x86, irq: Add data structure to keep AMD specific irq remapping information
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
b6c02715
JR
49
50#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51
815b33fd 52#define LOOP_TIMEOUT 100000
136f78a1 53
aa3de9c0
OBC
54/*
55 * This bitmap is used to advertise the page sizes our hardware support
56 * to the IOMMU core, which will then use this information to split
57 * physically contiguous memory regions it is mapping into page sizes
58 * that we support.
59 *
954e3dd8 60 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 61 */
954e3dd8 62#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 63
b6c02715
JR
64static DEFINE_RWLOCK(amd_iommu_devtable_lock);
65
bd60b735
JR
66/* A list of preallocated protection domains */
67static LIST_HEAD(iommu_pd_list);
68static DEFINE_SPINLOCK(iommu_pd_list_lock);
69
8fa5f802
JR
70/* List of all available dev_data structures */
71static LIST_HEAD(dev_data_list);
72static DEFINE_SPINLOCK(dev_data_list_lock);
73
6efed63b
JR
74LIST_HEAD(ioapic_map);
75LIST_HEAD(hpet_map);
76
0feae533
JR
77/*
78 * Domain for untranslated devices - only allocated
79 * if iommu=pt passed on kernel cmd line.
80 */
81static struct protection_domain *pt_domain;
82
26961efe 83static struct iommu_ops amd_iommu_ops;
26961efe 84
72e1dcc4 85static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 86int amd_iommu_max_glx_val = -1;
72e1dcc4 87
ac1534a5
JR
88static struct dma_map_ops amd_iommu_dma_ops;
89
431b2a20
JR
90/*
91 * general struct to manage commands send to an IOMMU
92 */
d6449536 93struct iommu_cmd {
b6c02715
JR
94 u32 data[4];
95};
96
05152a04
JR
97struct kmem_cache *amd_iommu_irq_cache;
98
04bfdd84 99static void update_domain(struct protection_domain *domain);
5abcdba4 100static int __init alloc_passthrough_domain(void);
c1eee67b 101
15898bbc
JR
102/****************************************************************************
103 *
104 * Helper functions
105 *
106 ****************************************************************************/
107
f62dda66 108static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
109{
110 struct iommu_dev_data *dev_data;
111 unsigned long flags;
112
113 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
114 if (!dev_data)
115 return NULL;
116
f62dda66 117 dev_data->devid = devid;
8fa5f802
JR
118 atomic_set(&dev_data->bind, 0);
119
120 spin_lock_irqsave(&dev_data_list_lock, flags);
121 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
122 spin_unlock_irqrestore(&dev_data_list_lock, flags);
123
124 return dev_data;
125}
126
127static void free_dev_data(struct iommu_dev_data *dev_data)
128{
129 unsigned long flags;
130
131 spin_lock_irqsave(&dev_data_list_lock, flags);
132 list_del(&dev_data->dev_data_list);
133 spin_unlock_irqrestore(&dev_data_list_lock, flags);
134
78bfa9f3
AW
135 if (dev_data->group)
136 iommu_group_put(dev_data->group);
137
8fa5f802
JR
138 kfree(dev_data);
139}
140
3b03bb74
JR
141static struct iommu_dev_data *search_dev_data(u16 devid)
142{
143 struct iommu_dev_data *dev_data;
144 unsigned long flags;
145
146 spin_lock_irqsave(&dev_data_list_lock, flags);
147 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
148 if (dev_data->devid == devid)
149 goto out_unlock;
150 }
151
152 dev_data = NULL;
153
154out_unlock:
155 spin_unlock_irqrestore(&dev_data_list_lock, flags);
156
157 return dev_data;
158}
159
160static struct iommu_dev_data *find_dev_data(u16 devid)
161{
162 struct iommu_dev_data *dev_data;
163
164 dev_data = search_dev_data(devid);
165
166 if (dev_data == NULL)
167 dev_data = alloc_dev_data(devid);
168
169 return dev_data;
170}
171
15898bbc
JR
172static inline u16 get_device_id(struct device *dev)
173{
174 struct pci_dev *pdev = to_pci_dev(dev);
175
176 return calc_devid(pdev->bus->number, pdev->devfn);
177}
178
657cbb6b
JR
179static struct iommu_dev_data *get_dev_data(struct device *dev)
180{
181 return dev->archdata.iommu;
182}
183
5abcdba4
JR
184static bool pci_iommuv2_capable(struct pci_dev *pdev)
185{
186 static const int caps[] = {
187 PCI_EXT_CAP_ID_ATS,
46277b75
JR
188 PCI_EXT_CAP_ID_PRI,
189 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
190 };
191 int i, pos;
192
193 for (i = 0; i < 3; ++i) {
194 pos = pci_find_ext_capability(pdev, caps[i]);
195 if (pos == 0)
196 return false;
197 }
198
199 return true;
200}
201
6a113ddc
JR
202static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
203{
204 struct iommu_dev_data *dev_data;
205
206 dev_data = get_dev_data(&pdev->dev);
207
208 return dev_data->errata & (1 << erratum) ? true : false;
209}
210
71c70984
JR
211/*
212 * In this function the list of preallocated protection domains is traversed to
213 * find the domain for a specific device
214 */
215static struct dma_ops_domain *find_protection_domain(u16 devid)
216{
217 struct dma_ops_domain *entry, *ret = NULL;
218 unsigned long flags;
219 u16 alias = amd_iommu_alias_table[devid];
220
221 if (list_empty(&iommu_pd_list))
222 return NULL;
223
224 spin_lock_irqsave(&iommu_pd_list_lock, flags);
225
226 list_for_each_entry(entry, &iommu_pd_list, list) {
227 if (entry->target_dev == devid ||
228 entry->target_dev == alias) {
229 ret = entry;
230 break;
231 }
232 }
233
234 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
235
236 return ret;
237}
238
98fc5a69
JR
239/*
240 * This function checks if the driver got a valid device from the caller to
241 * avoid dereferencing invalid pointers.
242 */
243static bool check_device(struct device *dev)
244{
245 u16 devid;
246
247 if (!dev || !dev->dma_mask)
248 return false;
249
250 /* No device or no PCI device */
339d3261 251 if (dev->bus != &pci_bus_type)
98fc5a69
JR
252 return false;
253
254 devid = get_device_id(dev);
255
256 /* Out of our scope? */
257 if (devid > amd_iommu_last_bdf)
258 return false;
259
260 if (amd_iommu_rlookup_table[devid] == NULL)
261 return false;
262
263 return true;
264}
265
664b6003
AW
266static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
267{
268 pci_dev_put(*from);
269 *from = to;
270}
271
2bff6a50
AW
272static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
273{
274 while (!bus->self) {
275 if (!pci_is_root_bus(bus))
276 bus = bus->parent;
277 else
278 return ERR_PTR(-ENODEV);
279 }
280
281 return bus;
282}
283
664b6003
AW
284#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
285
2851db21 286static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
657cbb6b 287{
2851db21 288 struct pci_dev *dma_pdev = pdev;
9dcd6130 289
31fe9435 290 /* Account for quirked devices */
664b6003
AW
291 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
292
31fe9435
AW
293 /*
294 * If it's a multifunction device that does not support our
295 * required ACS flags, add to the same group as function 0.
296 */
664b6003
AW
297 if (dma_pdev->multifunction &&
298 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
299 swap_pci_ref(&dma_pdev,
300 pci_get_slot(dma_pdev->bus,
301 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
302 0)));
303
31fe9435
AW
304 /*
305 * Devices on the root bus go through the iommu. If that's not us,
306 * find the next upstream device and test ACS up to the root bus.
307 * Finding the next device may require skipping virtual buses.
308 */
664b6003 309 while (!pci_is_root_bus(dma_pdev->bus)) {
2bff6a50
AW
310 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
311 if (IS_ERR(bus))
312 break;
31fe9435
AW
313
314 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
664b6003
AW
315 break;
316
31fe9435 317 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
664b6003
AW
318 }
319
2851db21
AW
320 return dma_pdev;
321}
322
ce7ac4ab
AW
323static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
324{
325 struct iommu_group *group = iommu_group_get(&pdev->dev);
326 int ret;
327
328 if (!group) {
329 group = iommu_group_alloc();
330 if (IS_ERR(group))
331 return PTR_ERR(group);
332
333 WARN_ON(&pdev->dev != dev);
334 }
335
336 ret = iommu_group_add_device(group, dev);
337 iommu_group_put(group);
338 return ret;
339}
340
78bfa9f3
AW
341static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
342 struct device *dev)
343{
344 if (!dev_data->group) {
345 struct iommu_group *group = iommu_group_alloc();
346 if (IS_ERR(group))
347 return PTR_ERR(group);
348
349 dev_data->group = group;
350 }
351
352 return iommu_group_add_device(dev_data->group, dev);
353}
354
2851db21
AW
355static int init_iommu_group(struct device *dev)
356{
357 struct iommu_dev_data *dev_data;
358 struct iommu_group *group;
78bfa9f3 359 struct pci_dev *dma_pdev;
2851db21
AW
360 int ret;
361
362 group = iommu_group_get(dev);
363 if (group) {
364 iommu_group_put(group);
365 return 0;
366 }
367
368 dev_data = find_dev_data(get_device_id(dev));
369 if (!dev_data)
370 return -ENOMEM;
371
372 if (dev_data->alias_data) {
373 u16 alias;
78bfa9f3
AW
374 struct pci_bus *bus;
375
376 if (dev_data->alias_data->group)
377 goto use_group;
2851db21 378
78bfa9f3
AW
379 /*
380 * If the alias device exists, it's effectively just a first
381 * level quirk for finding the DMA source.
382 */
2851db21
AW
383 alias = amd_iommu_alias_table[dev_data->devid];
384 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
78bfa9f3
AW
385 if (dma_pdev) {
386 dma_pdev = get_isolation_root(dma_pdev);
387 goto use_pdev;
388 }
2851db21 389
78bfa9f3
AW
390 /*
391 * If the alias is virtual, try to find a parent device
392 * and test whether the IOMMU group is actualy rooted above
393 * the alias. Be careful to also test the parent device if
394 * we think the alias is the root of the group.
395 */
396 bus = pci_find_bus(0, alias >> 8);
397 if (!bus)
398 goto use_group;
399
400 bus = find_hosted_bus(bus);
401 if (IS_ERR(bus) || !bus->self)
402 goto use_group;
403
404 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
405 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
406 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
407 goto use_pdev;
408
409 pci_dev_put(dma_pdev);
410 goto use_group;
411 }
2851db21 412
78bfa9f3
AW
413 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
414use_pdev:
ce7ac4ab 415 ret = use_pdev_iommu_group(dma_pdev, dev);
9dcd6130 416 pci_dev_put(dma_pdev);
eb9c9527 417 return ret;
78bfa9f3
AW
418use_group:
419 return use_dev_data_iommu_group(dev_data->alias_data, dev);
eb9c9527
AW
420}
421
422static int iommu_init_device(struct device *dev)
423{
424 struct pci_dev *pdev = to_pci_dev(dev);
425 struct iommu_dev_data *dev_data;
426 u16 alias;
427 int ret;
428
429 if (dev->archdata.iommu)
430 return 0;
431
432 dev_data = find_dev_data(get_device_id(dev));
433 if (!dev_data)
434 return -ENOMEM;
435
436 alias = amd_iommu_alias_table[dev_data->devid];
437 if (alias != dev_data->devid) {
438 struct iommu_dev_data *alias_data;
439
440 alias_data = find_dev_data(alias);
441 if (alias_data == NULL) {
442 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
443 dev_name(dev));
444 free_dev_data(dev_data);
445 return -ENOTSUPP;
446 }
447 dev_data->alias_data = alias_data;
448 }
449
450 ret = init_iommu_group(dev);
9dcd6130
AW
451 if (ret)
452 return ret;
453
5abcdba4
JR
454 if (pci_iommuv2_capable(pdev)) {
455 struct amd_iommu *iommu;
456
457 iommu = amd_iommu_rlookup_table[dev_data->devid];
458 dev_data->iommu_v2 = iommu->is_iommu_v2;
459 }
460
657cbb6b
JR
461 dev->archdata.iommu = dev_data;
462
657cbb6b
JR
463 return 0;
464}
465
26018874
JR
466static void iommu_ignore_device(struct device *dev)
467{
468 u16 devid, alias;
469
470 devid = get_device_id(dev);
471 alias = amd_iommu_alias_table[devid];
472
473 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
474 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
475
476 amd_iommu_rlookup_table[devid] = NULL;
477 amd_iommu_rlookup_table[alias] = NULL;
478}
479
657cbb6b
JR
480static void iommu_uninit_device(struct device *dev)
481{
9dcd6130
AW
482 iommu_group_remove_device(dev);
483
8fa5f802
JR
484 /*
485 * Nothing to do here - we keep dev_data around for unplugged devices
486 * and reuse it when the device is re-plugged - not doing so would
487 * introduce a ton of races.
