iommu/amd: Keep a list of devices in an alias group
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
b6c02715
JR
49
50#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51
815b33fd 52#define LOOP_TIMEOUT 100000
136f78a1 53
aa3de9c0
OBC
54/*
55 * This bitmap is used to advertise the page sizes our hardware support
56 * to the IOMMU core, which will then use this information to split
57 * physically contiguous memory regions it is mapping into page sizes
58 * that we support.
59 *
954e3dd8 60 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 61 */
954e3dd8 62#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 63
b6c02715
JR
64static DEFINE_RWLOCK(amd_iommu_devtable_lock);
65
bd60b735
JR
66/* A list of preallocated protection domains */
67static LIST_HEAD(iommu_pd_list);
68static DEFINE_SPINLOCK(iommu_pd_list_lock);
69
8fa5f802
JR
70/* List of all available dev_data structures */
71static LIST_HEAD(dev_data_list);
72static DEFINE_SPINLOCK(dev_data_list_lock);
73
6efed63b
JR
74LIST_HEAD(ioapic_map);
75LIST_HEAD(hpet_map);
76
0feae533
JR
77/*
78 * Domain for untranslated devices - only allocated
79 * if iommu=pt passed on kernel cmd line.
80 */
81static struct protection_domain *pt_domain;
82
b22f6434 83static const struct iommu_ops amd_iommu_ops;
26961efe 84
72e1dcc4 85static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 86int amd_iommu_max_glx_val = -1;
72e1dcc4 87
ac1534a5
JR
88static struct dma_map_ops amd_iommu_dma_ops;
89
50917e26
JR
90/*
91 * This struct contains device specific data for the IOMMU
92 */
93struct iommu_dev_data {
94 struct list_head list; /* For domain->dev_list */
95 struct list_head dev_data_list; /* For global dev_data_list */
f251e187 96 struct list_head alias_list; /* Link alias-groups together */
50917e26
JR
97 struct iommu_dev_data *alias_data;/* The alias dev_data */
98 struct protection_domain *domain; /* Domain the device is bound to */
99 atomic_t bind; /* Domain attach reference count */
100 u16 devid; /* PCI Device ID */
101 bool iommu_v2; /* Device can make use of IOMMUv2 */
102 bool passthrough; /* Default for device is pt_domain */
103 struct {
104 bool enabled;
105 int qdep;
106 } ats; /* ATS state */
107 bool pri_tlp; /* PASID TLB required for
108 PPR completions */
109 u32 errata; /* Bitmap for errata to apply */
110};
111
431b2a20
JR
112/*
113 * general struct to manage commands send to an IOMMU
114 */
d6449536 115struct iommu_cmd {
b6c02715
JR
116 u32 data[4];
117};
118
05152a04
JR
119struct kmem_cache *amd_iommu_irq_cache;
120
04bfdd84 121static void update_domain(struct protection_domain *domain);
5abcdba4 122static int __init alloc_passthrough_domain(void);
c1eee67b 123
15898bbc
JR
124/****************************************************************************
125 *
126 * Helper functions
127 *
128 ****************************************************************************/
129
f62dda66 130static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
131{
132 struct iommu_dev_data *dev_data;
133 unsigned long flags;
134
135 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
136 if (!dev_data)
137 return NULL;
138
f251e187
JR
139 INIT_LIST_HEAD(&dev_data->alias_list);
140
f62dda66 141 dev_data->devid = devid;
8fa5f802
JR
142 atomic_set(&dev_data->bind, 0);
143
144 spin_lock_irqsave(&dev_data_list_lock, flags);
145 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
146 spin_unlock_irqrestore(&dev_data_list_lock, flags);
147
148 return dev_data;
149}
150
151static void free_dev_data(struct iommu_dev_data *dev_data)
152{
153 unsigned long flags;
154
155 spin_lock_irqsave(&dev_data_list_lock, flags);
156 list_del(&dev_data->dev_data_list);
157 spin_unlock_irqrestore(&dev_data_list_lock, flags);
158
159 kfree(dev_data);
160}
161
3b03bb74
JR
162static struct iommu_dev_data *search_dev_data(u16 devid)
163{
164 struct iommu_dev_data *dev_data;
165 unsigned long flags;
166
167 spin_lock_irqsave(&dev_data_list_lock, flags);
168 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
169 if (dev_data->devid == devid)
170 goto out_unlock;
171 }
172
173 dev_data = NULL;
174
175out_unlock:
176 spin_unlock_irqrestore(&dev_data_list_lock, flags);
177
178 return dev_data;
179}
180
181static struct iommu_dev_data *find_dev_data(u16 devid)
182{
183 struct iommu_dev_data *dev_data;
184
185 dev_data = search_dev_data(devid);
186
187 if (dev_data == NULL)
188 dev_data = alloc_dev_data(devid);
189
190 return dev_data;
191}
192
15898bbc
JR
193static inline u16 get_device_id(struct device *dev)
194{
195 struct pci_dev *pdev = to_pci_dev(dev);
196
6f2729ba 197 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
198}
199
657cbb6b
JR
200static struct iommu_dev_data *get_dev_data(struct device *dev)
201{
202 return dev->archdata.iommu;
203}
204
5abcdba4
JR
205static bool pci_iommuv2_capable(struct pci_dev *pdev)
206{
207 static const int caps[] = {
208 PCI_EXT_CAP_ID_ATS,
46277b75
JR
209 PCI_EXT_CAP_ID_PRI,
210 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
211 };
212 int i, pos;
213
214 for (i = 0; i < 3; ++i) {
215 pos = pci_find_ext_capability(pdev, caps[i]);
216 if (pos == 0)
217 return false;
218 }
219
220 return true;
221}
222
6a113ddc
JR
223static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
224{
225 struct iommu_dev_data *dev_data;
226
227 dev_data = get_dev_data(&pdev->dev);
228
229 return dev_data->errata & (1 << erratum) ? true : false;
230}
231
71c70984
JR
232/*
233 * In this function the list of preallocated protection domains is traversed to
234 * find the domain for a specific device
235 */
236static struct dma_ops_domain *find_protection_domain(u16 devid)
237{
238 struct dma_ops_domain *entry, *ret = NULL;
239 unsigned long flags;
240 u16 alias = amd_iommu_alias_table[devid];
241
242 if (list_empty(&iommu_pd_list))
243 return NULL;
244
245 spin_lock_irqsave(&iommu_pd_list_lock, flags);
246
247 list_for_each_entry(entry, &iommu_pd_list, list) {
248 if (entry->target_dev == devid ||
249 entry->target_dev == alias) {
250 ret = entry;
251 break;
252 }
253 }
254
255 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
256
257 return ret;
258}
259
98fc5a69
JR
260/*
261 * This function checks if the driver got a valid device from the caller to
262 * avoid dereferencing invalid pointers.
263 */
264static bool check_device(struct device *dev)
265{
266 u16 devid;
267
268 if (!dev || !dev->dma_mask)
269 return false;
270
b82a2272
YW
271 /* No PCI device */
272 if (!dev_is_pci(dev))
98fc5a69
JR
273 return false;
274
275 devid = get_device_id(dev);
276
277 /* Out of our scope? */
278 if (devid > amd_iommu_last_bdf)
279 return false;
280
281 if (amd_iommu_rlookup_table[devid] == NULL)
282 return false;
283
284 return true;
285}
286
2851db21
AW
287static int init_iommu_group(struct device *dev)
288{
2851db21 289 struct iommu_group *group;
2851db21 290
65d5352f 291 group = iommu_group_get_for_dev(dev);
2851db21 292
65d5352f
AW
293 if (IS_ERR(group))
294 return PTR_ERR(group);
2851db21 295
65d5352f
AW
296 iommu_group_put(group);
297 return 0;
eb9c9527
AW
298}
299
c1931090
AW
300static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
301{
302 *(u16 *)data = alias;
303 return 0;
304}
305
306static u16 get_alias(struct device *dev)
307{
308 struct pci_dev *pdev = to_pci_dev(dev);
309 u16 devid, ivrs_alias, pci_alias;
310
311 devid = get_device_id(dev);
312 ivrs_alias = amd_iommu_alias_table[devid];
313 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
314
315 if (ivrs_alias == pci_alias)
316 return ivrs_alias;
317
318 /*
319 * DMA alias showdown
320 *
321 * The IVRS is fairly reliable in telling us about aliases, but it
322 * can't know about every screwy device. If we don't have an IVRS
323 * reported alias, use the PCI reported alias. In that case we may
324 * still need to initialize the rlookup and dev_table entries if the
325 * alias is to a non-existent device.
