto out;
2475 }
2476
2477 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2478 rej->reason = __constant_cpu_to_be32(
2479 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2480 ret = -EINVAL;
2481 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2482 " length (%d bytes) is out of range (%d .. %d)\n",
2483 it_iu_len, 64, srp_max_req_size);
2484 goto reject;
2485 }
2486
2487 if (!sport->enabled) {
2488 rej->reason = __constant_cpu_to_be32(
2489 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2490 ret = -EINVAL;
2491 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2492 " has not yet been enabled\n");
2493 goto reject;
2494 }
2495
2496 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2497 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2498
2499 spin_lock_irq(&sdev->spinlock);
2500
2501 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2502 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2503 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2504 && param->port == ch->sport->port
2505 && param->listen_id == ch->sport->sdev->cm_id
2506 && ch->cm_id) {
2507 enum rdma_ch_state ch_state;
2508
2509 ch_state = srpt_get_ch_state(ch);
2510 if (ch_state != CH_CONNECTING
2511 && ch_state != CH_LIVE)
2512 continue;
2513
2514 /* found an existing channel */
2515 pr_debug("Found existing channel %s"
2516 " cm_id= %p state= %d\n",
2517 ch->sess_name, ch->cm_id, ch_state);
2518
2519 __srpt_close_ch(ch);
2520
2521 rsp->rsp_flags =
2522 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2523 }
2524 }
2525
2526 spin_unlock_irq(&sdev->spinlock);
2527
2528 } else
2529 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2530
2531 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2532 || *(__be64 *)(req->target_port_id + 8) !=
2533 cpu_to_be64(srpt_service_guid)) {
2534 rej->reason = __constant_cpu_to_be32(
2535 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2536 ret = -ENOMEM;
2537 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2538 " has an invalid target port identifier.\n");
2539 goto reject;
2540 }
2541
2542 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2543 if (!ch) {
2544 rej->reason = __constant_cpu_to_be32(
2545 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2546 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2547 ret = -ENOMEM;
2548 goto reject;
2549 }
2550
2551 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2552 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2553 memcpy(ch->t_port_id, req->target_port_id, 16);
2554 ch->sport = &sdev->port[param->port - 1];
2555 ch->cm_id = cm_id;
2556 /*
2557 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2558 * for the SRP protocol to the command queue size.
2559 */
2560 ch->rq_size = SRPT_RQ_SIZE;
2561 spin_lock_init(&ch->spinlock);
2562 ch->state = CH_CONNECTING;
2563 INIT_LIST_HEAD(&ch->cmd_wait_list);
2564 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2565
2566 ch->ioctx_ring = (struct srpt_send_ioctx **)
2567 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2568 sizeof(*ch->ioctx_ring[0]),
2569 ch->rsp_size, DMA_TO_DEVICE);
2570 if (!ch->ioctx_ring)
2571 goto free_ch;
2572
2573 INIT_LIST_HEAD(&ch->free_list);
2574 for (i = 0; i < ch->rq_size; i++) {
2575 ch->ioctx_ring[i]->ch = ch;
2576 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2577 }
2578
2579 ret = srpt_create_ch_ib(ch);
2580 if (ret) {
2581 rej->reason = __constant_cpu_to_be32(
2582 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2583 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2584 " a new RDMA channel failed.\n");
2585 goto free_ring;
2586 }
2587
2588 ret = srpt_ch_qp_rtr(ch, ch->qp);
2589 if (ret) {
2590 rej->reason = __constant_cpu_to_be32(
2591 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2592 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2593 " RTR failed (error code = %d)\n", ret);
2594 goto destroy_ib;
2595 }
2596 /*
2597 * Use the initator port identifier as the session name.
2598 */
2599 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2600 be64_to_cpu(*(__be64 *)ch->i_port_id),
2601 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2602
2603 pr_debug("registering session %s\n", ch->sess_name);
2604
2605 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2606 if (!nacl) {
2607 printk(KERN_INFO "Rejected login because no ACL has been"
2608 " configured yet for initiator %s.\n", ch->sess_name);
2609 rej->reason = __constant_cpu_to_be32(
2610 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2611 goto destroy_ib;
2612 }
2613
2614 ch->sess = transport_init_session();
3af33637 2615 if (IS_ERR(ch->sess)) {
a42d985b
BVA
2616 rej->reason = __constant_cpu_to_be32(
2617 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2618 pr_debug("Failed to create session\n");
2619 goto deregister_session;
2620 }
2621 ch->sess->se_node_acl = &nacl->nacl;
2622 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2623
2624 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2625 ch->sess_name, ch->cm_id);
2626
2627 /* create srp_login_response */
2628 rsp->opcode = SRP_LOGIN_RSP;
2629 rsp->tag = req->tag;
2630 rsp->max_it_iu_len = req->req_it_iu_len;
2631 rsp->max_ti_iu_len = req->req_it_iu_len;
2632 ch->max_ti_iu_len = it_iu_len;
2633 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2634 | SRP_BUF_FORMAT_INDIRECT);
2635 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2636 atomic_set(&ch->req_lim, ch->rq_size);
2637 atomic_set(&ch->req_lim_delta, 0);
2638
2639 /* create cm reply */
2640 rep_param->qp_num = ch->qp->qp_num;
2641 rep_param->private_data = (void *)rsp;
2642 rep_param->private_data_len = sizeof *rsp;
2643 rep_param->rnr_retry_count = 7;
2644 rep_param->flow_control = 1;
2645 rep_param->failover_accepted = 0;
2646 rep_param->srq = 1;
2647 rep_param->responder_resources = 4;
2648 rep_param->initiator_depth = 4;
2649
2650 ret = ib_send_cm_rep(cm_id, rep_param);
2651 if (ret) {
2652 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2653 " (error code = %d)\n", ret);
2654 goto release_channel;
2655 }
2656
2657 spin_lock_irq(&sdev->spinlock);
2658 list_add_tail(&ch->list, &sdev->rch_list);
2659 spin_unlock_irq(&sdev->spinlock);
2660
2661 goto out;
2662
2663release_channel:
2664 srpt_set_ch_state(ch, CH_RELEASING);
2665 transport_deregister_session_configfs(ch->sess);
2666
2667deregister_session:
2668 transport_deregister_session(ch->sess);
2669 ch->sess = NULL;
2670
2671destroy_ib:
2672 srpt_destroy_ch_ib(ch);
2673
2674free_ring:
2675 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2676 ch->sport->sdev, ch->rq_size,
2677 ch->rsp_size, DMA_TO_DEVICE);
2678free_ch:
2679 kfree(ch);
2680
2681reject:
2682 rej->opcode = SRP_LOGIN_REJ;
2683 rej->tag = req->tag;
2684 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2685 | SRP_BUF_FORMAT_INDIRECT);
2686
2687 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2688 (void *)rej, sizeof *rej);
2689
2690out:
2691 kfree(rep_param);
2692 kfree(rsp);
2693 kfree(rej);
2694
2695 return ret;
2696}
2697
2698static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2699{
2700 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2701 srpt_drain_channel(cm_id);
2702}
2703
2704/**
2705 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2706 *
2707 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2708 * and that the recipient may begin transmitting (RTU = ready to use).