488 */
657cbb6b 489}
b7cc9554
JR
490
491void __init amd_iommu_uninit_devices(void)
492{
8fa5f802 493 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
494 struct pci_dev *pdev = NULL;
495
496 for_each_pci_dev(pdev) {
497
498 if (!check_device(&pdev->dev))
499 continue;
500
501 iommu_uninit_device(&pdev->dev);
502 }
8fa5f802
JR
503
504 /* Free all of our dev_data structures */
505 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
506 free_dev_data(dev_data);
b7cc9554
JR
507}
508
509int __init amd_iommu_init_devices(void)
510{
511 struct pci_dev *pdev = NULL;
512 int ret = 0;
513
514 for_each_pci_dev(pdev) {
515
516 if (!check_device(&pdev->dev))
517 continue;
518
519 ret = iommu_init_device(&pdev->dev);
26018874
JR
520 if (ret == -ENOTSUPP)
521 iommu_ignore_device(&pdev->dev);
522 else if (ret)
b7cc9554
JR
523 goto out_free;
524 }
525
526 return 0;
527
528out_free:
529
530 amd_iommu_uninit_devices();
531
532 return ret;
533}
7f26508b
JR
534#ifdef CONFIG_AMD_IOMMU_STATS
535
536/*
537 * Initialization code for statistics collection
538 */
539
da49f6df 540DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 541DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 542DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 543DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 544DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 545DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 546DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 547DECLARE_STATS_COUNTER(cross_page);
f57d98ae 548DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 549DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 550DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 551DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
552DECLARE_STATS_COUNTER(complete_ppr);
553DECLARE_STATS_COUNTER(invalidate_iotlb);
554DECLARE_STATS_COUNTER(invalidate_iotlb_all);
555DECLARE_STATS_COUNTER(pri_requests);
556
7f26508b 557static struct dentry *stats_dir;
7f26508b
JR
558static struct dentry *de_fflush;
559
560static void amd_iommu_stats_add(struct __iommu_counter *cnt)
561{
562 if (stats_dir == NULL)
563 return;
564
565 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
566 &cnt->value);
567}
568
569static void amd_iommu_stats_init(void)
570{
571 stats_dir = debugfs_create_dir("amd-iommu", NULL);
572 if (stats_dir == NULL)
573 return;
574
7f26508b 575 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 576 &amd_iommu_unmap_flush);
da49f6df
JR
577
578 amd_iommu_stats_add(&compl_wait);
0f2a86f2 579 amd_iommu_stats_add(&cnt_map_single);
146a6917 580 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 581 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 582 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 583 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 584 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 585 amd_iommu_stats_add(&cross_page);
f57d98ae 586 amd_iommu_stats_add(&domain_flush_single);
18811f55 587 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 588 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 589 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
590 amd_iommu_stats_add(&complete_ppr);
591 amd_iommu_stats_add(&invalidate_iotlb);
592 amd_iommu_stats_add(&invalidate_iotlb_all);
593 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
594}
595
596#endif
597
a80dc3e0
JR
598/****************************************************************************
599 *
600 * Interrupt handling functions
601 *
602 ****************************************************************************/
603
e3e59876
JR
604static void dump_dte_entry(u16 devid)
605{
606 int i;
607
ee6c2868
JR
608 for (i = 0; i < 4; ++i)
609 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
610 amd_iommu_dev_table[devid].data[i]);
611}
612
945b4ac4
JR
613static void dump_command(unsigned long phys_addr)
614{
615 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
616 int i;
617
618 for (i = 0; i < 4; ++i)
619 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
620}
621
a345b23b 622static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 623{
3d06fca8
JR
624 int type, devid, domid, flags;
625 volatile u32 *event = __evt;
626 int count = 0;
627 u64 address;
628
629retry:
630 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
631 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
632 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
633 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
634 address = (u64)(((u64)event[3]) << 32) | event[2];
635
636 if (type == 0) {
637 /* Did we hit the erratum? */
638 if (++count == LOOP_TIMEOUT) {
639 pr_err("AMD-Vi: No event written to event log\n");
640 return;
641 }
642 udelay(1);
643 goto retry;
644 }
90008ee4 645
4c6f40d4 646 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
647
648 switch (type) {
649 case EVENT_TYPE_ILL_DEV:
650 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
651 "address=0x%016llx flags=0x%04x]\n",
652 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
653 address, flags);
e3e59876 654 dump_dte_entry(devid);
90008ee4
JR
655 break;
656 case EVENT_TYPE_IO_FAULT:
657 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
658 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
659 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
660 domid, address, flags);
661 break;
662 case EVENT_TYPE_DEV_TAB_ERR:
663 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
664 "address=0x%016llx flags=0x%04x]\n",
665 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
666 address, flags);
667 break;
668 case EVENT_TYPE_PAGE_TAB_ERR:
669 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
670 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
671 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
672 domid, address, flags);
673 break;
674 case EVENT_TYPE_ILL_CMD:
675 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 676 dump_command(address);
90008ee4
JR
677 break;
678 case EVENT_TYPE_CMD_HARD_ERR:
679 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
680 "flags=0x%04x]\n", address, flags);
681 break;
682 case EVENT_TYPE_IOTLB_INV_TO:
683 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
684 "address=0x%016llx]\n",
685 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
686 address);
687 break;
688 case EVENT_TYPE_INV_DEV_REQ:
689 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
690 "address=0x%016llx flags=0x%04x]\n",
691 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
692 address, flags);
693 break;
694 default:
695 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
696 }
3d06fca8
JR
697
698 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
699}
700
701static void iommu_poll_events(struct amd_iommu *iommu)
702{
703 u32 head, tail;
704 unsigned long flags;
705
706 spin_lock_irqsave(&iommu->lock, flags);
707
708 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
709 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
710
711 while (head != tail) {
a345b23b 712 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
713 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
714 }
715
716 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
717
718 spin_unlock_irqrestore(&iommu->lock, flags);
719}
720
eee53537 721static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
722{
723 struct amd_iommu_fault fault;
72e1dcc4 724
399be2f5
JR
725 INC_STATS_COUNTER(pri_requests);
726
72e1dcc4
JR
727 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
728 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
729 return;
730 }
731
732 fault.address = raw[1];
733 fault.pasid = PPR_PASID(raw[0]);
734 fault.device_id = PPR_DEVID(raw[0]);
735 fault.tag = PPR_TAG(raw[0]);
736 fault.flags = PPR_FLAGS(raw[0]);
737
72e1dcc4
JR
738 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
739}
740
741static void iommu_poll_ppr_log(struct amd_iommu *iommu)
742{
743 unsigned long flags;
744 u32 head, tail;
745
746 if (iommu->ppr_log == NULL)
747 return;
748
eee53537
JR
749 /* enable ppr interrupts again */
750 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
751
72e1dcc4
JR
752 spin_lock_irqsave(&iommu->lock, flags);
753
754 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
755 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
756
757 while (head != tail) {
eee53537
JR
758 volatile u64 *raw;
759 u64 entry[2];
760 int i;
761
762 raw = (u64 *)(iommu->ppr_log + head);
763
764 /*
765 * Hardware bug: Interrupt may arrive before the entry is
766 * written to memory. If this happens we need to wait for the
767 * entry to arrive.
768 */
769 for (i = 0; i < LOOP_TIMEOUT; ++i) {
770 if (PPR_REQ_TYPE(raw[0]) != 0)
771 break;
772 udelay(1);
773 }
72e1dcc4 774
eee53537
JR
775 /* Avoid memcpy function-call overhead */
776 entry[0] = raw[0];
777 entry[1] = raw[1];
72e1dcc4 778
eee53537
JR
779 /*
780 * To detect the hardware bug we need to clear the entry
781 * back to zero.
782 */
783 raw[0] = raw[1] = 0UL;
784
785 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
786 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
787 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537
JR
788
789 /*
790 * Release iommu->lock because ppr-handling might need to
df805abb 791 * re-acquire it
eee53537
JR
792 */
793 spin_unlock_irqrestore(&iommu->lock, flags);
794
795 /* Handle PPR entry */
796 iommu_handle_ppr_entry(iommu, entry);
797
798 spin_lock_irqsave(&iommu->lock, flags);
799
800 /* Refresh ring-buffer information */
801 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
802 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
803 }
804
72e1dcc4
JR
805 spin_unlock_irqrestore(&iommu->lock, flags);
806}
807
72fe00f0 808irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 809{
90008ee4
JR
810 struct amd_iommu *iommu;
811
72e1dcc4 812 for_each_iommu(iommu) {
90008ee4 813 iommu_poll_events(iommu);
72e1dcc4
JR
814 iommu_poll_ppr_log(iommu);
815 }
90008ee4
JR
816
817 return IRQ_HANDLED;
a80dc3e0
JR
818}
819
72fe00f0
JR
820irqreturn_t amd_iommu_int_handler(int irq, void *data)
821{
822 return IRQ_WAKE_THREAD;
823}
824
431b2a20
JR
825/****************************************************************************
826 *
827 * IOMMU command queuing functions
828 *
829 ****************************************************************************/
830
ac0ea6e9
JR
831static int wait_on_sem(volatile u64 *sem)
832{
833 int i = 0;
834
835 while (*sem == 0 && i < LOOP_TIMEOUT) {
836 udelay(1);
837 i += 1;
838 }
839
840 if (i == LOOP_TIMEOUT) {
841 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
842 return -EIO;
843 }
844
845 return 0;
846}
847
848static void copy_cmd_to_buffer(struct amd_iommu *iommu,
849 struct iommu_cmd *cmd,
850 u32 tail)
a19ae1ec 851{
a19ae1ec
JR
852 u8 *target;
853
8a7c5ef3 854 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
855 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
856
857 /* Copy command to buffer */
858 memcpy(target, cmd, sizeof(*cmd));
859
860 /* Tell the IOMMU about it */
a19ae1ec 861 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 862}
a19ae1ec 863
815b33fd 864static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 865{
815b33fd
JR
866 WARN_ON(address & 0x7ULL);
867
ded46737 868 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
869 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
870 cmd->data[1] = upper_32_bits(__pa(address));
871 cmd->data[2] = 1;
ded46737
JR
872 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
873}
874
94fe79e2
JR
875static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
876{
877 memset(cmd, 0, sizeof(*cmd));
878 cmd->data[0] = devid;
879 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
880}
881
11b6402c
JR
882static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
883 size_t size, u16 domid, int pde)
884{
885 u64 pages;
886 int s;
887
888 pages = iommu_num_pages(address, size, PAGE_SIZE);
889 s = 0;
890
891 if (pages > 1) {
892 /*
893 * If we have to flush more than one page, flush all
894 * TLB entries for this domain
895 */
896 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
897 s = 1;
898 }
899
900 address &= PAGE_MASK;
901
902 memset(cmd, 0, sizeof(*cmd));
903 cmd->data[1] |= domid;
904 cmd->data[2] = lower_32_bits(address);
905 cmd->data[3] = upper_32_bits(address);
906 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
907 if (s) /* size bit - we flush more than one 4kb page */
908 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 909 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
910 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
911}
912
cb41ed85
JR
913static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
914 u64 address, size_t size)
915{
916 u64 pages;
917 int s;
918
919 pages = iommu_num_pages(address, size, PAGE_SIZE);
920 s = 0;
921
922 if (pages > 1) {
923 /*
924 * If we have to flush more than one page, flush all
925 * TLB entries for this domain
926 */
927 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
928 s = 1;
929 }
930
931 address &= PAGE_MASK;
932
933 memset(cmd, 0, sizeof(*cmd));
934 cmd->data[0] = devid;
935 cmd->data[0] |= (qdep & 0xff) << 24;
936 cmd->data[1] = devid;
937 cmd->data[2] = lower_32_bits(address);
938 cmd->data[3] = upper_32_bits(address);
939 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
940 if (s)
941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
942}
943
22e266c7
JR
944static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
945 u64 address, bool size)
946{
947 memset(cmd, 0, sizeof(*cmd));
948
949 address &= ~(0xfffULL);
950
951 cmd->data[0] = pasid & PASID_MASK;
952 cmd->data[1] = domid;
953 cmd->data[2] = lower_32_bits(address);
954 cmd->data[3] = upper_32_bits(address);
955 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
957 if (size)
958 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
959 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
960}
961
962static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
963 int qdep, u64 address, bool size)
964{
965 memset(cmd, 0, sizeof(*cmd));
966
967 address &= ~(0xfffULL);
968
969 cmd->data[0] = devid;
970 cmd->data[0] |= (pasid & 0xff) << 16;
971 cmd->data[0] |= (qdep & 0xff) << 24;
972 cmd->data[1] = devid;
973 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
974 cmd->data[2] = lower_32_bits(address);
975 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
976 cmd->data[3] = upper_32_bits(address);
977 if (size)
978 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
979 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
980}
981
c99afa25
JR
982static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
983 int status, int tag, bool gn)
984{
985 memset(cmd, 0, sizeof(*cmd));
986
987 cmd->data[0] = devid;
988 if (gn) {
989 cmd->data[1] = pasid & PASID_MASK;
990 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
991 }
992 cmd->data[3] = tag & 0x1ff;
993 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
994
995 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
996}
997
58fc7f14
JR
998static void build_inv_all(struct iommu_cmd *cmd)
999{
1000 memset(cmd, 0, sizeof(*cmd));
1001 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
1002}
1003
7ef2798d
JR
1004static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1005{
1006 memset(cmd, 0, sizeof(*cmd));
1007 cmd->data[0] = devid;
1008 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1009}
1010
431b2a20 1011/*
431b2a20 1012 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 1013 * hardware about the new command.
431b2a20 1014 */
f1ca1512
JR
1015static int iommu_queue_command_sync(struct amd_iommu *iommu,
1016 struct iommu_cmd *cmd,
1017 bool sync)
a19ae1ec 1018{
ac0ea6e9 1019 u32 left, tail, head, next_tail;
a19ae1ec 1020 unsigned long flags;
a19ae1ec 1021
549c90dc 1022 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
1023
1024again:
a19ae1ec 1025 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 1026
ac0ea6e9
JR
1027 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1028 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1029 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1030 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 1031
ac0ea6e9
JR
1032 if (left <= 2) {
1033 struct iommu_cmd sync_cmd;
1034 volatile u64 sem = 0;
1035 int ret;
8d201968 1036
ac0ea6e9
JR
1037 build_completion_wait(&sync_cmd, (u64)&sem);
1038 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1039
ac0ea6e9
JR
1040 spin_unlock_irqrestore(&iommu->lock, flags);
1041
1042 if ((ret = wait_on_sem(&sem)) != 0)
1043 return ret;
1044
1045 goto again;
8d201968
JR
1046 }
1047
ac0ea6e9
JR
1048 copy_cmd_to_buffer(iommu, cmd, tail);
1049
1050 /* We need to sync now to make sure all commands are processed */
f1ca1512 1051 iommu->need_sync = sync;
ac0ea6e9 1052
a19ae1ec 1053 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1054
815b33fd 1055 return 0;
8d201968
JR
1056}
1057
f1ca1512
JR
1058static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1059{
1060 return iommu_queue_command_sync(iommu, cmd, true);
1061}
1062
8d201968
JR
1063/*
1064 * This function queues a completion wait command into the command
1065 * buffer of an IOMMU
1066 */
a19ae1ec 1067static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1068{
1069 struct iommu_cmd cmd;
815b33fd 1070 volatile u64 sem = 0;
ac0ea6e9 1071 int ret;
8d201968 1072
09ee17eb 1073 if (!iommu->need_sync)
815b33fd 1074 return 0;
09ee17eb 1075
815b33fd 1076 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1077
f1ca1512 1078 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1079 if (ret)
815b33fd 1080 return ret;
8d201968 1081
ac0ea6e9 1082 return wait_on_sem(&sem);
8d201968
JR
1083}
1084
d8c13085 1085static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1086{
d8c13085 1087 struct iommu_cmd cmd;
a19ae1ec 1088
d8c13085 1089 build_inv_dte(&cmd, devid);
7e4f88da 1090
d8c13085
JR
1091 return iommu_queue_command(iommu, &cmd);
1092}
09ee17eb 1093
7d0c5cc5
JR
1094static void iommu_flush_dte_all(struct amd_iommu *iommu)
1095{
1096 u32 devid;
09ee17eb 1097
7d0c5cc5
JR
1098 for (devid = 0; devid <= 0xffff; ++devid)
1099 iommu_flush_dte(iommu, devid);
a19ae1ec 1100
7d0c5cc5
JR
1101 iommu_completion_wait(iommu);
1102}
84df8175 1103
7d0c5cc5
JR
1104/*
1105 * This function uses heavy locking and may disable irqs for some time. But
1106 * this is no issue because it is only called during resume.
1107 */
1108static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1109{
1110 u32 dom_id;
a19ae1ec 1111
7d0c5cc5
JR
1112 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1113 struct iommu_cmd cmd;
1114 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1115 dom_id, 1);
1116 iommu_queue_command(iommu, &cmd);
1117 }
8eed9833 1118
7d0c5cc5 1119 iommu_completion_wait(iommu);
a19ae1ec
JR
1120}
1121
58fc7f14 1122static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1123{
58fc7f14 1124 struct iommu_cmd cmd;
0518a3a4 1125
58fc7f14 1126 build_inv_all(&cmd);
0518a3a4 1127
58fc7f14
JR
1128 iommu_queue_command(iommu, &cmd);
1129 iommu_completion_wait(iommu);
1130}
1131
7ef2798d
JR
1132static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1133{
1134 struct iommu_cmd cmd;
1135
1136 build_inv_irt(&cmd, devid);
1137
1138 iommu_queue_command(iommu, &cmd);
1139}
1140
1141static void iommu_flush_irt_all(struct amd_iommu *iommu)
1142{
1143 u32 devid;
1144
1145 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1146 iommu_flush_irt(iommu, devid);
1147
1148 iommu_completion_wait(iommu);
1149}
1150
7d0c5cc5
JR
1151void iommu_flush_all_caches(struct amd_iommu *iommu)
1152{
58fc7f14
JR
1153 if (iommu_feature(iommu, FEATURE_IA)) {
1154 iommu_flush_all(iommu);
1155 } else {
1156 iommu_flush_dte_all(iommu);
7ef2798d 1157 iommu_flush_irt_all(iommu);
58fc7f14 1158 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1159 }
1160}
1161
431b2a20 1162/*
cb41ed85 1163 * Command send function for flushing on-device TLB
431b2a20 1164 */
6c542047
JR
1165static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1166 u64 address, size_t size)
3fa43655
JR
1167{
1168 struct amd_iommu *iommu;
b00d3bcf 1169 struct iommu_cmd cmd;
cb41ed85 1170 int qdep;
3fa43655 1171
ea61cddb
JR
1172 qdep = dev_data->ats.qdep;
1173 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1174
ea61cddb 1175 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1176
1177 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1178}
1179
431b2a20 1180/*
431b2a20 1181 * Command send function for invalidating a device table entry
431b2a20 1182 */
6c542047 1183static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1184{
3fa43655 1185 struct amd_iommu *iommu;
ee2fa743 1186 int ret;
a19ae1ec 1187
6c542047 1188 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1189
f62dda66 1190 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1191 if (ret)
1192 return ret;
1193
ea61cddb 1194 if (dev_data->ats.enabled)
6c542047 1195 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1196
ee2fa743 1197 return ret;
a19ae1ec
JR
1198}
1199
431b2a20
JR
1200/*
1201 * TLB invalidation function which is called from the mapping functions.