326 */
327 if (ivrs_alias == devid) {
328 if (!amd_iommu_rlookup_table[pci_alias]) {
329 amd_iommu_rlookup_table[pci_alias] =
330 amd_iommu_rlookup_table[devid];
331 memcpy(amd_iommu_dev_table[pci_alias].data,
332 amd_iommu_dev_table[devid].data,
333 sizeof(amd_iommu_dev_table[pci_alias].data));
334 }
335
336 return pci_alias;
337 }
338
339 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
340 "for device %s[%04x:%04x], kernel reported alias "
341 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
342 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
343 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
344 PCI_FUNC(pci_alias));
345
346 /*
347 * If we don't have a PCI DMA alias and the IVRS alias is on the same
348 * bus, then the IVRS table may know about a quirk that we don't.
349 */
350 if (pci_alias == devid &&
351 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
352 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
353 pdev->dma_alias_devfn = ivrs_alias & 0xff;
354 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
355 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
356 dev_name(dev));
357 }
358
359 return ivrs_alias;
360}
361
eb9c9527
AW
362static int iommu_init_device(struct device *dev)
363{
364 struct pci_dev *pdev = to_pci_dev(dev);
365 struct iommu_dev_data *dev_data;
366 u16 alias;
367 int ret;
368
369 if (dev->archdata.iommu)
370 return 0;
371
372 dev_data = find_dev_data(get_device_id(dev));
373 if (!dev_data)
374 return -ENOMEM;
375
c1931090
AW
376 alias = get_alias(dev);
377
eb9c9527
AW
378 if (alias != dev_data->devid) {
379 struct iommu_dev_data *alias_data;
380
381 alias_data = find_dev_data(alias);
382 if (alias_data == NULL) {
383 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
384 dev_name(dev));
385 free_dev_data(dev_data);
386 return -ENOTSUPP;
387 }
388 dev_data->alias_data = alias_data;
f251e187
JR
389
390 /* Add device to the alias_list */
391 list_add(&dev_data->alias_list, &alias_data->alias_list);
eb9c9527
AW
392 }
393
394 ret = init_iommu_group(dev);
e644a013
RK
395 if (ret) {
396 free_dev_data(dev_data);
9dcd6130 397 return ret;
e644a013 398 }
9dcd6130 399
5abcdba4
JR
400 if (pci_iommuv2_capable(pdev)) {
401 struct amd_iommu *iommu;
402
403 iommu = amd_iommu_rlookup_table[dev_data->devid];
404 dev_data->iommu_v2 = iommu->is_iommu_v2;
405 }
406
657cbb6b
JR
407 dev->archdata.iommu = dev_data;
408
066f2e98
AW
409 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
410 dev);
411
657cbb6b
JR
412 return 0;
413}
414
26018874
JR
415static void iommu_ignore_device(struct device *dev)
416{
417 u16 devid, alias;
418
419 devid = get_device_id(dev);
420 alias = amd_iommu_alias_table[devid];
421
422 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
423 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
424
425 amd_iommu_rlookup_table[devid] = NULL;
426 amd_iommu_rlookup_table[alias] = NULL;
427}
428
657cbb6b
JR
429static void iommu_uninit_device(struct device *dev)
430{
c1931090
AW
431 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
432
433 if (!dev_data)
434 return;
435
066f2e98
AW
436 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
437 dev);
438
9dcd6130
AW
439 iommu_group_remove_device(dev);
440
c1931090
AW
441 /* Unlink from alias, it may change if another device is re-plugged */
442 dev_data->alias_data = NULL;
443
8fa5f802 444 /*
c1931090
AW
445 * We keep dev_data around for unplugged devices and reuse it when the
446 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 447 */
657cbb6b 448}
b7cc9554
JR
449
450void __init amd_iommu_uninit_devices(void)
451{
8fa5f802 452 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
453 struct pci_dev *pdev = NULL;
454
455 for_each_pci_dev(pdev) {
456
457 if (!check_device(&pdev->dev))
458 continue;
459
460 iommu_uninit_device(&pdev->dev);
461 }
8fa5f802
JR
462
463 /* Free all of our dev_data structures */
464 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
465 free_dev_data(dev_data);
b7cc9554
JR
466}
467
468int __init amd_iommu_init_devices(void)
469{
470 struct pci_dev *pdev = NULL;
471 int ret = 0;
472
473 for_each_pci_dev(pdev) {
474
475 if (!check_device(&pdev->dev))
476 continue;
477
478 ret = iommu_init_device(&pdev->dev);
26018874
JR
479 if (ret == -ENOTSUPP)
480 iommu_ignore_device(&pdev->dev);
481 else if (ret)
b7cc9554
JR
482 goto out_free;
483 }
484
485 return 0;
486
487out_free:
488
489 amd_iommu_uninit_devices();
490
491 return ret;
492}
7f26508b
JR
493#ifdef CONFIG_AMD_IOMMU_STATS
494
495/*
496 * Initialization code for statistics collection
497 */
498
da49f6df 499DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 500DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 501DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 502DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 503DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 504DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 505DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 506DECLARE_STATS_COUNTER(cross_page);
f57d98ae 507DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 508DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 509DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 510DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
511DECLARE_STATS_COUNTER(complete_ppr);
512DECLARE_STATS_COUNTER(invalidate_iotlb);
513DECLARE_STATS_COUNTER(invalidate_iotlb_all);
514DECLARE_STATS_COUNTER(pri_requests);
515
7f26508b 516static struct dentry *stats_dir;
7f26508b
JR
517static struct dentry *de_fflush;
518
519static void amd_iommu_stats_add(struct __iommu_counter *cnt)
520{
521 if (stats_dir == NULL)
522 return;
523
524 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
525 &cnt->value);
526}
527
528static void amd_iommu_stats_init(void)
529{
530 stats_dir = debugfs_create_dir("amd-iommu", NULL);
531 if (stats_dir == NULL)
532 return;
533
7f26508b 534 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 535 &amd_iommu_unmap_flush);
da49f6df
JR
536
537 amd_iommu_stats_add(&compl_wait);
0f2a86f2 538 amd_iommu_stats_add(&cnt_map_single);
146a6917 539 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 540 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 541 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 542 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 543 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 544 amd_iommu_stats_add(&cross_page);
f57d98ae 545 amd_iommu_stats_add(&domain_flush_single);
18811f55 546 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 547 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 548 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
549 amd_iommu_stats_add(&complete_ppr);
550 amd_iommu_stats_add(&invalidate_iotlb);
551 amd_iommu_stats_add(&invalidate_iotlb_all);
552 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
553}
554
555#endif
556
a80dc3e0
JR
557/****************************************************************************
558 *
559 * Interrupt handling functions
560 *
561 ****************************************************************************/
562
e3e59876
JR
563static void dump_dte_entry(u16 devid)
564{
565 int i;
566
ee6c2868
JR
567 for (i = 0; i < 4; ++i)
568 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
569 amd_iommu_dev_table[devid].data[i]);
570}
571
945b4ac4
JR
572static void dump_command(unsigned long phys_addr)
573{
574 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
575 int i;
576
577 for (i = 0; i < 4; ++i)
578 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
579}
580
a345b23b 581static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 582{
3d06fca8
JR
583 int type, devid, domid, flags;
584 volatile u32 *event = __evt;
585 int count = 0;
586 u64 address;
587
588retry:
589 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
590 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
591 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
592 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
593 address = (u64)(((u64)event[3]) << 32) | event[2];
594
595 if (type == 0) {
596 /* Did we hit the erratum? */
597 if (++count == LOOP_TIMEOUT) {
598 pr_err("AMD-Vi: No event written to event log\n");
599 return;
600 }
601 udelay(1);
602 goto retry;
603 }
90008ee4 604
4c6f40d4 605 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
606
607 switch (type) {
608 case EVENT_TYPE_ILL_DEV:
609 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
610 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 611 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 612 address, flags);
e3e59876 613 dump_dte_entry(devid);
90008ee4
JR
614 break;
615 case EVENT_TYPE_IO_FAULT:
616 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
617 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 618 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
619 domid, address, flags);
620 break;
621 case EVENT_TYPE_DEV_TAB_ERR:
622 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
623 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 624 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
625 address, flags);
626 break;
627 case EVENT_TYPE_PAGE_TAB_ERR:
628 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
629 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 630 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
631 domid, address, flags);
632 break;
633 case EVENT_TYPE_ILL_CMD:
634 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 635 dump_command(address);
90008ee4
JR
636 break;
637 case EVENT_TYPE_CMD_HARD_ERR:
638 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
639 "flags=0x%04x]\n", address, flags);
640 break;
641 case EVENT_TYPE_IOTLB_INV_TO:
642 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
643 "address=0x%016llx]\n",
c5081cd7 644 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
645 address);
646 break;
647 case EVENT_TYPE_INV_DEV_REQ:
648 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
649 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 650 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
651 address, flags);
652 break;
653 default:
654 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
655 }
3d06fca8
JR
656
657 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
658}
659
660static void iommu_poll_events(struct amd_iommu *iommu)
661{
662 u32 head, tail;
90008ee4
JR
663
664 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
665 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
666
667 while (head != tail) {
a345b23b 668 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
669 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
670 }
671
672 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
673}
674
eee53537 675static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
676{
677 struct amd_iommu_fault fault;
72e1dcc4 678
399be2f5
JR
679 INC_STATS_COUNTER(pri_requests);
680
72e1dcc4
JR
681 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
682 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
683 return;
684 }
685
686 fault.address = raw[1];
687 fault.pasid = PPR_PASID(raw[0]);
688 fault.device_id = PPR_DEVID(raw[0]);
689 fault.tag = PPR_TAG(raw[0]);
690 fault.flags = PPR_FLAGS(raw[0]);
691
72e1dcc4
JR
692 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
693}
694
695static void iommu_poll_ppr_log(struct amd_iommu *iommu)
696{
72e1dcc4
JR
697 u32 head, tail;
698
699 if (iommu->ppr_log == NULL)
700 return;
701
72e1dcc4
JR
702 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
704
705 while (head != tail) {
eee53537
JR
706 volatile u64 *raw;
707 u64 entry[2];
708 int i;
709
710 raw = (u64 *)(iommu->ppr_log + head);
711
712 /*
713 * Hardware bug: Interrupt may arrive before the entry is
714 * written to memory. If this happens we need to wait for the
715 * entry to arrive.