2709 */
2710static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2711{
2712 struct srpt_rdma_ch *ch;
2713 int ret;
2714
2715 ch = srpt_find_channel(cm_id->context, cm_id);
2716 BUG_ON(!ch);
2717
2718 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2719 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2720
2721 ret = srpt_ch_qp_rts(ch, ch->qp);
2722
2723 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2724 wait_list) {
2725 list_del(&ioctx->wait_list);
2726 srpt_handle_new_iu(ch, ioctx, NULL);
2727 }
2728 if (ret)
2729 srpt_close_ch(ch);
2730 }
2731}
2732
2733static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2734{
2735 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2736 srpt_drain_channel(cm_id);
2737}
2738
2739static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2740{
2741 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2742 srpt_drain_channel(cm_id);
2743}
2744
2745/**
2746 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2747 */
2748static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2749{
2750 struct srpt_rdma_ch *ch;
2751 unsigned long flags;
2752 bool send_drep = false;
2753
2754 ch = srpt_find_channel(cm_id->context, cm_id);
2755 BUG_ON(!ch);
2756
2757 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2758
2759 spin_lock_irqsave(&ch->spinlock, flags);
2760 switch (ch->state) {
2761 case CH_CONNECTING:
2762 case CH_LIVE:
2763 send_drep = true;
2764 ch->state = CH_DISCONNECTING;
2765 break;
2766 case CH_DISCONNECTING:
2767 case CH_DRAINING:
2768 case CH_RELEASING:
2769 WARN(true, "unexpected channel state %d\n", ch->state);
2770 break;
2771 }
2772 spin_unlock_irqrestore(&ch->spinlock, flags);
2773
2774 if (send_drep) {
2775 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2776 printk(KERN_ERR "Sending IB DREP failed.\n");
2777 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2778 ch->sess_name);
2779 }
2780}
2781
2782/**
2783 * srpt_cm_drep_recv() - Process reception of a DREP message.
2784 */
2785static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2786{
2787 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2788 cm_id);
2789 srpt_drain_channel(cm_id);
2790}
2791
2792/**
2793 * srpt_cm_handler() - IB connection manager callback function.
2794 *
2795 * A non-zero return value will cause the caller destroy the CM ID.
2796 *
2797 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2798 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2799 * a non-zero value in any other case will trigger a race with the
2800 * ib_destroy_cm_id() call in srpt_release_channel().
2801 */
2802static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2803{
2804 int ret;
2805
2806 ret = 0;
2807 switch (event->event) {
2808 case IB_CM_REQ_RECEIVED:
2809 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2810 event->private_data);
2811 break;
2812 case IB_CM_REJ_RECEIVED:
2813 srpt_cm_rej_recv(cm_id);
2814 break;
2815 case IB_CM_RTU_RECEIVED:
2816 case IB_CM_USER_ESTABLISHED:
2817 srpt_cm_rtu_recv(cm_id);
2818 break;
2819 case IB_CM_DREQ_RECEIVED:
2820 srpt_cm_dreq_recv(cm_id);
2821 break;
2822 case IB_CM_DREP_RECEIVED:
2823 srpt_cm_drep_recv(cm_id);
2824 break;
2825 case IB_CM_TIMEWAIT_EXIT:
2826 srpt_cm_timewait_exit(cm_id);
2827 break;
2828 case IB_CM_REP_ERROR:
2829 srpt_cm_rep_error(cm_id);
2830 break;
2831 case IB_CM_DREQ_ERROR:
2832 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2833 break;
2834 case IB_CM_MRA_RECEIVED:
2835 printk(KERN_INFO "Received IB MRA event\n");
2836 break;
2837 default:
2838 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2839 event->event);
2840 break;
2841 }
2842
2843 return ret;
2844}
2845
2846/**
2847 * srpt_perform_rdmas() - Perform IB RDMA.
2848 *
2849 * Returns zero upon success or a negative number upon failure.