1202 * It invalidates a single PTE if the range to flush is within a single
1203 * page. Otherwise it flushes the whole TLB of the IOMMU.
1204 */
17b124bf
JR
1205static void __domain_flush_pages(struct protection_domain *domain,
1206 u64 address, size_t size, int pde)
a19ae1ec 1207{
cb41ed85 1208 struct iommu_dev_data *dev_data;
11b6402c
JR
1209 struct iommu_cmd cmd;
1210 int ret = 0, i;
a19ae1ec 1211
11b6402c 1212 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1213
6de8ad9b
JR
1214 for (i = 0; i < amd_iommus_present; ++i) {
1215 if (!domain->dev_iommu[i])
1216 continue;
1217
1218 /*
1219 * Devices of this domain are behind this IOMMU
1220 * We need a TLB flush
1221 */
11b6402c 1222 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1223 }
1224
cb41ed85 1225 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1226
ea61cddb 1227 if (!dev_data->ats.enabled)
cb41ed85
JR
1228 continue;
1229
6c542047 1230 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1231 }
1232
11b6402c 1233 WARN_ON(ret);
6de8ad9b
JR
1234}
1235
17b124bf
JR
1236static void domain_flush_pages(struct protection_domain *domain,
1237 u64 address, size_t size)
6de8ad9b 1238{
17b124bf 1239 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1240}
b6c02715 1241
1c655773 1242/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1243static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1244{
17b124bf 1245 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1246}
1247
42a49f96 1248/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1249static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1250{
17b124bf 1251 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1252}
1253
17b124bf 1254static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1255{
17b124bf 1256 int i;
18811f55 1257
17b124bf
JR
1258 for (i = 0; i < amd_iommus_present; ++i) {
1259 if (!domain->dev_iommu[i])
1260 continue;
bfd1be18 1261
17b124bf
JR
1262 /*
1263 * Devices of this domain are behind this IOMMU
1264 * We need to wait for completion of all commands.
1265 */
1266 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1267 }
e394d72a
JR
1268}
1269
b00d3bcf 1270
09b42804 1271/*
b00d3bcf 1272 * This function flushes the DTEs for all devices in domain
09b42804 1273 */
17b124bf 1274static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1275{
b00d3bcf 1276 struct iommu_dev_data *dev_data;
b26e81b8 1277
b00d3bcf 1278 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1279 device_flush_dte(dev_data);
a345b23b
JR
1280}
1281
431b2a20
JR
1282/****************************************************************************
1283 *
1284 * The functions below are used the create the page table mappings for
1285 * unity mapped regions.
1286 *
1287 ****************************************************************************/
1288
308973d3
JR
1289/*
1290 * This function is used to add another level to an IO page table. Adding
1291 * another level increases the size of the address space by 9 bits to a size up
1292 * to 64 bits.
1293 */
1294static bool increase_address_space(struct protection_domain *domain,
1295 gfp_t gfp)
1296{
1297 u64 *pte;
1298
1299 if (domain->mode == PAGE_MODE_6_LEVEL)
1300 /* address space already 64 bit large */
1301 return false;
1302
1303 pte = (void *)get_zeroed_page(gfp);
1304 if (!pte)
1305 return false;
1306
1307 *pte = PM_LEVEL_PDE(domain->mode,
1308 virt_to_phys(domain->pt_root));
1309 domain->pt_root = pte;
1310 domain->mode += 1;
1311 domain->updated = true;
1312
1313 return true;
1314}
1315
1316static u64 *alloc_pte(struct protection_domain *domain,
1317 unsigned long address,
cbb9d729 1318 unsigned long page_size,
308973d3
JR
1319 u64 **pte_page,
1320 gfp_t gfp)
1321{
cbb9d729 1322 int level, end_lvl;
308973d3 1323 u64 *pte, *page;
cbb9d729
JR
1324
1325 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1326
1327 while (address > PM_LEVEL_SIZE(domain->mode))
1328 increase_address_space(domain, gfp);
1329
cbb9d729
JR
1330 level = domain->mode - 1;
1331 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1332 address = PAGE_SIZE_ALIGN(address, page_size);
1333 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1334
1335 while (level > end_lvl) {
1336 if (!IOMMU_PTE_PRESENT(*pte)) {
1337 page = (u64 *)get_zeroed_page(gfp);
1338 if (!page)
1339 return NULL;
1340 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1341 }
1342
cbb9d729
JR
1343 /* No level skipping support yet */
1344 if (PM_PTE_LEVEL(*pte) != level)
1345 return NULL;
1346
308973d3
JR
1347 level -= 1;
1348
1349 pte = IOMMU_PTE_PAGE(*pte);
1350
1351 if (pte_page && level == end_lvl)
1352 *pte_page = pte;
1353
1354 pte = &pte[PM_LEVEL_INDEX(level, address)];
1355 }
1356
1357 return pte;
1358}
1359
1360/*
1361 * This function checks if there is a PTE for a given dma address. If
1362 * there is one, it returns the pointer to it.
1363 */
24cd7723 1364static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1365{
1366 int level;
1367 u64 *pte;
1368
24cd7723
JR
1369 if (address > PM_LEVEL_SIZE(domain->mode))
1370 return NULL;
1371
1372 level = domain->mode - 1;
1373 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1374
24cd7723
JR
1375 while (level > 0) {
1376
1377 /* Not Present */
308973d3
JR
1378 if (!IOMMU_PTE_PRESENT(*pte))
1379 return NULL;
1380
24cd7723
JR
1381 /* Large PTE */
1382 if (PM_PTE_LEVEL(*pte) == 0x07) {
1383 unsigned long pte_mask, __pte;
1384
1385 /*
1386 * If we have a series of large PTEs, make
1387 * sure to return a pointer to the first one.
1388 */
1389 pte_mask = PTE_PAGE_SIZE(*pte);
1390 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1391 __pte = ((unsigned long)pte) & pte_mask;
1392
1393 return (u64 *)__pte;
1394 }
1395
1396 /* No level skipping support yet */
1397 if (PM_PTE_LEVEL(*pte) != level)
1398 return NULL;
1399
308973d3
JR
1400 level -= 1;
1401
24cd7723 1402 /* Walk to the next level */
308973d3
JR
1403 pte = IOMMU_PTE_PAGE(*pte);
1404 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1405 }
1406
1407 return pte;
1408}
1409
431b2a20
JR
1410/*
1411 * Generic mapping functions. It maps a physical address into a DMA
1412 * address space. It allocates the page table pages if necessary.
1413 * In the future it can be extended to a generic mapping function
1414 * supporting all features of AMD IOMMU page tables like level skipping
1415 * and full 64 bit address spaces.
1416 */
38e817fe
JR
1417static int iommu_map_page(struct protection_domain *dom,
1418 unsigned long bus_addr,
1419 unsigned long phys_addr,
abdc5eb3 1420 int prot,
cbb9d729 1421 unsigned long page_size)
bd0e5211 1422{
8bda3092 1423 u64 __pte, *pte;
cbb9d729 1424 int i, count;
abdc5eb3 1425
bad1cac2 1426 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1427 return -EINVAL;
1428
cbb9d729
JR
1429 bus_addr = PAGE_ALIGN(bus_addr);
1430 phys_addr = PAGE_ALIGN(phys_addr);
1431 count = PAGE_SIZE_PTE_COUNT(page_size);
1432 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1433
1434 for (i = 0; i < count; ++i)
1435 if (IOMMU_PTE_PRESENT(pte[i]))
1436 return -EBUSY;
bd0e5211 1437
cbb9d729
JR
1438 if (page_size > PAGE_SIZE) {
1439 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1440 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1441 } else
1442 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1443
bd0e5211
JR
1444 if (prot & IOMMU_PROT_IR)
1445 __pte |= IOMMU_PTE_IR;
1446 if (prot & IOMMU_PROT_IW)
1447 __pte |= IOMMU_PTE_IW;
1448
cbb9d729
JR
1449 for (i = 0; i < count; ++i)
1450 pte[i] = __pte;
bd0e5211 1451
04bfdd84
JR
1452 update_domain(dom);
1453
bd0e5211
JR
1454 return 0;
1455}
1456
24cd7723
JR
1457static unsigned long iommu_unmap_page(struct protection_domain *dom,
1458 unsigned long bus_addr,
1459 unsigned long page_size)
eb74ff6c 1460{
24cd7723
JR
1461 unsigned long long unmap_size, unmapped;
1462 u64 *pte;
1463
1464 BUG_ON(!is_power_of_2(page_size));
1465
1466 unmapped = 0;
eb74ff6c 1467
24cd7723
JR
1468 while (unmapped < page_size) {
1469
1470 pte = fetch_pte(dom, bus_addr);
1471
1472 if (!pte) {
1473 /*
1474 * No PTE for this address
1475 * move forward in 4kb steps
1476 */
1477 unmap_size = PAGE_SIZE;
1478 } else if (PM_PTE_LEVEL(*pte) == 0) {
1479 /* 4kb PTE found for this address */
1480 unmap_size = PAGE_SIZE;
1481 *pte = 0ULL;
1482 } else {
1483 int count, i;
1484
1485 /* Large PTE found which maps this address */
1486 unmap_size = PTE_PAGE_SIZE(*pte);
1487 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1488 for (i = 0; i < count; i++)
1489 pte[i] = 0ULL;
1490 }
1491
1492 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1493 unmapped += unmap_size;
1494 }
1495
1496 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1497
24cd7723 1498 return unmapped;
eb74ff6c 1499}
eb74ff6c 1500
431b2a20
JR
1501/*
1502 * This function checks if a specific unity mapping entry is needed for
1503 * this specific IOMMU.
1504 */
bd0e5211
JR
1505static int iommu_for_unity_map(struct amd_iommu *iommu,
1506 struct unity_map_entry *entry)
1507{
1508 u16 bdf, i;
1509
1510 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1511 bdf = amd_iommu_alias_table[i];
1512 if (amd_iommu_rlookup_table[bdf] == iommu)
1513 return 1;
1514 }
1515
1516 return 0;
1517}
1518
431b2a20
JR
1519/*
1520 * This function actually applies the mapping to the page table of the
1521 * dma_ops domain.
1522 */
bd0e5211
JR
1523static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1524 struct unity_map_entry *e)
1525{
1526 u64 addr;
1527 int ret;
1528
1529 for (addr = e->address_start; addr < e->address_end;
1530 addr += PAGE_SIZE) {
abdc5eb3 1531 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1532 PAGE_SIZE);
bd0e5211
JR
1533 if (ret)
1534 return ret;
1535 /*
1536 * if unity mapping is in aperture range mark the page
1537 * as allocated in the aperture
1538 */
1539 if (addr < dma_dom->aperture_size)
c3239567 1540 __set_bit(addr >> PAGE_SHIFT,
384de729 1541 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1542 }
1543
1544 return 0;
1545}
1546
171e7b37
JR
1547/*
1548 * Init the unity mappings for a specific IOMMU in the system
1549 *
1550 * Basically iterates over all unity mapping entries and applies them to
1551 * the default domain DMA of that IOMMU if necessary.
1552 */
1553static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1554{
1555 struct unity_map_entry *entry;
1556 int ret;
1557
1558 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1559 if (!iommu_for_unity_map(iommu, entry))
1560 continue;
1561 ret = dma_ops_unity_map(iommu->default_dom, entry);
1562 if (ret)
1563 return ret;
1564 }
1565
1566 return 0;
1567}
1568
431b2a20
JR
1569/*
1570 * Inits the unity mappings required for a specific device
1571 */
bd0e5211
JR
1572static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1573 u16 devid)
1574{
1575 struct unity_map_entry *e;
1576 int ret;
1577
1578 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1579 if (!(devid >= e->devid_start && devid <= e->devid_end))
1580 continue;
1581 ret = dma_ops_unity_map(dma_dom, e);
1582 if (ret)
1583 return ret;
1584 }
1585
1586 return 0;
1587}
1588
431b2a20
JR
1589/****************************************************************************
1590 *
1591 * The next functions belong to the address allocator for the dma_ops
1592 * interface functions. They work like the allocators in the other IOMMU
1593 * drivers. Its basically a bitmap which marks the allocated pages in
1594 * the aperture. Maybe it could be enhanced in the future to a more
1595 * efficient allocator.
1596 *
1597 ****************************************************************************/
d3086444 1598
431b2a20 1599/*
384de729 1600 * The address allocator core functions.
431b2a20
JR
1601 *
1602 * called with domain->lock held
1603 */
384de729 1604
171e7b37
JR
1605/*
1606 * Used to reserve address ranges in the aperture (e.g. for exclusion
1607 * ranges.
1608 */
1609static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1610 unsigned long start_page,
1611 unsigned int pages)
1612{
1613 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1614
1615 if (start_page + pages > last_page)
1616 pages = last_page - start_page;
1617
1618 for (i = start_page; i < start_page + pages; ++i) {
1619 int index = i / APERTURE_RANGE_PAGES;
1620 int page = i % APERTURE_RANGE_PAGES;
1621 __set_bit(page, dom->aperture[index]->bitmap);
1622 }
1623}
1624
9cabe89b
JR
1625/*
1626 * This function is used to add a new aperture range to an existing
1627 * aperture in case of dma_ops domain allocation or address allocation
1628 * failure.
1629 */
576175c2 1630static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1631 bool populate, gfp_t gfp)
1632{
1633 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1634 struct amd_iommu *iommu;
17f5b569 1635 unsigned long i, old_size;
9cabe89b 1636
f5e9705c
JR
1637#ifdef CONFIG_IOMMU_STRESS
1638 populate = false;
1639#endif
1640
9cabe89b
JR
1641 if (index >= APERTURE_MAX_RANGES)
1642 return -ENOMEM;
1643
1644 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1645 if (!dma_dom->aperture[index])
1646 return -ENOMEM;
1647
1648 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1649 if (!dma_dom->aperture[index]->bitmap)
1650 goto out_free;
1651
1652 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1653
1654 if (populate) {
1655 unsigned long address = dma_dom->aperture_size;
1656 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1657 u64 *pte, *pte_page;
1658
1659 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1660 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1661 &pte_page, gfp);
1662 if (!pte)
1663 goto out_free;
1664
1665 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1666
1667 address += APERTURE_RANGE_SIZE / 64;
1668 }
1669 }
1670
17f5b569 1671 old_size = dma_dom->aperture_size;
9cabe89b
JR
1672 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1673
17f5b569
JR
1674 /* Reserve address range used for MSI messages */
1675 if (old_size < MSI_ADDR_BASE_LO &&
1676 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1677 unsigned long spage;
1678 int pages;
1679
1680 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1681 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1682
1683 dma_ops_reserve_addresses(dma_dom, spage, pages);
1684 }
1685
b595076a 1686 /* Initialize the exclusion range if necessary */
576175c2
JR
1687 for_each_iommu(iommu) {
1688 if (iommu->exclusion_start &&
1689 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1690 && iommu->exclusion_start < dma_dom->aperture_size) {
1691 unsigned long startpage;
1692 int pages = iommu_num_pages(iommu->exclusion_start,
1693 iommu->exclusion_length,
1694 PAGE_SIZE);
1695 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1696 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1697 }
00cd122a
JR
1698 }
1699
1700 /*
1701 * Check for areas already mapped as present in the new aperture
1702 * range and mark those pages as reserved in the allocator. Such
1703 * mappings may already exist as a result of requested unity
1704 * mappings for devices.