716 */
717 for (i = 0; i < LOOP_TIMEOUT; ++i) {
718 if (PPR_REQ_TYPE(raw[0]) != 0)
719 break;
720 udelay(1);
721 }
72e1dcc4 722
eee53537
JR
723 /* Avoid memcpy function-call overhead */
724 entry[0] = raw[0];
725 entry[1] = raw[1];
72e1dcc4 726
eee53537
JR
727 /*
728 * To detect the hardware bug we need to clear the entry
729 * back to zero.
730 */
731 raw[0] = raw[1] = 0UL;
732
733 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
734 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
735 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 736
eee53537
JR
737 /* Handle PPR entry */
738 iommu_handle_ppr_entry(iommu, entry);
739
eee53537
JR
740 /* Refresh ring-buffer information */
741 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
742 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
743 }
72e1dcc4
JR
744}
745
72fe00f0 746irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 747{
3f398bc7
SS
748 struct amd_iommu *iommu = (struct amd_iommu *) data;
749 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 750
3f398bc7
SS
751 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
752 /* Enable EVT and PPR interrupts again */
753 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
754 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 755
3f398bc7
SS
756 if (status & MMIO_STATUS_EVT_INT_MASK) {
757 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
758 iommu_poll_events(iommu);
759 }
90008ee4 760
3f398bc7
SS
761 if (status & MMIO_STATUS_PPR_INT_MASK) {
762 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
763 iommu_poll_ppr_log(iommu);
764 }
90008ee4 765
3f398bc7
SS
766 /*
767 * Hardware bug: ERBT1312
768 * When re-enabling interrupt (by writing 1
769 * to clear the bit), the hardware might also try to set
770 * the interrupt bit in the event status register.
771 * In this scenario, the bit will be set, and disable
772 * subsequent interrupts.
773 *
774 * Workaround: The IOMMU driver should read back the
775 * status register and check if the interrupt bits are cleared.
776 * If not, driver will need to go through the interrupt handler
777 * again and re-clear the bits
778 */
779 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
780 }
90008ee4 781 return IRQ_HANDLED;
a80dc3e0
JR
782}
783
72fe00f0
JR
784irqreturn_t amd_iommu_int_handler(int irq, void *data)
785{
786 return IRQ_WAKE_THREAD;
787}
788
431b2a20
JR
789/****************************************************************************
790 *
791 * IOMMU command queuing functions
792 *
793 ****************************************************************************/
794
ac0ea6e9
JR
795static int wait_on_sem(volatile u64 *sem)
796{
797 int i = 0;
798
799 while (*sem == 0 && i < LOOP_TIMEOUT) {
800 udelay(1);
801 i += 1;
802 }
803
804 if (i == LOOP_TIMEOUT) {
805 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
806 return -EIO;
807 }
808
809 return 0;
810}
811
812static void copy_cmd_to_buffer(struct amd_iommu *iommu,
813 struct iommu_cmd *cmd,
814 u32 tail)
a19ae1ec 815{
a19ae1ec
JR
816 u8 *target;
817
8a7c5ef3 818 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
819 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
820
821 /* Copy command to buffer */
822 memcpy(target, cmd, sizeof(*cmd));
823
824 /* Tell the IOMMU about it */
a19ae1ec 825 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 826}
a19ae1ec 827
815b33fd 828static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 829{
815b33fd
JR
830 WARN_ON(address & 0x7ULL);
831
ded46737 832 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
833 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
834 cmd->data[1] = upper_32_bits(__pa(address));
835 cmd->data[2] = 1;
ded46737
JR
836 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
837}
838
94fe79e2
JR
839static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
840{
841 memset(cmd, 0, sizeof(*cmd));
842 cmd->data[0] = devid;
843 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
844}
845
11b6402c
JR
846static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
847 size_t size, u16 domid, int pde)
848{
849 u64 pages;
850 int s;
851
852 pages = iommu_num_pages(address, size, PAGE_SIZE);
853 s = 0;
854
855 if (pages > 1) {
856 /*
857 * If we have to flush more than one page, flush all
858 * TLB entries for this domain
859 */
860 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
861 s = 1;
862 }
863
864 address &= PAGE_MASK;
865
866 memset(cmd, 0, sizeof(*cmd));
867 cmd->data[1] |= domid;
868 cmd->data[2] = lower_32_bits(address);
869 cmd->data[3] = upper_32_bits(address);
870 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
871 if (s) /* size bit - we flush more than one 4kb page */
872 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 873 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
874 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
875}
876
cb41ed85
JR
877static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
878 u64 address, size_t size)
879{
880 u64 pages;
881 int s;
882
883 pages = iommu_num_pages(address, size, PAGE_SIZE);
884 s = 0;
885
886 if (pages > 1) {
887 /*
888 * If we have to flush more than one page, flush all
889 * TLB entries for this domain
890 */
891 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
892 s = 1;
893 }
894
895 address &= PAGE_MASK;
896
897 memset(cmd, 0, sizeof(*cmd));
898 cmd->data[0] = devid;
899 cmd->data[0] |= (qdep & 0xff) << 24;
900 cmd->data[1] = devid;
901 cmd->data[2] = lower_32_bits(address);
902 cmd->data[3] = upper_32_bits(address);
903 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
904 if (s)
905 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
906}
907
22e266c7
JR
908static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
909 u64 address, bool size)
910{
911 memset(cmd, 0, sizeof(*cmd));
912
913 address &= ~(0xfffULL);
914
a919a018 915 cmd->data[0] = pasid;
22e266c7
JR
916 cmd->data[1] = domid;
917 cmd->data[2] = lower_32_bits(address);
918 cmd->data[3] = upper_32_bits(address);
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
920 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
921 if (size)
922 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
923 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
924}
925
926static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
927 int qdep, u64 address, bool size)
928{
929 memset(cmd, 0, sizeof(*cmd));
930
931 address &= ~(0xfffULL);
932
933 cmd->data[0] = devid;
e8d2d82d 934 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
935 cmd->data[0] |= (qdep & 0xff) << 24;
936 cmd->data[1] = devid;
e8d2d82d 937 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
938 cmd->data[2] = lower_32_bits(address);
939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
940 cmd->data[3] = upper_32_bits(address);
941 if (size)
942 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
943 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
944}
945
c99afa25
JR
946static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
947 int status, int tag, bool gn)
948{
949 memset(cmd, 0, sizeof(*cmd));
950
951 cmd->data[0] = devid;
952 if (gn) {
a919a018 953 cmd->data[1] = pasid;
c99afa25
JR
954 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
955 }
956 cmd->data[3] = tag & 0x1ff;
957 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
958
959 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
960}
961
58fc7f14
JR
962static void build_inv_all(struct iommu_cmd *cmd)
963{
964 memset(cmd, 0, sizeof(*cmd));
965 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
966}
967
7ef2798d
JR
968static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
969{
970 memset(cmd, 0, sizeof(*cmd));
971 cmd->data[0] = devid;
972 CMD_SET_TYPE(cmd, CMD_INV_IRT);
973}
974
431b2a20 975/*
431b2a20 976 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 977 * hardware about the new command.
