Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
7c71d306 37#include <linux/irqdomain.h>
2b324506
JR
38#include <asm/irq_remapping.h>
39#include <asm/io_apic.h>
40#include <asm/apic.h>
41#include <asm/hw_irq.h>
17f5b569 42#include <asm/msidef.h>
b6c02715 43#include <asm/proto.h>
46a7fa27 44#include <asm/iommu.h>
1d9b16d1 45#include <asm/gart.h>
27c2127a 46#include <asm/dma.h>
403f81d8
JR
47
48#include "amd_iommu_proto.h"
49#include "amd_iommu_types.h"
6b474b82 50#include "irq_remapping.h"
b6c02715
JR
51
52#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53
815b33fd 54#define LOOP_TIMEOUT 100000
136f78a1 55
aa3de9c0
OBC
56/*
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
60 * that we support.
61 *
954e3dd8 62 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 63 */
954e3dd8 64#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 65
b6c02715
JR
66static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67
bd60b735
JR
68/* A list of preallocated protection domains */
69static LIST_HEAD(iommu_pd_list);
70static DEFINE_SPINLOCK(iommu_pd_list_lock);
71
8fa5f802
JR
72/* List of all available dev_data structures */
73static LIST_HEAD(dev_data_list);
74static DEFINE_SPINLOCK(dev_data_list_lock);
75
6efed63b
JR
76LIST_HEAD(ioapic_map);
77LIST_HEAD(hpet_map);
78
0feae533
JR
79/*
80 * Domain for untranslated devices - only allocated
81 * if iommu=pt passed on kernel cmd line.
82 */
83static struct protection_domain *pt_domain;
84
b22f6434 85static const struct iommu_ops amd_iommu_ops;
26961efe 86
72e1dcc4 87static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 88int amd_iommu_max_glx_val = -1;
72e1dcc4 89
ac1534a5
JR
90static struct dma_map_ops amd_iommu_dma_ops;
91
50917e26
JR
92/*
93 * This struct contains device specific data for the IOMMU
94 */
95struct iommu_dev_data {
96 struct list_head list; /* For domain->dev_list */
97 struct list_head dev_data_list; /* For global dev_data_list */
f251e187 98 struct list_head alias_list; /* Link alias-groups together */
50917e26
JR
99 struct iommu_dev_data *alias_data;/* The alias dev_data */
100 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
101 u16 devid; /* PCI Device ID */
102 bool iommu_v2; /* Device can make use of IOMMUv2 */
103 bool passthrough; /* Default for device is pt_domain */
104 struct {
105 bool enabled;
106 int qdep;
107 } ats; /* ATS state */
108 bool pri_tlp; /* PASID TLB required for
109 PPR completions */
110 u32 errata; /* Bitmap for errata to apply */
111};
112
431b2a20
JR
113/*
114 * general struct to manage commands send to an IOMMU
115 */
d6449536 116struct iommu_cmd {
b6c02715
JR
117 u32 data[4];
118};
119
05152a04
JR
120struct kmem_cache *amd_iommu_irq_cache;
121
04bfdd84 122static void update_domain(struct protection_domain *domain);
5abcdba4 123static int __init alloc_passthrough_domain(void);
c1eee67b 124
15898bbc
JR
125/****************************************************************************
126 *
127 * Helper functions
128 *
129 ****************************************************************************/
130
3f4b87b9
JR
131static struct protection_domain *to_pdomain(struct iommu_domain *dom)
132{
133 return container_of(dom, struct protection_domain, domain);
134}
135
f62dda66 136static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
137{
138 struct iommu_dev_data *dev_data;
139 unsigned long flags;
140
141 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
142 if (!dev_data)
143 return NULL;
144
f251e187
JR
145 INIT_LIST_HEAD(&dev_data->alias_list);
146
f62dda66 147 dev_data->devid = devid;
8fa5f802
JR
148
149 spin_lock_irqsave(&dev_data_list_lock, flags);
150 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
151 spin_unlock_irqrestore(&dev_data_list_lock, flags);
152
153 return dev_data;
154}
155
156static void free_dev_data(struct iommu_dev_data *dev_data)
157{
158 unsigned long flags;
159
160 spin_lock_irqsave(&dev_data_list_lock, flags);
161 list_del(&dev_data->dev_data_list);
162 spin_unlock_irqrestore(&dev_data_list_lock, flags);
163
164 kfree(dev_data);
165}
166
3b03bb74
JR
167static struct iommu_dev_data *search_dev_data(u16 devid)
168{
169 struct iommu_dev_data *dev_data;
170 unsigned long flags;
171
172 spin_lock_irqsave(&dev_data_list_lock, flags);
173 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
174 if (dev_data->devid == devid)
175 goto out_unlock;
176 }
177
178 dev_data = NULL;
179
180out_unlock:
181 spin_unlock_irqrestore(&dev_data_list_lock, flags);
182
183 return dev_data;
184}
185
186static struct iommu_dev_data *find_dev_data(u16 devid)
187{
188 struct iommu_dev_data *dev_data;
189
190 dev_data = search_dev_data(devid);
191
192 if (dev_data == NULL)
193 dev_data = alloc_dev_data(devid);
194
195 return dev_data;
196}
197
15898bbc
JR
198static inline u16 get_device_id(struct device *dev)
199{
200 struct pci_dev *pdev = to_pci_dev(dev);
201
6f2729ba 202 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
203}
204
657cbb6b
JR
205static struct iommu_dev_data *get_dev_data(struct device *dev)
206{
207 return dev->archdata.iommu;
208}
209
5abcdba4
JR
210static bool pci_iommuv2_capable(struct pci_dev *pdev)
211{
212 static const int caps[] = {
213 PCI_EXT_CAP_ID_ATS,
46277b75
JR
214 PCI_EXT_CAP_ID_PRI,
215 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
216 };
217 int i, pos;
218
219 for (i = 0; i < 3; ++i) {
220 pos = pci_find_ext_capability(pdev, caps[i]);
221 if (pos == 0)
222 return false;
223 }
224
225 return true;
226}
227
6a113ddc
JR
228static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
229{
230 struct iommu_dev_data *dev_data;
231
232 dev_data = get_dev_data(&pdev->dev);
233
234 return dev_data->errata & (1 << erratum) ? true : false;
235}
236
71c70984
JR
237/*
238 * In this function the list of preallocated protection domains is traversed to
239 * find the domain for a specific device
240 */
241static struct dma_ops_domain *find_protection_domain(u16 devid)
242{
243 struct dma_ops_domain *entry, *ret = NULL;
244 unsigned long flags;
245 u16 alias = amd_iommu_alias_table[devid];
246
247 if (list_empty(&iommu_pd_list))
248 return NULL;
249
250 spin_lock_irqsave(&iommu_pd_list_lock, flags);
251
252 list_for_each_entry(entry, &iommu_pd_list, list) {
253 if (entry->target_dev == devid ||
254 entry->target_dev == alias) {
255 ret = entry;
256 break;
257 }
258 }
259
260 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
261
262 return ret;
263}
264
98fc5a69
JR
265/*
266 * This function checks if the driver got a valid device from the caller to
267 * avoid dereferencing invalid pointers.
268 */
269static bool check_device(struct device *dev)
270{
271 u16 devid;
272
273 if (!dev || !dev->dma_mask)
274 return false;
275
b82a2272
YW
276 /* No PCI device */
277 if (!dev_is_pci(dev))
98fc5a69
JR
278 return false;
279
280 devid = get_device_id(dev);
281
282 /* Out of our scope? */
283 if (devid > amd_iommu_last_bdf)
284 return false;
285
286 if (amd_iommu_rlookup_table[devid] == NULL)
287 return false;
288
289 return true;
290}
291
25b11ce2 292static void init_iommu_group(struct device *dev)
2851db21 293{
2851db21 294 struct iommu_group *group;
2851db21 295
65d5352f 296 group = iommu_group_get_for_dev(dev);
25b11ce2
AW
297 if (!IS_ERR(group))
298 iommu_group_put(group);
eb9c9527
AW
299}
300
c1931090
AW
301static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
302{
303 *(u16 *)data = alias;
304 return 0;
305}
306
307static u16 get_alias(struct device *dev)
308{
309 struct pci_dev *pdev = to_pci_dev(dev);
310 u16 devid, ivrs_alias, pci_alias;
311
312 devid = get_device_id(dev);
313 ivrs_alias = amd_iommu_alias_table[devid];
314 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
315
316 if (ivrs_alias == pci_alias)
317 return ivrs_alias;
318
319 /*
320 * DMA alias showdown
321 *
322 * The IVRS is fairly reliable in telling us about aliases, but it
323 * can't know about every screwy device. If we don't have an IVRS
324 * reported alias, use the PCI reported alias. In that case we may
325 * still need to initialize the rlookup and dev_table entries if the
326 * alias is to a non-existent device.
327 */
328 if (ivrs_alias == devid) {
329 if (!amd_iommu_rlookup_table[pci_alias]) {
330 amd_iommu_rlookup_table[pci_alias] =
331 amd_iommu_rlookup_table[devid];
332 memcpy(amd_iommu_dev_table[pci_alias].data,
333 amd_iommu_dev_table[devid].data,
334 sizeof(amd_iommu_dev_table[pci_alias].data));
335 }
336
337 return pci_alias;
338 }
339
340 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
341 "for device %s[%04x:%04x], kernel reported alias "
342 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
343 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
344 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
345 PCI_FUNC(pci_alias));
346
347 /*
348 * If we don't have a PCI DMA alias and the IVRS alias is on the same
349 * bus, then the IVRS table may know about a quirk that we don't.
350 */
351 if (pci_alias == devid &&
352 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
353 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
354 pdev->dma_alias_devfn = ivrs_alias & 0xff;
355 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
356 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
357 dev_name(dev));
358 }
359
360 return ivrs_alias;
361}
362
eb9c9527
AW
363static int iommu_init_device(struct device *dev)
364{
365 struct pci_dev *pdev = to_pci_dev(dev);
366 struct iommu_dev_data *dev_data;
367 u16 alias;
eb9c9527
AW
368
369 if (dev->archdata.iommu)
370 return 0;
371
372 dev_data = find_dev_data(get_device_id(dev));
373 if (!dev_data)
374 return -ENOMEM;
375
c1931090
AW
376 alias = get_alias(dev);
377
eb9c9527
AW
378 if (alias != dev_data->devid) {
379 struct iommu_dev_data *alias_data;
380
381 alias_data = find_dev_data(alias);
382 if (alias_data == NULL) {
383 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
384 dev_name(dev));
385 free_dev_data(dev_data);
386 return -ENOTSUPP;
387 }
388 dev_data->alias_data = alias_data;
eb9c9527 389
f251e187
JR
390 /* Add device to the alias_list */
391 list_add(&dev_data->alias_list, &alias_data->alias_list);
e644a013 392 }
9dcd6130 393
5abcdba4
JR
394 if (pci_iommuv2_capable(pdev)) {
395 struct amd_iommu *iommu;
396
397 iommu = amd_iommu_rlookup_table[dev_data->devid];
398 dev_data->iommu_v2 = iommu->is_iommu_v2;
399 }
400
657cbb6b
JR
401 dev->archdata.iommu = dev_data;
402
066f2e98
AW
403 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
404 dev);
405
657cbb6b
JR
406 return 0;
407}
408
26018874
JR
409static void iommu_ignore_device(struct device *dev)
410{
411 u16 devid, alias;
412
413 devid = get_device_id(dev);
414 alias = amd_iommu_alias_table[devid];
415
416 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
417 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
418
419 amd_iommu_rlookup_table[devid] = NULL;
420 amd_iommu_rlookup_table[alias] = NULL;
421}
422
657cbb6b
JR
423static void iommu_uninit_device(struct device *dev)
424{
c1931090
AW
425 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
426
427 if (!dev_data)
428 return;
429
066f2e98
AW
430 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
431 dev);
432
9dcd6130
AW
433 iommu_group_remove_device(dev);
434
c1931090
AW
435 /* Unlink from alias, it may change if another device is re-plugged */
436 dev_data->alias_data = NULL;
437
8fa5f802 438 /*
c1931090
AW
439 * We keep dev_data around for unplugged devices and reuse it when the
440 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 441 */
657cbb6b 442}
b7cc9554
JR
443
444void __init amd_iommu_uninit_devices(void)
445{
8fa5f802 446 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
447 struct pci_dev *pdev = NULL;
448
449 for_each_pci_dev(pdev) {
450
451 if (!check_device(&pdev->dev))
452 continue;
453
454 iommu_uninit_device(&pdev->dev);
455 }
8fa5f802
JR
456
457 /* Free all of our dev_data structures */
458 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
459 free_dev_data(dev_data);
b7cc9554
JR
460}
461
462int __init amd_iommu_init_devices(void)
463{
464 struct pci_dev *pdev = NULL;
465 int ret = 0;
466
467 for_each_pci_dev(pdev) {
468
469 if (!check_device(&pdev->dev))
470 continue;
471
472 ret = iommu_init_device(&pdev->dev);
26018874
JR
473 if (ret == -ENOTSUPP)
474 iommu_ignore_device(&pdev->dev);
475 else if (ret)
b7cc9554
JR
476 goto out_free;
477 }
478
25b11ce2
AW
479 /*
480 * Initialize IOMMU groups only after iommu_init_device() has
481 * had a chance to populate any IVRS defined aliases.
482 */
483 for_each_pci_dev(pdev) {
484 if (check_device(&pdev->dev))
485 init_iommu_group(&pdev->dev);
486 }
487
b7cc9554
JR
488 return 0;
489
490out_free:
491
492 amd_iommu_uninit_devices();
493
494 return ret;
495}
7f26508b
JR
496#ifdef CONFIG_AMD_IOMMU_STATS
497
498/*
499 * Initialization code for statistics collection
500 */
501
da49f6df 502DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 503DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 504DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 505DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 506DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 507DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 508DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 509DECLARE_STATS_COUNTER(cross_page);
f57d98ae 510DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 511DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 512DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 513DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
514DECLARE_STATS_COUNTER(complete_ppr);
515DECLARE_STATS_COUNTER(invalidate_iotlb);
516DECLARE_STATS_COUNTER(invalidate_iotlb_all);
517DECLARE_STATS_COUNTER(pri_requests);
518
7f26508b 519static struct dentry *stats_dir;
7f26508b
JR
520static struct dentry *de_fflush;
521
522static void amd_iommu_stats_add(struct __iommu_counter *cnt)
523{
524 if (stats_dir == NULL)
525 return;
526
527 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
528 &cnt->value);
529}
530
531static void amd_iommu_stats_init(void)
532{
533 stats_dir = debugfs_create_dir("amd-iommu", NULL);
534 if (stats_dir == NULL)
535 return;
536
7f26508b 537 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 538 &amd_iommu_unmap_flush);
da49f6df
JR
539
540 amd_iommu_stats_add(&compl_wait);
0f2a86f2 541 amd_iommu_stats_add(&cnt_map_single);
146a6917 542 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 543 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 544 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 545 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 546 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 547 amd_iommu_stats_add(&cross_page);
f57d98ae 548 amd_iommu_stats_add(&domain_flush_single);
18811f55 549 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 550 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 551 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
552 amd_iommu_stats_add(&complete_ppr);
553 amd_iommu_stats_add(&invalidate_iotlb);
554 amd_iommu_stats_add(&invalidate_iotlb_all);
555 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
556}
557
558#endif
559
a80dc3e0
JR
560/****************************************************************************
561 *
562 * Interrupt handling functions
563 *
564 ****************************************************************************/
565
e3e59876
JR
566static void dump_dte_entry(u16 devid)
567{
568 int i;
569
ee6c2868
JR
570 for (i = 0; i < 4; ++i)
571 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
572 amd_iommu_dev_table[devid].data[i]);
573}
574
945b4ac4
JR
575static void dump_command(unsigned long phys_addr)
576{
577 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
578 int i;
579
580 for (i = 0; i < 4; ++i)
581 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
582}
583
a345b23b 584static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 585{
3d06fca8
JR
586 int type, devid, domid, flags;
587 volatile u32 *event = __evt;
588 int count = 0;
589 u64 address;
590
591retry:
592 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
593 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
594 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
595 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
596 address = (u64)(((u64)event[3]) << 32) | event[2];
597
598 if (type == 0) {
599 /* Did we hit the erratum? */
600 if (++count == LOOP_TIMEOUT) {
601 pr_err("AMD-Vi: No event written to event log\n");
602 return;
603 }
604 udelay(1);
605 goto retry;
606 }
90008ee4 607
4c6f40d4 608 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
609
610 switch (type) {
611 case EVENT_TYPE_ILL_DEV:
612 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
613 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 614 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 615 address, flags);
e3e59876 616 dump_dte_entry(devid);
90008ee4
JR
617 break;
618 case EVENT_TYPE_IO_FAULT:
619 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
620 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
622 domid, address, flags);
623 break;
624 case EVENT_TYPE_DEV_TAB_ERR:
625 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
626 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
628 address, flags);
629 break;
630 case EVENT_TYPE_PAGE_TAB_ERR:
631 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
632 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 633 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
634 domid, address, flags);
635 break;
636 case EVENT_TYPE_ILL_CMD:
637 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 638 dump_command(address);
90008ee4
JR
639 break;
640 case EVENT_TYPE_CMD_HARD_ERR:
641 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
642 "flags=0x%04x]\n", address, flags);
643 break;
644 case EVENT_TYPE_IOTLB_INV_TO:
645 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
646 "address=0x%016llx]\n",
c5081cd7 647 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
648 address);
649 break;
650 case EVENT_TYPE_INV_DEV_REQ:
651 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
652 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 653 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
654 address, flags);
655 break;
656 default:
657 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
658 }
3d06fca8
JR
659
660 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
661}
662
663static void iommu_poll_events(struct amd_iommu *iommu)
664{
665 u32 head, tail;
90008ee4
JR
666
667 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
668 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
669
670 while (head != tail) {
a345b23b 671 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
672 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
673 }
674
675 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
676}
677
eee53537 678static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
679{
680 struct amd_iommu_fault fault;
72e1dcc4 681
399be2f5
JR
682 INC_STATS_COUNTER(pri_requests);
683
72e1dcc4
JR
684 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
685 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
686 return;
687 }
688
689 fault.address = raw[1];
690 fault.pasid = PPR_PASID(raw[0]);
691 fault.device_id = PPR_DEVID(raw[0]);
692 fault.tag = PPR_TAG(raw[0]);
693 fault.flags = PPR_FLAGS(raw[0]);
694
72e1dcc4
JR
695 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
696}
697
698static void iommu_poll_ppr_log(struct amd_iommu *iommu)
699{
72e1dcc4
JR
700 u32 head, tail;
701
702 if (iommu->ppr_log == NULL)
703 return;
704
72e1dcc4
JR
705 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
706 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
707
708 while (head != tail) {
eee53537
JR
709 volatile u64 *raw;
710 u64 entry[2];
711 int i;
712
713 raw = (u64 *)(iommu->ppr_log + head);
714
715 /*
716 * Hardware bug: Interrupt may arrive before the entry is
717 * written to memory. If this happens we need to wait for the
718 * entry to arrive.