1705 */
1706 for (i = dma_dom->aperture[index]->offset;
1707 i < dma_dom->aperture_size;
1708 i += PAGE_SIZE) {
24cd7723 1709 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1710 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1711 continue;
1712
fcd0861d 1713 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1714 }
1715
04bfdd84
JR
1716 update_domain(&dma_dom->domain);
1717
9cabe89b
JR
1718 return 0;
1719
1720out_free:
04bfdd84
JR
1721 update_domain(&dma_dom->domain);
1722
9cabe89b
JR
1723 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1724
1725 kfree(dma_dom->aperture[index]);
1726 dma_dom->aperture[index] = NULL;
1727
1728 return -ENOMEM;
1729}
1730
384de729
JR
1731static unsigned long dma_ops_area_alloc(struct device *dev,
1732 struct dma_ops_domain *dom,
1733 unsigned int pages,
1734 unsigned long align_mask,
1735 u64 dma_mask,
1736 unsigned long start)
1737{
803b8cb4 1738 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1739 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1740 int i = start >> APERTURE_RANGE_SHIFT;
1741 unsigned long boundary_size;
1742 unsigned long address = -1;
1743 unsigned long limit;
1744
803b8cb4
JR
1745 next_bit >>= PAGE_SHIFT;
1746
384de729
JR
1747 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1748 PAGE_SIZE) >> PAGE_SHIFT;
1749
1750 for (;i < max_index; ++i) {
1751 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1752
1753 if (dom->aperture[i]->offset >= dma_mask)
1754 break;
1755
1756 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1757 dma_mask >> PAGE_SHIFT);
1758
1759 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1760 limit, next_bit, pages, 0,
1761 boundary_size, align_mask);
1762 if (address != -1) {
1763 address = dom->aperture[i]->offset +
1764 (address << PAGE_SHIFT);
803b8cb4 1765 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1766 break;
1767 }
1768
1769 next_bit = 0;
1770 }
1771
1772 return address;
1773}
1774
d3086444
JR
1775static unsigned long dma_ops_alloc_addresses(struct device *dev,
1776 struct dma_ops_domain *dom,
6d4f343f 1777 unsigned int pages,
832a90c3
JR
1778 unsigned long align_mask,
1779 u64 dma_mask)
d3086444 1780{
d3086444 1781 unsigned long address;
d3086444 1782
fe16f088
JR
1783#ifdef CONFIG_IOMMU_STRESS
1784 dom->next_address = 0;
1785 dom->need_flush = true;
1786#endif
d3086444 1787
384de729 1788 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1789 dma_mask, dom->next_address);
d3086444 1790
1c655773 1791 if (address == -1) {
803b8cb4 1792 dom->next_address = 0;
384de729
JR
1793 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1794 dma_mask, 0);
1c655773
JR
1795 dom->need_flush = true;
1796 }
d3086444 1797
384de729 1798 if (unlikely(address == -1))
8fd524b3 1799 address = DMA_ERROR_CODE;
d3086444
JR
1800
1801 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1802
1803 return address;
1804}
1805
431b2a20
JR
1806/*
1807 * The address free function.
1808 *
1809 * called with domain->lock held
1810 */
d3086444
JR
1811static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1812 unsigned long address,
1813 unsigned int pages)
1814{
384de729
JR
1815 unsigned i = address >> APERTURE_RANGE_SHIFT;
1816 struct aperture_range *range = dom->aperture[i];
80be308d 1817
384de729
JR
1818 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1819
47bccd6b
JR
1820#ifdef CONFIG_IOMMU_STRESS
1821 if (i < 4)
1822 return;
1823#endif
80be308d 1824
803b8cb4 1825 if (address >= dom->next_address)
80be308d 1826 dom->need_flush = true;
384de729
JR
1827
1828 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1829
a66022c4 1830 bitmap_clear(range->bitmap, address, pages);
384de729 1831
d3086444
JR
1832}
1833
431b2a20
JR
1834/****************************************************************************
1835 *
1836 * The next functions belong to the domain allocation. A domain is
1837 * allocated for every IOMMU as the default domain. If device isolation
1838 * is enabled, every device get its own domain. The most important thing
1839 * about domains is the page table mapping the DMA address space they
1840 * contain.
1841 *
1842 ****************************************************************************/
1843
aeb26f55
JR
1844/*
1845 * This function adds a protection domain to the global protection domain list
1846 */
1847static void add_domain_to_list(struct protection_domain *domain)
1848{
1849 unsigned long flags;
1850
1851 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1852 list_add(&domain->list, &amd_iommu_pd_list);
1853 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1854}
1855
1856/*
1857 * This function removes a protection domain to the global
1858 * protection domain list
1859 */
1860static void del_domain_from_list(struct protection_domain *domain)
1861{
1862 unsigned long flags;
1863
1864 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1865 list_del(&domain->list);
1866 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1867}
1868
ec487d1a
JR
1869static u16 domain_id_alloc(void)
1870{
1871 unsigned long flags;
1872 int id;
1873
1874 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1875 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1876 BUG_ON(id == 0);
1877 if (id > 0 && id < MAX_DOMAIN_ID)
1878 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1879 else
1880 id = 0;
1881 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1882
1883 return id;
1884}
1885
a2acfb75
JR
1886static void domain_id_free(int id)
1887{
1888 unsigned long flags;
1889
1890 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1891 if (id > 0 && id < MAX_DOMAIN_ID)
1892 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1893 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1894}
a2acfb75 1895
86db2e5d 1896static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1897{
1898 int i, j;
1899 u64 *p1, *p2, *p3;
1900
86db2e5d 1901 p1 = domain->pt_root;
ec487d1a
JR
1902
1903 if (!p1)
1904 return;
1905
1906 for (i = 0; i < 512; ++i) {
1907 if (!IOMMU_PTE_PRESENT(p1[i]))
1908 continue;
1909
1910 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1911 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1912 if (!IOMMU_PTE_PRESENT(p2[j]))
1913 continue;
1914 p3 = IOMMU_PTE_PAGE(p2[j]);
1915 free_page((unsigned long)p3);
1916 }
1917
1918 free_page((unsigned long)p2);
1919 }
1920
1921 free_page((unsigned long)p1);
86db2e5d
JR
1922
1923 domain->pt_root = NULL;
ec487d1a
JR
1924}
1925
b16137b1
JR
1926static void free_gcr3_tbl_level1(u64 *tbl)
1927{
1928 u64 *ptr;
1929 int i;
1930
1931 for (i = 0; i < 512; ++i) {
1932 if (!(tbl[i] & GCR3_VALID))
1933 continue;
1934
1935 ptr = __va(tbl[i] & PAGE_MASK);
1936
1937 free_page((unsigned long)ptr);
1938 }
1939}
1940
1941static void free_gcr3_tbl_level2(u64 *tbl)
1942{
1943 u64 *ptr;
1944 int i;
1945
1946 for (i = 0; i < 512; ++i) {
1947 if (!(tbl[i] & GCR3_VALID))
1948 continue;
1949
1950 ptr = __va(tbl[i] & PAGE_MASK);
1951
1952 free_gcr3_tbl_level1(ptr);
1953 }
1954}
1955
52815b75
JR
1956static void free_gcr3_table(struct protection_domain *domain)
1957{
b16137b1
JR
1958 if (domain->glx == 2)
1959 free_gcr3_tbl_level2(domain->gcr3_tbl);
1960 else if (domain->glx == 1)
1961 free_gcr3_tbl_level1(domain->gcr3_tbl);
1962 else if (domain->glx != 0)
1963 BUG();
1964
52815b75
JR
1965 free_page((unsigned long)domain->gcr3_tbl);
1966}
1967
431b2a20
JR
1968/*
1969 * Free a domain, only used if something went wrong in the
1970 * allocation path and we need to free an already allocated page table
1971 */
ec487d1a
JR
1972static void dma_ops_domain_free(struct dma_ops_domain *dom)
1973{
384de729
JR
1974 int i;
1975
ec487d1a
JR
1976 if (!dom)
1977 return;
1978
aeb26f55
JR
1979 del_domain_from_list(&dom->domain);
1980
86db2e5d 1981 free_pagetable(&dom->domain);
ec487d1a 1982
384de729
JR
1983 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1984 if (!dom->aperture[i])
1985 continue;
1986 free_page((unsigned long)dom->aperture[i]->bitmap);
1987 kfree(dom->aperture[i]);
1988 }
ec487d1a
JR
1989
1990 kfree(dom);
1991}
1992
431b2a20
JR
1993/*
1994 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1995 * It also initializes the page table and the address allocator data
431b2a20
JR
1996 * structures required for the dma_ops interface
1997 */
87a64d52 1998static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1999{
2000 struct dma_ops_domain *dma_dom;
ec487d1a
JR
2001
2002 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2003 if (!dma_dom)
2004 return NULL;
2005
2006 spin_lock_init(&dma_dom->domain.lock);
2007
2008 dma_dom->domain.id = domain_id_alloc();
2009 if (dma_dom->domain.id == 0)
2010 goto free_dma_dom;
7c392cbe 2011 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2012 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2013 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2014 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2015 dma_dom->domain.priv = dma_dom;
2016 if (!dma_dom->domain.pt_root)
2017 goto free_dma_dom;
ec487d1a 2018
1c655773 2019 dma_dom->need_flush = false;
bd60b735 2020 dma_dom->target_dev = 0xffff;
1c655773 2021
aeb26f55
JR
2022 add_domain_to_list(&dma_dom->domain);
2023
576175c2 2024 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2025 goto free_dma_dom;
ec487d1a 2026
431b2a20 2027 /*
ec487d1a
JR
2028 * mark the first page as allocated so we never return 0 as
2029 * a valid dma-address. So we can use 0 as error value
431b2a20 2030 */
384de729 2031 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2032 dma_dom->next_address = 0;
ec487d1a 2033
ec487d1a
JR
2034
2035 return dma_dom;
2036
2037free_dma_dom:
2038 dma_ops_domain_free(dma_dom);
2039
2040 return NULL;
2041}
2042
5b28df6f
JR
2043/*
2044 * little helper function to check whether a given protection domain is a
2045 * dma_ops domain
2046 */
2047static bool dma_ops_domain(struct protection_domain *domain)
2048{
2049 return domain->flags & PD_DMA_OPS_MASK;
2050}
2051
fd7b5535 2052static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2053{
132bd68f 2054 u64 pte_root = 0;
ee6c2868 2055 u64 flags = 0;
863c74eb 2056
132bd68f
JR
2057 if (domain->mode != PAGE_MODE_NONE)
2058 pte_root = virt_to_phys(domain->pt_root);
2059
38ddf41b
JR
2060 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2061 << DEV_ENTRY_MODE_SHIFT;
2062 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2063
ee6c2868
JR
2064 flags = amd_iommu_dev_table[devid].data[1];
2065
fd7b5535
JR
2066 if (ats)
2067 flags |= DTE_FLAG_IOTLB;
2068
52815b75
JR
2069 if (domain->flags & PD_IOMMUV2_MASK) {
2070 u64 gcr3 = __pa(domain->gcr3_tbl);
2071 u64 glx = domain->glx;
2072 u64 tmp;
2073
2074 pte_root |= DTE_FLAG_GV;
2075 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2076
2077 /* First mask out possible old values for GCR3 table */
2078 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2079 flags &= ~tmp;
2080
2081 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2082 flags &= ~tmp;
2083
2084 /* Encode GCR3 table into DTE */
2085 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2086 pte_root |= tmp;
2087
2088 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2089 flags |= tmp;
2090
2091 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2092 flags |= tmp;
2093 }
2094
ee6c2868
JR
2095 flags &= ~(0xffffUL);
2096 flags |= domain->id;
2097
2098 amd_iommu_dev_table[devid].data[1] = flags;
2099 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2100}
2101
2102static void clear_dte_entry(u16 devid)
2103{
15898bbc
JR
2104 /* remove entry from the device table seen by the hardware */
2105 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2106 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2107
2108 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2109}
2110
ec9e79ef
JR
2111static void do_attach(struct iommu_dev_data *dev_data,
2112 struct protection_domain *domain)
7f760ddd 2113{
7f760ddd 2114 struct amd_iommu *iommu;
ec9e79ef 2115 bool ats;
fd7b5535 2116
ec9e79ef
JR
2117 iommu = amd_iommu_rlookup_table[dev_data->devid];
2118 ats = dev_data->ats.enabled;
7f760ddd
JR
2119
2120 /* Update data structures */
2121 dev_data->domain = domain;
2122 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2123 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2124
2125 /* Do reference counting */
2126 domain->dev_iommu[iommu->index] += 1;
2127 domain->dev_cnt += 1;
2128
2129 /* Flush the DTE entry */
6c542047 2130 device_flush_dte(dev_data);
7f760ddd
JR
2131}
2132
ec9e79ef 2133static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2134{
7f760ddd 2135 struct amd_iommu *iommu;
7f760ddd 2136
ec9e79ef 2137 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2138
2139 /* decrease reference counters */
7f760ddd
JR
2140 dev_data->domain->dev_iommu[iommu->index] -= 1;
2141 dev_data->domain->dev_cnt -= 1;
2142
2143 /* Update data structures */
2144 dev_data->domain = NULL;
2145 list_del(&dev_data->list);
f62dda66 2146 clear_dte_entry(dev_data->devid);
15898bbc 2147
7f760ddd 2148 /* Flush the DTE entry */
6c542047 2149 device_flush_dte(dev_data);
2b681faf
JR
2150}
2151
2152/*
2153 * If a device is not yet associated with a domain, this function does
2154 * assigns it visible for the hardware
2155 */
ec9e79ef 2156static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2157 struct protection_domain *domain)
2b681faf 2158{
84fe6c19 2159 int ret;
657cbb6b 2160
2b681faf
JR
2161 /* lock domain */
2162 spin_lock(&domain->lock);
2163
71f77580
JR
2164 if (dev_data->alias_data != NULL) {
2165 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2166
2b02b091
JR
2167 /* Some sanity checks */
2168 ret = -EBUSY;
2169 if (alias_data->domain != NULL &&
2170 alias_data->domain != domain)
2171 goto out_unlock;
eba6ac60 2172
2b02b091
JR
2173 if (dev_data->domain != NULL &&
2174 dev_data->domain != domain)
2175 goto out_unlock;
15898bbc 2176
2b02b091 2177 /* Do real assignment */
7f760ddd 2178 if (alias_data->domain == NULL)
ec9e79ef 2179 do_attach(alias_data, domain);
24100055
JR
2180
2181 atomic_inc(&alias_data->bind);
657cbb6b 2182 }
15898bbc 2183
7f760ddd 2184 if (dev_data->domain == NULL)
ec9e79ef 2185 do_attach(dev_data, domain);
eba6ac60 2186
24100055
JR
2187 atomic_inc(&dev_data->bind);
2188
84fe6c19
JL
2189 ret = 0;
2190
2191out_unlock:
2192
eba6ac60
JR
2193 /* ready */
2194 spin_unlock(&domain->lock);
15898bbc 2195
84fe6c19 2196 return ret;
0feae533 2197}
b20ac0d4 2198
52815b75
JR
2199
2200static void pdev_iommuv2_disable(struct pci_dev *pdev)
2201{
2202 pci_disable_ats(pdev);
2203 pci_disable_pri(pdev);
2204 pci_disable_pasid(pdev);
2205}
2206
6a113ddc
JR
2207/* FIXME: Change generic reset-function to do the same */
2208static int pri_reset_while_enabled(struct pci_dev *pdev)
2209{
2210 u16 control;
2211 int pos;
2212
46277b75 2213 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2214 if (!pos)
2215 return -EINVAL;
2216
46277b75
JR
2217 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2218 control |= PCI_PRI_CTRL_RESET;
2219 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2220
2221 return 0;
2222}
2223
52815b75
JR
2224static int pdev_iommuv2_enable(struct pci_dev *pdev)
2225{
6a113ddc
JR
2226 bool reset_enable;
2227 int reqs, ret;
2228
2229 /* FIXME: Hardcode number of outstanding requests for now */
2230 reqs = 32;
2231 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2232 reqs = 1;
2233 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2234
2235 /* Only allow access to user-accessible pages */
2236 ret = pci_enable_pasid(pdev, 0);
2237 if (ret)
2238 goto out_err;
2239
2240 /* First reset the PRI state of the device */
2241 ret = pci_reset_pri(pdev);
2242 if (ret)
2243 goto out_err;
2244
6a113ddc
JR
2245 /* Enable PRI */
2246 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2247 if (ret)
2248 goto out_err;
2249
6a113ddc
JR
2250 if (reset_enable) {
2251 ret = pri_reset_while_enabled(pdev);
2252 if (ret)
2253 goto out_err;
2254 }
2255
52815b75
JR
2256 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2257 if (ret)
2258 goto out_err;
2259
2260 return 0;
2261
2262out_err:
2263 pci_disable_pri(pdev);
2264 pci_disable_pasid(pdev);
2265
2266 return ret;
2267}
2268
c99afa25 2269/* FIXME: Move this to PCI code */
a3b93121 2270#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2271
98f1ad25 2272static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2273{
a3b93121 2274 u16 status;
c99afa25
JR
2275 int pos;
2276
46277b75 2277 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2278 if (!pos)
2279 return false;
2280
a3b93121 2281 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2282
a3b93121 2283 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2284}
2285
407d733e 2286/*
df805abb 2287 * If a device is not yet associated with a domain, this function
407d733e
JR
2288 * assigns it visible for the hardware
2289 */
15898bbc
JR
2290static int attach_device(struct device *dev,
2291 struct protection_domain *domain)
0feae533 2292{
fd7b5535 2293 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2294 struct iommu_dev_data *dev_data;
eba6ac60 2295 unsigned long flags;
15898bbc 2296 int ret;
eba6ac60 2297
ea61cddb
JR
2298 dev_data = get_dev_data(dev);
2299
52815b75
JR
2300 if (domain->flags & PD_IOMMUV2_MASK) {
2301 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2302 return -EINVAL;
2303
2304 if (pdev_iommuv2_enable(pdev) != 0)
2305 return -EINVAL;
2306
2307 dev_data->ats.enabled = true;
2308 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2309 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2310 } else if (amd_iommu_iotlb_sup &&
2311 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2312 dev_data->ats.enabled = true;
2313 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2314 }
fd7b5535 2315
eba6ac60 2316 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2317 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2318 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2319
0feae533
JR
2320 /*
2321 * We might boot into a crash-kernel here. The crashed kernel
2322 * left the caches in the IOMMU dirty. So we have to flush
2323 * here to evict all dirty stuff.