431b2a20 978 */
f1ca1512
JR
979static int iommu_queue_command_sync(struct amd_iommu *iommu,
980 struct iommu_cmd *cmd,
981 bool sync)
a19ae1ec 982{
ac0ea6e9 983 u32 left, tail, head, next_tail;
a19ae1ec 984 unsigned long flags;
a19ae1ec 985
549c90dc 986 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
987
988again:
a19ae1ec 989 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 990
ac0ea6e9
JR
991 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
992 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
993 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
994 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 995
ac0ea6e9
JR
996 if (left <= 2) {
997 struct iommu_cmd sync_cmd;
998 volatile u64 sem = 0;
999 int ret;
8d201968 1000
ac0ea6e9
JR
1001 build_completion_wait(&sync_cmd, (u64)&sem);
1002 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1003
ac0ea6e9
JR
1004 spin_unlock_irqrestore(&iommu->lock, flags);
1005
1006 if ((ret = wait_on_sem(&sem)) != 0)
1007 return ret;
1008
1009 goto again;
8d201968
JR
1010 }
1011
ac0ea6e9
JR
1012 copy_cmd_to_buffer(iommu, cmd, tail);
1013
1014 /* We need to sync now to make sure all commands are processed */
f1ca1512 1015 iommu->need_sync = sync;
ac0ea6e9 1016
a19ae1ec 1017 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1018
815b33fd 1019 return 0;
8d201968
JR
1020}
1021
f1ca1512
JR
1022static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1023{
1024 return iommu_queue_command_sync(iommu, cmd, true);
1025}
1026
8d201968
JR
1027/*
1028 * This function queues a completion wait command into the command
1029 * buffer of an IOMMU
1030 */
a19ae1ec 1031static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1032{
1033 struct iommu_cmd cmd;
815b33fd 1034 volatile u64 sem = 0;
ac0ea6e9 1035 int ret;
8d201968 1036
09ee17eb 1037 if (!iommu->need_sync)
815b33fd 1038 return 0;
09ee17eb 1039
815b33fd 1040 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1041
f1ca1512 1042 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1043 if (ret)
815b33fd 1044 return ret;
8d201968 1045
ac0ea6e9 1046 return wait_on_sem(&sem);
8d201968
JR
1047}
1048
d8c13085 1049static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1050{
d8c13085 1051 struct iommu_cmd cmd;
a19ae1ec 1052
d8c13085 1053 build_inv_dte(&cmd, devid);
7e4f88da 1054
d8c13085
JR
1055 return iommu_queue_command(iommu, &cmd);
1056}
09ee17eb 1057
7d0c5cc5
JR
1058static void iommu_flush_dte_all(struct amd_iommu *iommu)
1059{
1060 u32 devid;
09ee17eb 1061
7d0c5cc5
JR
1062 for (devid = 0; devid <= 0xffff; ++devid)
1063 iommu_flush_dte(iommu, devid);
a19ae1ec 1064
7d0c5cc5
JR
1065 iommu_completion_wait(iommu);
1066}
84df8175 1067
7d0c5cc5
JR
1068/*
1069 * This function uses heavy locking and may disable irqs for some time. But
1070 * this is no issue because it is only called during resume.
1071 */
1072static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1073{
1074 u32 dom_id;
a19ae1ec 1075
7d0c5cc5
JR
1076 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1077 struct iommu_cmd cmd;
1078 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1079 dom_id, 1);
1080 iommu_queue_command(iommu, &cmd);
1081 }
8eed9833 1082
7d0c5cc5 1083 iommu_completion_wait(iommu);
a19ae1ec
JR
1084}
1085
58fc7f14 1086static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1087{
58fc7f14 1088 struct iommu_cmd cmd;
0518a3a4 1089
58fc7f14 1090 build_inv_all(&cmd);
0518a3a4 1091
58fc7f14
JR
1092 iommu_queue_command(iommu, &cmd);
1093 iommu_completion_wait(iommu);
1094}
1095
7ef2798d
JR
1096static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1097{
1098 struct iommu_cmd cmd;
1099
1100 build_inv_irt(&cmd, devid);
1101
1102 iommu_queue_command(iommu, &cmd);
1103}
1104
1105static void iommu_flush_irt_all(struct amd_iommu *iommu)
1106{
1107 u32 devid;
1108
1109 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1110 iommu_flush_irt(iommu, devid);
1111
1112 iommu_completion_wait(iommu);
1113}
1114
7d0c5cc5
JR
1115void iommu_flush_all_caches(struct amd_iommu *iommu)
1116{
58fc7f14
JR
1117 if (iommu_feature(iommu, FEATURE_IA)) {
1118 iommu_flush_all(iommu);
1119 } else {
1120 iommu_flush_dte_all(iommu);
7ef2798d 1121 iommu_flush_irt_all(iommu);
58fc7f14 1122 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1123 }
1124}
1125
431b2a20 1126/*
cb41ed85 1127 * Command send function for flushing on-device TLB
431b2a20 1128 */
6c542047
JR
1129static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1130 u64 address, size_t size)
3fa43655
JR
1131{
1132 struct amd_iommu *iommu;
b00d3bcf 1133 struct iommu_cmd cmd;
cb41ed85 1134 int qdep;
3fa43655 1135
ea61cddb
JR
1136 qdep = dev_data->ats.qdep;
1137 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1138
ea61cddb 1139 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1140
1141 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1142}
1143
431b2a20 1144/*
431b2a20 1145 * Command send function for invalidating a device table entry
431b2a20 1146 */
6c542047 1147static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1148{
3fa43655 1149 struct amd_iommu *iommu;
ee2fa743 1150 int ret;
a19ae1ec 1151
6c542047 1152 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1153
f62dda66 1154 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1155 if (ret)
1156 return ret;
1157
ea61cddb 1158 if (dev_data->ats.enabled)
6c542047 1159 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1160
ee2fa743 1161 return ret;
a19ae1ec
JR
1162}
1163
431b2a20
JR
1164/*
1165 * TLB invalidation function which is called from the mapping functions.
1166 * It invalidates a single PTE if the range to flush is within a single
1167 * page. Otherwise it flushes the whole TLB of the IOMMU.
1168 */
17b124bf
JR
1169static void __domain_flush_pages(struct protection_domain *domain,
1170 u64 address, size_t size, int pde)
a19ae1ec 1171{
cb41ed85 1172 struct iommu_dev_data *dev_data;
11b6402c
JR
1173 struct iommu_cmd cmd;
1174 int ret = 0, i;
a19ae1ec 1175
11b6402c 1176 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1177
6de8ad9b
JR
1178 for (i = 0; i < amd_iommus_present; ++i) {
1179 if (!domain->dev_iommu[i])
1180 continue;
1181
1182 /*
1183 * Devices of this domain are behind this IOMMU
1184 * We need a TLB flush
1185 */
11b6402c 1186 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1187 }
1188
cb41ed85 1189 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1190
ea61cddb 1191 if (!dev_data->ats.enabled)
cb41ed85
JR
1192 continue;
1193
6c542047 1194 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1195 }
1196
11b6402c 1197 WARN_ON(ret);
6de8ad9b
JR
1198}
1199
17b124bf
JR
1200static void domain_flush_pages(struct protection_domain *domain,
1201 u64 address, size_t size)
6de8ad9b 1202{
17b124bf 1203 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1204}
b6c02715 1205
1c655773 1206/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1207static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1208{
17b124bf 1209 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1210}
1211
42a49f96 1212/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1213static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1214{
17b124bf 1215 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1216}
1217
17b124bf 1218static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1219{
17b124bf 1220 int i;
18811f55 1221
17b124bf
JR
1222 for (i = 0; i < amd_iommus_present; ++i) {
1223 if (!domain->dev_iommu[i])
1224 continue;
bfd1be18 1225
17b124bf
JR
1226 /*
1227 * Devices of this domain are behind this IOMMU
1228 * We need to wait for completion of all commands.
1229 */
1230 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1231 }
e394d72a
JR
1232}
1233
b00d3bcf 1234
09b42804 1235/*
b00d3bcf 1236 * This function flushes the DTEs for all devices in domain
09b42804 1237 */
17b124bf 1238static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1239{
b00d3bcf 1240 struct iommu_dev_data *dev_data;
b26e81b8 1241
b00d3bcf 1242 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1243 device_flush_dte(dev_data);
a345b23b
JR
1244}
1245
431b2a20
JR
1246/****************************************************************************
1247 *
1248 * The functions below are used the create the page table mappings for
1249 * unity mapped regions.