719 */
720 for (i = 0; i < LOOP_TIMEOUT; ++i) {
721 if (PPR_REQ_TYPE(raw[0]) != 0)
722 break;
723 udelay(1);
724 }
72e1dcc4 725
eee53537
JR
726 /* Avoid memcpy function-call overhead */
727 entry[0] = raw[0];
728 entry[1] = raw[1];
72e1dcc4 729
eee53537
JR
730 /*
731 * To detect the hardware bug we need to clear the entry
732 * back to zero.
733 */
734 raw[0] = raw[1] = 0UL;
735
736 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
737 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
738 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 739
eee53537
JR
740 /* Handle PPR entry */
741 iommu_handle_ppr_entry(iommu, entry);
742
eee53537
JR
743 /* Refresh ring-buffer information */
744 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
745 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
746 }
72e1dcc4
JR
747}
748
72fe00f0 749irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 750{
3f398bc7
SS
751 struct amd_iommu *iommu = (struct amd_iommu *) data;
752 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 753
3f398bc7
SS
754 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
755 /* Enable EVT and PPR interrupts again */
756 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
757 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 758
3f398bc7
SS
759 if (status & MMIO_STATUS_EVT_INT_MASK) {
760 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
761 iommu_poll_events(iommu);
762 }
90008ee4 763
3f398bc7
SS
764 if (status & MMIO_STATUS_PPR_INT_MASK) {
765 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
766 iommu_poll_ppr_log(iommu);
767 }
90008ee4 768
3f398bc7
SS
769 /*
770 * Hardware bug: ERBT1312
771 * When re-enabling interrupt (by writing 1
772 * to clear the bit), the hardware might also try to set
773 * the interrupt bit in the event status register.
774 * In this scenario, the bit will be set, and disable
775 * subsequent interrupts.
776 *
777 * Workaround: The IOMMU driver should read back the
778 * status register and check if the interrupt bits are cleared.
779 * If not, driver will need to go through the interrupt handler
780 * again and re-clear the bits
781 */
782 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
783 }
90008ee4 784 return IRQ_HANDLED;
a80dc3e0
JR
785}
786
72fe00f0
JR
787irqreturn_t amd_iommu_int_handler(int irq, void *data)
788{
789 return IRQ_WAKE_THREAD;
790}
791
431b2a20
JR
792/****************************************************************************
793 *
794 * IOMMU command queuing functions
795 *
796 ****************************************************************************/
797
ac0ea6e9
JR
798static int wait_on_sem(volatile u64 *sem)
799{
800 int i = 0;
801
802 while (*sem == 0 && i < LOOP_TIMEOUT) {
803 udelay(1);
804 i += 1;
805 }
806
807 if (i == LOOP_TIMEOUT) {
808 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
809 return -EIO;
810 }
811
812 return 0;
813}
814
815static void copy_cmd_to_buffer(struct amd_iommu *iommu,
816 struct iommu_cmd *cmd,
817 u32 tail)
a19ae1ec 818{
a19ae1ec
JR
819 u8 *target;
820
8a7c5ef3 821 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
822 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
823
824 /* Copy command to buffer */
825 memcpy(target, cmd, sizeof(*cmd));
826
827 /* Tell the IOMMU about it */
a19ae1ec 828 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 829}
a19ae1ec 830
815b33fd 831static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 832{
815b33fd
JR
833 WARN_ON(address & 0x7ULL);
834
ded46737 835 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
836 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
837 cmd->data[1] = upper_32_bits(__pa(address));
838 cmd->data[2] = 1;
ded46737
JR
839 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
840}
841
94fe79e2
JR
842static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
843{
844 memset(cmd, 0, sizeof(*cmd));
845 cmd->data[0] = devid;
846 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
847}
848
11b6402c
JR
849static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
850 size_t size, u16 domid, int pde)
851{
852 u64 pages;
ae0cbbb1 853 bool s;
11b6402c
JR
854
855 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 856 s = false;
11b6402c
JR
857
858 if (pages > 1) {
859 /*
860 * If we have to flush more than one page, flush all
861 * TLB entries for this domain
862 */
863 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 864 s = true;
11b6402c
JR
865 }
866
867 address &= PAGE_MASK;
868
869 memset(cmd, 0, sizeof(*cmd));
870 cmd->data[1] |= domid;
871 cmd->data[2] = lower_32_bits(address);
872 cmd->data[3] = upper_32_bits(address);
873 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
874 if (s) /* size bit - we flush more than one 4kb page */
875 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 876 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
877 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
878}
879
cb41ed85
JR
880static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
881 u64 address, size_t size)
882{
883 u64 pages;
ae0cbbb1 884 bool s;
cb41ed85
JR
885
886 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 887 s = false;
cb41ed85
JR
888
889 if (pages > 1) {
890 /*
891 * If we have to flush more than one page, flush all
892 * TLB entries for this domain
893 */
894 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 895 s = true;
cb41ed85
JR
896 }
897
898 address &= PAGE_MASK;
899
900 memset(cmd, 0, sizeof(*cmd));
901 cmd->data[0] = devid;
902 cmd->data[0] |= (qdep & 0xff) << 24;
903 cmd->data[1] = devid;
904 cmd->data[2] = lower_32_bits(address);
905 cmd->data[3] = upper_32_bits(address);
906 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
907 if (s)
908 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
909}
910
22e266c7
JR
911static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
912 u64 address, bool size)
913{
914 memset(cmd, 0, sizeof(*cmd));
915
916 address &= ~(0xfffULL);
917
a919a018 918 cmd->data[0] = pasid;
22e266c7
JR
919 cmd->data[1] = domid;
920 cmd->data[2] = lower_32_bits(address);
921 cmd->data[3] = upper_32_bits(address);
922 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
924 if (size)
925 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
926 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
927}
928
929static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
930 int qdep, u64 address, bool size)
931{
932 memset(cmd, 0, sizeof(*cmd));
933
934 address &= ~(0xfffULL);
935
936 cmd->data[0] = devid;
e8d2d82d 937 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
938 cmd->data[0] |= (qdep & 0xff) << 24;
939 cmd->data[1] = devid;
e8d2d82d 940 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
941 cmd->data[2] = lower_32_bits(address);
942 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
943 cmd->data[3] = upper_32_bits(address);
944 if (size)
945 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
946 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
947}
948
c99afa25
JR
949static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
950 int status, int tag, bool gn)
951{
952 memset(cmd, 0, sizeof(*cmd));
953
954 cmd->data[0] = devid;
955 if (gn) {
a919a018 956 cmd->data[1] = pasid;
c99afa25
JR
957 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
958 }
959 cmd->data[3] = tag & 0x1ff;
960 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
961
962 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
963}
964
58fc7f14
JR
965static void build_inv_all(struct iommu_cmd *cmd)
966{
967 memset(cmd, 0, sizeof(*cmd));
968 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
969}
970
7ef2798d
JR
971static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
972{
973 memset(cmd, 0, sizeof(*cmd));
974 cmd->data[0] = devid;
975 CMD_SET_TYPE(cmd, CMD_INV_IRT);
976}
977
431b2a20 978/*
431b2a20 979 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 980 * hardware about the new command.
431b2a20 981 */
f1ca1512
JR
982static int iommu_queue_command_sync(struct amd_iommu *iommu,
983 struct iommu_cmd *cmd,
984 bool sync)
a19ae1ec 985{
ac0ea6e9 986 u32 left, tail, head, next_tail;
a19ae1ec 987 unsigned long flags;
a19ae1ec 988
549c90dc 989 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
990
991again:
a19ae1ec 992 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 993
ac0ea6e9
JR
994 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
995 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
996 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
997 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 998
ac0ea6e9
JR
999 if (left <= 2) {
1000 struct iommu_cmd sync_cmd;
1001 volatile u64 sem = 0;
1002 int ret;
8d201968 1003
ac0ea6e9
JR
1004 build_completion_wait(&sync_cmd, (u64)&sem);
1005 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1006
ac0ea6e9
JR
1007 spin_unlock_irqrestore(&iommu->lock, flags);
1008
1009 if ((ret = wait_on_sem(&sem)) != 0)
1010 return ret;
1011
1012 goto again;
8d201968
JR
1013 }
1014
ac0ea6e9
JR
1015 copy_cmd_to_buffer(iommu, cmd, tail);
1016
1017 /* We need to sync now to make sure all commands are processed */
f1ca1512 1018 iommu->need_sync = sync;
ac0ea6e9 1019
a19ae1ec 1020 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1021
815b33fd 1022 return 0;
8d201968
JR
1023}
1024
f1ca1512
JR
1025static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1026{
1027 return iommu_queue_command_sync(iommu, cmd, true);
1028}
1029
8d201968
JR
1030/*
1031 * This function queues a completion wait command into the command
1032 * buffer of an IOMMU
1033 */
a19ae1ec 1034static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1035{
1036 struct iommu_cmd cmd;
815b33fd 1037 volatile u64 sem = 0;
ac0ea6e9 1038 int ret;
8d201968 1039
09ee17eb 1040 if (!iommu->need_sync)
815b33fd 1041 return 0;
09ee17eb 1042
815b33fd 1043 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1044
f1ca1512 1045 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1046 if (ret)
815b33fd 1047 return ret;
8d201968 1048
ac0ea6e9 1049 return wait_on_sem(&sem);
8d201968
JR
1050}
1051
d8c13085 1052static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1053{
d8c13085 1054 struct iommu_cmd cmd;
a19ae1ec 1055
d8c13085 1056 build_inv_dte(&cmd, devid);
7e4f88da 1057
d8c13085
JR
1058 return iommu_queue_command(iommu, &cmd);
1059}
09ee17eb 1060
7d0c5cc5
JR
1061static void iommu_flush_dte_all(struct amd_iommu *iommu)
1062{
1063 u32 devid;
09ee17eb 1064
7d0c5cc5
JR
1065 for (devid = 0; devid <= 0xffff; ++devid)
1066 iommu_flush_dte(iommu, devid);
a19ae1ec 1067
7d0c5cc5
JR
1068 iommu_completion_wait(iommu);
1069}
84df8175 1070
7d0c5cc5
JR
1071/*
1072 * This function uses heavy locking and may disable irqs for some time. But
1073 * this is no issue because it is only called during resume.
1074 */
1075static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1076{
1077 u32 dom_id;
a19ae1ec 1078
7d0c5cc5
JR
1079 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1080 struct iommu_cmd cmd;
1081 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1082 dom_id, 1);
1083 iommu_queue_command(iommu, &cmd);
1084 }
8eed9833 1085
7d0c5cc5 1086 iommu_completion_wait(iommu);
a19ae1ec
JR
1087}
1088
58fc7f14 1089static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1090{
58fc7f14 1091 struct iommu_cmd cmd;
0518a3a4 1092
58fc7f14 1093 build_inv_all(&cmd);
0518a3a4 1094
58fc7f14
JR
1095 iommu_queue_command(iommu, &cmd);
1096 iommu_completion_wait(iommu);
1097}
1098
7ef2798d
JR
1099static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1100{
1101 struct iommu_cmd cmd;
1102
1103 build_inv_irt(&cmd, devid);
1104
1105 iommu_queue_command(iommu, &cmd);
1106}
1107
1108static void iommu_flush_irt_all(struct amd_iommu *iommu)
1109{
1110 u32 devid;
1111
1112 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1113 iommu_flush_irt(iommu, devid);
1114
1115 iommu_completion_wait(iommu);
1116}
1117
7d0c5cc5
JR
1118void iommu_flush_all_caches(struct amd_iommu *iommu)
1119{
58fc7f14
JR
1120 if (iommu_feature(iommu, FEATURE_IA)) {
1121 iommu_flush_all(iommu);
1122 } else {
1123 iommu_flush_dte_all(iommu);
7ef2798d 1124 iommu_flush_irt_all(iommu);
58fc7f14 1125 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1126 }
1127}
1128
431b2a20 1129/*
cb41ed85 1130 * Command send function for flushing on-device TLB
431b2a20 1131 */
6c542047
JR
1132static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1133 u64 address, size_t size)
3fa43655
JR
1134{
1135 struct amd_iommu *iommu;
b00d3bcf 1136 struct iommu_cmd cmd;
cb41ed85 1137 int qdep;
3fa43655 1138
ea61cddb
JR
1139 qdep = dev_data->ats.qdep;
1140 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1141
ea61cddb 1142 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1143
1144 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1145}
1146
431b2a20 1147/*
431b2a20 1148 * Command send function for invalidating a device table entry
431b2a20 1149 */
6c542047 1150static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1151{
3fa43655 1152 struct amd_iommu *iommu;
ee2fa743 1153 int ret;
a19ae1ec 1154
6c542047 1155 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1156
f62dda66 1157 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1158 if (ret)
1159 return ret;
1160
ea61cddb 1161 if (dev_data->ats.enabled)
6c542047 1162 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1163
ee2fa743 1164 return ret;
a19ae1ec
JR
1165}
1166
431b2a20
JR
1167/*
1168 * TLB invalidation function which is called from the mapping functions.
1169 * It invalidates a single PTE if the range to flush is within a single
1170 * page. Otherwise it flushes the whole TLB of the IOMMU.