2324 */
17b124bf 2325 domain_flush_tlb_pde(domain);
15898bbc
JR
2326
2327 return ret;
b20ac0d4
JR
2328}
2329
355bf553
JR
2330/*
2331 * Removes a device from a protection domain (unlocked)
2332 */
ec9e79ef 2333static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2334{
2ca76279 2335 struct protection_domain *domain;
7c392cbe 2336 unsigned long flags;
c4596114 2337
7f760ddd 2338 BUG_ON(!dev_data->domain);
355bf553 2339
2ca76279
JR
2340 domain = dev_data->domain;
2341
2342 spin_lock_irqsave(&domain->lock, flags);
24100055 2343
71f77580
JR
2344 if (dev_data->alias_data != NULL) {
2345 struct iommu_dev_data *alias_data = dev_data->alias_data;
2346
7f760ddd 2347 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2348 do_detach(alias_data);
24100055
JR
2349 }
2350
7f760ddd 2351 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2352 do_detach(dev_data);
7f760ddd 2353
2ca76279 2354 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2355
2356 /*
2357 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2358 * passthrough domain if it is detached from any other domain.
2359 * Make sure we can deassign from the pt_domain itself.
21129f78 2360 */
5abcdba4 2361 if (dev_data->passthrough &&
d3ad9373 2362 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2363 __attach_device(dev_data, pt_domain);
355bf553
JR
2364}
2365
2366/*
2367 * Removes a device from a protection domain (with devtable_lock held)
2368 */
15898bbc 2369static void detach_device(struct device *dev)
355bf553 2370{
52815b75 2371 struct protection_domain *domain;
ea61cddb 2372 struct iommu_dev_data *dev_data;
355bf553
JR
2373 unsigned long flags;
2374
ec9e79ef 2375 dev_data = get_dev_data(dev);
52815b75 2376 domain = dev_data->domain;
ec9e79ef 2377
355bf553
JR
2378 /* lock device table */
2379 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2380 __detach_device(dev_data);
355bf553 2381 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2382
52815b75
JR
2383 if (domain->flags & PD_IOMMUV2_MASK)
2384 pdev_iommuv2_disable(to_pci_dev(dev));
2385 else if (dev_data->ats.enabled)
ea61cddb 2386 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2387
2388 dev_data->ats.enabled = false;
355bf553 2389}
e275a2a0 2390
15898bbc
JR
2391/*
2392 * Find out the protection domain structure for a given PCI device. This
2393 * will give us the pointer to the page table root for example.
2394 */
2395static struct protection_domain *domain_for_device(struct device *dev)
2396{
71f77580 2397 struct iommu_dev_data *dev_data;
2b02b091 2398 struct protection_domain *dom = NULL;
15898bbc 2399 unsigned long flags;
15898bbc 2400
657cbb6b 2401 dev_data = get_dev_data(dev);
15898bbc 2402
2b02b091
JR
2403 if (dev_data->domain)
2404 return dev_data->domain;
15898bbc 2405
71f77580
JR
2406 if (dev_data->alias_data != NULL) {
2407 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2408
2409 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2410 if (alias_data->domain != NULL) {
2411 __attach_device(dev_data, alias_data->domain);
2412 dom = alias_data->domain;
2413 }
2414 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2415 }
15898bbc
JR
2416
2417 return dom;
2418}
2419
e275a2a0
JR
2420static int device_change_notifier(struct notifier_block *nb,
2421 unsigned long action, void *data)
2422{
e275a2a0 2423 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2424 struct protection_domain *domain;
2425 struct iommu_dev_data *dev_data;
2426 struct device *dev = data;
e275a2a0 2427 struct amd_iommu *iommu;
1ac4cbbc 2428 unsigned long flags;
5abcdba4 2429 u16 devid;
e275a2a0 2430
98fc5a69
JR
2431 if (!check_device(dev))
2432 return 0;
e275a2a0 2433
5abcdba4
JR
2434 devid = get_device_id(dev);
2435 iommu = amd_iommu_rlookup_table[devid];
2436 dev_data = get_dev_data(dev);
e275a2a0
JR
2437
2438 switch (action) {
c1eee67b 2439 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2440
2441 domain = domain_for_device(dev);
2442
e275a2a0
JR
2443 if (!domain)
2444 goto out;
5abcdba4 2445 if (dev_data->passthrough)
a1ca331c 2446 break;
15898bbc 2447 detach_device(dev);
1ac4cbbc
JR
2448 break;
2449 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2450
2451 iommu_init_device(dev);
2452
2c9195e9
JR
2453 /*
2454 * dev_data is still NULL and
2455 * got initialized in iommu_init_device
2456 */
2457 dev_data = get_dev_data(dev);
2458
2459 if (iommu_pass_through || dev_data->iommu_v2) {
2460 dev_data->passthrough = true;
2461 attach_device(dev, pt_domain);
2462 break;
2463 }
2464
657cbb6b
JR
2465 domain = domain_for_device(dev);
2466
1ac4cbbc
JR
2467 /* allocate a protection domain if a device is added */
2468 dma_domain = find_protection_domain(devid);
2469 if (dma_domain)
2470 goto out;
87a64d52 2471 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
2472 if (!dma_domain)
2473 goto out;
2474 dma_domain->target_dev = devid;
2475
2476 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2477 list_add_tail(&dma_domain->list, &iommu_pd_list);
2478 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2479
ac1534a5
JR
2480 dev_data = get_dev_data(dev);
2481
2c9195e9 2482 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2483
e275a2a0 2484 break;
657cbb6b
JR
2485 case BUS_NOTIFY_DEL_DEVICE:
2486
2487 iommu_uninit_device(dev);
2488
e275a2a0
JR
2489 default:
2490 goto out;
2491 }
2492
e275a2a0
JR
2493 iommu_completion_wait(iommu);
2494
2495out:
2496 return 0;
2497}
2498
b25ae679 2499static struct notifier_block device_nb = {
e275a2a0
JR
2500 .notifier_call = device_change_notifier,
2501};
355bf553 2502
8638c491
JR
2503void amd_iommu_init_notifier(void)
2504{
2505 bus_register_notifier(&pci_bus_type, &device_nb);
2506}
2507
431b2a20
JR
2508/*****************************************************************************
2509 *
2510 * The next functions belong to the dma_ops mapping/unmapping code.
2511 *
2512 *****************************************************************************/
2513
2514/*
2515 * In the dma_ops path we only have the struct device. This function
2516 * finds the corresponding IOMMU, the protection domain and the
2517 * requestor id for a given device.
2518 * If the device is not yet associated with a domain this is also done
2519 * in this function.
2520 */
94f6d190 2521static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2522{
94f6d190 2523 struct protection_domain *domain;
b20ac0d4 2524 struct dma_ops_domain *dma_dom;
94f6d190 2525 u16 devid = get_device_id(dev);
b20ac0d4 2526
f99c0f1c 2527 if (!check_device(dev))
94f6d190 2528 return ERR_PTR(-EINVAL);
b20ac0d4 2529
94f6d190
JR
2530 domain = domain_for_device(dev);
2531 if (domain != NULL && !dma_ops_domain(domain))
2532 return ERR_PTR(-EBUSY);
f99c0f1c 2533
94f6d190
JR
2534 if (domain != NULL)
2535 return domain;
b20ac0d4 2536
df805abb 2537 /* Device not bound yet - bind it */
94f6d190 2538 dma_dom = find_protection_domain(devid);
15898bbc 2539 if (!dma_dom)
94f6d190
JR
2540 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2541 attach_device(dev, &dma_dom->domain);
15898bbc 2542 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2543 dma_dom->domain.id, dev_name(dev));
f91ba190 2544
94f6d190 2545 return &dma_dom->domain;
b20ac0d4
JR
2546}
2547
04bfdd84
JR
2548static void update_device_table(struct protection_domain *domain)
2549{
492667da 2550 struct iommu_dev_data *dev_data;
04bfdd84 2551
ea61cddb
JR
2552 list_for_each_entry(dev_data, &domain->dev_list, list)
2553 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2554}
2555
2556static void update_domain(struct protection_domain *domain)
2557{
2558 if (!domain->updated)
2559 return;
2560
2561 update_device_table(domain);
17b124bf
JR
2562
2563 domain_flush_devices(domain);
2564 domain_flush_tlb_pde(domain);
04bfdd84
JR
2565
2566 domain->updated = false;
2567}
2568
8bda3092
JR
2569/*
2570 * This function fetches the PTE for a given address in the aperture
2571 */
2572static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2573 unsigned long address)
2574{
384de729 2575 struct aperture_range *aperture;
8bda3092
JR
2576 u64 *pte, *pte_page;
2577
384de729
JR
2578 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2579 if (!aperture)
2580 return NULL;
2581
2582 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2583 if (!pte) {
cbb9d729 2584 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2585 GFP_ATOMIC);
384de729
JR
2586 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2587 } else
8c8c143c 2588 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2589
04bfdd84 2590 update_domain(&dom->domain);
8bda3092
JR
2591
2592 return pte;
2593}
2594
431b2a20
JR
2595/*
2596 * This is the generic map function. It maps one 4kb page at paddr to
2597 * the given address in the DMA address space for the domain.
2598 */
680525e0 2599static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2600 unsigned long address,
2601 phys_addr_t paddr,
2602 int direction)
2603{
2604 u64 *pte, __pte;
2605
2606 WARN_ON(address > dom->aperture_size);
2607
2608 paddr &= PAGE_MASK;
2609
8bda3092 2610 pte = dma_ops_get_pte(dom, address);
53812c11 2611 if (!pte)
8fd524b3 2612 return DMA_ERROR_CODE;
cb76c322
JR
2613
2614 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2615
2616 if (direction == DMA_TO_DEVICE)
2617 __pte |= IOMMU_PTE_IR;
2618 else if (direction == DMA_FROM_DEVICE)
2619 __pte |= IOMMU_PTE_IW;
2620 else if (direction == DMA_BIDIRECTIONAL)
2621 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2622
2623 WARN_ON(*pte);
2624
2625 *pte = __pte;
2626
2627 return (dma_addr_t)address;
2628}
2629
431b2a20
JR
2630/*
2631 * The generic unmapping function for on page in the DMA address space.
2632 */
680525e0 2633static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2634 unsigned long address)
2635{
384de729 2636 struct aperture_range *aperture;
cb76c322
JR
2637 u64 *pte;
2638
2639 if (address >= dom->aperture_size)
2640 return;
2641
384de729
JR
2642 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2643 if (!aperture)
2644 return;
2645
2646 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2647 if (!pte)
2648 return;
cb76c322 2649
8c8c143c 2650 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2651
2652 WARN_ON(!*pte);
2653
2654 *pte = 0ULL;
2655}
2656
431b2a20
JR
2657/*
2658 * This function contains common code for mapping of a physically
24f81160
JR
2659 * contiguous memory region into DMA address space. It is used by all
2660 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2661 * Must be called with the domain lock held.
2662 */
cb76c322 2663static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2664 struct dma_ops_domain *dma_dom,
2665 phys_addr_t paddr,
2666 size_t size,
6d4f343f 2667 int dir,
832a90c3
JR
2668 bool align,
2669 u64 dma_mask)
cb76c322
JR
2670{
2671 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2672 dma_addr_t address, start, ret;
cb76c322 2673 unsigned int pages;
6d4f343f 2674 unsigned long align_mask = 0;
cb76c322
JR
2675 int i;
2676
e3c449f5 2677 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2678 paddr &= PAGE_MASK;
2679
8ecaf8f1
JR
2680 INC_STATS_COUNTER(total_map_requests);
2681
c1858976
JR
2682 if (pages > 1)
2683 INC_STATS_COUNTER(cross_page);
2684
6d4f343f
JR
2685 if (align)
2686 align_mask = (1UL << get_order(size)) - 1;
2687
11b83888 2688retry:
832a90c3
JR
2689 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2690 dma_mask);
8fd524b3 2691 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2692 /*
2693 * setting next_address here will let the address
2694 * allocator only scan the new allocated range in the
2695 * first run. This is a small optimization.
2696 */
2697 dma_dom->next_address = dma_dom->aperture_size;
2698
576175c2 2699 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2700 goto out;
2701
2702 /*
af901ca1 2703 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2704 * allocation again
2705 */
2706 goto retry;
2707 }
cb76c322
JR
2708
2709 start = address;
2710 for (i = 0; i < pages; ++i) {
680525e0 2711 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2712 if (ret == DMA_ERROR_CODE)
53812c11
JR
2713 goto out_unmap;
2714
cb76c322
JR
2715 paddr += PAGE_SIZE;
2716 start += PAGE_SIZE;
2717 }
2718 address += offset;
2719
5774f7c5
JR
2720 ADD_STATS_COUNTER(alloced_io_mem, size);
2721
afa9fdc2 2722 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2723 domain_flush_tlb(&dma_dom->domain);
1c655773 2724 dma_dom->need_flush = false;
318afd41 2725 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2726 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2727
cb76c322
JR
2728out:
2729 return address;
53812c11
JR
2730
2731out_unmap:
2732
2733 for (--i; i >= 0; --i) {
2734 start -= PAGE_SIZE;
680525e0 2735 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2736 }
2737
2738 dma_ops_free_addresses(dma_dom, address, pages);
2739
8fd524b3 2740 return DMA_ERROR_CODE;
cb76c322
JR
2741}
2742
431b2a20
JR
2743/*
2744 * Does the reverse of the __map_single function. Must be called with
2745 * the domain lock held too
2746 */
cd8c82e8 2747static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2748 dma_addr_t dma_addr,
2749 size_t size,
2750 int dir)
2751{
04e0463e 2752 dma_addr_t flush_addr;
cb76c322
JR
2753 dma_addr_t i, start;
2754 unsigned int pages;
2755
8fd524b3 2756 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2757 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2758 return;
2759
04e0463e 2760 flush_addr = dma_addr;
e3c449f5 2761 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2762 dma_addr &= PAGE_MASK;
2763 start = dma_addr;
2764
2765 for (i = 0; i < pages; ++i) {
680525e0 2766 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2767 start += PAGE_SIZE;
2768 }
2769
5774f7c5
JR
2770 SUB_STATS_COUNTER(alloced_io_mem, size);
2771
cb76c322 2772 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2773
80be308d 2774 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2775 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2776 dma_dom->need_flush = false;
2777 }
cb76c322
JR
2778}
2779
431b2a20
JR
2780/*
2781 * The exported map_single function for dma_ops.