2850 */
2851static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2852 struct srpt_send_ioctx *ioctx)
2853{
2854 struct ib_send_wr wr;
2855 struct ib_send_wr *bad_wr;
2856 struct rdma_iu *riu;
2857 int i;
2858 int ret;
2859 int sq_wr_avail;
2860 enum dma_data_direction dir;
2861 const int n_rdma = ioctx->n_rdma;
2862
2863 dir = ioctx->cmd.data_direction;
2864 if (dir == DMA_TO_DEVICE) {
2865 /* write */
2866 ret = -ENOMEM;
2867 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2868 if (sq_wr_avail < 0) {
2869 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2870 n_rdma);
2871 goto out;
2872 }
2873 }
2874
2875 ioctx->rdma_aborted = false;
2876 ret = 0;
2877 riu = ioctx->rdma_ius;
2878 memset(&wr, 0, sizeof wr);
2879
2880 for (i = 0; i < n_rdma; ++i, ++riu) {
2881 if (dir == DMA_FROM_DEVICE) {
2882 wr.opcode = IB_WR_RDMA_WRITE;
2883 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2884 SRPT_RDMA_WRITE_LAST :
2885 SRPT_RDMA_MID,
2886 ioctx->ioctx.index);
2887 } else {
2888 wr.opcode = IB_WR_RDMA_READ;
2889 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2890 SRPT_RDMA_READ_LAST :
2891 SRPT_RDMA_MID,
2892 ioctx->ioctx.index);
2893 }
2894 wr.next = NULL;
2895 wr.wr.rdma.remote_addr = riu->raddr;
2896 wr.wr.rdma.rkey = riu->rkey;
2897 wr.num_sge = riu->sge_cnt;
2898 wr.sg_list = riu->sge;
2899
2900 /* only get completion event for the last rdma write */
2901 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2902 wr.send_flags = IB_SEND_SIGNALED;
2903
2904 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2905 if (ret)
2906 break;
2907 }
2908
2909 if (ret)
2910 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2911 __func__, __LINE__, ret, i, n_rdma);
2912 if (ret && i > 0) {
2913 wr.num_sge = 0;
2914 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2915 wr.send_flags = IB_SEND_SIGNALED;
2916 while (ch->state == CH_LIVE &&
2917 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2918 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2919 ioctx->ioctx.index);
2920 msleep(1000);
2921 }
2922 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2923 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2924 ioctx->ioctx.index);
2925 msleep(1000);
2926 }
2927 }
2928out:
2929 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2930 atomic_add(n_rdma, &ch->sq_wr_avail);
2931 return ret;
2932}
2933
2934/**
2935 * srpt_xfer_data() - Start data transfer from initiator to target.
2936 */
2937static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2938 struct srpt_send_ioctx *ioctx)
2939{
2940 int ret;
2941
2942 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2943 if (ret) {
2944 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2945 goto out;
2946 }
2947
2948 ret = srpt_perform_rdmas(ch, ioctx);
2949 if (ret) {
2950 if (ret == -EAGAIN || ret == -ENOMEM)
2951 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2952 __func__, __LINE__, ret);
2953 else
2954 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2955 __func__, __LINE__, ret);
2956 goto out_unmap;
2957 }
2958
2959out:
2960 return ret;
2961out_unmap:
2962 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2963 goto out;
2964}
2965
2966static int srpt_write_pending_status(struct se_cmd *se_cmd)
2967{
2968 struct srpt_send_ioctx *ioctx;
2969
2970 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2971 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2972}
2973
2974/*
2975 * srpt_write_pending() - Start data transfer from initiator to target (write).
2976 */
2977static int srpt_write_pending(struct se_cmd *se_cmd)
2978{
2979 struct srpt_rdma_ch *ch;
2980 struct srpt_send_ioctx *ioctx;
2981 enum srpt_command_state new_state;
2982 enum rdma_ch_state ch_state;
2983 int ret;
2984
2985 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2986
2987 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2988 WARN_ON(new_state == SRPT_STATE_DONE);
2989
2990 ch = ioctx->ch;
2991 BUG_ON(!ch);
2992
2993 ch_state = srpt_get_ch_state(ch);
2994 switch (ch_state) {
2995 case CH_CONNECTING:
2996 WARN(true, "unexpected channel state %d\n", ch_state);
2997 ret = -EINVAL;
2998 goto out;
2999 case CH_LIVE:
3000 break;
3001 case CH_DISCONNECTING:
3002 case CH_DRAINING:
3003 case CH_RELEASING:
3004 pr_debug("cmd with tag %lld: channel disconnecting\n",
3005 ioctx->tag);
3006 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
3007 ret = -EINVAL;
3008 goto out;
3009 }
3010 ret = srpt_xfer_data(ch, ioctx);
3011
3012out:
3013 return ret;
3014}
3015
3016static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3017{
3018 switch (tcm_mgmt_status) {
3019 case TMR_FUNCTION_COMPLETE:
3020 return SRP_TSK_MGMT_SUCCESS;
3021 case TMR_FUNCTION_REJECTED:
3022 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3023 }
3024 return SRP_TSK_MGMT_FAILED;
3025}
3026
3027/**
3028 * srpt_queue_response() - Transmits the response to a SCSI command.
3029 *
3030 * Callback function called by the TCM core. Must not block since it can be
3031 * invoked on the context of the IB completion handler.