1171 */
17b124bf
JR
1172static void __domain_flush_pages(struct protection_domain *domain,
1173 u64 address, size_t size, int pde)
a19ae1ec 1174{
cb41ed85 1175 struct iommu_dev_data *dev_data;
11b6402c
JR
1176 struct iommu_cmd cmd;
1177 int ret = 0, i;
a19ae1ec 1178
11b6402c 1179 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1180
6de8ad9b
JR
1181 for (i = 0; i < amd_iommus_present; ++i) {
1182 if (!domain->dev_iommu[i])
1183 continue;
1184
1185 /*
1186 * Devices of this domain are behind this IOMMU
1187 * We need a TLB flush
1188 */
11b6402c 1189 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1190 }
1191
cb41ed85 1192 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1193
ea61cddb 1194 if (!dev_data->ats.enabled)
cb41ed85
JR
1195 continue;
1196
6c542047 1197 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1198 }
1199
11b6402c 1200 WARN_ON(ret);
6de8ad9b
JR
1201}
1202
17b124bf
JR
1203static void domain_flush_pages(struct protection_domain *domain,
1204 u64 address, size_t size)
6de8ad9b 1205{
17b124bf 1206 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1207}
b6c02715 1208
1c655773 1209/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1210static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1211{
17b124bf 1212 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1213}
1214
42a49f96 1215/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1216static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1217{
17b124bf 1218 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1219}
1220
17b124bf 1221static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1222{
17b124bf 1223 int i;
18811f55 1224
17b124bf
JR
1225 for (i = 0; i < amd_iommus_present; ++i) {
1226 if (!domain->dev_iommu[i])
1227 continue;
bfd1be18 1228
17b124bf
JR
1229 /*
1230 * Devices of this domain are behind this IOMMU
1231 * We need to wait for completion of all commands.
1232 */
1233 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1234 }
e394d72a
JR
1235}
1236
b00d3bcf 1237
09b42804 1238/*
b00d3bcf 1239 * This function flushes the DTEs for all devices in domain
09b42804 1240 */
17b124bf 1241static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1242{
b00d3bcf 1243 struct iommu_dev_data *dev_data;
b26e81b8 1244
b00d3bcf 1245 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1246 device_flush_dte(dev_data);
a345b23b
JR
1247}
1248
431b2a20
JR
1249/****************************************************************************
1250 *
1251 * The functions below are used the create the page table mappings for
1252 * unity mapped regions.
1253 *
1254 ****************************************************************************/
1255
308973d3
JR
1256/*
1257 * This function is used to add another level to an IO page table. Adding
1258 * another level increases the size of the address space by 9 bits to a size up
1259 * to 64 bits.
1260 */
1261static bool increase_address_space(struct protection_domain *domain,
1262 gfp_t gfp)
1263{
1264 u64 *pte;
1265
1266 if (domain->mode == PAGE_MODE_6_LEVEL)
1267 /* address space already 64 bit large */
1268 return false;
1269
1270 pte = (void *)get_zeroed_page(gfp);
1271 if (!pte)
1272 return false;
1273
1274 *pte = PM_LEVEL_PDE(domain->mode,
1275 virt_to_phys(domain->pt_root));
1276 domain->pt_root = pte;
1277 domain->mode += 1;
1278 domain->updated = true;
1279
1280 return true;
1281}
1282
1283static u64 *alloc_pte(struct protection_domain *domain,
1284 unsigned long address,
cbb9d729 1285 unsigned long page_size,
308973d3
JR
1286 u64 **pte_page,
1287 gfp_t gfp)
1288{
cbb9d729 1289 int level, end_lvl;
308973d3 1290 u64 *pte, *page;
cbb9d729
JR
1291
1292 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1293
1294 while (address > PM_LEVEL_SIZE(domain->mode))
1295 increase_address_space(domain, gfp);
1296
cbb9d729
JR
1297 level = domain->mode - 1;
1298 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1299 address = PAGE_SIZE_ALIGN(address, page_size);
1300 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1301
1302 while (level > end_lvl) {
1303 if (!IOMMU_PTE_PRESENT(*pte)) {
1304 page = (u64 *)get_zeroed_page(gfp);
1305 if (!page)
1306 return NULL;
1307 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1308 }
1309
cbb9d729
JR
1310 /* No level skipping support yet */
1311 if (PM_PTE_LEVEL(*pte) != level)
1312 return NULL;
1313
308973d3
JR
1314 level -= 1;
1315
1316 pte = IOMMU_PTE_PAGE(*pte);
1317
1318 if (pte_page && level == end_lvl)
1319 *pte_page = pte;
1320
1321 pte = &pte[PM_LEVEL_INDEX(level, address)];
1322 }
1323
1324 return pte;
1325}
1326
1327/*
1328 * This function checks if there is a PTE for a given dma address. If
1329 * there is one, it returns the pointer to it.
1330 */
3039ca1b
JR
1331static u64 *fetch_pte(struct protection_domain *domain,
1332 unsigned long address,
1333 unsigned long *page_size)
308973d3
JR
1334{
1335 int level;
1336 u64 *pte;
1337
24cd7723
JR
1338 if (address > PM_LEVEL_SIZE(domain->mode))
1339 return NULL;
1340
3039ca1b
JR
1341 level = domain->mode - 1;
1342 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1343 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1344
24cd7723
JR
1345 while (level > 0) {
1346
1347 /* Not Present */
308973d3
JR
1348 if (!IOMMU_PTE_PRESENT(*pte))
1349 return NULL;
1350
24cd7723 1351 /* Large PTE */
3039ca1b
JR
1352 if (PM_PTE_LEVEL(*pte) == 7 ||
1353 PM_PTE_LEVEL(*pte) == 0)
1354 break;
24cd7723
JR
1355
1356 /* No level skipping support yet */
1357 if (PM_PTE_LEVEL(*pte) != level)
1358 return NULL;
1359
308973d3
JR
1360 level -= 1;
1361
24cd7723 1362 /* Walk to the next level */
3039ca1b
JR
1363 pte = IOMMU_PTE_PAGE(*pte);
1364 pte = &pte[PM_LEVEL_INDEX(level, address)];
1365 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1366 }
1367
1368 if (PM_PTE_LEVEL(*pte) == 0x07) {
1369 unsigned long pte_mask;
1370
1371 /*
1372 * If we have a series of large PTEs, make
1373 * sure to return a pointer to the first one.
1374 */
1375 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1376 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1377 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1378 }
1379
1380 return pte;
1381}
1382
431b2a20
JR
1383/*
1384 * Generic mapping functions. It maps a physical address into a DMA
1385 * address space. It allocates the page table pages if necessary.
1386 * In the future it can be extended to a generic mapping function
1387 * supporting all features of AMD IOMMU page tables like level skipping
1388 * and full 64 bit address spaces.
1389 */
38e817fe
JR
1390static int iommu_map_page(struct protection_domain *dom,
1391 unsigned long bus_addr,
1392 unsigned long phys_addr,
abdc5eb3 1393 int prot,
cbb9d729 1394 unsigned long page_size)
bd0e5211 1395{
8bda3092 1396 u64 __pte, *pte;
cbb9d729 1397 int i, count;
abdc5eb3 1398
d4b03664
JR
1399 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1400 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1401
bad1cac2 1402 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1403 return -EINVAL;
1404
d4b03664
JR
1405 count = PAGE_SIZE_PTE_COUNT(page_size);
1406 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
cbb9d729 1407
63eaa75e
ML
1408 if (!pte)
1409 return -ENOMEM;
1410
cbb9d729
JR
1411 for (i = 0; i < count; ++i)
1412 if (IOMMU_PTE_PRESENT(pte[i]))
1413 return -EBUSY;
bd0e5211 1414
d4b03664 1415 if (count > 1) {
cbb9d729
JR
1416 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1417 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1418 } else
1419 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1420
bd0e5211
JR
1421 if (prot & IOMMU_PROT_IR)
1422 __pte |= IOMMU_PTE_IR;
1423 if (prot & IOMMU_PROT_IW)
1424 __pte |= IOMMU_PTE_IW;
1425
cbb9d729
JR
1426 for (i = 0; i < count; ++i)
1427 pte[i] = __pte;
bd0e5211 1428
04bfdd84
JR
1429 update_domain(dom);
1430
bd0e5211
JR
1431 return 0;
1432}
1433
24cd7723
JR
1434static unsigned long iommu_unmap_page(struct protection_domain *dom,
1435 unsigned long bus_addr,
1436 unsigned long page_size)
eb74ff6c 1437{
71b390e9
JR
1438 unsigned long long unmapped;
1439 unsigned long unmap_size;
24cd7723
JR
1440 u64 *pte;
1441
1442 BUG_ON(!is_power_of_2(page_size));
1443
1444 unmapped = 0;
eb74ff6c 1445
24cd7723
JR
1446 while (unmapped < page_size) {
1447
71b390e9
JR
1448 pte = fetch_pte(dom, bus_addr, &unmap_size);
1449
1450 if (pte) {
1451 int i, count;
1452
1453 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1454 for (i = 0; i < count; i++)
1455 pte[i] = 0ULL;
1456 }
1457
1458 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1459 unmapped += unmap_size;
1460 }
1461
60d0ca3c 1462 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1463
24cd7723 1464 return unmapped;
eb74ff6c 1465}
eb74ff6c 1466
431b2a20
JR
1467/*
1468 * This function checks if a specific unity mapping entry is needed for
1469 * this specific IOMMU.
1470 */
bd0e5211
JR
1471static int iommu_for_unity_map(struct amd_iommu *iommu,
1472 struct unity_map_entry *entry)
1473{
1474 u16 bdf, i;
1475
1476 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1477 bdf = amd_iommu_alias_table[i];
1478 if (amd_iommu_rlookup_table[bdf] == iommu)
1479 return 1;
1480 }
1481
1482 return 0;
1483}
1484
431b2a20
JR
1485/*
1486 * This function actually applies the mapping to the page table of the
1487 * dma_ops domain.
1488 */
bd0e5211
JR
1489static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1490 struct unity_map_entry *e)
1491{
1492 u64 addr;
1493 int ret;
1494
1495 for (addr = e->address_start; addr < e->address_end;
1496 addr += PAGE_SIZE) {
abdc5eb3 1497 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1498 PAGE_SIZE);
bd0e5211
JR
1499 if (ret)
1500 return ret;
1501 /*
1502 * if unity mapping is in aperture range mark the page
1503 * as allocated in the aperture
1504 */
1505 if (addr < dma_dom->aperture_size)
c3239567 1506 __set_bit(addr >> PAGE_SHIFT,
384de729 1507 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1508 }
1509
1510 return 0;
1511}
1512
171e7b37
JR
1513/*
1514 * Init the unity mappings for a specific IOMMU in the system
1515 *
1516 * Basically iterates over all unity mapping entries and applies them to
1517 * the default domain DMA of that IOMMU if necessary.
1518 */
1519static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1520{
1521 struct unity_map_entry *entry;
1522 int ret;
1523
1524 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1525 if (!iommu_for_unity_map(iommu, entry))
1526 continue;
1527 ret = dma_ops_unity_map(iommu->default_dom, entry);
1528 if (ret)
1529 return ret;
1530 }
1531
1532 return 0;
1533}
1534
431b2a20
JR
1535/*
1536 * Inits the unity mappings required for a specific device
1537 */
bd0e5211
JR
1538static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1539 u16 devid)
1540{
1541 struct unity_map_entry *e;
1542 int ret;
1543
1544 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1545 if (!(devid >= e->devid_start && devid <= e->devid_end))
1546 continue;
1547 ret = dma_ops_unity_map(dma_dom, e);
1548 if (ret)
1549 return ret;
1550 }
1551
1552 return 0;
1553}
1554
431b2a20
JR
1555/****************************************************************************
1556 *
1557 * The next functions belong to the address allocator for the dma_ops
1558 * interface functions. They work like the allocators in the other IOMMU
1559 * drivers. Its basically a bitmap which marks the allocated pages in
1560 * the aperture. Maybe it could be enhanced in the future to a more
1561 * efficient allocator.
1562 *
1563 ****************************************************************************/
d3086444 1564
431b2a20 1565/*
384de729 1566 * The address allocator core functions.
431b2a20
JR
1567 *
1568 * called with domain->lock held
1569 */
384de729 1570
171e7b37
JR
1571/*
1572 * Used to reserve address ranges in the aperture (e.g. for exclusion
1573 * ranges.
1574 */
1575static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1576 unsigned long start_page,
1577 unsigned int pages)
1578{
1579 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1580
1581 if (start_page + pages > last_page)
1582 pages = last_page - start_page;
1583
1584 for (i = start_page; i < start_page + pages; ++i) {
1585 int index = i / APERTURE_RANGE_PAGES;
1586 int page = i % APERTURE_RANGE_PAGES;
1587 __set_bit(page, dom->aperture[index]->bitmap);
1588 }
1589}
1590
9cabe89b
JR
1591/*
1592 * This function is used to add a new aperture range to an existing
1593 * aperture in case of dma_ops domain allocation or address allocation
1594 * failure.
1595 */
576175c2 1596static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1597 bool populate, gfp_t gfp)
1598{
1599 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1600 struct amd_iommu *iommu;
5d7c94c3 1601 unsigned long i, old_size, pte_pgsize;
9cabe89b 1602
f5e9705c
JR
1603#ifdef CONFIG_IOMMU_STRESS
1604 populate = false;
1605#endif
1606
9cabe89b
JR
1607 if (index >= APERTURE_MAX_RANGES)
1608 return -ENOMEM;
1609
1610 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1611 if (!dma_dom->aperture[index])
1612 return -ENOMEM;
1613
1614 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1615 if (!dma_dom->aperture[index]->bitmap)
1616 goto out_free;
1617
1618 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1619
1620 if (populate) {
1621 unsigned long address = dma_dom->aperture_size;
1622 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1623 u64 *pte, *pte_page;
1624
1625 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1626 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1627 &pte_page, gfp);
1628 if (!pte)
1629 goto out_free;
1630
1631 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1632
1633 address += APERTURE_RANGE_SIZE / 64;
1634 }
1635 }
1636
17f5b569 1637 old_size = dma_dom->aperture_size;
9cabe89b
JR
1638 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1639
17f5b569
JR
1640 /* Reserve address range used for MSI messages */
1641 if (old_size < MSI_ADDR_BASE_LO &&
1642 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1643 unsigned long spage;
1644 int pages;
1645
1646 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1647 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1648
1649 dma_ops_reserve_addresses(dma_dom, spage, pages);
1650 }
1651
b595076a 1652 /* Initialize the exclusion range if necessary */
576175c2
JR
1653 for_each_iommu(iommu) {
1654 if (iommu->exclusion_start &&
1655 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1656 && iommu->exclusion_start < dma_dom->aperture_size) {
1657 unsigned long startpage;
1658 int pages = iommu_num_pages(iommu->exclusion_start,
1659 iommu->exclusion_length,
1660 PAGE_SIZE);
1661 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1662 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1663 }
00cd122a
JR
1664 }
1665
1666 /*
1667 * Check for areas already mapped as present in the new aperture
1668 * range and mark those pages as reserved in the allocator. Such
1669 * mappings may already exist as a result of requested unity
1670 * mappings for devices.
1671 */
1672 for (i = dma_dom->aperture[index]->offset;
1673 i < dma_dom->aperture_size;
5d7c94c3 1674 i += pte_pgsize) {
3039ca1b 1675 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1676 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1677 continue;
1678
5d7c94c3
JR
1679 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1680 pte_pgsize >> 12);
00cd122a
JR
1681 }
1682
04bfdd84
JR
1683 update_domain(&dma_dom->domain);
1684
9cabe89b
JR
1685 return 0;
1686
1687out_free:
04bfdd84
JR
1688 update_domain(&dma_dom->domain);
1689
9cabe89b
JR
1690 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1691
1692 kfree(dma_dom->aperture[index]);
1693 dma_dom->aperture[index] = NULL;
1694
1695 return -ENOMEM;
1696}
1697
384de729
JR
1698static unsigned long dma_ops_area_alloc(struct device *dev,
1699 struct dma_ops_domain *dom,
1700 unsigned int pages,
1701 unsigned long align_mask,
1702 u64 dma_mask,
1703 unsigned long start)
1704{
803b8cb4 1705 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1706 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1707 int i = start >> APERTURE_RANGE_SHIFT;
1708 unsigned long boundary_size;
1709 unsigned long address = -1;
1710 unsigned long limit;
1711
803b8cb4
JR
1712 next_bit >>= PAGE_SHIFT;
1713
384de729
JR
1714 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1715 PAGE_SIZE) >> PAGE_SHIFT;
1716
1717 for (;i < max_index; ++i) {
1718 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1719
1720 if (dom->aperture[i]->offset >= dma_mask)
1721 break;
1722
1723 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1724 dma_mask >> PAGE_SHIFT);
1725
1726 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1727 limit, next_bit, pages, 0,
1728 boundary_size, align_mask);
1729 if (address != -1) {
1730 address = dom->aperture[i]->offset +
1731 (address << PAGE_SHIFT);
803b8cb4 1732 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1733 break;
1734 }
1735
1736 next_bit = 0;
1737 }
1738
1739 return address;
1740}
1741
d3086444
JR
1742static unsigned long dma_ops_alloc_addresses(struct device *dev,
1743 struct dma_ops_domain *dom,
6d4f343f 1744 unsigned int pages,
832a90c3
JR
1745 unsigned long align_mask,
1746 u64 dma_mask)
d3086444 1747{
d3086444 1748 unsigned long address;
d3086444 1749
fe16f088
JR
1750#ifdef CONFIG_IOMMU_STRESS
1751 dom->next_address = 0;
1752 dom->need_flush = true;
1753#endif
d3086444 1754
384de729 1755 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1756 dma_mask, dom->next_address);
d3086444 1757
1c655773 1758 if (address == -1) {
803b8cb4 1759 dom->next_address = 0;
384de729
JR
1760 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1761 dma_mask, 0);
1c655773
JR
1762 dom->need_flush = true;
1763 }
d3086444 1764
384de729 1765 if (unlikely(address == -1))
8fd524b3 1766 address = DMA_ERROR_CODE;
d3086444
JR
1767
1768 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1769
1770 return address;
1771}
1772
431b2a20
JR
1773/*
1774 * The address free function.