2782 */
51491367
FT
2783static dma_addr_t map_page(struct device *dev, struct page *page,
2784 unsigned long offset, size_t size,
2785 enum dma_data_direction dir,
2786 struct dma_attrs *attrs)
4da70b9e
JR
2787{
2788 unsigned long flags;
4da70b9e 2789 struct protection_domain *domain;
4da70b9e 2790 dma_addr_t addr;
832a90c3 2791 u64 dma_mask;
51491367 2792 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2793
0f2a86f2
JR
2794 INC_STATS_COUNTER(cnt_map_single);
2795
94f6d190
JR
2796 domain = get_domain(dev);
2797 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2798 return (dma_addr_t)paddr;
94f6d190
JR
2799 else if (IS_ERR(domain))
2800 return DMA_ERROR_CODE;
4da70b9e 2801
f99c0f1c
JR
2802 dma_mask = *dev->dma_mask;
2803
4da70b9e 2804 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2805
cd8c82e8 2806 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2807 dma_mask);
8fd524b3 2808 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2809 goto out;
2810
17b124bf 2811 domain_flush_complete(domain);
4da70b9e
JR
2812
2813out:
2814 spin_unlock_irqrestore(&domain->lock, flags);
2815
2816 return addr;
2817}
2818
431b2a20
JR
2819/*
2820 * The exported unmap_single function for dma_ops.
2821 */
51491367
FT
2822static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2823 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2824{
2825 unsigned long flags;
4da70b9e 2826 struct protection_domain *domain;
4da70b9e 2827
146a6917
JR
2828 INC_STATS_COUNTER(cnt_unmap_single);
2829
94f6d190
JR
2830 domain = get_domain(dev);
2831 if (IS_ERR(domain))
5b28df6f
JR
2832 return;
2833
4da70b9e
JR
2834 spin_lock_irqsave(&domain->lock, flags);
2835
cd8c82e8 2836 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2837
17b124bf 2838 domain_flush_complete(domain);
4da70b9e
JR
2839
2840 spin_unlock_irqrestore(&domain->lock, flags);
2841}
2842
431b2a20
JR
2843/*
2844 * This is a special map_sg function which is used if we should map a
2845 * device which is not handled by an AMD IOMMU in the system.
2846 */
65b050ad
JR
2847static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2848 int nelems, int dir)
2849{
2850 struct scatterlist *s;
2851 int i;
2852
2853 for_each_sg(sglist, s, nelems, i) {
2854 s->dma_address = (dma_addr_t)sg_phys(s);
2855 s->dma_length = s->length;
2856 }
2857
2858 return nelems;
2859}
2860
431b2a20
JR
2861/*
2862 * The exported map_sg function for dma_ops (handles scatter-gather
2863 * lists).
2864 */
65b050ad 2865static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2866 int nelems, enum dma_data_direction dir,
2867 struct dma_attrs *attrs)
65b050ad
JR
2868{
2869 unsigned long flags;
65b050ad 2870 struct protection_domain *domain;
65b050ad
JR
2871 int i;
2872 struct scatterlist *s;
2873 phys_addr_t paddr;
2874 int mapped_elems = 0;
832a90c3 2875 u64 dma_mask;
65b050ad 2876
d03f067a
JR
2877 INC_STATS_COUNTER(cnt_map_sg);
2878
94f6d190
JR
2879 domain = get_domain(dev);
2880 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2881 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2882 else if (IS_ERR(domain))
2883 return 0;
dbcc112e 2884
832a90c3 2885 dma_mask = *dev->dma_mask;
65b050ad 2886
65b050ad
JR
2887 spin_lock_irqsave(&domain->lock, flags);
2888
2889 for_each_sg(sglist, s, nelems, i) {
2890 paddr = sg_phys(s);
2891
cd8c82e8 2892 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2893 paddr, s->length, dir, false,
2894 dma_mask);
65b050ad
JR
2895
2896 if (s->dma_address) {
2897 s->dma_length = s->length;
2898 mapped_elems++;
2899 } else
2900 goto unmap;
65b050ad
JR
2901 }
2902
17b124bf 2903 domain_flush_complete(domain);
65b050ad
JR
2904
2905out:
2906 spin_unlock_irqrestore(&domain->lock, flags);
2907
2908 return mapped_elems;
2909unmap:
2910 for_each_sg(sglist, s, mapped_elems, i) {
2911 if (s->dma_address)
cd8c82e8 2912 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2913 s->dma_length, dir);
2914 s->dma_address = s->dma_length = 0;
2915 }
2916
2917 mapped_elems = 0;
2918
2919 goto out;
2920}
2921
431b2a20
JR
2922/*
2923 * The exported map_sg function for dma_ops (handles scatter-gather
2924 * lists).
2925 */
65b050ad 2926static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2927 int nelems, enum dma_data_direction dir,
2928 struct dma_attrs *attrs)
65b050ad
JR
2929{
2930 unsigned long flags;
65b050ad
JR
2931 struct protection_domain *domain;
2932 struct scatterlist *s;
65b050ad
JR
2933 int i;
2934
55877a6b
JR
2935 INC_STATS_COUNTER(cnt_unmap_sg);
2936
94f6d190
JR
2937 domain = get_domain(dev);
2938 if (IS_ERR(domain))
5b28df6f
JR
2939 return;
2940
65b050ad
JR
2941 spin_lock_irqsave(&domain->lock, flags);
2942
2943 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2944 __unmap_single(domain->priv, s->dma_address,
65b050ad 2945 s->dma_length, dir);
65b050ad
JR
2946 s->dma_address = s->dma_length = 0;
2947 }
2948
17b124bf 2949 domain_flush_complete(domain);
65b050ad
JR
2950
2951 spin_unlock_irqrestore(&domain->lock, flags);
2952}
2953
431b2a20
JR
2954/*
2955 * The exported alloc_coherent function for dma_ops.
2956 */
5d8b53cf 2957static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2958 dma_addr_t *dma_addr, gfp_t flag,
2959 struct dma_attrs *attrs)
5d8b53cf
JR
2960{
2961 unsigned long flags;
2962 void *virt_addr;
5d8b53cf 2963 struct protection_domain *domain;
5d8b53cf 2964 phys_addr_t paddr;
832a90c3 2965 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2966
c8f0fb36
JR
2967 INC_STATS_COUNTER(cnt_alloc_coherent);
2968
94f6d190
JR
2969 domain = get_domain(dev);
2970 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2971 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2972 *dma_addr = __pa(virt_addr);
2973 return virt_addr;
94f6d190
JR
2974 } else if (IS_ERR(domain))
2975 return NULL;
5d8b53cf 2976
f99c0f1c
JR
2977 dma_mask = dev->coherent_dma_mask;
2978 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2979 flag |= __GFP_ZERO;
5d8b53cf
JR
2980
2981 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2982 if (!virt_addr)
b25ae679 2983 return NULL;
5d8b53cf 2984
5d8b53cf
JR
2985 paddr = virt_to_phys(virt_addr);
2986
832a90c3
JR
2987 if (!dma_mask)
2988 dma_mask = *dev->dma_mask;
2989
5d8b53cf
JR
2990 spin_lock_irqsave(&domain->lock, flags);
2991
cd8c82e8 2992 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2993 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2994
8fd524b3 2995 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2996 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2997 goto out_free;
367d04c4 2998 }
5d8b53cf 2999
17b124bf 3000 domain_flush_complete(domain);
5d8b53cf 3001
5d8b53cf
JR
3002 spin_unlock_irqrestore(&domain->lock, flags);
3003
3004 return virt_addr;
5b28df6f
JR
3005
3006out_free:
3007
3008 free_pages((unsigned long)virt_addr, get_order(size));
3009
3010 return NULL;
5d8b53cf
JR
3011}
3012
431b2a20
JR
3013/*
3014 * The exported free_coherent function for dma_ops.
431b2a20 3015 */
5d8b53cf 3016static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
3017 void *virt_addr, dma_addr_t dma_addr,
3018 struct dma_attrs *attrs)
5d8b53cf
JR
3019{
3020 unsigned long flags;
5d8b53cf 3021 struct protection_domain *domain;
5d8b53cf 3022
5d31ee7e
JR
3023 INC_STATS_COUNTER(cnt_free_coherent);
3024
94f6d190
JR
3025 domain = get_domain(dev);
3026 if (IS_ERR(domain))
5b28df6f
JR
3027 goto free_mem;
3028
5d8b53cf
JR
3029 spin_lock_irqsave(&domain->lock, flags);
3030
cd8c82e8 3031 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 3032
17b124bf 3033 domain_flush_complete(domain);
5d8b53cf
JR
3034
3035 spin_unlock_irqrestore(&domain->lock, flags);
3036
3037free_mem:
3038 free_pages((unsigned long)virt_addr, get_order(size));
3039}
3040
b39ba6ad
JR
3041/*
3042 * This function is called by the DMA layer to find out if we can handle a
3043 * particular device. It is part of the dma_ops.
3044 */
3045static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3046{
420aef8a 3047 return check_device(dev);
b39ba6ad
JR
3048}
3049
c432f3df 3050/*
431b2a20
JR
3051 * The function for pre-allocating protection domains.
3052 *
c432f3df
JR
3053 * If the driver core informs the DMA layer if a driver grabs a device
3054 * we don't need to preallocate the protection domains anymore.
3055 * For now we have to.
3056 */
943bc7e1 3057static void __init prealloc_protection_domains(void)
c432f3df 3058{
5abcdba4 3059 struct iommu_dev_data *dev_data;
c432f3df 3060 struct dma_ops_domain *dma_dom;
5abcdba4 3061 struct pci_dev *dev = NULL;
98fc5a69 3062 u16 devid;
c432f3df 3063
d18c69d3 3064 for_each_pci_dev(dev) {
98fc5a69
JR
3065
3066 /* Do we handle this device? */
3067 if (!check_device(&dev->dev))
c432f3df 3068 continue;
98fc5a69 3069
5abcdba4
JR
3070 dev_data = get_dev_data(&dev->dev);
3071 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3072 /* Make sure passthrough domain is allocated */
3073 alloc_passthrough_domain();
3074 dev_data->passthrough = true;
3075 attach_device(&dev->dev, pt_domain);
df805abb 3076 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3077 dev_name(&dev->dev));
3078 }
3079
98fc5a69 3080 /* Is there already any domain for it? */
15898bbc 3081 if (domain_for_device(&dev->dev))
c432f3df 3082 continue;
98fc5a69
JR
3083
3084 devid = get_device_id(&dev->dev);
3085
87a64d52 3086 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3087 if (!dma_dom)
3088 continue;
3089 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3090 dma_dom->target_dev = devid;
3091
15898bbc 3092 attach_device(&dev->dev, &dma_dom->domain);
be831297 3093
bd60b735 3094 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3095 }
3096}
3097
160c1d8e 3098static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3099 .alloc = alloc_coherent,
3100 .free = free_coherent,
51491367
FT
3101 .map_page = map_page,
3102 .unmap_page = unmap_page,
6631ee9d
JR
3103 .map_sg = map_sg,
3104 .unmap_sg = unmap_sg,
b39ba6ad 3105 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3106};
3107
27c2127a
JR
3108static unsigned device_dma_ops_init(void)
3109{
5abcdba4 3110 struct iommu_dev_data *dev_data;
27c2127a
JR
3111 struct pci_dev *pdev = NULL;
3112 unsigned unhandled = 0;
3113
3114 for_each_pci_dev(pdev) {
3115 if (!check_device(&pdev->dev)) {
af1be049
JR
3116
3117 iommu_ignore_device(&pdev->dev);
3118
27c2127a
JR
3119 unhandled += 1;
3120 continue;
3121 }
3122
5abcdba4
JR
3123 dev_data = get_dev_data(&pdev->dev);
3124
3125 if (!dev_data->passthrough)
3126 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3127 else
3128 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3129 }
3130
3131 return unhandled;
3132}
3133
431b2a20
JR
3134/*
3135 * The function which clues the AMD IOMMU driver into dma_ops.
3136 */
f5325094
JR
3137
3138void __init amd_iommu_init_api(void)
3139{
2cc21c42 3140 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3141}
3142
6631ee9d
JR
3143int __init amd_iommu_init_dma_ops(void)
3144{
3145 struct amd_iommu *iommu;
27c2127a 3146 int ret, unhandled;
6631ee9d 3147
431b2a20
JR
3148 /*
3149 * first allocate a default protection domain for every IOMMU we
3150 * found in the system. Devices not assigned to any other
3151 * protection domain will be assigned to the default one.
3152 */
3bd22172 3153 for_each_iommu(iommu) {
87a64d52 3154 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3155 if (iommu->default_dom == NULL)
3156 return -ENOMEM;
e2dc14a2 3157 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3158 ret = iommu_init_unity_mappings(iommu);
3159 if (ret)
3160 goto free_domains;
3161 }
3162
431b2a20 3163 /*
8793abeb 3164 * Pre-allocate the protection domains for each device.
431b2a20 3165 */
8793abeb 3166 prealloc_protection_domains();
6631ee9d
JR
3167
3168 iommu_detected = 1;
75f1cdf1 3169 swiotlb = 0;
6631ee9d 3170
431b2a20 3171 /* Make the driver finally visible to the drivers */
27c2127a
JR
3172 unhandled = device_dma_ops_init();
3173 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3174 /* There are unhandled devices - initialize swiotlb for them */
3175 swiotlb = 1;
3176 }
6631ee9d 3177
7f26508b
JR
3178 amd_iommu_stats_init();
3179
62410eeb
JR
3180 if (amd_iommu_unmap_flush)
3181 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3182 else
3183 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3184
6631ee9d
JR
3185 return 0;
3186
3187free_domains:
3188
3bd22172 3189 for_each_iommu(iommu) {
6631ee9d
JR
3190 if (iommu->default_dom)
3191 dma_ops_domain_free(iommu->default_dom);
3192 }
3193
3194 return ret;
3195}
6d98cd80
JR
3196
3197/*****************************************************************************
3198 *
3199 * The following functions belong to the exported interface of AMD IOMMU
3200 *
3201 * This interface allows access to lower level functions of the IOMMU
3202 * like protection domain handling and assignement of devices to domains
3203 * which is not possible with the dma_ops interface.