3032 */
3033static int srpt_queue_response(struct se_cmd *cmd)
3034{
3035 struct srpt_rdma_ch *ch;
3036 struct srpt_send_ioctx *ioctx;
3037 enum srpt_command_state state;
3038 unsigned long flags;
3039 int ret;
3040 enum dma_data_direction dir;
3041 int resp_len;
3042 u8 srp_tm_status;
3043
3044 ret = 0;
3045
3046 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3047 ch = ioctx->ch;
3048 BUG_ON(!ch);
3049
3050 spin_lock_irqsave(&ioctx->spinlock, flags);
3051 state = ioctx->state;
3052 switch (state) {
3053 case SRPT_STATE_NEW:
3054 case SRPT_STATE_DATA_IN:
3055 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3056 break;
3057 case SRPT_STATE_MGMT:
3058 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3059 break;
3060 default:
3061 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3062 ch, ioctx->ioctx.index, ioctx->state);
3063 break;
3064 }
3065 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3066
3067 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3068 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3069 atomic_inc(&ch->req_lim_delta);
3070 srpt_abort_cmd(ioctx);
3071 goto out;
3072 }
3073
3074 dir = ioctx->cmd.data_direction;
3075
3076 /* For read commands, transfer the data to the initiator. */
3077 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3078 !ioctx->queue_status_only) {
3079 ret = srpt_xfer_data(ch, ioctx);
3080 if (ret) {
3081 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3082 ioctx->tag);
3083 goto out;
3084 }
3085 }
3086
3087 if (state != SRPT_STATE_MGMT)
3088 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3089 cmd->scsi_status);
3090 else {
3091 srp_tm_status
3092 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3093 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3094 ioctx->tag);
3095 }
3096 ret = srpt_post_send(ch, ioctx, resp_len);
3097 if (ret) {
3098 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3099 ioctx->tag);
3100 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3101 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3102 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3103 }
3104
3105out:
3106 return ret;
3107}
3108
3109static int srpt_queue_status(struct se_cmd *cmd)
3110{
3111 struct srpt_send_ioctx *ioctx;
3112
3113 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3114 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3115 if (cmd->se_cmd_flags &
3116 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3117 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3118 ioctx->queue_status_only = true;
3119 return srpt_queue_response(cmd);
3120}
3121
3122static void srpt_refresh_port_work(struct work_struct *work)
3123{
3124 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3125
3126 srpt_refresh_port(sport);
3127}
3128
3129static int srpt_ch_list_empty(struct srpt_device *sdev)
3130{
3131 int res;
3132
3133 spin_lock_irq(&sdev->spinlock);
3134 res = list_empty(&sdev->rch_list);
3135 spin_unlock_irq(&sdev->spinlock);
3136
3137 return res;
3138}
3139
3140/**
3141 * srpt_release_sdev() - Free the channel resources associated with a target.
3142 */
3143static int srpt_release_sdev(struct srpt_device *sdev)
3144{
3145 struct srpt_rdma_ch *ch, *tmp_ch;
3146 int res;
3147
3148 WARN_ON_ONCE(irqs_disabled());
3149
3150 BUG_ON(!sdev);
3151
3152 spin_lock_irq(&sdev->spinlock);
3153 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3154 __srpt_close_ch(ch);
3155 spin_unlock_irq(&sdev->spinlock);
3156
3157 res = wait_event_interruptible(sdev->ch_releaseQ,
3158 srpt_ch_list_empty(sdev));
3159 if (res)
3160 printk(KERN_ERR "%s: interrupted.\n", __func__);
3161
3162 return 0;
3163}
3164
3165static struct srpt_port *__srpt_lookup_port(const char *name)
3166{
3167 struct ib_device *dev;
3168 struct srpt_device *sdev;
3169 struct srpt_port *sport;
3170 int i;
3171
3172 list_for_each_entry(sdev, &srpt_dev_list, list) {
3173 dev = sdev->device;
3174 if (!dev)
3175 continue;
3176
3177 for (i = 0; i < dev->phys_port_cnt; i++) {
3178 sport = &sdev->port[i];
3179
3180 if (!strcmp(sport->port_guid, name))
3181 return sport;
3182 }
3183 }
3184
3185 return NULL;
3186}
3187
3188static struct srpt_port *srpt_lookup_port(const char *name)
3189{
3190 struct srpt_port *sport;
3191
3192 spin_lock(&srpt_dev_lock);
3193 sport = __srpt_lookup_port(name);
3194 spin_unlock(&srpt_dev_lock);
3195
3196 return sport;
3197}
3198
3199/**
3200 * srpt_add_one() - Infiniband device addition callback function.