1775 *
1776 * called with domain->lock held
1777 */
d3086444
JR
1778static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1779 unsigned long address,
1780 unsigned int pages)
1781{
384de729
JR
1782 unsigned i = address >> APERTURE_RANGE_SHIFT;
1783 struct aperture_range *range = dom->aperture[i];
80be308d 1784
384de729
JR
1785 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1786
47bccd6b
JR
1787#ifdef CONFIG_IOMMU_STRESS
1788 if (i < 4)
1789 return;
1790#endif
80be308d 1791
803b8cb4 1792 if (address >= dom->next_address)
80be308d 1793 dom->need_flush = true;
384de729
JR
1794
1795 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1796
a66022c4 1797 bitmap_clear(range->bitmap, address, pages);
384de729 1798
d3086444
JR
1799}
1800
431b2a20
JR
1801/****************************************************************************
1802 *
1803 * The next functions belong to the domain allocation. A domain is
1804 * allocated for every IOMMU as the default domain. If device isolation
1805 * is enabled, every device get its own domain. The most important thing
1806 * about domains is the page table mapping the DMA address space they
1807 * contain.
1808 *
1809 ****************************************************************************/
1810
aeb26f55
JR
1811/*
1812 * This function adds a protection domain to the global protection domain list
1813 */
1814static void add_domain_to_list(struct protection_domain *domain)
1815{
1816 unsigned long flags;
1817
1818 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1819 list_add(&domain->list, &amd_iommu_pd_list);
1820 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1821}
1822
1823/*
1824 * This function removes a protection domain to the global
1825 * protection domain list
1826 */
1827static void del_domain_from_list(struct protection_domain *domain)
1828{
1829 unsigned long flags;
1830
1831 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1832 list_del(&domain->list);
1833 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1834}
1835
ec487d1a
JR
1836static u16 domain_id_alloc(void)
1837{
1838 unsigned long flags;
1839 int id;
1840
1841 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1842 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1843 BUG_ON(id == 0);
1844 if (id > 0 && id < MAX_DOMAIN_ID)
1845 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1846 else
1847 id = 0;
1848 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1849
1850 return id;
1851}
1852
a2acfb75
JR
1853static void domain_id_free(int id)
1854{
1855 unsigned long flags;
1856
1857 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1858 if (id > 0 && id < MAX_DOMAIN_ID)
1859 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1860 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1861}
a2acfb75 1862
5c34c403
JR
1863#define DEFINE_FREE_PT_FN(LVL, FN) \
1864static void free_pt_##LVL (unsigned long __pt) \
1865{ \
1866 unsigned long p; \
1867 u64 *pt; \
1868 int i; \
1869 \
1870 pt = (u64 *)__pt; \
1871 \
1872 for (i = 0; i < 512; ++i) { \
1873 if (!IOMMU_PTE_PRESENT(pt[i])) \
1874 continue; \
1875 \
1876 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1877 FN(p); \
1878 } \
1879 free_page((unsigned long)pt); \
1880}
1881
1882DEFINE_FREE_PT_FN(l2, free_page)
1883DEFINE_FREE_PT_FN(l3, free_pt_l2)
1884DEFINE_FREE_PT_FN(l4, free_pt_l3)
1885DEFINE_FREE_PT_FN(l5, free_pt_l4)
1886DEFINE_FREE_PT_FN(l6, free_pt_l5)
1887
86db2e5d 1888static void free_pagetable(struct protection_domain *domain)
ec487d1a 1889{
5c34c403 1890 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1891
5c34c403
JR
1892 switch (domain->mode) {
1893 case PAGE_MODE_NONE:
1894 break;
1895 case PAGE_MODE_1_LEVEL:
1896 free_page(root);
1897 break;
1898 case PAGE_MODE_2_LEVEL:
1899 free_pt_l2(root);
1900 break;
1901 case PAGE_MODE_3_LEVEL:
1902 free_pt_l3(root);
1903 break;
1904 case PAGE_MODE_4_LEVEL:
1905 free_pt_l4(root);
1906 break;
1907 case PAGE_MODE_5_LEVEL:
1908 free_pt_l5(root);
1909 break;
1910 case PAGE_MODE_6_LEVEL:
1911 free_pt_l6(root);
1912 break;
1913 default:
1914 BUG();
ec487d1a 1915 }
ec487d1a
JR
1916}
1917
b16137b1
JR
1918static void free_gcr3_tbl_level1(u64 *tbl)
1919{
1920 u64 *ptr;
1921 int i;
1922
1923 for (i = 0; i < 512; ++i) {
1924 if (!(tbl[i] & GCR3_VALID))
1925 continue;
1926
1927 ptr = __va(tbl[i] & PAGE_MASK);
1928
1929 free_page((unsigned long)ptr);
1930 }
1931}
1932
1933static void free_gcr3_tbl_level2(u64 *tbl)
1934{
1935 u64 *ptr;
1936 int i;
1937
1938 for (i = 0; i < 512; ++i) {
1939 if (!(tbl[i] & GCR3_VALID))
1940 continue;
1941
1942 ptr = __va(tbl[i] & PAGE_MASK);
1943
1944 free_gcr3_tbl_level1(ptr);
1945 }
1946}
1947
52815b75
JR
1948static void free_gcr3_table(struct protection_domain *domain)
1949{
b16137b1
JR
1950 if (domain->glx == 2)
1951 free_gcr3_tbl_level2(domain->gcr3_tbl);
1952 else if (domain->glx == 1)
1953 free_gcr3_tbl_level1(domain->gcr3_tbl);
1954 else if (domain->glx != 0)
1955 BUG();
1956
52815b75
JR
1957 free_page((unsigned long)domain->gcr3_tbl);
1958}
1959
431b2a20
JR
1960/*
1961 * Free a domain, only used if something went wrong in the
1962 * allocation path and we need to free an already allocated page table
1963 */
ec487d1a
JR
1964static void dma_ops_domain_free(struct dma_ops_domain *dom)
1965{
384de729
JR
1966 int i;
1967
ec487d1a
JR
1968 if (!dom)
1969 return;
1970
aeb26f55
JR
1971 del_domain_from_list(&dom->domain);
1972
86db2e5d 1973 free_pagetable(&dom->domain);
ec487d1a 1974
384de729
JR
1975 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1976 if (!dom->aperture[i])
1977 continue;
1978 free_page((unsigned long)dom->aperture[i]->bitmap);
1979 kfree(dom->aperture[i]);
1980 }
ec487d1a
JR
1981
1982 kfree(dom);
1983}
1984
431b2a20
JR
1985/*
1986 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1987 * It also initializes the page table and the address allocator data
431b2a20
JR
1988 * structures required for the dma_ops interface
1989 */
87a64d52 1990static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1991{
1992 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1993
1994 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1995 if (!dma_dom)
1996 return NULL;
1997
1998 spin_lock_init(&dma_dom->domain.lock);
1999
2000 dma_dom->domain.id = domain_id_alloc();
2001 if (dma_dom->domain.id == 0)
2002 goto free_dma_dom;
7c392cbe 2003 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2004 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2005 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2006 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2007 dma_dom->domain.priv = dma_dom;
2008 if (!dma_dom->domain.pt_root)
2009 goto free_dma_dom;
ec487d1a 2010
1c655773 2011 dma_dom->need_flush = false;
bd60b735 2012 dma_dom->target_dev = 0xffff;
1c655773 2013
aeb26f55
JR
2014 add_domain_to_list(&dma_dom->domain);
2015
576175c2 2016 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2017 goto free_dma_dom;
ec487d1a 2018
431b2a20 2019 /*
ec487d1a
JR
2020 * mark the first page as allocated so we never return 0 as
2021 * a valid dma-address. So we can use 0 as error value
431b2a20 2022 */
384de729 2023 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2024 dma_dom->next_address = 0;
ec487d1a 2025
ec487d1a
JR
2026
2027 return dma_dom;
2028
2029free_dma_dom:
2030 dma_ops_domain_free(dma_dom);
2031
2032 return NULL;
2033}
2034
5b28df6f
JR
2035/*
2036 * little helper function to check whether a given protection domain is a
2037 * dma_ops domain
2038 */
2039static bool dma_ops_domain(struct protection_domain *domain)
2040{
2041 return domain->flags & PD_DMA_OPS_MASK;
2042}
2043
fd7b5535 2044static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2045{
132bd68f 2046 u64 pte_root = 0;
ee6c2868 2047 u64 flags = 0;
863c74eb 2048
132bd68f
JR
2049 if (domain->mode != PAGE_MODE_NONE)
2050 pte_root = virt_to_phys(domain->pt_root);
2051
38ddf41b
JR
2052 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2053 << DEV_ENTRY_MODE_SHIFT;
2054 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2055
ee6c2868
JR
2056 flags = amd_iommu_dev_table[devid].data[1];
2057
fd7b5535
JR
2058 if (ats)
2059 flags |= DTE_FLAG_IOTLB;
2060
52815b75
JR
2061 if (domain->flags & PD_IOMMUV2_MASK) {
2062 u64 gcr3 = __pa(domain->gcr3_tbl);
2063 u64 glx = domain->glx;
2064 u64 tmp;
2065
2066 pte_root |= DTE_FLAG_GV;
2067 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2068
2069 /* First mask out possible old values for GCR3 table */
2070 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2071 flags &= ~tmp;
2072
2073 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2074 flags &= ~tmp;
2075
2076 /* Encode GCR3 table into DTE */
2077 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2078 pte_root |= tmp;
2079
2080 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2081 flags |= tmp;
2082
2083 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2084 flags |= tmp;
2085 }
2086
ee6c2868
JR
2087 flags &= ~(0xffffUL);
2088 flags |= domain->id;
2089
2090 amd_iommu_dev_table[devid].data[1] = flags;
2091 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2092}
2093
2094static void clear_dte_entry(u16 devid)
2095{
15898bbc
JR
2096 /* remove entry from the device table seen by the hardware */
2097 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2098 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2099
2100 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2101}
2102
ec9e79ef
JR
2103static void do_attach(struct iommu_dev_data *dev_data,
2104 struct protection_domain *domain)
7f760ddd 2105{
7f760ddd 2106 struct amd_iommu *iommu;
ec9e79ef 2107 bool ats;
fd7b5535 2108
ec9e79ef
JR
2109 iommu = amd_iommu_rlookup_table[dev_data->devid];
2110 ats = dev_data->ats.enabled;
7f760ddd
JR
2111
2112 /* Update data structures */
2113 dev_data->domain = domain;
2114 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2115 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2116
2117 /* Do reference counting */
2118 domain->dev_iommu[iommu->index] += 1;
2119 domain->dev_cnt += 1;
2120
2121 /* Flush the DTE entry */
6c542047 2122 device_flush_dte(dev_data);
7f760ddd
JR
2123}
2124
ec9e79ef 2125static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2126{
7f760ddd 2127 struct amd_iommu *iommu;
7f760ddd 2128
ec9e79ef 2129 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2130
2131 /* decrease reference counters */
7f760ddd
JR
2132 dev_data->domain->dev_iommu[iommu->index] -= 1;
2133 dev_data->domain->dev_cnt -= 1;
2134
2135 /* Update data structures */
2136 dev_data->domain = NULL;
2137 list_del(&dev_data->list);
f62dda66 2138 clear_dte_entry(dev_data->devid);
15898bbc 2139
7f760ddd 2140 /* Flush the DTE entry */
6c542047 2141 device_flush_dte(dev_data);
2b681faf
JR
2142}
2143
2144/*
2145 * If a device is not yet associated with a domain, this function does
2146 * assigns it visible for the hardware
2147 */
ec9e79ef 2148static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2149 struct protection_domain *domain)
2b681faf 2150{
397111ab 2151 struct iommu_dev_data *head, *entry;
84fe6c19 2152 int ret;
657cbb6b 2153
2b681faf
JR
2154 /* lock domain */
2155 spin_lock(&domain->lock);
2156
397111ab 2157 head = dev_data;
15898bbc 2158
397111ab
JR
2159 if (head->alias_data != NULL)
2160 head = head->alias_data;
eba6ac60 2161
397111ab 2162 /* Now we have the root of the alias group, if any */
15898bbc 2163
397111ab
JR
2164 ret = -EBUSY;
2165 if (head->domain != NULL)
2166 goto out_unlock;
15898bbc 2167
397111ab
JR
2168 /* Attach alias group root */
2169 do_attach(head, domain);
eba6ac60 2170
397111ab
JR
2171 /* Attach other devices in the alias group */
2172 list_for_each_entry(entry, &head->alias_list, alias_list)
2173 do_attach(entry, domain);
24100055 2174
84fe6c19
JL
2175 ret = 0;
2176
2177out_unlock:
2178
eba6ac60
JR
2179 /* ready */
2180 spin_unlock(&domain->lock);
15898bbc 2181
84fe6c19 2182 return ret;
0feae533 2183}
b20ac0d4 2184
52815b75
JR
2185
2186static void pdev_iommuv2_disable(struct pci_dev *pdev)
2187{
2188 pci_disable_ats(pdev);
2189 pci_disable_pri(pdev);
2190 pci_disable_pasid(pdev);
2191}
2192
6a113ddc
JR
2193/* FIXME: Change generic reset-function to do the same */
2194static int pri_reset_while_enabled(struct pci_dev *pdev)
2195{
2196 u16 control;
2197 int pos;
2198
46277b75 2199 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2200 if (!pos)
2201 return -EINVAL;
2202
46277b75
JR
2203 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2204 control |= PCI_PRI_CTRL_RESET;
2205 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2206
2207 return 0;
2208}
2209
52815b75
JR
2210static int pdev_iommuv2_enable(struct pci_dev *pdev)
2211{
6a113ddc
JR
2212 bool reset_enable;
2213 int reqs, ret;
2214
2215 /* FIXME: Hardcode number of outstanding requests for now */
2216 reqs = 32;
2217 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2218 reqs = 1;
2219 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2220
2221 /* Only allow access to user-accessible pages */
2222 ret = pci_enable_pasid(pdev, 0);
2223 if (ret)
2224 goto out_err;
2225
2226 /* First reset the PRI state of the device */
2227 ret = pci_reset_pri(pdev);
2228 if (ret)
2229 goto out_err;
2230
6a113ddc
JR
2231 /* Enable PRI */
2232 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2233 if (ret)
2234 goto out_err;
2235
6a113ddc
JR
2236 if (reset_enable) {
2237 ret = pri_reset_while_enabled(pdev);
2238 if (ret)
2239 goto out_err;
2240 }
2241
52815b75
JR
2242 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2243 if (ret)
2244 goto out_err;
2245
2246 return 0;
2247
2248out_err:
2249 pci_disable_pri(pdev);
2250 pci_disable_pasid(pdev);
2251
2252 return ret;
2253}
2254
c99afa25 2255/* FIXME: Move this to PCI code */
a3b93121 2256#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2257
98f1ad25 2258static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2259{
a3b93121 2260 u16 status;
c99afa25
JR
2261 int pos;
2262
46277b75 2263 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2264 if (!pos)
2265 return false;
2266
a3b93121 2267 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2268
a3b93121 2269 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2270}
2271
407d733e 2272/*
df805abb 2273 * If a device is not yet associated with a domain, this function
407d733e
JR
2274 * assigns it visible for the hardware
2275 */
15898bbc
JR
2276static int attach_device(struct device *dev,
2277 struct protection_domain *domain)
0feae533 2278{
fd7b5535 2279 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2280 struct iommu_dev_data *dev_data;
eba6ac60 2281 unsigned long flags;
15898bbc 2282 int ret;
eba6ac60 2283
ea61cddb
JR
2284 dev_data = get_dev_data(dev);
2285
52815b75
JR
2286 if (domain->flags & PD_IOMMUV2_MASK) {
2287 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2288 return -EINVAL;
2289
2290 if (pdev_iommuv2_enable(pdev) != 0)
2291 return -EINVAL;
2292
2293 dev_data->ats.enabled = true;
2294 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2295 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2296 } else if (amd_iommu_iotlb_sup &&
2297 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2298 dev_data->ats.enabled = true;
2299 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2300 }
fd7b5535 2301
eba6ac60 2302 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2303 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2304 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2305
0feae533
JR
2306 /*
2307 * We might boot into a crash-kernel here. The crashed kernel
2308 * left the caches in the IOMMU dirty. So we have to flush
2309 * here to evict all dirty stuff.