3204 *
3205 *****************************************************************************/
3206
6d98cd80
JR
3207static void cleanup_domain(struct protection_domain *domain)
3208{
492667da 3209 struct iommu_dev_data *dev_data, *next;
6d98cd80 3210 unsigned long flags;
6d98cd80
JR
3211
3212 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3213
492667da 3214 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 3215 __detach_device(dev_data);
492667da
JR
3216 atomic_set(&dev_data->bind, 0);
3217 }
6d98cd80
JR
3218
3219 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3220}
3221
2650815f
JR
3222static void protection_domain_free(struct protection_domain *domain)
3223{
3224 if (!domain)
3225 return;
3226
aeb26f55
JR
3227 del_domain_from_list(domain);
3228
2650815f
JR
3229 if (domain->id)
3230 domain_id_free(domain->id);
3231
3232 kfree(domain);
3233}
3234
3235static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3236{
3237 struct protection_domain *domain;
3238
3239 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3240 if (!domain)
2650815f 3241 return NULL;
c156e347
JR
3242
3243 spin_lock_init(&domain->lock);
5d214fe6 3244 mutex_init(&domain->api_lock);
c156e347
JR
3245 domain->id = domain_id_alloc();
3246 if (!domain->id)
2650815f 3247 goto out_err;
7c392cbe 3248 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3249
aeb26f55
JR
3250 add_domain_to_list(domain);
3251
2650815f
JR
3252 return domain;
3253
3254out_err:
3255 kfree(domain);
3256
3257 return NULL;
3258}
3259
5abcdba4
JR
3260static int __init alloc_passthrough_domain(void)
3261{
3262 if (pt_domain != NULL)
3263 return 0;
3264
3265 /* allocate passthrough domain */
3266 pt_domain = protection_domain_alloc();
3267 if (!pt_domain)
3268 return -ENOMEM;
3269
3270 pt_domain->mode = PAGE_MODE_NONE;
3271
3272 return 0;
3273}
2650815f
JR
3274static int amd_iommu_domain_init(struct iommu_domain *dom)
3275{
3276 struct protection_domain *domain;
3277
3278 domain = protection_domain_alloc();
3279 if (!domain)
c156e347 3280 goto out_free;
2650815f
JR
3281
3282 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3283 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3284 if (!domain->pt_root)
3285 goto out_free;
3286
f3572db8
JR
3287 domain->iommu_domain = dom;
3288
c156e347
JR
3289 dom->priv = domain;
3290
0ff64f80
JR
3291 dom->geometry.aperture_start = 0;
3292 dom->geometry.aperture_end = ~0ULL;
3293 dom->geometry.force_aperture = true;
3294
c156e347
JR
3295 return 0;
3296
3297out_free:
2650815f 3298 protection_domain_free(domain);
c156e347
JR
3299
3300 return -ENOMEM;
3301}
3302
98383fc3
JR
3303static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3304{
3305 struct protection_domain *domain = dom->priv;
3306
3307 if (!domain)
3308 return;
3309
3310 if (domain->dev_cnt > 0)
3311 cleanup_domain(domain);
3312
3313 BUG_ON(domain->dev_cnt != 0);
3314
132bd68f
JR
3315 if (domain->mode != PAGE_MODE_NONE)
3316 free_pagetable(domain);
98383fc3 3317
52815b75
JR
3318 if (domain->flags & PD_IOMMUV2_MASK)
3319 free_gcr3_table(domain);
3320
8b408fe4 3321 protection_domain_free(domain);
98383fc3
JR
3322
3323 dom->priv = NULL;
3324}
3325
684f2888
JR
3326static void amd_iommu_detach_device(struct iommu_domain *dom,
3327 struct device *dev)
3328{
657cbb6b 3329 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3330 struct amd_iommu *iommu;
684f2888
JR
3331 u16 devid;
3332
98fc5a69 3333 if (!check_device(dev))
684f2888
JR
3334 return;
3335
98fc5a69 3336 devid = get_device_id(dev);
684f2888 3337
657cbb6b 3338 if (dev_data->domain != NULL)
15898bbc 3339 detach_device(dev);
684f2888
JR
3340
3341 iommu = amd_iommu_rlookup_table[devid];
3342 if (!iommu)
3343 return;
3344
684f2888
JR
3345 iommu_completion_wait(iommu);
3346}
3347
01106066
JR
3348static int amd_iommu_attach_device(struct iommu_domain *dom,
3349 struct device *dev)
3350{
3351 struct protection_domain *domain = dom->priv;
657cbb6b 3352 struct iommu_dev_data *dev_data;
01106066 3353 struct amd_iommu *iommu;
15898bbc 3354 int ret;
01106066 3355
98fc5a69 3356 if (!check_device(dev))
01106066
JR
3357 return -EINVAL;
3358
657cbb6b
JR
3359 dev_data = dev->archdata.iommu;
3360
f62dda66 3361 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3362 if (!iommu)
3363 return -EINVAL;
3364
657cbb6b 3365 if (dev_data->domain)
15898bbc 3366 detach_device(dev);
01106066 3367
15898bbc 3368 ret = attach_device(dev, domain);
01106066
JR
3369
3370 iommu_completion_wait(iommu);
3371
15898bbc 3372 return ret;
01106066
JR
3373}
3374
468e2366 3375static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3376 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3377{
3378 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3379 int prot = 0;
3380 int ret;
3381
132bd68f
JR
3382 if (domain->mode == PAGE_MODE_NONE)
3383 return -EINVAL;
3384
c6229ca6
JR
3385 if (iommu_prot & IOMMU_READ)
3386 prot |= IOMMU_PROT_IR;
3387 if (iommu_prot & IOMMU_WRITE)
3388 prot |= IOMMU_PROT_IW;
3389
5d214fe6 3390 mutex_lock(&domain->api_lock);
795e74f7 3391 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3392 mutex_unlock(&domain->api_lock);
3393
795e74f7 3394 return ret;
c6229ca6
JR
3395}
3396
5009065d
OBC
3397static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3398 size_t page_size)
eb74ff6c 3399{
eb74ff6c 3400 struct protection_domain *domain = dom->priv;
5009065d 3401 size_t unmap_size;
eb74ff6c 3402
132bd68f
JR
3403 if (domain->mode == PAGE_MODE_NONE)
3404 return -EINVAL;
3405
5d214fe6 3406 mutex_lock(&domain->api_lock);
468e2366 3407 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3408 mutex_unlock(&domain->api_lock);
eb74ff6c 3409
17b124bf 3410 domain_flush_tlb_pde(domain);
5d214fe6 3411
5009065d 3412 return unmap_size;
eb74ff6c
JR
3413}
3414
645c4c8d
JR
3415static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3416 unsigned long iova)
3417{
3418 struct protection_domain *domain = dom->priv;
f03152bb 3419 unsigned long offset_mask;
645c4c8d 3420 phys_addr_t paddr;
f03152bb 3421 u64 *pte, __pte;
645c4c8d 3422
132bd68f
JR
3423 if (domain->mode == PAGE_MODE_NONE)
3424 return iova;
3425
24cd7723 3426 pte = fetch_pte(domain, iova);
645c4c8d 3427
a6d41a40 3428 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3429 return 0;
3430
f03152bb
JR
3431 if (PM_PTE_LEVEL(*pte) == 0)
3432 offset_mask = PAGE_SIZE - 1;
3433 else
3434 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3435
3436 __pte = *pte & PM_ADDR_MASK;
3437 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3438
3439 return paddr;
3440}
3441
dbb9fd86
SY
3442static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3443 unsigned long cap)
3444{
80a506b8
JR
3445 switch (cap) {
3446 case IOMMU_CAP_CACHE_COHERENCY:
3447 return 1;
bdddadcb
JR
3448 case IOMMU_CAP_INTR_REMAP:
3449 return irq_remapping_enabled;
80a506b8
JR
3450 }
3451
dbb9fd86
SY
3452 return 0;
3453}
3454
26961efe
JR
3455static struct iommu_ops amd_iommu_ops = {
3456 .domain_init = amd_iommu_domain_init,
3457 .domain_destroy = amd_iommu_domain_destroy,
3458 .attach_dev = amd_iommu_attach_device,
3459 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3460 .map = amd_iommu_map,
3461 .unmap = amd_iommu_unmap,
26961efe 3462 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3463 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3464 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3465};
3466
0feae533
JR
3467/*****************************************************************************
3468 *
3469 * The next functions do a basic initialization of IOMMU for pass through
3470 * mode
3471 *
3472 * In passthrough mode the IOMMU is initialized and enabled but not used for
3473 * DMA-API translation.
3474 *
3475 *****************************************************************************/
3476
3477int __init amd_iommu_init_passthrough(void)
3478{
5abcdba4 3479 struct iommu_dev_data *dev_data;
0feae533 3480 struct pci_dev *dev = NULL;
5abcdba4 3481 struct amd_iommu *iommu;
15898bbc 3482 u16 devid;
5abcdba4 3483 int ret;
0feae533 3484
5abcdba4
JR
3485 ret = alloc_passthrough_domain();
3486 if (ret)
3487 return ret;
0feae533 3488
6c54aabd 3489 for_each_pci_dev(dev) {
98fc5a69 3490 if (!check_device(&dev->dev))
0feae533
JR
3491 continue;
3492
5abcdba4
JR
3493 dev_data = get_dev_data(&dev->dev);
3494 dev_data->passthrough = true;
3495
98fc5a69
JR
3496 devid = get_device_id(&dev->dev);
3497
15898bbc 3498 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3499 if (!iommu)
3500 continue;
3501
15898bbc 3502 attach_device(&dev->dev, pt_domain);
0feae533
JR
3503 }
3504
2655d7a2
JR
3505 amd_iommu_stats_init();
3506
0feae533
JR
3507 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3508
3509 return 0;
3510}
72e1dcc4
JR
3511
3512/* IOMMUv2 specific functions */
3513int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3514{
3515 return atomic_notifier_chain_register(&ppr_notifier, nb);
3516}
3517EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3518
3519int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3520{
3521 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3522}
3523EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3524
3525void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3526{
3527 struct protection_domain *domain = dom->priv;
3528 unsigned long flags;
3529
3530 spin_lock_irqsave(&domain->lock, flags);
3531
3532 /* Update data structure */
3533 domain->mode = PAGE_MODE_NONE;
3534 domain->updated = true;
3535
3536 /* Make changes visible to IOMMUs */
3537 update_domain(domain);
3538
3539 /* Page-table is not visible to IOMMU anymore, so free it */
3540 free_pagetable(domain);
3541
3542 spin_unlock_irqrestore(&domain->lock, flags);
3543}
3544EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3545
3546int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3547{
3548 struct protection_domain *domain = dom->priv;
3549 unsigned long flags;
3550 int levels, ret;
3551
3552 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3553 return -EINVAL;
3554
3555 /* Number of GCR3 table levels required */
3556 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3557 levels += 1;
3558
3559 if (levels > amd_iommu_max_glx_val)
3560 return -EINVAL;
3561
3562 spin_lock_irqsave(&domain->lock, flags);
3563
3564 /*
3565 * Save us all sanity checks whether devices already in the
3566 * domain support IOMMUv2. Just force that the domain has no
3567 * devices attached when it is switched into IOMMUv2 mode.
3568 */
3569 ret = -EBUSY;
3570 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3571 goto out;
3572
3573 ret = -ENOMEM;
3574 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3575 if (domain->gcr3_tbl == NULL)
3576 goto out;
3577
3578 domain->glx = levels;
3579 domain->flags |= PD_IOMMUV2_MASK;
3580 domain->updated = true;
3581
3582 update_domain(domain);
3583
3584 ret = 0;
3585
3586out:
3587 spin_unlock_irqrestore(&domain->lock, flags);
3588
3589 return ret;
3590}
3591EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3592
3593static int __flush_pasid(struct protection_domain *domain, int pasid,
3594 u64 address, bool size)
3595{
3596 struct iommu_dev_data *dev_data;
3597 struct iommu_cmd cmd;
3598 int i, ret;
3599
3600 if (!(domain->flags & PD_IOMMUV2_MASK))
3601 return -EINVAL;
3602
3603 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3604
3605 /*
3606 * IOMMU TLB needs to be flushed before Device TLB to
3607 * prevent device TLB refill from IOMMU TLB
3608 */
3609 for (i = 0; i < amd_iommus_present; ++i) {
3610 if (domain->dev_iommu[i] == 0)
3611 continue;
3612
3613 ret = iommu_queue_command(amd_iommus[i], &cmd);
3614 if (ret != 0)
3615 goto out;
3616 }
3617
3618 /* Wait until IOMMU TLB flushes are complete */
3619 domain_flush_complete(domain);
3620
3621 /* Now flush device TLBs */
3622 list_for_each_entry(dev_data, &domain->dev_list, list) {
3623 struct amd_iommu *iommu;
3624 int qdep;
3625
3626 BUG_ON(!dev_data->ats.enabled);
3627
3628 qdep = dev_data->ats.qdep;
3629 iommu = amd_iommu_rlookup_table[dev_data->devid];
3630
3631 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3632 qdep, address, size);
3633
3634 ret = iommu_queue_command(iommu, &cmd);
3635 if (ret != 0)
3636 goto out;
3637 }
3638
3639 /* Wait until all device TLBs are flushed */
3640 domain_flush_complete(domain);
3641
3642 ret = 0;
3643
3644out:
3645
3646 return ret;
3647}
3648
3649static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3650 u64 address)
3651{
399be2f5
JR
3652 INC_STATS_COUNTER(invalidate_iotlb);
3653
22e266c7
JR
3654 return __flush_pasid(domain, pasid, address, false);
3655}
3656
3657int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3658 u64 address)
3659{
3660 struct protection_domain *domain = dom->priv;
3661 unsigned long flags;
3662 int ret;
3663
3664 spin_lock_irqsave(&domain->lock, flags);
3665 ret = __amd_iommu_flush_page(domain, pasid, address);
3666 spin_unlock_irqrestore(&domain->lock, flags);
3667
3668 return ret;
3669}
3670EXPORT_SYMBOL(amd_iommu_flush_page);
3671
3672static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3673{
399be2f5
JR
3674 INC_STATS_COUNTER(invalidate_iotlb_all);
3675
22e266c7
JR
3676 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3677 true);
3678}
3679
3680int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3681{
3682 struct protection_domain *domain = dom->priv;
3683 unsigned long flags;
3684 int ret;
3685
3686 spin_lock_irqsave(&domain->lock, flags);
3687 ret = __amd_iommu_flush_tlb(domain, pasid);
3688 spin_unlock_irqrestore(&domain->lock, flags);
3689
3690 return ret;
3691}
3692EXPORT_SYMBOL(amd_iommu_flush_tlb);
3693
b16137b1
JR
3694static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3695{
3696 int index;
3697 u64 *pte;
3698
3699 while (true) {
3700
3701 index = (pasid >> (9 * level)) & 0x1ff;
3702 pte = &root[index];
3703
3704 if (level == 0)
3705 break;
3706
3707 if (!(*pte & GCR3_VALID)) {
3708 if (!alloc)
3709 return NULL;
3710
3711 root = (void *)get_zeroed_page(GFP_ATOMIC);
3712 if (root == NULL)
3713 return NULL;
3714
3715 *pte = __pa(root) | GCR3_VALID;
3716 }
3717
3718 root = __va(*pte & PAGE_MASK);
3719
3720 level -= 1;
3721 }
3722
3723 return pte;
3724}
3725
3726static int __set_gcr3(struct protection_domain *domain, int pasid,
3727 unsigned long cr3)
3728{
3729 u64 *pte;
3730
3731 if (domain->mode != PAGE_MODE_NONE)
3732 return -EINVAL;
3733
3734 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3735 if (pte == NULL)
3736 return -ENOMEM;
3737
3738 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3739
3740 return __amd_iommu_flush_tlb(domain, pasid);
3741}
3742
3743static int __clear_gcr3(struct protection_domain *domain, int pasid)
3744{
3745 u64 *pte;
3746
3747 if (domain->mode != PAGE_MODE_NONE)
3748 return -EINVAL;
3749
3750 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3751 if (pte == NULL)