3201 */
3202static void srpt_add_one(struct ib_device *device)
3203{
3204 struct srpt_device *sdev;
3205 struct srpt_port *sport;
3206 struct ib_srq_init_attr srq_attr;
3207 int i;
3208
3209 pr_debug("device = %p, device->dma_ops = %p\n", device,
3210 device->dma_ops);
3211
3212 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3213 if (!sdev)
3214 goto err;
3215
3216 sdev->device = device;
3217 INIT_LIST_HEAD(&sdev->rch_list);
3218 init_waitqueue_head(&sdev->ch_releaseQ);
3219 spin_lock_init(&sdev->spinlock);
3220
3221 if (ib_query_device(device, &sdev->dev_attr))
3222 goto free_dev;
3223
3224 sdev->pd = ib_alloc_pd(device);
3225 if (IS_ERR(sdev->pd))
3226 goto free_dev;
3227
3228 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3229 if (IS_ERR(sdev->mr))
3230 goto err_pd;
3231
3232 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3233
3234 srq_attr.event_handler = srpt_srq_event;
3235 srq_attr.srq_context = (void *)sdev;
3236 srq_attr.attr.max_wr = sdev->srq_size;
3237 srq_attr.attr.max_sge = 1;
3238 srq_attr.attr.srq_limit = 0;
6f360336 3239 srq_attr.srq_type = IB_SRQT_BASIC;
a42d985b
BVA
3240
3241 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3242 if (IS_ERR(sdev->srq))
3243 goto err_mr;
3244
3245 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3246 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3247 device->name);
3248
3249 if (!srpt_service_guid)
3250 srpt_service_guid = be64_to_cpu(device->node_guid);
3251
3252 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3253 if (IS_ERR(sdev->cm_id))
3254 goto err_srq;
3255
3256 /* print out target login information */
3257 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3258 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3259 srpt_service_guid, srpt_service_guid);
3260
3261 /*
3262 * We do not have a consistent service_id (ie. also id_ext of target_id)
3263 * to identify this target. We currently use the guid of the first HCA
3264 * in the system as service_id; therefore, the target_id will change
3265 * if this HCA is gone bad and replaced by different HCA
3266 */
3267 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3268 goto err_cm;
3269
3270 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3271 srpt_event_handler);
3272 if (ib_register_event_handler(&sdev->event_handler))
3273 goto err_cm;
3274
3275 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3276 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3277 sizeof(*sdev->ioctx_ring[0]),
3278 srp_max_req_size, DMA_FROM_DEVICE);
3279 if (!sdev->ioctx_ring)
3280 goto err_event;
3281
3282 for (i = 0; i < sdev->srq_size; ++i)
3283 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3284
f225066b 3285 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
a42d985b
BVA
3286
3287 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3288 sport = &sdev->port[i - 1];
3289 sport->sdev = sdev;
3290 sport->port = i;
3291 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3292 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3293 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3294 INIT_WORK(&sport->work, srpt_refresh_port_work);
3295 INIT_LIST_HEAD(&sport->port_acl_list);
3296 spin_lock_init(&sport->port_acl_lock);
3297
3298 if (srpt_refresh_port(sport)) {
3299 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3300 srpt_sdev_name(sdev), i);
3301 goto err_ring;
3302 }
3303 snprintf(sport->port_guid, sizeof(sport->port_guid),
3304 "0x%016llx%016llx",
3305 be64_to_cpu(sport->gid.global.subnet_prefix),
3306 be64_to_cpu(sport->gid.global.interface_id));
3307 }
3308
3309 spin_lock(&srpt_dev_lock);
3310 list_add_tail(&sdev->list, &srpt_dev_list);
3311 spin_unlock(&srpt_dev_lock);
3312
3313out:
3314 ib_set_client_data(device, &srpt_client, sdev);
3315 pr_debug("added %s.\n", device->name);
3316 return;
3317
3318err_ring:
3319 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3320 sdev->srq_size, srp_max_req_size,
3321 DMA_FROM_DEVICE);
3322err_event:
3323 ib_unregister_event_handler(&sdev->event_handler);
3324err_cm:
3325 ib_destroy_cm_id(sdev->cm_id);
3326err_srq:
3327 ib_destroy_srq(sdev->srq);
3328err_mr:
3329 ib_dereg_mr(sdev->mr);
3330err_pd:
3331 ib_dealloc_pd(sdev->pd);
3332free_dev:
3333 kfree(sdev);
3334err:
3335 sdev = NULL;
3336 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3337 goto out;
3338}
3339
3340/**
3341 * srpt_remove_one() - InfiniBand device removal callback function.
3342 */
3343static void srpt_remove_one(struct ib_device *device)
3344{
3345 struct srpt_device *sdev;
3346 int i;
3347
3348 sdev = ib_get_client_data(device, &srpt_client);
3349 if (!sdev) {
3350 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3351 device->name);
3352 return;
3353 }
3354
3355 srpt_unregister_mad_agent(sdev);
3356
3357 ib_unregister_event_handler(&sdev->event_handler);
3358
3359 /* Cancel any work queued by the just unregistered IB event handler. */
3360 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3361 cancel_work_sync(&sdev->port[i].work);
3362
3363 ib_destroy_cm_id(sdev->cm_id);
3364
3365 /*
3366 * Unregistering a target must happen after destroying sdev->cm_id
3367 * such that no new SRP_LOGIN_REQ information units can arrive while
3368 * destroying the target.
3369 */
3370 spin_lock(&srpt_dev_lock);
3371 list_del(&sdev->list);
3372 spin_unlock(&srpt_dev_lock);
3373 srpt_release_sdev(sdev);
3374
3375 ib_destroy_srq(sdev->srq);
3376 ib_dereg_mr(sdev->mr);
3377 ib_dealloc_pd(sdev->pd);
3378
3379 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3380 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3381 sdev->ioctx_ring = NULL;
3382 kfree(sdev);
3383}
3384
3385static struct ib_client srpt_client = {
3386 .name = DRV_NAME,
3387 .add = srpt_add_one,
3388 .remove = srpt_remove_one
3389};
3390
3391static int srpt_check_true(struct se_portal_group *se_tpg)
3392{
3393 return 1;
3394}
3395
3396static int srpt_check_false(struct se_portal_group *se_tpg)
3397{
3398 return 0;
3399}
3400
3401static char *srpt_get_fabric_name(void)
3402{
3403 return "srpt";
3404}
3405
3406static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3407{
3408 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3409}
3410
3411static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3412{
3413 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3414
3415 return sport->port_guid;
3416}
3417
3418static u16 srpt_get_tag(struct se_portal_group *tpg)
3419{
3420 return 1;
3421}
3422
3423static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3424{
3425 return 1;
3426}
3427
3428static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3429 struct se_node_acl *se_nacl,
3430 struct t10_pr_registration *pr_reg,
3431 int *format_code, unsigned char *buf)
3432{
3433 struct srpt_node_acl *nacl;
3434 struct spc_rdma_transport_id *tr_id;
3435
3436 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3437 tr_id = (void *)buf;
3438 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3439 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3440 return sizeof(*tr_id);
3441}
3442
3443static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3444 struct se_node_acl *se_nacl,
3445 struct t10_pr_registration *pr_reg,
3446 int *format_code)
3447{
3448 *format_code = 0;
3449 return sizeof(struct spc_rdma_transport_id);
3450}
3451
3452static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3453 const char *buf, u32 *out_tid_len,
3454 char **port_nexus_ptr)
3455{
3456 struct spc_rdma_transport_id *tr_id;
3457
3458 *port_nexus_ptr = NULL;
3459 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3460 tr_id = (void *)buf;
3461 return (char *)tr_id->i_port_id;
3462}
3463
3464static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3465{
3466 struct srpt_node_acl *nacl;
3467
3468 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3469 if (!nacl) {
7367d99b 3470 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
a42d985b
BVA
3471 return NULL;
3472 }
3473
3474 return &nacl->nacl;
3475}
3476
3477static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3478 struct se_node_acl *se_nacl)
3479{
3480 struct srpt_node_acl *nacl;
3481
3482 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3483 kfree(nacl);
3484}
3485
3486static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3487{
3488 return 1;
3489}
3490
3491static void srpt_release_cmd(struct se_cmd *se_cmd)
3492{
3493}
3494
3495/**
3496 * srpt_shutdown_session() - Whether or not a session may be shut down.