2310 */
17b124bf 2311 domain_flush_tlb_pde(domain);
15898bbc
JR
2312
2313 return ret;
b20ac0d4
JR
2314}
2315
355bf553
JR
2316/*
2317 * Removes a device from a protection domain (unlocked)
2318 */
ec9e79ef 2319static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2320{
397111ab 2321 struct iommu_dev_data *head, *entry;
2ca76279 2322 struct protection_domain *domain;
7c392cbe 2323 unsigned long flags;
c4596114 2324
7f760ddd 2325 BUG_ON(!dev_data->domain);
355bf553 2326
2ca76279
JR
2327 domain = dev_data->domain;
2328
2329 spin_lock_irqsave(&domain->lock, flags);
24100055 2330
397111ab
JR
2331 head = dev_data;
2332 if (head->alias_data != NULL)
2333 head = head->alias_data;
71f77580 2334
397111ab
JR
2335 list_for_each_entry(entry, &head->alias_list, alias_list)
2336 do_detach(entry);
24100055 2337
397111ab 2338 do_detach(head);
7f760ddd 2339
2ca76279 2340 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2341
2342 /*
2343 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2344 * passthrough domain if it is detached from any other domain.
2345 * Make sure we can deassign from the pt_domain itself.
21129f78 2346 */
5abcdba4 2347 if (dev_data->passthrough &&
d3ad9373 2348 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2349 __attach_device(dev_data, pt_domain);
355bf553
JR
2350}
2351
2352/*
2353 * Removes a device from a protection domain (with devtable_lock held)
2354 */
15898bbc 2355static void detach_device(struct device *dev)
355bf553 2356{
52815b75 2357 struct protection_domain *domain;
ea61cddb 2358 struct iommu_dev_data *dev_data;
355bf553
JR
2359 unsigned long flags;
2360
ec9e79ef 2361 dev_data = get_dev_data(dev);
52815b75 2362 domain = dev_data->domain;
ec9e79ef 2363
355bf553
JR
2364 /* lock device table */
2365 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2366 __detach_device(dev_data);
355bf553 2367 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2368
52815b75
JR
2369 if (domain->flags & PD_IOMMUV2_MASK)
2370 pdev_iommuv2_disable(to_pci_dev(dev));
2371 else if (dev_data->ats.enabled)
ea61cddb 2372 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2373
2374 dev_data->ats.enabled = false;
355bf553 2375}
e275a2a0 2376
15898bbc
JR
2377/*
2378 * Find out the protection domain structure for a given PCI device. This
2379 * will give us the pointer to the page table root for example.
2380 */
2381static struct protection_domain *domain_for_device(struct device *dev)
2382{
71f77580 2383 struct iommu_dev_data *dev_data;
2b02b091 2384 struct protection_domain *dom = NULL;
15898bbc 2385 unsigned long flags;
15898bbc 2386
657cbb6b 2387 dev_data = get_dev_data(dev);
15898bbc 2388
2b02b091
JR
2389 if (dev_data->domain)
2390 return dev_data->domain;
15898bbc 2391
71f77580
JR
2392 if (dev_data->alias_data != NULL) {
2393 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2394
2395 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2396 if (alias_data->domain != NULL) {
2397 __attach_device(dev_data, alias_data->domain);
2398 dom = alias_data->domain;
2399 }
2400 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2401 }
15898bbc
JR
2402
2403 return dom;
2404}
2405
e275a2a0
JR
2406static int device_change_notifier(struct notifier_block *nb,
2407 unsigned long action, void *data)
2408{
e275a2a0 2409 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2410 struct protection_domain *domain;
2411 struct iommu_dev_data *dev_data;
2412 struct device *dev = data;
e275a2a0 2413 struct amd_iommu *iommu;
1ac4cbbc 2414 unsigned long flags;
5abcdba4 2415 u16 devid;
e275a2a0 2416
98fc5a69
JR
2417 if (!check_device(dev))
2418 return 0;
e275a2a0 2419
5abcdba4
JR
2420 devid = get_device_id(dev);
2421 iommu = amd_iommu_rlookup_table[devid];
2422 dev_data = get_dev_data(dev);
e275a2a0
JR
2423
2424 switch (action) {
1ac4cbbc 2425 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2426
2427 iommu_init_device(dev);
25b11ce2 2428 init_iommu_group(dev);
657cbb6b 2429
2c9195e9
JR
2430 /*
2431 * dev_data is still NULL and
2432 * got initialized in iommu_init_device
2433 */
2434 dev_data = get_dev_data(dev);
2435
2436 if (iommu_pass_through || dev_data->iommu_v2) {
2437 dev_data->passthrough = true;
2438 attach_device(dev, pt_domain);
2439 break;
2440 }
2441
657cbb6b
JR
2442 domain = domain_for_device(dev);
2443
1ac4cbbc
JR
2444 /* allocate a protection domain if a device is added */
2445 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2446 if (!dma_domain) {
2447 dma_domain = dma_ops_domain_alloc();
2448 if (!dma_domain)
2449 goto out;
2450 dma_domain->target_dev = devid;
2451
2452 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2453 list_add_tail(&dma_domain->list, &iommu_pd_list);
2454 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2455 }
ac1534a5 2456
2c9195e9 2457 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2458
e275a2a0 2459 break;
6c5cc801 2460 case BUS_NOTIFY_REMOVED_DEVICE:
657cbb6b
JR
2461
2462 iommu_uninit_device(dev);
2463
e275a2a0
JR
2464 default:
2465 goto out;
2466 }
2467
e275a2a0
JR
2468 iommu_completion_wait(iommu);
2469
2470out:
2471 return 0;
2472}
2473
b25ae679 2474static struct notifier_block device_nb = {
e275a2a0
JR
2475 .notifier_call = device_change_notifier,
2476};
355bf553 2477
8638c491
JR
2478void amd_iommu_init_notifier(void)
2479{
2480 bus_register_notifier(&pci_bus_type, &device_nb);
2481}
2482
431b2a20
JR
2483/*****************************************************************************
2484 *
2485 * The next functions belong to the dma_ops mapping/unmapping code.
2486 *
2487 *****************************************************************************/
2488
2489/*
2490 * In the dma_ops path we only have the struct device. This function
2491 * finds the corresponding IOMMU, the protection domain and the
2492 * requestor id for a given device.
2493 * If the device is not yet associated with a domain this is also done
2494 * in this function.
2495 */
94f6d190 2496static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2497{
94f6d190 2498 struct protection_domain *domain;
b20ac0d4 2499 struct dma_ops_domain *dma_dom;
94f6d190 2500 u16 devid = get_device_id(dev);
b20ac0d4 2501
f99c0f1c 2502 if (!check_device(dev))
94f6d190 2503 return ERR_PTR(-EINVAL);
b20ac0d4 2504
94f6d190
JR
2505 domain = domain_for_device(dev);
2506 if (domain != NULL && !dma_ops_domain(domain))
2507 return ERR_PTR(-EBUSY);
f99c0f1c 2508
94f6d190
JR
2509 if (domain != NULL)
2510 return domain;
b20ac0d4 2511
df805abb 2512 /* Device not bound yet - bind it */
94f6d190 2513 dma_dom = find_protection_domain(devid);
15898bbc 2514 if (!dma_dom)
94f6d190
JR
2515 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2516 attach_device(dev, &dma_dom->domain);
15898bbc 2517 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2518 dma_dom->domain.id, dev_name(dev));
f91ba190 2519
94f6d190 2520 return &dma_dom->domain;
b20ac0d4
JR
2521}
2522
04bfdd84
JR
2523static void update_device_table(struct protection_domain *domain)
2524{
492667da 2525 struct iommu_dev_data *dev_data;
04bfdd84 2526
ea61cddb
JR
2527 list_for_each_entry(dev_data, &domain->dev_list, list)
2528 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2529}
2530
2531static void update_domain(struct protection_domain *domain)
2532{
2533 if (!domain->updated)
2534 return;
2535
2536 update_device_table(domain);
17b124bf
JR
2537
2538 domain_flush_devices(domain);
2539 domain_flush_tlb_pde(domain);
04bfdd84
JR
2540
2541 domain->updated = false;
2542}
2543
8bda3092
JR
2544/*
2545 * This function fetches the PTE for a given address in the aperture
2546 */
2547static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2548 unsigned long address)
2549{
384de729 2550 struct aperture_range *aperture;
8bda3092
JR
2551 u64 *pte, *pte_page;
2552
384de729
JR
2553 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2554 if (!aperture)
2555 return NULL;
2556
2557 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2558 if (!pte) {
cbb9d729 2559 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2560 GFP_ATOMIC);
384de729
JR
2561 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2562 } else
8c8c143c 2563 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2564
04bfdd84 2565 update_domain(&dom->domain);
8bda3092
JR
2566
2567 return pte;
2568}
2569
431b2a20
JR
2570/*
2571 * This is the generic map function. It maps one 4kb page at paddr to
2572 * the given address in the DMA address space for the domain.
2573 */
680525e0 2574static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2575 unsigned long address,
2576 phys_addr_t paddr,
2577 int direction)
2578{
2579 u64 *pte, __pte;
2580
2581 WARN_ON(address > dom->aperture_size);
2582
2583 paddr &= PAGE_MASK;
2584
8bda3092 2585 pte = dma_ops_get_pte(dom, address);
53812c11 2586 if (!pte)
8fd524b3 2587 return DMA_ERROR_CODE;
cb76c322
JR
2588
2589 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2590
2591 if (direction == DMA_TO_DEVICE)
2592 __pte |= IOMMU_PTE_IR;
2593 else if (direction == DMA_FROM_DEVICE)
2594 __pte |= IOMMU_PTE_IW;
2595 else if (direction == DMA_BIDIRECTIONAL)
2596 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2597
2598 WARN_ON(*pte);
2599
2600 *pte = __pte;
2601
2602 return (dma_addr_t)address;
2603}
2604
431b2a20
JR
2605/*
2606 * The generic unmapping function for on page in the DMA address space.
2607 */
680525e0 2608static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2609 unsigned long address)
2610{
384de729 2611 struct aperture_range *aperture;
cb76c322
JR
2612 u64 *pte;
2613
2614 if (address >= dom->aperture_size)
2615 return;
2616
384de729
JR
2617 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2618 if (!aperture)
2619 return;
2620
2621 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2622 if (!pte)
2623 return;
cb76c322 2624
8c8c143c 2625 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2626
2627 WARN_ON(!*pte);
2628
2629 *pte = 0ULL;
2630}
2631
431b2a20
JR
2632/*
2633 * This function contains common code for mapping of a physically
24f81160
JR
2634 * contiguous memory region into DMA address space. It is used by all
2635 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2636 * Must be called with the domain lock held.
2637 */
cb76c322 2638static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2639 struct dma_ops_domain *dma_dom,
2640 phys_addr_t paddr,
2641 size_t size,
6d4f343f 2642 int dir,
832a90c3
JR
2643 bool align,
2644 u64 dma_mask)
cb76c322
JR
2645{
2646 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2647 dma_addr_t address, start, ret;
cb76c322 2648 unsigned int pages;
6d4f343f 2649 unsigned long align_mask = 0;
cb76c322
JR
2650 int i;
2651
e3c449f5 2652 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2653 paddr &= PAGE_MASK;
2654
8ecaf8f1
JR
2655 INC_STATS_COUNTER(total_map_requests);
2656
c1858976
JR
2657 if (pages > 1)
2658 INC_STATS_COUNTER(cross_page);
2659
6d4f343f
JR
2660 if (align)
2661 align_mask = (1UL << get_order(size)) - 1;
2662
11b83888 2663retry:
832a90c3
JR
2664 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2665 dma_mask);
8fd524b3 2666 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2667 /*
2668 * setting next_address here will let the address
2669 * allocator only scan the new allocated range in the
2670 * first run. This is a small optimization.
2671 */
2672 dma_dom->next_address = dma_dom->aperture_size;
2673
576175c2 2674 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2675 goto out;
2676
2677 /*
af901ca1 2678 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2679 * allocation again
2680 */
2681 goto retry;
2682 }
cb76c322
JR
2683
2684 start = address;
2685 for (i = 0; i < pages; ++i) {
680525e0 2686 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2687 if (ret == DMA_ERROR_CODE)
53812c11
JR
2688 goto out_unmap;
2689
cb76c322
JR
2690 paddr += PAGE_SIZE;
2691 start += PAGE_SIZE;
2692 }
2693 address += offset;
2694
5774f7c5
JR
2695 ADD_STATS_COUNTER(alloced_io_mem, size);
2696
afa9fdc2 2697 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2698 domain_flush_tlb(&dma_dom->domain);
1c655773 2699 dma_dom->need_flush = false;
318afd41 2700 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2701 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2702
cb76c322
JR
2703out:
2704 return address;
53812c11
JR
2705
2706out_unmap:
2707
2708 for (--i; i >= 0; --i) {
2709 start -= PAGE_SIZE;
680525e0 2710 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2711 }
2712
2713 dma_ops_free_addresses(dma_dom, address, pages);
2714
8fd524b3 2715 return DMA_ERROR_CODE;
cb76c322
JR
2716}
2717
431b2a20
JR
2718/*
2719 * Does the reverse of the __map_single function. Must be called with
2720 * the domain lock held too
2721 */
cd8c82e8 2722static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2723 dma_addr_t dma_addr,
2724 size_t size,
2725 int dir)
2726{
04e0463e 2727 dma_addr_t flush_addr;
cb76c322
JR
2728 dma_addr_t i, start;
2729 unsigned int pages;
2730
8fd524b3 2731 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2732 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2733 return;
2734
04e0463e 2735 flush_addr = dma_addr;
e3c449f5 2736 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2737 dma_addr &= PAGE_MASK;
2738 start = dma_addr;
2739
2740 for (i = 0; i < pages; ++i) {
680525e0 2741 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2742 start += PAGE_SIZE;
2743 }
2744
5774f7c5
JR
2745 SUB_STATS_COUNTER(alloced_io_mem, size);
2746
cb76c322 2747 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2748
80be308d 2749 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2750 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2751 dma_dom->need_flush = false;
2752 }
cb76c322
JR
2753}
2754
431b2a20
JR
2755/*
2756 * The exported map_single function for dma_ops.
2757 */
51491367
FT
2758static dma_addr_t map_page(struct device *dev, struct page *page,
2759 unsigned long offset, size_t size,
2760 enum dma_data_direction dir,
2761 struct dma_attrs *attrs)
4da70b9e
JR
2762{
2763 unsigned long flags;
4da70b9e 2764 struct protection_domain *domain;
4da70b9e 2765 dma_addr_t addr;
832a90c3 2766 u64 dma_mask;
51491367 2767 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2768
0f2a86f2
JR
2769 INC_STATS_COUNTER(cnt_map_single);
2770
94f6d190
JR
2771 domain = get_domain(dev);
2772 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2773 return (dma_addr_t)paddr;
94f6d190
JR
2774 else if (IS_ERR(domain))
2775 return DMA_ERROR_CODE;
4da70b9e 2776
f99c0f1c
JR
2777 dma_mask = *dev->dma_mask;
2778
4da70b9e 2779 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2780
cd8c82e8 2781 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2782 dma_mask);
8fd524b3 2783 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2784 goto out;
2785
17b124bf 2786 domain_flush_complete(domain);
4da70b9e
JR
2787
2788out:
2789 spin_unlock_irqrestore(&domain->lock, flags);
2790
2791 return addr;
2792}
2793
431b2a20
JR
2794/*
2795 * The exported unmap_single function for dma_ops.