1250 *
1251 ****************************************************************************/
1252
308973d3
JR
1253/*
1254 * This function is used to add another level to an IO page table. Adding
1255 * another level increases the size of the address space by 9 bits to a size up
1256 * to 64 bits.
1257 */
1258static bool increase_address_space(struct protection_domain *domain,
1259 gfp_t gfp)
1260{
1261 u64 *pte;
1262
1263 if (domain->mode == PAGE_MODE_6_LEVEL)
1264 /* address space already 64 bit large */
1265 return false;
1266
1267 pte = (void *)get_zeroed_page(gfp);
1268 if (!pte)
1269 return false;
1270
1271 *pte = PM_LEVEL_PDE(domain->mode,
1272 virt_to_phys(domain->pt_root));
1273 domain->pt_root = pte;
1274 domain->mode += 1;
1275 domain->updated = true;
1276
1277 return true;
1278}
1279
1280static u64 *alloc_pte(struct protection_domain *domain,
1281 unsigned long address,
cbb9d729 1282 unsigned long page_size,
308973d3
JR
1283 u64 **pte_page,
1284 gfp_t gfp)
1285{
cbb9d729 1286 int level, end_lvl;
308973d3 1287 u64 *pte, *page;
cbb9d729
JR
1288
1289 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1290
1291 while (address > PM_LEVEL_SIZE(domain->mode))
1292 increase_address_space(domain, gfp);
1293
cbb9d729
JR
1294 level = domain->mode - 1;
1295 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1296 address = PAGE_SIZE_ALIGN(address, page_size);
1297 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1298
1299 while (level > end_lvl) {
1300 if (!IOMMU_PTE_PRESENT(*pte)) {
1301 page = (u64 *)get_zeroed_page(gfp);
1302 if (!page)
1303 return NULL;
1304 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1305 }
1306
cbb9d729
JR
1307 /* No level skipping support yet */
1308 if (PM_PTE_LEVEL(*pte) != level)
1309 return NULL;
1310
308973d3
JR
1311 level -= 1;
1312
1313 pte = IOMMU_PTE_PAGE(*pte);
1314
1315 if (pte_page && level == end_lvl)
1316 *pte_page = pte;
1317
1318 pte = &pte[PM_LEVEL_INDEX(level, address)];
1319 }
1320
1321 return pte;
1322}
1323
1324/*
1325 * This function checks if there is a PTE for a given dma address. If
1326 * there is one, it returns the pointer to it.
1327 */
24cd7723 1328static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1329{
1330 int level;
1331 u64 *pte;
1332
24cd7723
JR
1333 if (address > PM_LEVEL_SIZE(domain->mode))
1334 return NULL;
1335
1336 level = domain->mode - 1;
1337 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1338
24cd7723
JR
1339 while (level > 0) {
1340
1341 /* Not Present */
308973d3
JR
1342 if (!IOMMU_PTE_PRESENT(*pte))
1343 return NULL;
1344
24cd7723
JR
1345 /* Large PTE */
1346 if (PM_PTE_LEVEL(*pte) == 0x07) {
1347 unsigned long pte_mask, __pte;
1348
1349 /*
1350 * If we have a series of large PTEs, make
1351 * sure to return a pointer to the first one.
1352 */
1353 pte_mask = PTE_PAGE_SIZE(*pte);
1354 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1355 __pte = ((unsigned long)pte) & pte_mask;
1356
1357 return (u64 *)__pte;
1358 }
1359
1360 /* No level skipping support yet */
1361 if (PM_PTE_LEVEL(*pte) != level)
1362 return NULL;
1363
308973d3
JR
1364 level -= 1;
1365
24cd7723 1366 /* Walk to the next level */
308973d3
JR
1367 pte = IOMMU_PTE_PAGE(*pte);
1368 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1369 }
1370
1371 return pte;
1372}
1373
431b2a20
JR
1374/*
1375 * Generic mapping functions. It maps a physical address into a DMA
1376 * address space. It allocates the page table pages if necessary.
1377 * In the future it can be extended to a generic mapping function
1378 * supporting all features of AMD IOMMU page tables like level skipping
1379 * and full 64 bit address spaces.
1380 */
38e817fe
JR
1381static int iommu_map_page(struct protection_domain *dom,
1382 unsigned long bus_addr,
1383 unsigned long phys_addr,
abdc5eb3 1384 int prot,
cbb9d729 1385 unsigned long page_size)
bd0e5211 1386{
8bda3092 1387 u64 __pte, *pte;
cbb9d729 1388 int i, count;
abdc5eb3 1389
bad1cac2 1390 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1391 return -EINVAL;
1392
cbb9d729
JR
1393 bus_addr = PAGE_ALIGN(bus_addr);
1394 phys_addr = PAGE_ALIGN(phys_addr);
1395 count = PAGE_SIZE_PTE_COUNT(page_size);
1396 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1397
1398 for (i = 0; i < count; ++i)
1399 if (IOMMU_PTE_PRESENT(pte[i]))
1400 return -EBUSY;
bd0e5211 1401
cbb9d729
JR
1402 if (page_size > PAGE_SIZE) {
1403 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1404 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1405 } else
1406 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1407
bd0e5211
JR
1408 if (prot & IOMMU_PROT_IR)
1409 __pte |= IOMMU_PTE_IR;
1410 if (prot & IOMMU_PROT_IW)
1411 __pte |= IOMMU_PTE_IW;
1412
cbb9d729
JR
1413 for (i = 0; i < count; ++i)
1414 pte[i] = __pte;
bd0e5211 1415
04bfdd84
JR
1416 update_domain(dom);
1417
bd0e5211
JR
1418 return 0;
1419}
1420
24cd7723
JR
1421static unsigned long iommu_unmap_page(struct protection_domain *dom,
1422 unsigned long bus_addr,
1423 unsigned long page_size)
eb74ff6c 1424{
24cd7723
JR
1425 unsigned long long unmap_size, unmapped;
1426 u64 *pte;
1427
1428 BUG_ON(!is_power_of_2(page_size));
1429
1430 unmapped = 0;
eb74ff6c 1431
24cd7723
JR
1432 while (unmapped < page_size) {
1433
1434 pte = fetch_pte(dom, bus_addr);
1435
1436 if (!pte) {
1437 /*
1438 * No PTE for this address
1439 * move forward in 4kb steps
1440 */
1441 unmap_size = PAGE_SIZE;
1442 } else if (PM_PTE_LEVEL(*pte) == 0) {
1443 /* 4kb PTE found for this address */
1444 unmap_size = PAGE_SIZE;
1445 *pte = 0ULL;
1446 } else {
1447 int count, i;
1448
1449 /* Large PTE found which maps this address */
1450 unmap_size = PTE_PAGE_SIZE(*pte);
60d0ca3c
AW
1451
1452 /* Only unmap from the first pte in the page */
1453 if ((unmap_size - 1) & bus_addr)
1454 break;
24cd7723
JR
1455 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1456 for (i = 0; i < count; i++)
1457 pte[i] = 0ULL;
1458 }
1459
1460 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1461 unmapped += unmap_size;
1462 }
1463
60d0ca3c 1464 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1465
24cd7723 1466 return unmapped;
eb74ff6c 1467}
eb74ff6c 1468
431b2a20
JR
1469/*
1470 * This function checks if a specific unity mapping entry is needed for
1471 * this specific IOMMU.
1472 */
bd0e5211
JR
1473static int iommu_for_unity_map(struct amd_iommu *iommu,
1474 struct unity_map_entry *entry)
1475{
1476 u16 bdf, i;
1477
1478 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1479 bdf = amd_iommu_alias_table[i];
1480 if (amd_iommu_rlookup_table[bdf] == iommu)
1481 return 1;
1482 }
1483
1484 return 0;
1485}
1486
431b2a20
JR
1487/*
1488 * This function actually applies the mapping to the page table of the
1489 * dma_ops domain.
1490 */
bd0e5211
JR
1491static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1492 struct unity_map_entry *e)
1493{
1494 u64 addr;
1495 int ret;
1496
1497 for (addr = e->address_start; addr < e->address_end;
1498 addr += PAGE_SIZE) {
abdc5eb3 1499 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1500 PAGE_SIZE);
bd0e5211
JR
1501 if (ret)
1502 return ret;
1503 /*
1504 * if unity mapping is in aperture range mark the page
1505 * as allocated in the aperture
1506 */
1507 if (addr < dma_dom->aperture_size)
c3239567 1508 __set_bit(addr >> PAGE_SHIFT,
384de729 1509 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1510 }
1511
1512 return 0;
1513}
1514
171e7b37
JR
1515/*
1516 * Init the unity mappings for a specific IOMMU in the system
1517 *
1518 * Basically iterates over all unity mapping entries and applies them to
1519 * the default domain DMA of that IOMMU if necessary.