3497 */
3498static int srpt_shutdown_session(struct se_session *se_sess)
3499{
3500 return true;
3501}
3502
3503/**
3504 * srpt_close_session() - Forcibly close a session.
3505 *
3506 * Callback function invoked by the TCM core to clean up sessions associated
3507 * with a node ACL when the user invokes
3508 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3509 */
3510static void srpt_close_session(struct se_session *se_sess)
3511{
3512 DECLARE_COMPLETION_ONSTACK(release_done);
3513 struct srpt_rdma_ch *ch;
3514 struct srpt_device *sdev;
3515 int res;
3516
3517 ch = se_sess->fabric_sess_ptr;
3518 WARN_ON(ch->sess != se_sess);
3519
3520 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3521
3522 sdev = ch->sport->sdev;
3523 spin_lock_irq(&sdev->spinlock);
3524 BUG_ON(ch->release_done);
3525 ch->release_done = &release_done;
3526 __srpt_close_ch(ch);
3527 spin_unlock_irq(&sdev->spinlock);
3528
3529 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3530 WARN_ON(res <= 0);
3531}
3532
a42d985b
BVA
3533/**
3534 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3535 *
3536 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3537 * This object represents an arbitrary integer used to uniquely identify a
3538 * particular attached remote initiator port to a particular SCSI target port
3539 * within a particular SCSI target device within a particular SCSI instance.
3540 */
3541static u32 srpt_sess_get_index(struct se_session *se_sess)
3542{
3543 return 0;
3544}
3545
3546static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3547{
3548}
3549
3550static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3551{
3552 struct srpt_send_ioctx *ioctx;
3553
3554 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3555 return ioctx->tag;
3556}
3557
3558/* Note: only used from inside debug printk's by the TCM core. */
3559static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3560{
3561 struct srpt_send_ioctx *ioctx;
3562
3563 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3564 return srpt_get_cmd_state(ioctx);
3565}
3566
3567static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length)
3568{
3569 return 0;
3570}
3571
3572static u16 srpt_get_fabric_sense_len(void)
3573{
3574 return 0;
3575}
3576
a42d985b
BVA
3577/**
3578 * srpt_parse_i_port_id() - Parse an initiator port ID.
3579 * @name: ASCII representation of a 128-bit initiator port ID.
3580 * @i_port_id: Binary 128-bit port ID.
3581 */
3582static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3583{
3584 const char *p;
3585 unsigned len, count, leading_zero_bytes;
3586 int ret, rc;
3587
3588 p = name;
3589 if (strnicmp(p, "0x", 2) == 0)
3590 p += 2;
3591 ret = -EINVAL;
3592 len = strlen(p);
3593 if (len % 2)
3594 goto out;
3595 count = min(len / 2, 16U);
3596 leading_zero_bytes = 16 - count;
3597 memset(i_port_id, 0, leading_zero_bytes);
3598 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3599 if (rc < 0)
3600 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3601 ret = 0;
3602out:
3603 return ret;
3604}
3605
3606/*
3607 * configfs callback function invoked for
3608 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3609 */
3610static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3611 struct config_group *group,
3612 const char *name)
3613{
3614 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3615 struct se_node_acl *se_nacl, *se_nacl_new;
3616 struct srpt_node_acl *nacl;
3617 int ret = 0;
3618 u32 nexus_depth = 1;
3619 u8 i_port_id[16];
3620
3621 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3622 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3623 ret = -EINVAL;
3624 goto err;
3625 }
3626
3627 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3628 if (!se_nacl_new) {
3629 ret = -ENOMEM;
3630 goto err;
3631 }
3632 /*
3633 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3634 * when converting a node ACL from demo mode to explict
3635 */
3636 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3637 nexus_depth);
3638 if (IS_ERR(se_nacl)) {
3639 ret = PTR_ERR(se_nacl);
3640 goto err;
3641 }
3642 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3643 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3644 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3645 nacl->sport = sport;
3646
3647 spin_lock_irq(&sport->port_acl_lock);
3648 list_add_tail(&nacl->list, &sport->port_acl_list);
3649 spin_unlock_irq(&sport->port_acl_lock);
3650
3651 return se_nacl;
3652err:
3653 return ERR_PTR(ret);
3654}
3655
3656/*
3657 * configfs callback function invoked for
3658 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3659 */
3660static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3661{
3662 struct srpt_node_acl *nacl;
3663 struct srpt_device *sdev;
3664 struct srpt_port *sport;
3665
3666 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3667 sport = nacl->sport;
3668 sdev = sport->sdev;
3669 spin_lock_irq(&sport->port_acl_lock);
3670 list_del(&nacl->list);
3671 spin_unlock_irq(&sport->port_acl_lock);
3672 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3673 srpt_release_fabric_acl(NULL, se_nacl);
3674}
3675
3676static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3677 struct se_portal_group *se_tpg,
3678 char *page)
3679{
3680 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3681
3682 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3683}
3684
3685static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3686 struct se_portal_group *se_tpg,
3687 const char *page,
3688 size_t count)
3689{