2796 */
51491367
FT
2797static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2798 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2799{
2800 unsigned long flags;
4da70b9e 2801 struct protection_domain *domain;
4da70b9e 2802
146a6917
JR
2803 INC_STATS_COUNTER(cnt_unmap_single);
2804
94f6d190
JR
2805 domain = get_domain(dev);
2806 if (IS_ERR(domain))
5b28df6f
JR
2807 return;
2808
4da70b9e
JR
2809 spin_lock_irqsave(&domain->lock, flags);
2810
cd8c82e8 2811 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2812
17b124bf 2813 domain_flush_complete(domain);
4da70b9e
JR
2814
2815 spin_unlock_irqrestore(&domain->lock, flags);
2816}
2817
431b2a20
JR
2818/*
2819 * The exported map_sg function for dma_ops (handles scatter-gather
2820 * lists).
2821 */
65b050ad 2822static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2823 int nelems, enum dma_data_direction dir,
2824 struct dma_attrs *attrs)
65b050ad
JR
2825{
2826 unsigned long flags;
65b050ad 2827 struct protection_domain *domain;
65b050ad
JR
2828 int i;
2829 struct scatterlist *s;
2830 phys_addr_t paddr;
2831 int mapped_elems = 0;
832a90c3 2832 u64 dma_mask;
65b050ad 2833
d03f067a
JR
2834 INC_STATS_COUNTER(cnt_map_sg);
2835
94f6d190 2836 domain = get_domain(dev);
a0e191b2 2837 if (IS_ERR(domain))
94f6d190 2838 return 0;
dbcc112e 2839
832a90c3 2840 dma_mask = *dev->dma_mask;
65b050ad 2841
65b050ad
JR
2842 spin_lock_irqsave(&domain->lock, flags);
2843
2844 for_each_sg(sglist, s, nelems, i) {
2845 paddr = sg_phys(s);
2846
cd8c82e8 2847 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2848 paddr, s->length, dir, false,
2849 dma_mask);
65b050ad
JR
2850
2851 if (s->dma_address) {
2852 s->dma_length = s->length;
2853 mapped_elems++;
2854 } else
2855 goto unmap;
65b050ad
JR
2856 }
2857
17b124bf 2858 domain_flush_complete(domain);
65b050ad
JR
2859
2860out:
2861 spin_unlock_irqrestore(&domain->lock, flags);
2862
2863 return mapped_elems;
2864unmap:
2865 for_each_sg(sglist, s, mapped_elems, i) {
2866 if (s->dma_address)
cd8c82e8 2867 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2868 s->dma_length, dir);
2869 s->dma_address = s->dma_length = 0;
2870 }
2871
2872 mapped_elems = 0;
2873
2874 goto out;
2875}
2876
431b2a20
JR
2877/*
2878 * The exported map_sg function for dma_ops (handles scatter-gather
2879 * lists).
2880 */
65b050ad 2881static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2882 int nelems, enum dma_data_direction dir,
2883 struct dma_attrs *attrs)
65b050ad
JR
2884{
2885 unsigned long flags;
65b050ad
JR
2886 struct protection_domain *domain;
2887 struct scatterlist *s;
65b050ad
JR
2888 int i;
2889
55877a6b
JR
2890 INC_STATS_COUNTER(cnt_unmap_sg);
2891
94f6d190
JR
2892 domain = get_domain(dev);
2893 if (IS_ERR(domain))
5b28df6f
JR
2894 return;
2895
65b050ad
JR
2896 spin_lock_irqsave(&domain->lock, flags);
2897
2898 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2899 __unmap_single(domain->priv, s->dma_address,
65b050ad 2900 s->dma_length, dir);
65b050ad
JR
2901 s->dma_address = s->dma_length = 0;
2902 }
2903
17b124bf 2904 domain_flush_complete(domain);
65b050ad
JR
2905
2906 spin_unlock_irqrestore(&domain->lock, flags);
2907}
2908
431b2a20
JR
2909/*
2910 * The exported alloc_coherent function for dma_ops.
2911 */
5d8b53cf 2912static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2913 dma_addr_t *dma_addr, gfp_t flag,
2914 struct dma_attrs *attrs)
5d8b53cf 2915{
832a90c3 2916 u64 dma_mask = dev->coherent_dma_mask;
3b839a57
JR
2917 struct protection_domain *domain;
2918 unsigned long flags;
2919 struct page *page;
5d8b53cf 2920
c8f0fb36
JR
2921 INC_STATS_COUNTER(cnt_alloc_coherent);
2922
94f6d190
JR
2923 domain = get_domain(dev);
2924 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2925 page = alloc_pages(flag, get_order(size));
2926 *dma_addr = page_to_phys(page);
2927 return page_address(page);
94f6d190
JR
2928 } else if (IS_ERR(domain))
2929 return NULL;
5d8b53cf 2930
3b839a57 2931 size = PAGE_ALIGN(size);
f99c0f1c
JR
2932 dma_mask = dev->coherent_dma_mask;
2933 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2d0ec7a1 2934 flag |= __GFP_ZERO;
5d8b53cf 2935
3b839a57
JR
2936 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2937 if (!page) {
2938 if (!(flag & __GFP_WAIT))
2939 return NULL;
5d8b53cf 2940
3b839a57
JR
2941 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2942 get_order(size));
2943 if (!page)
2944 return NULL;
2945 }
5d8b53cf 2946
832a90c3
JR
2947 if (!dma_mask)
2948 dma_mask = *dev->dma_mask;
2949
5d8b53cf
JR
2950 spin_lock_irqsave(&domain->lock, flags);
2951
3b839a57 2952 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2953 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2954
8fd524b3 2955 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2956 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2957 goto out_free;
367d04c4 2958 }
5d8b53cf 2959
17b124bf 2960 domain_flush_complete(domain);
5d8b53cf 2961
5d8b53cf
JR
2962 spin_unlock_irqrestore(&domain->lock, flags);
2963
3b839a57 2964 return page_address(page);
5b28df6f
JR
2965
2966out_free:
2967
3b839a57
JR
2968 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2969 __free_pages(page, get_order(size));
5b28df6f
JR
2970
2971 return NULL;
5d8b53cf
JR
2972}
2973
431b2a20
JR
2974/*
2975 * The exported free_coherent function for dma_ops.
431b2a20 2976 */
5d8b53cf 2977static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2978 void *virt_addr, dma_addr_t dma_addr,
2979 struct dma_attrs *attrs)
5d8b53cf 2980{
5d8b53cf 2981 struct protection_domain *domain;
3b839a57
JR
2982 unsigned long flags;
2983 struct page *page;
5d8b53cf 2984
5d31ee7e
JR
2985 INC_STATS_COUNTER(cnt_free_coherent);
2986
3b839a57
JR
2987 page = virt_to_page(virt_addr);
2988 size = PAGE_ALIGN(size);
2989
94f6d190
JR
2990 domain = get_domain(dev);
2991 if (IS_ERR(domain))
5b28df6f
JR
2992 goto free_mem;
2993
5d8b53cf
JR
2994 spin_lock_irqsave(&domain->lock, flags);
2995
cd8c82e8 2996 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2997
17b124bf 2998 domain_flush_complete(domain);
5d8b53cf
JR
2999
3000 spin_unlock_irqrestore(&domain->lock, flags);
3001
3002free_mem:
3b839a57
JR
3003 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3004 __free_pages(page, get_order(size));
5d8b53cf
JR
3005}
3006
b39ba6ad
JR
3007/*
3008 * This function is called by the DMA layer to find out if we can handle a
3009 * particular device. It is part of the dma_ops.
3010 */
3011static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3012{
420aef8a 3013 return check_device(dev);
b39ba6ad
JR
3014}
3015
c432f3df 3016/*
431b2a20
JR
3017 * The function for pre-allocating protection domains.
3018 *
c432f3df
JR
3019 * If the driver core informs the DMA layer if a driver grabs a device
3020 * we don't need to preallocate the protection domains anymore.
3021 * For now we have to.
3022 */
943bc7e1 3023static void __init prealloc_protection_domains(void)
c432f3df 3024{
5abcdba4 3025 struct iommu_dev_data *dev_data;
c432f3df 3026 struct dma_ops_domain *dma_dom;
5abcdba4 3027 struct pci_dev *dev = NULL;
98fc5a69 3028 u16 devid;
c432f3df 3029
d18c69d3 3030 for_each_pci_dev(dev) {
98fc5a69
JR
3031
3032 /* Do we handle this device? */
3033 if (!check_device(&dev->dev))
c432f3df 3034 continue;
98fc5a69 3035
5abcdba4
JR
3036 dev_data = get_dev_data(&dev->dev);
3037 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3038 /* Make sure passthrough domain is allocated */
3039 alloc_passthrough_domain();
3040 dev_data->passthrough = true;
3041 attach_device(&dev->dev, pt_domain);
df805abb 3042 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3043 dev_name(&dev->dev));
3044 }
3045
98fc5a69 3046 /* Is there already any domain for it? */
15898bbc 3047 if (domain_for_device(&dev->dev))
c432f3df 3048 continue;
98fc5a69
JR
3049
3050 devid = get_device_id(&dev->dev);
3051
87a64d52 3052 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3053 if (!dma_dom)
3054 continue;
3055 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3056 dma_dom->target_dev = devid;
3057
15898bbc 3058 attach_device(&dev->dev, &dma_dom->domain);
be831297 3059
bd60b735 3060 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3061 }
3062}
3063
160c1d8e 3064static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3065 .alloc = alloc_coherent,
3066 .free = free_coherent,
51491367
FT
3067 .map_page = map_page,
3068 .unmap_page = unmap_page,
6631ee9d
JR
3069 .map_sg = map_sg,
3070 .unmap_sg = unmap_sg,
b39ba6ad 3071 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3072};
3073
27c2127a
JR
3074static unsigned device_dma_ops_init(void)
3075{
5abcdba4 3076 struct iommu_dev_data *dev_data;
27c2127a
JR
3077 struct pci_dev *pdev = NULL;
3078 unsigned unhandled = 0;
3079
3080 for_each_pci_dev(pdev) {
3081 if (!check_device(&pdev->dev)) {
af1be049
JR
3082
3083 iommu_ignore_device(&pdev->dev);
3084
27c2127a
JR
3085 unhandled += 1;
3086 continue;
3087 }
3088
5abcdba4
JR
3089 dev_data = get_dev_data(&pdev->dev);
3090
3091 if (!dev_data->passthrough)
3092 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3093 else
3094 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3095 }
3096
3097 return unhandled;
3098}
3099
431b2a20
JR
3100/*
3101 * The function which clues the AMD IOMMU driver into dma_ops.
3102 */
f5325094
JR
3103
3104void __init amd_iommu_init_api(void)
3105{
2cc21c42 3106 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3107}
3108
6631ee9d
JR
3109int __init amd_iommu_init_dma_ops(void)
3110{
3111 struct amd_iommu *iommu;
27c2127a 3112 int ret, unhandled;
6631ee9d 3113
431b2a20
JR
3114 /*
3115 * first allocate a default protection domain for every IOMMU we
3116 * found in the system. Devices not assigned to any other
3117 * protection domain will be assigned to the default one.
3118 */
3bd22172 3119 for_each_iommu(iommu) {
87a64d52 3120 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3121 if (iommu->default_dom == NULL)
3122 return -ENOMEM;
e2dc14a2 3123 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3124 ret = iommu_init_unity_mappings(iommu);
3125 if (ret)
3126 goto free_domains;
3127 }
3128
431b2a20 3129 /*
8793abeb 3130 * Pre-allocate the protection domains for each device.
431b2a20 3131 */
8793abeb 3132 prealloc_protection_domains();
6631ee9d
JR
3133
3134 iommu_detected = 1;
75f1cdf1 3135 swiotlb = 0;
6631ee9d 3136
431b2a20 3137 /* Make the driver finally visible to the drivers */
27c2127a
JR
3138 unhandled = device_dma_ops_init();
3139 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3140 /* There are unhandled devices - initialize swiotlb for them */
3141 swiotlb = 1;
3142 }
6631ee9d 3143
7f26508b
JR
3144 amd_iommu_stats_init();
3145
62410eeb
JR
3146 if (amd_iommu_unmap_flush)
3147 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3148 else
3149 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3150
6631ee9d
JR
3151 return 0;
3152
3153free_domains:
3154
3bd22172 3155 for_each_iommu(iommu) {
91457df7 3156 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3157 }
3158
3159 return ret;
3160}
6d98cd80
JR
3161
3162/*****************************************************************************
3163 *
3164 * The following functions belong to the exported interface of AMD IOMMU
3165 *
3166 * This interface allows access to lower level functions of the IOMMU
3167 * like protection domain handling and assignement of devices to domains
3168 * which is not possible with the dma_ops interface.