3752 return 0;
3753
3754 *pte = 0;
3755
3756 return __amd_iommu_flush_tlb(domain, pasid);
3757}
3758
3759int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3760 unsigned long cr3)
3761{
3762 struct protection_domain *domain = dom->priv;
3763 unsigned long flags;
3764 int ret;
3765
3766 spin_lock_irqsave(&domain->lock, flags);
3767 ret = __set_gcr3(domain, pasid, cr3);
3768 spin_unlock_irqrestore(&domain->lock, flags);
3769
3770 return ret;
3771}
3772EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3773
3774int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3775{
3776 struct protection_domain *domain = dom->priv;
3777 unsigned long flags;
3778 int ret;
3779
3780 spin_lock_irqsave(&domain->lock, flags);
3781 ret = __clear_gcr3(domain, pasid);
3782 spin_unlock_irqrestore(&domain->lock, flags);
3783
3784 return ret;
3785}
3786EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3787
3788int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3789 int status, int tag)
3790{
3791 struct iommu_dev_data *dev_data;
3792 struct amd_iommu *iommu;
3793 struct iommu_cmd cmd;
3794
399be2f5
JR
3795 INC_STATS_COUNTER(complete_ppr);
3796
c99afa25
JR
3797 dev_data = get_dev_data(&pdev->dev);
3798 iommu = amd_iommu_rlookup_table[dev_data->devid];
3799
3800 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3801 tag, dev_data->pri_tlp);
3802
3803 return iommu_queue_command(iommu, &cmd);
3804}
3805EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3806
3807struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3808{
3809 struct protection_domain *domain;
3810
3811 domain = get_domain(&pdev->dev);
3812 if (IS_ERR(domain))
3813 return NULL;
3814
3815 /* Only return IOMMUv2 domains */
3816 if (!(domain->flags & PD_IOMMUV2_MASK))
3817 return NULL;
3818
3819 return domain->iommu_domain;
3820}
3821EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3822
3823void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3824{
3825 struct iommu_dev_data *dev_data;
3826
3827 if (!amd_iommu_v2_supported())
3828 return;
3829
3830 dev_data = get_dev_data(&pdev->dev);
3831 dev_data->errata |= (1 << erratum);
3832}
3833EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3834
3835int amd_iommu_device_info(struct pci_dev *pdev,
3836 struct amd_iommu_device_info *info)
3837{
3838 int max_pasids;
3839 int pos;
3840
3841 if (pdev == NULL || info == NULL)
3842 return -EINVAL;
3843
3844 if (!amd_iommu_v2_supported())
3845 return -EINVAL;
3846
3847 memset(info, 0, sizeof(*info));
3848
3849 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3850 if (pos)
3851 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3852
3853 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3854 if (pos)
3855 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3856
3857 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3858 if (pos) {
3859 int features;
3860
3861 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3862 max_pasids = min(max_pasids, (1 << 20));
3863
3864 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3865 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3866
3867 features = pci_pasid_features(pdev);
3868 if (features & PCI_PASID_CAP_EXEC)
3869 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3870 if (features & PCI_PASID_CAP_PRIV)
3871 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3872 }
3873
3874 return 0;
3875}
3876EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3877
3878#ifdef CONFIG_IRQ_REMAP
3879
3880/*****************************************************************************
3881 *
3882 * Interrupt Remapping Implementation
3883 *
3884 *****************************************************************************/
3885
3886union irte {
3887 u32 val;
3888 struct {
3889 u32 valid : 1,
3890 no_fault : 1,
3891 int_type : 3,
3892 rq_eoi : 1,
3893 dm : 1,
3894 rsvd_1 : 1,
3895 destination : 8,
3896 vector : 8,
3897 rsvd_2 : 8;
3898 } fields;
3899};
3900
3901#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3902#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3903#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3904#define DTE_IRQ_REMAP_ENABLE 1ULL
3905
3906static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3907{
3908 u64 dte;
3909
3910 dte = amd_iommu_dev_table[devid].data[2];
3911 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3912 dte |= virt_to_phys(table->table);
3913 dte |= DTE_IRQ_REMAP_INTCTL;
3914 dte |= DTE_IRQ_TABLE_LEN;
3915 dte |= DTE_IRQ_REMAP_ENABLE;
3916
3917 amd_iommu_dev_table[devid].data[2] = dte;
3918}
3919
3920#define IRTE_ALLOCATED (~1U)
3921
3922static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3923{
3924 struct irq_remap_table *table = NULL;
3925 struct amd_iommu *iommu;
3926 unsigned long flags;
3927 u16 alias;
3928
3929 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3930
3931 iommu = amd_iommu_rlookup_table[devid];
3932 if (!iommu)
3933 goto out_unlock;
3934
3935 table = irq_lookup_table[devid];
3936 if (table)
3937 goto out;
3938
3939 alias = amd_iommu_alias_table[devid];
3940 table = irq_lookup_table[alias];
3941 if (table) {
3942 irq_lookup_table[devid] = table;
3943 set_dte_irq_entry(devid, table);
3944 iommu_flush_dte(iommu, devid);
3945 goto out;
3946 }
3947
3948 /* Nothing there yet, allocate new irq remapping table */
3949 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3950 if (!table)
3951 goto out;
3952
3953 if (ioapic)
3954 /* Keep the first 32 indexes free for IOAPIC interrupts */
3955 table->min_index = 32;
3956
3957 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3958 if (!table->table) {
3959 kfree(table);
821f0f68 3960 table = NULL;
2b324506
JR
3961 goto out;
3962 }
3963
3964 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3965
3966 if (ioapic) {
3967 int i;
3968
3969 for (i = 0; i < 32; ++i)
3970 table->table[i] = IRTE_ALLOCATED;
3971 }
3972
3973 irq_lookup_table[devid] = table;
3974 set_dte_irq_entry(devid, table);
3975 iommu_flush_dte(iommu, devid);
3976 if (devid != alias) {
3977 irq_lookup_table[alias] = table;
3978 set_dte_irq_entry(devid, table);
3979 iommu_flush_dte(iommu, alias);
3980 }
3981
3982out:
3983 iommu_completion_wait(iommu);
3984
3985out_unlock:
3986 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3987
3988 return table;
3989}
3990
3991static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3992{
3993 struct irq_remap_table *table;
3994 unsigned long flags;
3995 int index, c;
3996
3997 table = get_irq_table(devid, false);
3998 if (!table)
3999 return -ENODEV;
4000
4001 spin_lock_irqsave(&table->lock, flags);
4002
4003 /* Scan table for free entries */
4004 for (c = 0, index = table->min_index;
4005 index < MAX_IRQS_PER_TABLE;
4006 ++index) {
4007 if (table->table[index] == 0)
4008 c += 1;
4009 else
4010 c = 0;
4011
4012 if (c == count) {
4013 struct irq_2_iommu *irte_info;
4014
4015 for (; c != 0; --c)
4016 table->table[index - c + 1] = IRTE_ALLOCATED;
4017
4018 index -= count - 1;
4019
4020 irte_info = &cfg->irq_2_iommu;
4021 irte_info->sub_handle = devid;
4022 irte_info->irte_index = index;
4023 irte_info->iommu = (void *)cfg;
4024
4025 goto out;
4026 }
4027 }
4028
4029 index = -ENOSPC;
4030
4031out:
4032 spin_unlock_irqrestore(&table->lock, flags);
4033
4034 return index;
4035}
4036
4037static int get_irte(u16 devid, int index, union irte *irte)
4038{
4039 struct irq_remap_table *table;
4040 unsigned long flags;
4041
4042 table = get_irq_table(devid, false);
4043 if (!table)
4044 return -ENOMEM;
4045
4046 spin_lock_irqsave(&table->lock, flags);
4047 irte->val = table->table[index];
4048 spin_unlock_irqrestore(&table->lock, flags);
4049
4050 return 0;
4051}
4052
4053static int modify_irte(u16 devid, int index, union irte irte)
4054{
4055 struct irq_remap_table *table;
4056 struct amd_iommu *iommu;
4057 unsigned long flags;
4058
4059 iommu = amd_iommu_rlookup_table[devid];
4060 if (iommu == NULL)
4061 return -EINVAL;
4062
4063 table = get_irq_table(devid, false);
4064 if (!table)
4065 return -ENOMEM;
4066
4067 spin_lock_irqsave(&table->lock, flags);
4068 table->table[index] = irte.val;
4069 spin_unlock_irqrestore(&table->lock, flags);
4070
4071 iommu_flush_irt(iommu, devid);
4072 iommu_completion_wait(iommu);
4073
4074 return 0;
4075}
4076
4077static void free_irte(u16 devid, int index)
4078{
4079 struct irq_remap_table *table;
4080 struct amd_iommu *iommu;
4081 unsigned long flags;
4082
4083 iommu = amd_iommu_rlookup_table[devid];
4084 if (iommu == NULL)
4085 return;
4086
4087 table = get_irq_table(devid, false);
4088 if (!table)
4089 return;
4090
4091 spin_lock_irqsave(&table->lock, flags);
4092 table->table[index] = 0;
4093 spin_unlock_irqrestore(&table->lock, flags);
4094
4095 iommu_flush_irt(iommu, devid);
4096 iommu_completion_wait(iommu);
4097}
4098
5527de74
JR
4099static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4100 unsigned int destination, int vector,
4101 struct io_apic_irq_attr *attr)
4102{
4103 struct irq_remap_table *table;
4104 struct irq_2_iommu *irte_info;
4105 struct irq_cfg *cfg;
4106 union irte irte;
4107 int ioapic_id;
4108 int index;
4109 int devid;
4110 int ret;
4111
4112 cfg = irq_get_chip_data(irq);
4113 if (!cfg)
4114 return -EINVAL;
4115
4116 irte_info = &cfg->irq_2_iommu;
4117 ioapic_id = mpc_ioapic_id(attr->ioapic);
4118 devid = get_ioapic_devid(ioapic_id);
4119
4120 if (devid < 0)
4121 return devid;
4122
4123 table = get_irq_table(devid, true);
4124 if (table == NULL)
4125 return -ENOMEM;
4126
4127 index = attr->ioapic_pin;
4128
4129 /* Setup IRQ remapping info */
4130 irte_info->sub_handle = devid;
4131 irte_info->irte_index = index;
4132 irte_info->iommu = (void *)cfg;
4133
4134 /* Setup IRTE for IOMMU */
4135 irte.val = 0;
4136 irte.fields.vector = vector;
4137 irte.fields.int_type = apic->irq_delivery_mode;
4138 irte.fields.destination = destination;
4139 irte.fields.dm = apic->irq_dest_mode;
4140 irte.fields.valid = 1;
4141
4142 ret = modify_irte(devid, index, irte);
4143 if (ret)
4144 return ret;
4145
4146 /* Setup IOAPIC entry */
4147 memset(entry, 0, sizeof(*entry));
4148
4149 entry->vector = index;
4150 entry->mask = 0;
4151 entry->trigger = attr->trigger;
4152 entry->polarity = attr->polarity;
4153
4154 /*
4155 * Mask level triggered irqs.
5527de74
JR
4156 */
4157 if (attr->trigger)
4158 entry->mask = 1;
4159
4160 return 0;
4161}
4162
4163static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4164 bool force)
4165{
4166 struct irq_2_iommu *irte_info;
4167 unsigned int dest, irq;
4168 struct irq_cfg *cfg;
4169 union irte irte;
4170 int err;
4171
4172 if (!config_enabled(CONFIG_SMP))
4173 return -1;
4174
4175 cfg = data->chip_data;
4176 irq = data->irq;
4177 irte_info = &cfg->irq_2_iommu;
4178
4179 if (!cpumask_intersects(mask, cpu_online_mask))
4180 return -EINVAL;
4181
4182 if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
4183 return -EBUSY;
4184
4185 if (assign_irq_vector(irq, cfg, mask))
4186 return -EBUSY;
4187
4188 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4189 if (err) {
4190 if (assign_irq_vector(irq, cfg, data->affinity))
4191 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4192 return err;
4193 }
4194
4195 irte.fields.vector = cfg->vector;
4196 irte.fields.destination = dest;
4197
4198 modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
4199
4200 if (cfg->move_in_progress)
4201 send_cleanup_vector(cfg);
4202
4203 cpumask_copy(data->affinity, mask);
4204
4205 return 0;
4206}
4207
4208static int free_irq(int irq)
4209{
4210 struct irq_2_iommu *irte_info;
4211 struct irq_cfg *cfg;
4212
4213 cfg = irq_get_chip_data(irq);
4214 if (!cfg)
4215 return -EINVAL;
4216
4217 irte_info = &cfg->irq_2_iommu;
4218
4219 free_irte(irte_info->sub_handle, irte_info->irte_index);
4220
4221 return 0;
4222}
4223
0b4d48cb
JR
4224static void compose_msi_msg(struct pci_dev *pdev,
4225 unsigned int irq, unsigned int dest,
4226 struct msi_msg *msg, u8 hpet_id)
4227{
4228 struct irq_2_iommu *irte_info;
4229 struct irq_cfg *cfg;
4230 union irte irte;
4231
4232 cfg = irq_get_chip_data(irq);
4233 if (!cfg)
4234 return;
4235
4236 irte_info = &cfg->irq_2_iommu;
4237
4238 irte.val = 0;
4239 irte.fields.vector = cfg->vector;
4240 irte.fields.int_type = apic->irq_delivery_mode;
4241 irte.fields.destination = dest;
4242 irte.fields.dm = apic->irq_dest_mode;
4243 irte.fields.valid = 1;
4244
4245 modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
4246
4247 msg->address_hi = MSI_ADDR_BASE_HI;
4248 msg->address_lo = MSI_ADDR_BASE_LO;
4249 msg->data = irte_info->irte_index;
4250}
4251
4252static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4253{
4254 struct irq_cfg *cfg;
4255 int index;
4256 u16 devid;
4257
4258 if (!pdev)
4259 return -EINVAL;
4260
4261 cfg = irq_get_chip_data(irq);
4262 if (!cfg)
4263 return -EINVAL;
4264
4265 devid = get_device_id(&pdev->dev);
4266 index = alloc_irq_index(cfg, devid, nvec);
4267
4268 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4269}
4270
4271static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4272 int index, int offset)
4273{
4274 struct irq_2_iommu *irte_info;
4275 struct irq_cfg *cfg;
4276 u16 devid;
4277
4278 if (!pdev)
4279 return -EINVAL;
4280
4281 cfg = irq_get_chip_data(irq);
4282 if (!cfg)
4283 return -EINVAL;
4284
4285 if (index >= MAX_IRQS_PER_TABLE)
4286 return 0;
4287
4288 devid = get_device_id(&pdev->dev);
4289 irte_info = &cfg->irq_2_iommu;
4290
4291 irte_info->sub_handle = devid;
4292 irte_info->irte_index = index + offset;
4293 irte_info->iommu = (void *)cfg;
4294
4295 return 0;
4296}
4297
d976195c
JR
4298static int setup_hpet_msi(unsigned int irq, unsigned int id)
4299{
4300 struct irq_2_iommu *irte_info;
4301 struct irq_cfg *cfg;
4302 int index, devid;
4303
4304 cfg = irq_get_chip_data(irq);
4305 if (!cfg)
4306 return -EINVAL;
4307
4308 irte_info = &cfg->irq_2_iommu;
4309 devid = get_hpet_devid(id);
4310 if (devid < 0)
4311 return devid;
4312
4313 index = alloc_irq_index(cfg, devid, 1);
4314 if (index < 0)
4315 return index;
4316
4317 irte_info->sub_handle = devid;
4318 irte_info->irte_index = index;
4319 irte_info->iommu = (void *)cfg;
4320
4321 return 0;
4322}
4323
6b474b82
JR
4324struct irq_remap_ops amd_iommu_irq_ops = {
4325 .supported = amd_iommu_supported,
4326 .prepare = amd_iommu_prepare,
4327 .enable = amd_iommu_enable,
4328 .disable = amd_iommu_disable,
4329 .reenable = amd_iommu_reenable,
4330 .enable_faulting = amd_iommu_enable_faulting,
4331 .setup_ioapic_entry = setup_ioapic_entry,
4332 .set_affinity = set_affinity,
4333 .free_irq = free_irq,
4334 .compose_msi_msg = compose_msi_msg,
4335 .msi_alloc_irq = msi_alloc_irq,
4336 .msi_setup_irq = msi_setup_irq,
4337 .setup_hpet_msi = setup_hpet_msi,
4338};
2b324506 4339#endif
This page took 1.064607 seconds and 5 git commands to generate.