3690 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3691 unsigned long val;
3692 int ret;
3693
3694 ret = strict_strtoul(page, 0, &val);
3695 if (ret < 0) {
3696 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3697 return -EINVAL;
3698 }
3699 if (val > MAX_SRPT_RDMA_SIZE) {
3700 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3701 MAX_SRPT_RDMA_SIZE);
3702 return -EINVAL;
3703 }
3704 if (val < DEFAULT_MAX_RDMA_SIZE) {
3705 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3706 val, DEFAULT_MAX_RDMA_SIZE);
3707 return -EINVAL;
3708 }
3709 sport->port_attrib.srp_max_rdma_size = val;
3710
3711 return count;
3712}
3713
3714TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3715
3716static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3717 struct se_portal_group *se_tpg,
3718 char *page)
3719{
3720 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3721
3722 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3723}
3724
3725static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3726 struct se_portal_group *se_tpg,
3727 const char *page,
3728 size_t count)
3729{
3730 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3731 unsigned long val;
3732 int ret;
3733
3734 ret = strict_strtoul(page, 0, &val);
3735 if (ret < 0) {
3736 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3737 return -EINVAL;
3738 }
3739 if (val > MAX_SRPT_RSP_SIZE) {
3740 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3741 MAX_SRPT_RSP_SIZE);
3742 return -EINVAL;
3743 }
3744 if (val < MIN_MAX_RSP_SIZE) {
3745 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3746 MIN_MAX_RSP_SIZE);
3747 return -EINVAL;
3748 }
3749 sport->port_attrib.srp_max_rsp_size = val;
3750
3751 return count;
3752}
3753
3754TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3755
3756static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3757 struct se_portal_group *se_tpg,
3758 char *page)
3759{
3760 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3761
3762 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3763}
3764
3765static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3766 struct se_portal_group *se_tpg,
3767 const char *page,
3768 size_t count)
3769{
3770 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3771 unsigned long val;
3772 int ret;
3773
3774 ret = strict_strtoul(page, 0, &val);
3775 if (ret < 0) {
3776 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3777 return -EINVAL;
3778 }
3779 if (val > MAX_SRPT_SRQ_SIZE) {
3780 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3781 MAX_SRPT_SRQ_SIZE);
3782 return -EINVAL;
3783 }
3784 if (val < MIN_SRPT_SRQ_SIZE) {
3785 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3786 MIN_SRPT_SRQ_SIZE);
3787 return -EINVAL;
3788 }
3789 sport->port_attrib.srp_sq_size = val;
3790
3791 return count;
3792}
3793
3794TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3795
3796static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3797 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3798 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3799 &srpt_tpg_attrib_srp_sq_size.attr,
3800 NULL,
3801};
3802
3803static ssize_t srpt_tpg_show_enable(
3804 struct se_portal_group *se_tpg,
3805 char *page)
3806{
3807 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3808
3809 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3810}
3811
3812static ssize_t srpt_tpg_store_enable(
3813 struct se_portal_group *se_tpg,
3814 const char *page,
3815 size_t count)
3816{
3817 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3818 unsigned long tmp;
3819 int ret;
3820
3821 ret = strict_strtoul(page, 0, &tmp);
3822 if (ret < 0) {
3823 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3824 return -EINVAL;
3825 }
3826
3827 if ((tmp != 0) && (tmp != 1)) {
3828 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3829 return -EINVAL;
3830 }
3831 if (tmp == 1)
3832 sport->enabled = true;
3833 else
3834 sport->enabled = false;
3835
3836 return count;
3837}
3838
3839TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3840
3841static struct configfs_attribute *srpt_tpg_attrs[] = {
3842 &srpt_tpg_enable.attr,
3843 NULL,
3844};
3845
3846/**
3847 * configfs callback invoked for
3848 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3849 */
3850static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3851 struct config_group *group,
3852 const char *name)
3853{
3854 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3855 int res;
3856
3857 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3858 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3859 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3860 if (res)
3861 return ERR_PTR(res);
3862
3863 return &sport->port_tpg_1;
3864}
3865
3866/**
3867 * configfs callback invoked for
3868 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3869 */
3870static void srpt_drop_tpg(struct se_portal_group *tpg)
3871{
3872 struct srpt_port *sport = container_of(tpg,
3873 struct srpt_port, port_tpg_1);
3874
3875 sport->enabled = false;
3876 core_tpg_deregister(&sport->port_tpg_1);
3877}
3878
3879/**
3880 * configfs callback invoked for
3881 * mkdir /sys/kernel/config/target/$driver/$port
3882 */
3883static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3884 struct config_group *group,
3885 const char *name)
3886{
3887 struct srpt_port *sport;
3888 int ret;
3889
3890 sport = srpt_lookup_port(name);
3891 pr_debug("make_tport(%s)\n", name);
3892 ret = -EINVAL;
3893 if (!sport)
3894 goto err;
3895
3896 return &sport->port_wwn;
3897
3898err:
3899 return ERR_PTR(ret);