3169 *
3170 *****************************************************************************/
3171
6d98cd80
JR
3172static void cleanup_domain(struct protection_domain *domain)
3173{
9b29d3c6 3174 struct iommu_dev_data *entry;
6d98cd80 3175 unsigned long flags;
6d98cd80
JR
3176
3177 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3178
9b29d3c6
JR
3179 while (!list_empty(&domain->dev_list)) {
3180 entry = list_first_entry(&domain->dev_list,
3181 struct iommu_dev_data, list);
3182 __detach_device(entry);
492667da 3183 }
6d98cd80
JR
3184
3185 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3186}
3187
2650815f
JR
3188static void protection_domain_free(struct protection_domain *domain)
3189{
3190 if (!domain)
3191 return;
3192
aeb26f55
JR
3193 del_domain_from_list(domain);
3194
2650815f
JR
3195 if (domain->id)
3196 domain_id_free(domain->id);
3197
3198 kfree(domain);
3199}
3200
3201static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3202{
3203 struct protection_domain *domain;
3204
3205 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3206 if (!domain)
2650815f 3207 return NULL;
c156e347
JR
3208
3209 spin_lock_init(&domain->lock);
5d214fe6 3210 mutex_init(&domain->api_lock);
c156e347
JR
3211 domain->id = domain_id_alloc();
3212 if (!domain->id)
2650815f 3213 goto out_err;
7c392cbe 3214 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3215
aeb26f55
JR
3216 add_domain_to_list(domain);
3217
2650815f
JR
3218 return domain;
3219
3220out_err:
3221 kfree(domain);
3222
3223 return NULL;
3224}
3225
5abcdba4
JR
3226static int __init alloc_passthrough_domain(void)
3227{
3228 if (pt_domain != NULL)
3229 return 0;
3230
3231 /* allocate passthrough domain */
3232 pt_domain = protection_domain_alloc();
3233 if (!pt_domain)
3234 return -ENOMEM;
3235
3236 pt_domain->mode = PAGE_MODE_NONE;
3237
3238 return 0;
3239}
3f4b87b9
JR
3240
3241static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 3242{
3f4b87b9 3243 struct protection_domain *pdomain;
2650815f 3244
3f4b87b9
JR
3245 /* We only support unmanaged domains for now */
3246 if (type != IOMMU_DOMAIN_UNMANAGED)
3247 return NULL;
2650815f 3248
3f4b87b9
JR
3249 pdomain = protection_domain_alloc();
3250 if (!pdomain)
c156e347
JR
3251 goto out_free;
3252
3f4b87b9
JR
3253 pdomain->mode = PAGE_MODE_3_LEVEL;
3254 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3255 if (!pdomain->pt_root)
3256 goto out_free;
c156e347 3257
3f4b87b9
JR
3258 pdomain->domain.geometry.aperture_start = 0;
3259 pdomain->domain.geometry.aperture_end = ~0ULL;
3260 pdomain->domain.geometry.force_aperture = true;
0ff64f80 3261
3f4b87b9 3262 return &pdomain->domain;
c156e347
JR
3263
3264out_free:
3f4b87b9 3265 protection_domain_free(pdomain);
c156e347 3266
3f4b87b9 3267 return NULL;
c156e347
JR
3268}
3269
3f4b87b9 3270static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 3271{
3f4b87b9 3272 struct protection_domain *domain;
98383fc3 3273
3f4b87b9 3274 if (!dom)
98383fc3
JR
3275 return;
3276
3f4b87b9
JR
3277 domain = to_pdomain(dom);
3278
98383fc3
JR
3279 if (domain->dev_cnt > 0)
3280 cleanup_domain(domain);
3281
3282 BUG_ON(domain->dev_cnt != 0);
3283
132bd68f
JR
3284 if (domain->mode != PAGE_MODE_NONE)
3285 free_pagetable(domain);
98383fc3 3286
52815b75
JR
3287 if (domain->flags & PD_IOMMUV2_MASK)
3288 free_gcr3_table(domain);
3289
8b408fe4 3290 protection_domain_free(domain);
98383fc3
JR
3291}
3292
684f2888
JR
3293static void amd_iommu_detach_device(struct iommu_domain *dom,
3294 struct device *dev)
3295{
657cbb6b 3296 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3297 struct amd_iommu *iommu;
684f2888
JR
3298 u16 devid;
3299
98fc5a69 3300 if (!check_device(dev))
684f2888
JR
3301 return;
3302
98fc5a69 3303 devid = get_device_id(dev);
684f2888 3304
657cbb6b 3305 if (dev_data->domain != NULL)
15898bbc 3306 detach_device(dev);
684f2888
JR
3307
3308 iommu = amd_iommu_rlookup_table[devid];
3309 if (!iommu)
3310 return;
3311
684f2888
JR
3312 iommu_completion_wait(iommu);
3313}
3314
01106066
JR
3315static int amd_iommu_attach_device(struct iommu_domain *dom,
3316 struct device *dev)
3317{
3f4b87b9 3318 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 3319 struct iommu_dev_data *dev_data;
01106066 3320 struct amd_iommu *iommu;
15898bbc 3321 int ret;
01106066 3322
98fc5a69 3323 if (!check_device(dev))
01106066
JR
3324 return -EINVAL;
3325
657cbb6b
JR
3326 dev_data = dev->archdata.iommu;
3327
f62dda66 3328 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3329 if (!iommu)
3330 return -EINVAL;
3331
657cbb6b 3332 if (dev_data->domain)
15898bbc 3333 detach_device(dev);
01106066 3334
15898bbc 3335 ret = attach_device(dev, domain);
01106066
JR
3336
3337 iommu_completion_wait(iommu);
3338
15898bbc 3339 return ret;
01106066
JR
3340}
3341
468e2366 3342static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3343 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 3344{
3f4b87b9 3345 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
3346 int prot = 0;
3347 int ret;
3348
132bd68f
JR
3349 if (domain->mode == PAGE_MODE_NONE)
3350 return -EINVAL;
3351
c6229ca6
JR
3352 if (iommu_prot & IOMMU_READ)
3353 prot |= IOMMU_PROT_IR;
3354 if (iommu_prot & IOMMU_WRITE)
3355 prot |= IOMMU_PROT_IW;
3356
5d214fe6 3357 mutex_lock(&domain->api_lock);
795e74f7 3358 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3359 mutex_unlock(&domain->api_lock);
3360
795e74f7 3361 return ret;
c6229ca6
JR
3362}
3363
5009065d
OBC
3364static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3365 size_t page_size)
eb74ff6c 3366{
3f4b87b9 3367 struct protection_domain *domain = to_pdomain(dom);
5009065d 3368 size_t unmap_size;
eb74ff6c 3369
132bd68f
JR
3370 if (domain->mode == PAGE_MODE_NONE)
3371 return -EINVAL;
3372
5d214fe6 3373 mutex_lock(&domain->api_lock);
468e2366 3374 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3375 mutex_unlock(&domain->api_lock);
eb74ff6c 3376
17b124bf 3377 domain_flush_tlb_pde(domain);
5d214fe6 3378
5009065d 3379 return unmap_size;
eb74ff6c
JR
3380}
3381
645c4c8d 3382static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3383 dma_addr_t iova)
645c4c8d 3384{
3f4b87b9 3385 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3386 unsigned long offset_mask, pte_pgsize;
f03152bb 3387 u64 *pte, __pte;
645c4c8d 3388
132bd68f
JR
3389 if (domain->mode == PAGE_MODE_NONE)
3390 return iova;
3391
3039ca1b 3392 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3393
a6d41a40 3394 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3395 return 0;
3396
b24b1b63
JR
3397 offset_mask = pte_pgsize - 1;
3398 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3399
b24b1b63 3400 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3401}
3402
ab636481 3403static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3404{
80a506b8
JR
3405 switch (cap) {
3406 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3407 return true;
bdddadcb 3408 case IOMMU_CAP_INTR_REMAP:
ab636481 3409 return (irq_remapping_enabled == 1);
cfdeec22
WD
3410 case IOMMU_CAP_NOEXEC:
3411 return false;
80a506b8
JR
3412 }
3413
ab636481 3414 return false;
dbb9fd86
SY
3415}
3416
b22f6434 3417static const struct iommu_ops amd_iommu_ops = {
ab636481 3418 .capable = amd_iommu_capable,
3f4b87b9
JR
3419 .domain_alloc = amd_iommu_domain_alloc,
3420 .domain_free = amd_iommu_domain_free,
26961efe
JR
3421 .attach_dev = amd_iommu_attach_device,
3422 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3423 .map = amd_iommu_map,
3424 .unmap = amd_iommu_unmap,
315786eb 3425 .map_sg = default_iommu_map_sg,
26961efe 3426 .iova_to_phys = amd_iommu_iova_to_phys,
aa3de9c0 3427 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3428};
3429
0feae533
JR
3430/*****************************************************************************
3431 *
3432 * The next functions do a basic initialization of IOMMU for pass through
3433 * mode
3434 *
3435 * In passthrough mode the IOMMU is initialized and enabled but not used for
3436 * DMA-API translation.
3437 *
3438 *****************************************************************************/
3439
3440int __init amd_iommu_init_passthrough(void)
3441{
5abcdba4 3442 struct iommu_dev_data *dev_data;
0feae533 3443 struct pci_dev *dev = NULL;
5abcdba4 3444 int ret;
0feae533 3445
5abcdba4
JR
3446 ret = alloc_passthrough_domain();
3447 if (ret)
3448 return ret;
0feae533 3449
6c54aabd 3450 for_each_pci_dev(dev) {
98fc5a69 3451 if (!check_device(&dev->dev))
0feae533
JR
3452 continue;
3453
5abcdba4
JR
3454 dev_data = get_dev_data(&dev->dev);
3455 dev_data->passthrough = true;
3456
15898bbc 3457 attach_device(&dev->dev, pt_domain);
0feae533
JR
3458 }
3459
2655d7a2
JR
3460 amd_iommu_stats_init();
3461
0feae533
JR
3462 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3463
3464 return 0;
3465}
72e1dcc4
JR
3466
3467/* IOMMUv2 specific functions */
3468int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3469{
3470 return atomic_notifier_chain_register(&ppr_notifier, nb);
3471}
3472EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3473
3474int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3475{
3476 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3477}
3478EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3479
3480void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3481{
3f4b87b9 3482 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3483 unsigned long flags;
3484
3485 spin_lock_irqsave(&domain->lock, flags);
3486
3487 /* Update data structure */
3488 domain->mode = PAGE_MODE_NONE;
3489 domain->updated = true;
3490
3491 /* Make changes visible to IOMMUs */
3492 update_domain(domain);
3493
3494 /* Page-table is not visible to IOMMU anymore, so free it */
3495 free_pagetable(domain);
3496
3497 spin_unlock_irqrestore(&domain->lock, flags);
3498}
3499EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3500
3501int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3502{
3f4b87b9 3503 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3504 unsigned long flags;
3505 int levels, ret;
3506
3507 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3508 return -EINVAL;
3509
3510 /* Number of GCR3 table levels required */
3511 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3512 levels += 1;
3513
3514 if (levels > amd_iommu_max_glx_val)
3515 return -EINVAL;
3516
3517 spin_lock_irqsave(&domain->lock, flags);
3518
3519 /*
3520 * Save us all sanity checks whether devices already in the
3521 * domain support IOMMUv2. Just force that the domain has no
3522 * devices attached when it is switched into IOMMUv2 mode.
3523 */
3524 ret = -EBUSY;
3525 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3526 goto out;
3527
3528 ret = -ENOMEM;
3529 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3530 if (domain->gcr3_tbl == NULL)
3531 goto out;
3532
3533 domain->glx = levels;
3534 domain->flags |= PD_IOMMUV2_MASK;
3535 domain->updated = true;
3536
3537 update_domain(domain);
3538
3539 ret = 0;
3540
3541out:
3542 spin_unlock_irqrestore(&domain->lock, flags);
3543
3544 return ret;
3545}
3546EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3547
3548static int __flush_pasid(struct protection_domain *domain, int pasid,
3549 u64 address, bool size)
3550{
3551 struct iommu_dev_data *dev_data;
3552 struct iommu_cmd cmd;
3553 int i, ret;
3554
3555 if (!(domain->flags & PD_IOMMUV2_MASK))
3556 return -EINVAL;
3557
3558 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3559
3560 /*
3561 * IOMMU TLB needs to be flushed before Device TLB to
3562 * prevent device TLB refill from IOMMU TLB
3563 */
3564 for (i = 0; i < amd_iommus_present; ++i) {
3565 if (domain->dev_iommu[i] == 0)
3566 continue;
3567
3568 ret = iommu_queue_command(amd_iommus[i], &cmd);
3569 if (ret != 0)
3570 goto out;
3571 }
3572
3573 /* Wait until IOMMU TLB flushes are complete */
3574 domain_flush_complete(domain);
3575
3576 /* Now flush device TLBs */
3577 list_for_each_entry(dev_data, &domain->dev_list, list) {
3578 struct amd_iommu *iommu;
3579 int qdep;
3580
3581 BUG_ON(!dev_data->ats.enabled);
3582
3583 qdep = dev_data->ats.qdep;
3584 iommu = amd_iommu_rlookup_table[dev_data->devid];
3585
3586 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3587 qdep, address, size);
3588
3589 ret = iommu_queue_command(iommu, &cmd);
3590 if (ret != 0)
3591 goto out;
3592 }
3593
3594 /* Wait until all device TLBs are flushed */
3595 domain_flush_complete(domain);
3596
3597 ret = 0;
3598
3599out:
3600
3601 return ret;
3602}
3603
3604static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3605 u64 address)
3606{
399be2f5
JR
3607 INC_STATS_COUNTER(invalidate_iotlb);
3608
22e266c7
JR
3609 return __flush_pasid(domain, pasid, address, false);
3610}
3611
3612int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3613 u64 address)
3614{
3f4b87b9 3615 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3616 unsigned long flags;
3617 int ret;
3618
3619 spin_lock_irqsave(&domain->lock, flags);
3620 ret = __amd_iommu_flush_page(domain, pasid, address);
3621 spin_unlock_irqrestore(&domain->lock, flags);
3622
3623 return ret;
3624}
3625EXPORT_SYMBOL(amd_iommu_flush_page);
3626
3627static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3628{
399be2f5
JR
3629 INC_STATS_COUNTER(invalidate_iotlb_all);
3630
22e266c7
JR
3631 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3632 true);
3633}
3634
3635int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3636{
3f4b87b9 3637 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3638 unsigned long flags;
3639 int ret;
3640
3641 spin_lock_irqsave(&domain->lock, flags);
3642 ret = __amd_iommu_flush_tlb(domain, pasid);
3643 spin_unlock_irqrestore(&domain->lock, flags);
3644
3645 return ret;
3646}
3647EXPORT_SYMBOL(amd_iommu_flush_tlb);
3648
b16137b1
JR
3649static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3650{
3651 int index;
3652 u64 *pte;
3653
3654 while (true) {
3655
3656 index = (pasid >> (9 * level)) & 0x1ff;
3657 pte = &root[index];
3658
3659 if (level == 0)
3660 break;
3661
3662 if (!(*pte & GCR3_VALID)) {
3663 if (!alloc)
3664 return NULL;
3665
3666 root = (void *)get_zeroed_page(GFP_ATOMIC);
3667 if (root == NULL)
3668 return NULL;
3669
3670 *pte = __pa(root) | GCR3_VALID;
3671 }
3672
3673 root = __va(*pte & PAGE_MASK);
3674
3675 level -= 1;
3676 }
3677
3678 return pte;
3679}
3680
3681static int __set_gcr3(struct protection_domain *domain, int pasid,
3682 unsigned long cr3)
3683{
3684 u64 *pte;
3685
3686 if (domain->mode != PAGE_MODE_NONE)
3687 return -EINVAL;
3688
3689 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3690 if (pte == NULL)
3691 return -ENOMEM;
3692
3693 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3694
3695 return __amd_iommu_flush_tlb(domain, pasid);
3696}
3697
3698static int __clear_gcr3(struct protection_domain *domain, int pasid)
3699{
3700 u64 *pte;
3701
3702 if (domain->mode != PAGE_MODE_NONE)
3703 return -EINVAL;
3704
3705 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3706 if (pte == NULL)
3707 return 0;
3708
3709 *pte = 0;
3710
3711 return __amd_iommu_flush_tlb(domain, pasid);
3712}
3713
3714int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3715 unsigned long cr3)
3716{
3f4b87b9 3717 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3718 unsigned long flags;
3719 int ret;
3720
3721 spin_lock_irqsave(&domain->lock, flags);
3722 ret = __set_gcr3(domain, pasid, cr3);
3723 spin_unlock_irqrestore(&domain->lock, flags);
3724
3725 return ret;
3726}
3727EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3728
3729int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3730{
3f4b87b9 3731 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3732 unsigned long flags;
3733 int ret;
3734
3735 spin_lock_irqsave(&domain->lock, flags);
3736 ret = __clear_gcr3(domain, pasid);
3737 spin_unlock_irqrestore(&domain->lock, flags);
3738
3739 return ret;
3740}
3741EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3742
3743int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3744 int status, int tag)
3745{
3746 struct iommu_dev_data *dev_data;
3747 struct amd_iommu *iommu;
3748 struct iommu_cmd cmd;
3749
399be2f5
JR
3750 INC_STATS_COUNTER(complete_ppr);
3751
c99afa25
JR
3752 dev_data = get_dev_data(&pdev->dev);
3753 iommu = amd_iommu_rlookup_table[dev_data->devid];
3754
3755 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3756 tag, dev_data->pri_tlp);
3757
3758 return iommu_queue_command(iommu, &cmd);
3759}
3760EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3761
3762struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3763{
3f4b87b9 3764 struct protection_domain *pdomain;
f3572db8 3765
3f4b87b9
JR
3766 pdomain = get_domain(&pdev->dev);
3767 if (IS_ERR(pdomain))
f3572db8
JR
3768 return NULL;
3769
3770 /* Only return IOMMUv2 domains */
3f4b87b9 3771 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3772 return NULL;