1520 */
1521static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1522{
1523 struct unity_map_entry *entry;
1524 int ret;
1525
1526 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1527 if (!iommu_for_unity_map(iommu, entry))
1528 continue;
1529 ret = dma_ops_unity_map(iommu->default_dom, entry);
1530 if (ret)
1531 return ret;
1532 }
1533
1534 return 0;
1535}
1536
431b2a20
JR
1537/*
1538 * Inits the unity mappings required for a specific device
1539 */
bd0e5211
JR
1540static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1541 u16 devid)
1542{
1543 struct unity_map_entry *e;
1544 int ret;
1545
1546 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1547 if (!(devid >= e->devid_start && devid <= e->devid_end))
1548 continue;
1549 ret = dma_ops_unity_map(dma_dom, e);
1550 if (ret)
1551 return ret;
1552 }
1553
1554 return 0;
1555}
1556
431b2a20
JR
1557/****************************************************************************
1558 *
1559 * The next functions belong to the address allocator for the dma_ops
1560 * interface functions. They work like the allocators in the other IOMMU
1561 * drivers. Its basically a bitmap which marks the allocated pages in
1562 * the aperture. Maybe it could be enhanced in the future to a more
1563 * efficient allocator.
1564 *
1565 ****************************************************************************/
d3086444 1566
431b2a20 1567/*
384de729 1568 * The address allocator core functions.
431b2a20
JR
1569 *
1570 * called with domain->lock held
1571 */
384de729 1572
171e7b37
JR
1573/*
1574 * Used to reserve address ranges in the aperture (e.g. for exclusion
1575 * ranges.
1576 */
1577static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1578 unsigned long start_page,
1579 unsigned int pages)
1580{
1581 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1582
1583 if (start_page + pages > last_page)
1584 pages = last_page - start_page;
1585
1586 for (i = start_page; i < start_page + pages; ++i) {
1587 int index = i / APERTURE_RANGE_PAGES;
1588 int page = i % APERTURE_RANGE_PAGES;
1589 __set_bit(page, dom->aperture[index]->bitmap);
1590 }
1591}
1592
9cabe89b
JR
1593/*
1594 * This function is used to add a new aperture range to an existing
1595 * aperture in case of dma_ops domain allocation or address allocation
1596 * failure.
1597 */
576175c2 1598static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1599 bool populate, gfp_t gfp)
1600{
1601 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1602 struct amd_iommu *iommu;
17f5b569 1603 unsigned long i, old_size;
9cabe89b 1604
f5e9705c
JR
1605#ifdef CONFIG_IOMMU_STRESS
1606 populate = false;
1607#endif
1608
9cabe89b
JR
1609 if (index >= APERTURE_MAX_RANGES)
1610 return -ENOMEM;
1611
1612 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1613 if (!dma_dom->aperture[index])
1614 return -ENOMEM;
1615
1616 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1617 if (!dma_dom->aperture[index]->bitmap)
1618 goto out_free;
1619
1620 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1621
1622 if (populate) {
1623 unsigned long address = dma_dom->aperture_size;
1624 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1625 u64 *pte, *pte_page;
1626
1627 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1628 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1629 &pte_page, gfp);
1630 if (!pte)
1631 goto out_free;
1632
1633 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1634
1635 address += APERTURE_RANGE_SIZE / 64;
1636 }
1637 }
1638
17f5b569 1639 old_size = dma_dom->aperture_size;
9cabe89b
JR
1640 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1641
17f5b569
JR
1642 /* Reserve address range used for MSI messages */
1643 if (old_size < MSI_ADDR_BASE_LO &&
1644 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1645 unsigned long spage;
1646 int pages;
1647
1648 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1649 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1650
1651 dma_ops_reserve_addresses(dma_dom, spage, pages);
1652 }
1653
b595076a 1654 /* Initialize the exclusion range if necessary */
576175c2
JR
1655 for_each_iommu(iommu) {
1656 if (iommu->exclusion_start &&
1657 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1658 && iommu->exclusion_start < dma_dom->aperture_size) {
1659 unsigned long startpage;
1660 int pages = iommu_num_pages(iommu->exclusion_start,
1661 iommu->exclusion_length,
1662 PAGE_SIZE);
1663 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1664 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1665 }
00cd122a
JR
1666 }
1667
1668 /*
1669 * Check for areas already mapped as present in the new aperture
1670 * range and mark those pages as reserved in the allocator. Such
1671 * mappings may already exist as a result of requested unity
1672 * mappings for devices.
1673 */
1674 for (i = dma_dom->aperture[index]->offset;
1675 i < dma_dom->aperture_size;
1676 i += PAGE_SIZE) {
24cd7723 1677 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1678 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1679 continue;
1680
fcd0861d 1681 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1682 }
1683
04bfdd84
JR
1684 update_domain(&dma_dom->domain);
1685
9cabe89b
JR
1686 return 0;
1687
1688out_free:
04bfdd84
JR
1689 update_domain(&dma_dom->domain);
1690
9cabe89b
JR
1691 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1692
1693 kfree(dma_dom->aperture[index]);
1694 dma_dom->aperture[index] = NULL;
1695
1696 return -ENOMEM;
1697}
1698
384de729
JR
1699static unsigned long dma_ops_area_alloc(struct device *dev,
1700 struct dma_ops_domain *dom,
1701 unsigned int pages,
1702 unsigned long align_mask,
1703 u64 dma_mask,
1704 unsigned long start)
1705{
803b8cb4 1706 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1707 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1708 int i = start >> APERTURE_RANGE_SHIFT;
1709 unsigned long boundary_size;
1710 unsigned long address = -1;
1711 unsigned long limit;
1712
803b8cb4
JR
1713 next_bit >>= PAGE_SHIFT;
1714
384de729
JR
1715 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1716 PAGE_SIZE) >> PAGE_SHIFT;
1717
1718 for (;i < max_index; ++i) {
1719 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1720
1721 if (dom->aperture[i]->offset >= dma_mask)
1722 break;
1723
1724 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1725 dma_mask >> PAGE_SHIFT);
1726
1727 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1728 limit, next_bit, pages, 0,
1729 boundary_size, align_mask);
1730 if (address != -1) {
1731 address = dom->aperture[i]->offset +
1732 (address << PAGE_SHIFT);
803b8cb4 1733 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1734 break;
1735 }
1736
1737 next_bit = 0;
1738 }
1739
1740 return address;
1741}
1742
d3086444
JR
1743static unsigned long dma_ops_alloc_addresses(struct device *dev,
1744 struct dma_ops_domain *dom,
6d4f343f 1745 unsigned int pages,
832a90c3
JR
1746 unsigned long align_mask,
1747 u64 dma_mask)
d3086444 1748{
d3086444 1749 unsigned long address;
d3086444 1750
fe16f088
JR
1751#ifdef CONFIG_IOMMU_STRESS
1752 dom->next_address = 0;
1753 dom->need_flush = true;
1754#endif
d3086444 1755
384de729 1756 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1757 dma_mask, dom->next_address);
d3086444 1758
1c655773 1759 if (address == -1) {
803b8cb4 1760 dom->next_address = 0;
384de729
JR
1761 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1762 dma_mask, 0);
1c655773
JR
1763 dom->need_flush = true;
1764 }
d3086444 1765
384de729 1766 if (unlikely(address == -1))
8fd524b3 1767 address = DMA_ERROR_CODE;
d3086444
JR
1768
1769 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1770
1771 return address;
1772}
1773
431b2a20
JR
1774/*
1775 * The address free function.
1776 *
1777 * called with domain->lock held
1778 */
d3086444
JR
1779static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1780 unsigned long address,
1781 unsigned int pages)
1782{
384de729
JR
1783 unsigned i = address >> APERTURE_RANGE_SHIFT;
1784 struct aperture_range *range = dom->aperture[i];
80be308d 1785
384de729
JR
1786 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1787
47bccd6b
JR
1788#ifdef CONFIG_IOMMU_STRESS
1789 if (i < 4)
1790 return;
1791#endif
80be308d 1792
803b8cb4 1793 if (address >= dom->next_address)
80be308d 1794 dom->need_flush = true;
384de729
JR
1795
1796 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1797
a66022c4 1798 bitmap_clear(range->bitmap, address, pages);
384de729 1799
d3086444
JR
1800}
1801
431b2a20
JR
1802/****************************************************************************
1803 *
1804 * The next functions belong to the domain allocation. A domain is
1805 * allocated for every IOMMU as the default domain. If device isolation
1806 * is enabled, every device get its own domain. The most important thing
1807 * about domains is the page table mapping the DMA address space they
1808 * contain.