3900}
3901
3902/**
3903 * configfs callback invoked for
3904 * rmdir /sys/kernel/config/target/$driver/$port
3905 */
3906static void srpt_drop_tport(struct se_wwn *wwn)
3907{
3908 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3909
3910 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3911}
3912
3913static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3914 char *buf)
3915{
3916 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3917}
3918
3919TF_WWN_ATTR_RO(srpt, version);
3920
3921static struct configfs_attribute *srpt_wwn_attrs[] = {
3922 &srpt_wwn_version.attr,
3923 NULL,
3924};
3925
3926static struct target_core_fabric_ops srpt_template = {
3927 .get_fabric_name = srpt_get_fabric_name,
3928 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3929 .tpg_get_wwn = srpt_get_fabric_wwn,
3930 .tpg_get_tag = srpt_get_tag,
3931 .tpg_get_default_depth = srpt_get_default_depth,
3932 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3933 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3934 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3935 .tpg_check_demo_mode = srpt_check_false,
3936 .tpg_check_demo_mode_cache = srpt_check_true,
3937 .tpg_check_demo_mode_write_protect = srpt_check_true,
3938 .tpg_check_prod_mode_write_protect = srpt_check_false,
3939 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3940 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3941 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3942 .release_cmd = srpt_release_cmd,
3943 .check_stop_free = srpt_check_stop_free,
3944 .shutdown_session = srpt_shutdown_session,
3945 .close_session = srpt_close_session,
a42d985b
BVA
3946 .sess_get_index = srpt_sess_get_index,
3947 .sess_get_initiator_sid = NULL,
3948 .write_pending = srpt_write_pending,
3949 .write_pending_status = srpt_write_pending_status,
3950 .set_default_node_attributes = srpt_set_default_node_attrs,
3951 .get_task_tag = srpt_get_task_tag,
3952 .get_cmd_state = srpt_get_tcm_cmd_state,
3953 .queue_data_in = srpt_queue_response,
3954 .queue_status = srpt_queue_status,
3955 .queue_tm_rsp = srpt_queue_response,
3956 .get_fabric_sense_len = srpt_get_fabric_sense_len,
3957 .set_fabric_sense_len = srpt_set_fabric_sense_len,
a42d985b
BVA
3958 /*
3959 * Setup function pointers for generic logic in
3960 * target_core_fabric_configfs.c
3961 */
3962 .fabric_make_wwn = srpt_make_tport,
3963 .fabric_drop_wwn = srpt_drop_tport,
3964 .fabric_make_tpg = srpt_make_tpg,
3965 .fabric_drop_tpg = srpt_drop_tpg,
3966 .fabric_post_link = NULL,
3967 .fabric_pre_unlink = NULL,
3968 .fabric_make_np = NULL,
3969 .fabric_drop_np = NULL,
3970 .fabric_make_nodeacl = srpt_make_nodeacl,
3971 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3972};
3973
3974/**
3975 * srpt_init_module() - Kernel module initialization.
3976 *
3977 * Note: Since ib_register_client() registers callback functions, and since at
3978 * least one of these callback functions (srpt_add_one()) calls target core
3979 * functions, this driver must be registered with the target core before
3980 * ib_register_client() is called.
3981 */
3982static int __init srpt_init_module(void)
3983{
3984 int ret;
3985
3986 ret = -EINVAL;
3987 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3988 printk(KERN_ERR "invalid value %d for kernel module parameter"
3989 " srp_max_req_size -- must be at least %d.\n",
3990 srp_max_req_size, MIN_MAX_REQ_SIZE);
3991 goto out;
3992 }
3993
3994 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3995 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3996 printk(KERN_ERR "invalid value %d for kernel module parameter"
3997 " srpt_srq_size -- must be in the range [%d..%d].\n",
3998 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3999 goto out;
4000 }
4001
a42d985b 4002 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3af33637 4003 if (IS_ERR(srpt_target)) {
a42d985b 4004 printk(KERN_ERR "couldn't register\n");
3af33637 4005 ret = PTR_ERR(srpt_target);
a42d985b
BVA
4006 goto out;
4007 }
4008
4009 srpt_target->tf_ops = srpt_template;
4010
a42d985b
BVA
4011 /*
4012 * Set up default attribute lists.
4013 */
4014 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4015 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4016 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4017 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4018 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4019 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4020 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4021 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4022 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4023
4024 ret = target_fabric_configfs_register(srpt_target);
4025 if (ret < 0) {
4026 printk(KERN_ERR "couldn't register\n");
4027 goto out_free_target;
4028 }
4029
4030 ret = ib_register_client(&srpt_client);
4031 if (ret) {
4032 printk(KERN_ERR "couldn't register IB client\n");
4033 goto out_unregister_target;
4034 }
4035
4036 return 0;
4037
4038out_unregister_target:
4039 target_fabric_configfs_deregister(srpt_target);
4040 srpt_target = NULL;
4041out_free_target:
4042 if (srpt_target)
4043 target_fabric_configfs_free(srpt_target);
4044out:
4045 return ret;
4046}
4047
4048static void __exit srpt_cleanup_module(void)
4049{
4050 ib_unregister_client(&srpt_client);
4051 target_fabric_configfs_deregister(srpt_target);
4052 srpt_target = NULL;
4053}
4054
4055module_init(srpt_init_module);
4056module_exit(srpt_cleanup_module);
This page took 0.237846 seconds and 5 git commands to generate.