3773
3f4b87b9 3774 return &pdomain->domain;
f3572db8
JR
3775}
3776EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3777
3778void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3779{
3780 struct iommu_dev_data *dev_data;
3781
3782 if (!amd_iommu_v2_supported())
3783 return;
3784
3785 dev_data = get_dev_data(&pdev->dev);
3786 dev_data->errata |= (1 << erratum);
3787}
3788EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3789
3790int amd_iommu_device_info(struct pci_dev *pdev,
3791 struct amd_iommu_device_info *info)
3792{
3793 int max_pasids;
3794 int pos;
3795
3796 if (pdev == NULL || info == NULL)
3797 return -EINVAL;
3798
3799 if (!amd_iommu_v2_supported())
3800 return -EINVAL;
3801
3802 memset(info, 0, sizeof(*info));
3803
3804 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3805 if (pos)
3806 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3807
3808 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3809 if (pos)
3810 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3811
3812 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3813 if (pos) {
3814 int features;
3815
3816 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3817 max_pasids = min(max_pasids, (1 << 20));
3818
3819 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3820 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3821
3822 features = pci_pasid_features(pdev);
3823 if (features & PCI_PASID_CAP_EXEC)
3824 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3825 if (features & PCI_PASID_CAP_PRIV)
3826 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3827 }
3828
3829 return 0;
3830}
3831EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3832
3833#ifdef CONFIG_IRQ_REMAP
3834
3835/*****************************************************************************
3836 *
3837 * Interrupt Remapping Implementation
3838 *
3839 *****************************************************************************/
3840
3841union irte {
3842 u32 val;
3843 struct {
3844 u32 valid : 1,
3845 no_fault : 1,
3846 int_type : 3,
3847 rq_eoi : 1,
3848 dm : 1,
3849 rsvd_1 : 1,
3850 destination : 8,
3851 vector : 8,
3852 rsvd_2 : 8;
3853 } fields;
3854};
3855
9c724966
JL
3856struct irq_2_irte {
3857 u16 devid; /* Device ID for IRTE table */
3858 u16 index; /* Index into IRTE table*/
3859};
3860
7c71d306
JL
3861struct amd_ir_data {
3862 struct irq_2_irte irq_2_irte;
3863 union irte irte_entry;
3864 union {
3865 struct msi_msg msi_entry;
3866 };
3867};
3868
3869static struct irq_chip amd_ir_chip;
3870
2b324506
JR
3871#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3872#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3873#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3874#define DTE_IRQ_REMAP_ENABLE 1ULL
3875
3876static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3877{
3878 u64 dte;
3879
3880 dte = amd_iommu_dev_table[devid].data[2];
3881 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3882 dte |= virt_to_phys(table->table);
3883 dte |= DTE_IRQ_REMAP_INTCTL;
3884 dte |= DTE_IRQ_TABLE_LEN;
3885 dte |= DTE_IRQ_REMAP_ENABLE;
3886
3887 amd_iommu_dev_table[devid].data[2] = dte;
3888}
3889
3890#define IRTE_ALLOCATED (~1U)
3891
3892static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3893{
3894 struct irq_remap_table *table = NULL;
3895 struct amd_iommu *iommu;
3896 unsigned long flags;
3897 u16 alias;
3898
3899 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3900
3901 iommu = amd_iommu_rlookup_table[devid];
3902 if (!iommu)
3903 goto out_unlock;
3904
3905 table = irq_lookup_table[devid];
3906 if (table)
3907 goto out;
3908
3909 alias = amd_iommu_alias_table[devid];
3910 table = irq_lookup_table[alias];
3911 if (table) {
3912 irq_lookup_table[devid] = table;
3913 set_dte_irq_entry(devid, table);
3914 iommu_flush_dte(iommu, devid);
3915 goto out;
3916 }
3917
3918 /* Nothing there yet, allocate new irq remapping table */
3919 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3920 if (!table)
3921 goto out;
3922
197887f0
JR
3923 /* Initialize table spin-lock */
3924 spin_lock_init(&table->lock);
3925
2b324506
JR
3926 if (ioapic)
3927 /* Keep the first 32 indexes free for IOAPIC interrupts */
3928 table->min_index = 32;
3929
3930 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3931 if (!table->table) {
3932 kfree(table);
821f0f68 3933 table = NULL;
2b324506
JR
3934 goto out;
3935 }
3936
3937 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3938
3939 if (ioapic) {
3940 int i;
3941
3942 for (i = 0; i < 32; ++i)
3943 table->table[i] = IRTE_ALLOCATED;
3944 }
3945
3946 irq_lookup_table[devid] = table;
3947 set_dte_irq_entry(devid, table);
3948 iommu_flush_dte(iommu, devid);
3949 if (devid != alias) {
3950 irq_lookup_table[alias] = table;
e028a9e6 3951 set_dte_irq_entry(alias, table);
2b324506
JR
3952 iommu_flush_dte(iommu, alias);
3953 }
3954
3955out:
3956 iommu_completion_wait(iommu);
3957
3958out_unlock:
3959 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3960
3961 return table;
3962}
3963
3c3d4f90 3964static int alloc_irq_index(u16 devid, int count)
2b324506
JR
3965{
3966 struct irq_remap_table *table;
3967 unsigned long flags;
3968 int index, c;
3969
3970 table = get_irq_table(devid, false);
3971 if (!table)
3972 return -ENODEV;
3973
3974 spin_lock_irqsave(&table->lock, flags);
3975
3976 /* Scan table for free entries */
3977 for (c = 0, index = table->min_index;
3978 index < MAX_IRQS_PER_TABLE;
3979 ++index) {
3980 if (table->table[index] == 0)
3981 c += 1;
3982 else
3983 c = 0;
3984
3985 if (c == count) {
2b324506
JR
3986 for (; c != 0; --c)
3987 table->table[index - c + 1] = IRTE_ALLOCATED;
3988
3989 index -= count - 1;
2b324506
JR
3990 goto out;
3991 }
3992 }
3993
3994 index = -ENOSPC;
3995
3996out:
3997 spin_unlock_irqrestore(&table->lock, flags);
3998
3999 return index;
4000}
4001
2b324506
JR
4002static int modify_irte(u16 devid, int index, union irte irte)
4003{
4004 struct irq_remap_table *table;
4005 struct amd_iommu *iommu;
4006 unsigned long flags;
4007
4008 iommu = amd_iommu_rlookup_table[devid];
4009 if (iommu == NULL)
4010 return -EINVAL;
4011
4012 table = get_irq_table(devid, false);
4013 if (!table)
4014 return -ENOMEM;
4015
4016 spin_lock_irqsave(&table->lock, flags);
4017 table->table[index] = irte.val;
4018 spin_unlock_irqrestore(&table->lock, flags);
4019
4020 iommu_flush_irt(iommu, devid);
4021 iommu_completion_wait(iommu);
4022
4023 return 0;
4024}
4025
4026static void free_irte(u16 devid, int index)
4027{
4028 struct irq_remap_table *table;
4029 struct amd_iommu *iommu;
4030 unsigned long flags;
4031
4032 iommu = amd_iommu_rlookup_table[devid];
4033 if (iommu == NULL)
4034 return;
4035
4036 table = get_irq_table(devid, false);
4037 if (!table)
4038 return;
4039
4040 spin_lock_irqsave(&table->lock, flags);
4041 table->table[index] = 0;
4042 spin_unlock_irqrestore(&table->lock, flags);
4043
4044 iommu_flush_irt(iommu, devid);
4045 iommu_completion_wait(iommu);
4046}
4047
7c71d306 4048static int get_devid(struct irq_alloc_info *info)
5527de74 4049{
7c71d306 4050 int devid = -1;
5527de74 4051
7c71d306
JL
4052 switch (info->type) {
4053 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4054 devid = get_ioapic_devid(info->ioapic_id);
4055 break;
4056 case X86_IRQ_ALLOC_TYPE_HPET:
4057 devid = get_hpet_devid(info->hpet_id);
4058 break;
4059 case X86_IRQ_ALLOC_TYPE_MSI:
4060 case X86_IRQ_ALLOC_TYPE_MSIX:
4061 devid = get_device_id(&info->msi_dev->dev);
4062 break;
4063 default:
4064 BUG_ON(1);
4065 break;
4066 }
5527de74 4067
7c71d306
JL
4068 return devid;
4069}
5527de74 4070
7c71d306
JL
4071static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4072{
4073 struct amd_iommu *iommu;
4074 int devid;
5527de74 4075
7c71d306
JL
4076 if (!info)
4077 return NULL;
5527de74 4078
7c71d306
JL
4079 devid = get_devid(info);
4080 if (devid >= 0) {
4081 iommu = amd_iommu_rlookup_table[devid];
4082 if (iommu)
4083 return iommu->ir_domain;
4084 }
5527de74 4085
7c71d306 4086 return NULL;
5527de74
JR
4087}
4088
7c71d306 4089static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
5527de74 4090{
7c71d306
JL
4091 struct amd_iommu *iommu;
4092 int devid;
5527de74 4093
7c71d306
JL
4094 if (!info)
4095 return NULL;
5527de74 4096
7c71d306
JL
4097 switch (info->type) {
4098 case X86_IRQ_ALLOC_TYPE_MSI:
4099 case X86_IRQ_ALLOC_TYPE_MSIX:
4100 devid = get_device_id(&info->msi_dev->dev);
4101 if (devid >= 0) {
4102 iommu = amd_iommu_rlookup_table[devid];
4103 if (iommu)
4104 return iommu->msi_domain;
4105 }
4106 break;
4107 default:
4108 break;
4109 }
5527de74 4110
7c71d306
JL
4111 return NULL;
4112}
5527de74 4113
6b474b82 4114struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4115 .prepare = amd_iommu_prepare,
4116 .enable = amd_iommu_enable,
4117 .disable = amd_iommu_disable,
4118 .reenable = amd_iommu_reenable,
4119 .enable_faulting = amd_iommu_enable_faulting,
7c71d306
JL
4120 .get_ir_irq_domain = get_ir_irq_domain,
4121 .get_irq_domain = get_irq_domain,
4122};
5527de74 4123
7c71d306
JL
4124static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4125 struct irq_cfg *irq_cfg,
4126 struct irq_alloc_info *info,
4127 int devid, int index, int sub_handle)
4128{
4129 struct irq_2_irte *irte_info = &data->irq_2_irte;
4130 struct msi_msg *msg = &data->msi_entry;
4131 union irte *irte = &data->irte_entry;
4132 struct IO_APIC_route_entry *entry;
5527de74 4133
7c71d306
JL
4134 data->irq_2_irte.devid = devid;
4135 data->irq_2_irte.index = index + sub_handle;
5527de74 4136
7c71d306
JL
4137 /* Setup IRTE for IOMMU */
4138 irte->val = 0;
4139 irte->fields.vector = irq_cfg->vector;
4140 irte->fields.int_type = apic->irq_delivery_mode;
4141 irte->fields.destination = irq_cfg->dest_apicid;
4142 irte->fields.dm = apic->irq_dest_mode;
4143 irte->fields.valid = 1;
4144
4145 switch (info->type) {
4146 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4147 /* Setup IOAPIC entry */
4148 entry = info->ioapic_entry;
4149 info->ioapic_entry = NULL;
4150 memset(entry, 0, sizeof(*entry));
4151 entry->vector = index;
4152 entry->mask = 0;
4153 entry->trigger = info->ioapic_trigger;
4154 entry->polarity = info->ioapic_polarity;
4155 /* Mask level triggered irqs. */
4156 if (info->ioapic_trigger)
4157 entry->mask = 1;
4158 break;
5527de74 4159
7c71d306
JL
4160 case X86_IRQ_ALLOC_TYPE_HPET:
4161 case X86_IRQ_ALLOC_TYPE_MSI:
4162 case X86_IRQ_ALLOC_TYPE_MSIX:
4163 msg->address_hi = MSI_ADDR_BASE_HI;
4164 msg->address_lo = MSI_ADDR_BASE_LO;
4165 msg->data = irte_info->index;
4166 break;
5527de74 4167
7c71d306
JL
4168 default:
4169 BUG_ON(1);
4170 break;
4171 }
5527de74
JR
4172}
4173
7c71d306
JL
4174static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4175 unsigned int nr_irqs, void *arg)
5527de74 4176{
7c71d306
JL
4177 struct irq_alloc_info *info = arg;
4178 struct irq_data *irq_data;
4179 struct amd_ir_data *data;
5527de74 4180 struct irq_cfg *cfg;
7c71d306
JL
4181 int i, ret, devid;
4182 int index = -1;
5527de74 4183
7c71d306
JL
4184 if (!info)
4185 return -EINVAL;
4186 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4187 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
5527de74
JR
4188 return -EINVAL;
4189
7c71d306
JL
4190 /*
4191 * With IRQ remapping enabled, don't need contiguous CPU vectors
4192 * to support multiple MSI interrupts.
4193 */
4194 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4195 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
5527de74 4196
7c71d306
JL
4197 devid = get_devid(info);
4198 if (devid < 0)
4199 return -EINVAL;
5527de74 4200
7c71d306
JL
4201 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4202 if (ret < 0)
4203 return ret;
0b4d48cb 4204
7c71d306
JL
4205 ret = -ENOMEM;
4206 data = kzalloc(sizeof(*data), GFP_KERNEL);
4207 if (!data)
4208 goto out_free_parent;
0b4d48cb 4209
7c71d306
JL
4210 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4211 if (get_irq_table(devid, true))
4212 index = info->ioapic_pin;
4213 else
4214 ret = -ENOMEM;
4215 } else {
3c3d4f90 4216 index = alloc_irq_index(devid, nr_irqs);
7c71d306
JL
4217 }
4218 if (index < 0) {
4219 pr_warn("Failed to allocate IRTE\n");
4220 kfree(data);
4221 goto out_free_parent;
4222 }
0b4d48cb 4223
7c71d306
JL
4224 for (i = 0; i < nr_irqs; i++) {
4225 irq_data = irq_domain_get_irq_data(domain, virq + i);
4226 cfg = irqd_cfg(irq_data);
4227 if (!irq_data || !cfg) {
4228 ret = -EINVAL;
4229 goto out_free_data;
4230 }
0b4d48cb 4231
7c71d306
JL
4232 if (i > 0) {
4233 data = kzalloc(sizeof(*data), GFP_KERNEL);
4234 if (!data)
4235 goto out_free_data;
4236 }
4237 irq_data->hwirq = (devid << 16) + i;
4238 irq_data->chip_data = data;
4239 irq_data->chip = &amd_ir_chip;
4240 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4241 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4242 }
4243 return 0;
0b4d48cb 4244
7c71d306
JL
4245out_free_data:
4246 for (i--; i >= 0; i--) {
4247 irq_data = irq_domain_get_irq_data(domain, virq + i);
4248 if (irq_data)
4249 kfree(irq_data->chip_data);
4250 }
4251 for (i = 0; i < nr_irqs; i++)
4252 free_irte(devid, index + i);
4253out_free_parent:
4254 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4255 return ret;
0b4d48cb
JR
4256}
4257
7c71d306
JL
4258static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4259 unsigned int nr_irqs)
0b4d48cb 4260{
7c71d306
JL
4261 struct irq_2_irte *irte_info;
4262 struct irq_data *irq_data;
4263 struct amd_ir_data *data;
4264 int i;
0b4d48cb 4265
7c71d306
JL
4266 for (i = 0; i < nr_irqs; i++) {
4267 irq_data = irq_domain_get_irq_data(domain, virq + i);
4268 if (irq_data && irq_data->chip_data) {
4269 data = irq_data->chip_data;
4270 irte_info = &data->irq_2_irte;
4271 free_irte(irte_info->devid, irte_info->index);
4272 kfree(data);
4273 }
4274 }
4275 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4276}
0b4d48cb 4277
7c71d306
JL
4278static void irq_remapping_activate(struct irq_domain *domain,
4279 struct irq_data *irq_data)
4280{
4281 struct amd_ir_data *data = irq_data->chip_data;
4282 struct irq_2_irte *irte_info = &data->irq_2_irte;
0b4d48cb 4283
7c71d306 4284 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
0b4d48cb
JR
4285}
4286
7c71d306
JL
4287static void irq_remapping_deactivate(struct irq_domain *domain,
4288 struct irq_data *irq_data)
0b4d48cb 4289{
7c71d306
JL
4290 struct amd_ir_data *data = irq_data->chip_data;
4291 struct irq_2_irte *irte_info = &data->irq_2_irte;
4292 union irte entry;
0b4d48cb 4293
7c71d306
JL
4294 entry.val = 0;
4295 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4296}
0b4d48cb 4297
7c71d306
JL
4298static struct irq_domain_ops amd_ir_domain_ops = {
4299 .alloc = irq_remapping_alloc,
4300 .free = irq_remapping_free,
4301 .activate = irq_remapping_activate,
4302 .deactivate = irq_remapping_deactivate,
6b474b82 4303};
0b4d48cb 4304
7c71d306
JL
4305static int amd_ir_set_affinity(struct irq_data *data,
4306 const struct cpumask *mask, bool force)
4307{
4308 struct amd_ir_data *ir_data = data->chip_data;
4309 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4310 struct irq_cfg *cfg = irqd_cfg(data);
4311 struct irq_data *parent = data->parent_data;
4312 int ret;
0b4d48cb 4313
7c71d306
JL
4314 ret = parent->chip->irq_set_affinity(parent, mask, force);
4315 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4316 return ret;
0b4d48cb 4317
7c71d306
JL
4318 /*
4319 * Atomically updates the IRTE with the new destination, vector
4320 * and flushes the interrupt entry cache.
4321 */
4322 ir_data->irte_entry.fields.vector = cfg->vector;
4323 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4324 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
0b4d48cb 4325
7c71d306
JL
4326 /*
4327 * After this point, all the interrupts will start arriving
4328 * at the new destination. So, time to cleanup the previous
4329 * vector allocation.
4330 */
c6c2002b 4331 send_cleanup_vector(cfg);
7c71d306
JL
4332
4333 return IRQ_SET_MASK_OK_DONE;
0b4d48cb
JR
4334}
4335
7c71d306 4336static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
d976195c 4337{
7c71d306 4338 struct amd_ir_data *ir_data = irq_data->chip_data;
d976195c 4339
7c71d306
JL
4340 *msg = ir_data->msi_entry;
4341}
d976195c 4342
7c71d306
JL
4343static struct irq_chip amd_ir_chip = {
4344 .irq_ack = ir_ack_apic_edge,
4345 .irq_set_affinity = amd_ir_set_affinity,
4346 .irq_compose_msi_msg = ir_compose_msi_msg,
4347};
d976195c 4348
7c71d306
JL
4349int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4350{
4351 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4352 if (!iommu->ir_domain)
4353 return -ENOMEM;
d976195c 4354
7c71d306
JL
4355 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4356 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
d976195c
JR
4357
4358 return 0;
4359}
2b324506 4360#endif
This page took 1.113562 seconds and 5 git commands to generate.