1809 *
1810 ****************************************************************************/
1811
aeb26f55
JR
1812/*
1813 * This function adds a protection domain to the global protection domain list
1814 */
1815static void add_domain_to_list(struct protection_domain *domain)
1816{
1817 unsigned long flags;
1818
1819 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1820 list_add(&domain->list, &amd_iommu_pd_list);
1821 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1822}
1823
1824/*
1825 * This function removes a protection domain to the global
1826 * protection domain list
1827 */
1828static void del_domain_from_list(struct protection_domain *domain)
1829{
1830 unsigned long flags;
1831
1832 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1833 list_del(&domain->list);
1834 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1835}
1836
ec487d1a
JR
1837static u16 domain_id_alloc(void)
1838{
1839 unsigned long flags;
1840 int id;
1841
1842 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1843 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1844 BUG_ON(id == 0);
1845 if (id > 0 && id < MAX_DOMAIN_ID)
1846 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1847 else
1848 id = 0;
1849 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1850
1851 return id;
1852}
1853
a2acfb75
JR
1854static void domain_id_free(int id)
1855{
1856 unsigned long flags;
1857
1858 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1859 if (id > 0 && id < MAX_DOMAIN_ID)
1860 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1861 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1862}
a2acfb75 1863
5c34c403
JR
1864#define DEFINE_FREE_PT_FN(LVL, FN) \
1865static void free_pt_##LVL (unsigned long __pt) \
1866{ \
1867 unsigned long p; \
1868 u64 *pt; \
1869 int i; \
1870 \
1871 pt = (u64 *)__pt; \
1872 \
1873 for (i = 0; i < 512; ++i) { \
1874 if (!IOMMU_PTE_PRESENT(pt[i])) \
1875 continue; \
1876 \
1877 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1878 FN(p); \
1879 } \
1880 free_page((unsigned long)pt); \
1881}
1882
1883DEFINE_FREE_PT_FN(l2, free_page)
1884DEFINE_FREE_PT_FN(l3, free_pt_l2)
1885DEFINE_FREE_PT_FN(l4, free_pt_l3)
1886DEFINE_FREE_PT_FN(l5, free_pt_l4)
1887DEFINE_FREE_PT_FN(l6, free_pt_l5)
1888
86db2e5d 1889static void free_pagetable(struct protection_domain *domain)
ec487d1a 1890{
5c34c403 1891 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1892
5c34c403
JR
1893 switch (domain->mode) {
1894 case PAGE_MODE_NONE:
1895 break;
1896 case PAGE_MODE_1_LEVEL:
1897 free_page(root);
1898 break;
1899 case PAGE_MODE_2_LEVEL:
1900 free_pt_l2(root);
1901 break;
1902 case PAGE_MODE_3_LEVEL:
1903 free_pt_l3(root);
1904 break;
1905 case PAGE_MODE_4_LEVEL:
1906 free_pt_l4(root);
1907 break;
1908 case PAGE_MODE_5_LEVEL:
1909 free_pt_l5(root);
1910 break;
1911 case PAGE_MODE_6_LEVEL:
1912 free_pt_l6(root);
1913 break;
1914 default:
1915 BUG();
ec487d1a 1916 }
ec487d1a
JR
1917}
1918
b16137b1
JR
1919static void free_gcr3_tbl_level1(u64 *tbl)
1920{
1921 u64 *ptr;
1922 int i;
1923
1924 for (i = 0; i < 512; ++i) {
1925 if (!(tbl[i] & GCR3_VALID))
1926 continue;
1927
1928 ptr = __va(tbl[i] & PAGE_MASK);
1929
1930 free_page((unsigned long)ptr);
1931 }
1932}
1933
1934static void free_gcr3_tbl_level2(u64 *tbl)
1935{
1936 u64 *ptr;
1937 int i;
1938
1939 for (i = 0; i < 512; ++i) {
1940 if (!(tbl[i] & GCR3_VALID))
1941 continue;
1942
1943 ptr = __va(tbl[i] & PAGE_MASK);
1944
1945 free_gcr3_tbl_level1(ptr);
1946 }
1947}
1948
52815b75
JR
1949static void free_gcr3_table(struct protection_domain *domain)
1950{
b16137b1
JR
1951 if (domain->glx == 2)
1952 free_gcr3_tbl_level2(domain->gcr3_tbl);
1953 else if (domain->glx == 1)
1954 free_gcr3_tbl_level1(domain->gcr3_tbl);
1955 else if (domain->glx != 0)
1956 BUG();
1957
52815b75
JR
1958 free_page((unsigned long)domain->gcr3_tbl);
1959}
1960
431b2a20
JR
1961/*
1962 * Free a domain, only used if something went wrong in the
1963 * allocation path and we need to free an already allocated page table
1964 */
ec487d1a
JR
1965static void dma_ops_domain_free(struct dma_ops_domain *dom)
1966{
384de729
JR
1967 int i;
1968
ec487d1a
JR
1969 if (!dom)
1970 return;
1971
aeb26f55
JR
1972 del_domain_from_list(&dom->domain);
1973
86db2e5d 1974 free_pagetable(&dom->domain);
ec487d1a 1975
384de729
JR
1976 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1977 if (!dom->aperture[i])
1978 continue;
1979 free_page((unsigned long)dom->aperture[i]->bitmap);
1980 kfree(dom->aperture[i]);
1981 }
ec487d1a
JR
1982
1983 kfree(dom);
1984}
1985
431b2a20
JR
1986/*
1987 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1988 * It also initializes the page table and the address allocator data
431b2a20
JR
1989 * structures required for the dma_ops interface
1990 */
87a64d52 1991static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1992{
1993 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1994
1995 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1996 if (!dma_dom)
1997 return NULL;
1998
1999 spin_lock_init(&dma_dom->domain.lock);
2000
2001 dma_dom->domain.id = domain_id_alloc();
2002 if (dma_dom->domain.id == 0)
2003 goto free_dma_dom;
7c392cbe 2004 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2005 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2006 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2007 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2008 dma_dom->domain.priv = dma_dom;
2009 if (!dma_dom->domain.pt_root)
2010 goto free_dma_dom;
ec487d1a 2011
1c655773 2012 dma_dom->need_flush = false;
bd60b735 2013 dma_dom->target_dev = 0xffff;
1c655773 2014
aeb26f55
JR
2015 add_domain_to_list(&dma_dom->domain);
2016
576175c2 2017 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2018 goto free_dma_dom;
ec487d1a 2019
431b2a20 2020 /*
ec487d1a
JR
2021 * mark the first page as allocated so we never return 0 as
2022 * a valid dma-address. So we can use 0 as error value
431b2a20 2023 */
384de729 2024 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2025 dma_dom->next_address = 0;
ec487d1a 2026
ec487d1a
JR
2027
2028 return dma_dom;
2029
2030free_dma_dom:
2031 dma_ops_domain_free(dma_dom);
2032
2033 return NULL;
2034}
2035
5b28df6f
JR
2036/*
2037 * little helper function to check whether a given protection domain is a
2038 * dma_ops domain
2039 */
2040static bool dma_ops_domain(struct protection_domain *domain)
2041{
2042 return domain->flags & PD_DMA_OPS_MASK;
2043}
2044
fd7b5535 2045static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2046{
132bd68f 2047 u64 pte_root = 0;
ee6c2868 2048 u64 flags = 0;
863c74eb 2049
132bd68f
JR
2050 if (domain->mode != PAGE_MODE_NONE)
2051 pte_root = virt_to_phys(domain->pt_root);
2052
38ddf41b
JR
2053 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2054 << DEV_ENTRY_MODE_SHIFT;
2055 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2056
ee6c2868
JR
2057 flags = amd_iommu_dev_table[devid].data[1];
2058
fd7b5535
JR
2059 if (ats)
2060 flags |= DTE_FLAG_IOTLB;
2061
52815b75
JR
2062 if (domain->flags & PD_IOMMUV2_MASK) {
2063 u64 gcr3 = __pa(domain->gcr3_tbl);
2064 u64 glx = domain->glx;
2065 u64 tmp;
2066
2067 pte_root |= DTE_FLAG_GV;
2068 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2069
2070 /* First mask out possible old values for GCR3 table */
2071 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2072 flags &= ~tmp;
2073
2074 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2075 flags &= ~tmp;
2076
2077 /* Encode GCR3 table into DTE */
2078 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2079 pte_root |= tmp;
2080
2081 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2082 flags |= tmp;
2083
2084 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2085 flags |= tmp;
2086 }
2087
ee6c2868
JR
2088 flags &= ~(0xffffUL);
2089 flags |= domain->id;
2090
2091 amd_iommu_dev_table[devid].data[1] = flags;
2092 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2093}
2094
2095static void clear_dte_entry(u16 devid)
2096{
15898bbc
JR
2097 /* remove entry from the device table seen by the hardware */
2098 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2099 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2100
2101 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2102}
2103
ec9e79ef
JR
2104static void do_attach(struct iommu_dev_data *dev_data,
2105 struct protection_domain *domain)
7f760ddd 2106{
7f760ddd 2107 struct amd_iommu *iommu;
ec9e79ef 2108 bool ats;
fd7b5535 2109
ec9e79ef
JR
2110 iommu = amd_iommu_rlookup_table[dev_data->devid];
2111 ats = dev_data->ats.enabled;
7f760ddd
JR
2112
2113 /* Update data structures */
2114 dev_data->domain = domain;
2115 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2116 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2117
2118 /* Do reference counting */
2119 domain->dev_iommu[iommu->index] += 1;
2120 domain->dev_cnt += 1;
2121
2122 /* Flush the DTE entry */
6c542047 2123 device_flush_dte(dev_data);
7f760ddd
JR
2124}
2125
ec9e79ef 2126static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2127{
7f760ddd 2128 struct amd_iommu *iommu;
7f760ddd 2129
ec9e79ef 2130 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2131
2132 /* decrease reference counters */
7f760ddd
JR
2133 dev_data->domain->dev_iommu[iommu->index] -= 1;
2134 dev_data->domain->dev_cnt -= 1;
2135
2136 /* Update data structures */
2137 dev_data->domain = NULL;
2138 list_del(&dev_data->list);
f62dda66 2139 clear_dte_entry(dev_data->devid);
15898bbc 2140
7f760ddd 2141 /* Flush the DTE entry */
6c542047 2142 device_flush_dte(dev_data);
2b681faf
JR
2143}
2144
2145/*
2146 * If a device is not yet associated with a domain, this function does
2147 * assigns it visible for the hardware
2148 */
ec9e79ef 2149static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2150 struct protection_domain *domain)
2b681faf 2151{
84fe6c19 2152 int ret;
657cbb6b 2153
2b681faf
JR
2154 /* lock domain */
2155 spin_lock(&domain->lock);
2156
71f77580
JR
2157 if (dev_data->alias_data != NULL) {
2158 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2159
2b02b091
JR
2160 /* Some sanity checks */
2161 ret = -EBUSY;
2162 if (alias_data->domain != NULL &&
2163 alias_data->domain != domain)
2164 goto out_unlock;
eba6ac60 2165
2b02b091
JR
2166 if (dev_data->domain != NULL &&
2167 dev_data->domain != domain)
2168 goto out_unlock;
15898bbc 2169
2b02b091 2170 /* Do real assignment */
7f760ddd 2171 if (alias_data->domain == NULL)
ec9e79ef 2172 do_attach(alias_data, domain);
24100055
JR
2173
2174 atomic_inc(&alias_data->bind);
657cbb6b 2175 }
15898bbc 2176
7f760ddd 2177 if (dev_data->domain == NULL)
ec9e79ef 2178 do_attach(dev_data, domain);
eba6ac60 2179
24100055
JR
2180 atomic_inc(&dev_data->bind);
2181
84fe6c19
JL
2182 ret = 0;
2183
2184out_unlock:
2185
eba6ac60
JR
2186 /* ready */
2187 spin_unlock(&domain->lock);
15898bbc 2188
84fe6c19 2189 return ret;
0feae533 2190}
b20ac0d4 2191
52815b75
JR
2192
2193static void pdev_iommuv2_disable(struct pci_dev *pdev)
2194{
2195 pci_disable_ats(pdev);
2196 pci_disable_pri(pdev);
2197 pci_disable_pasid(pdev);
2198}
2199
6a113ddc
JR
2200/* FIXME: Change generic reset-function to do the same */
2201static int pri_reset_while_enabled(struct pci_dev *pdev)
2202{
2203 u16 control;
2204 int pos;
2205
46277b75 2206 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2207 if (!pos)
2208 return -EINVAL;
2209
46277b75
JR
2210 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2211 control |= PCI_PRI_CTRL_RESET;
2212 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2213
2214 return 0;
2215}
2216
52815b75
JR
2217static int pdev_iommuv2_enable(struct pci_dev *pdev)
2218{
6a113ddc
JR
2219 bool reset_enable;
2220 int reqs, ret;
2221
2222 /* FIXME: Hardcode number of outstanding requests for now */
2223 reqs = 32;
2224 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2225 reqs = 1;
2226 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2227
2228 /* Only allow access to user-accessible pages */
2229 ret = pci_enable_pasid(pdev, 0);
2230 if (ret)
2231 goto out_err;
2232
2233 /* First reset the PRI state of the device */
2234 ret = pci_reset_pri(pdev);
2235 if (ret)
2236 goto out_err;
2237
6a113ddc
JR
2238 /* Enable PRI */
2239 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2240 if (ret)
2241 goto out_err;
2242
6a113ddc
JR
2243 if (reset_enable) {
2244 ret = pri_reset_while_enabled(pdev);
2245 if (ret)
2246 goto out_err;
2247 }
2248
52815b75
JR
2249 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2250 if (ret)
2251 goto out_err;
2252
2253 return 0;
2254
2255out_err:
2256 pci_disable_pri(pdev);
2257 pci_disable_pasid(pdev);
2258
2259 return ret;
2260}
2261
c99afa25 2262/* FIXME: Move this to PCI code */
a3b93121 2263#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2264
98f1ad25 2265static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2266{
a3b93121 2267 u16 status;
c99afa25
JR
2268 int pos;
2269
46277b75 2270 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2271 if (!pos)
2272 return false;
2273
a3b93121 2274 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2275
a3b93121 2276 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2277}
2278
407d733e 2279/*
df805abb 2280 * If a device is not yet associated with a domain, this function
407d733e
JR
2281 * assigns it visible for the hardware
2282 */
15898bbc
JR
2283static int attach_device(struct device *dev,
2284 struct protection_domain *domain)
0feae533 2285{
fd7b5535 2286 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2287 struct iommu_dev_data *dev_data;
eba6ac60 2288 unsigned long flags;
15898bbc 2289 int ret;
eba6ac60 2290
ea61cddb
JR
2291 dev_data = get_dev_data(dev);
2292
52815b75
JR
2293 if (domain->flags & PD_IOMMUV2_MASK) {
2294 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2295 return -EINVAL;
2296
2297 if (pdev_iommuv2_enable(pdev) != 0)
2298 return -EINVAL;
2299
2300 dev_data->ats.enabled = true;
2301 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2302 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2303 } else if (amd_iommu_iotlb_sup &&
2304 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2305 dev_data->ats.enabled = true;
2306 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2307 }
fd7b5535 2308
eba6ac60 2309 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2310 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2311 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2312
0feae533
JR
2313 /*
2314 * We might boot into a crash-kernel here. The crashed kernel
2315 * left the caches in the IOMMU dirty. So we have to flush
2316 * here to evict all dirty stuff.
2317 */
17b124bf 2318 domain_flush_tlb_pde(domain);
15898bbc
JR
2319
2320 return ret;
b20ac0d4
JR
2321}
2322
355bf553
JR
2323/*
2324 * Removes a device from a protection domain (unlocked)
2325 */
ec9e79ef 2326static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2327{
2ca76279 2328 struct protection_domain *domain;
7c392cbe 2329 unsigned long flags;
c4596114 2330
7f760ddd 2331 BUG_ON(!dev_data->domain);
355bf553 2332
2ca76279
JR
2333 domain = dev_data->domain;
2334
2335 spin_lock_irqsave(&domain->lock, flags);
24100055 2336
71f77580
JR
2337 if (dev_data->alias_data != NULL) {
2338 struct iommu_dev_data *alias_data = dev_data->alias_data;
2339
7f760ddd 2340 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2341 do_detach(alias_data);
24100055
JR
2342 }
2343
7f760ddd 2344 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2345 do_detach(dev_data);
7f760ddd 2346
2ca76279 2347 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2348
2349 /*
2350 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2351 * passthrough domain if it is detached from any other domain.
2352 * Make sure we can deassign from the pt_domain itself.
21129f78 2353 */
5abcdba4 2354 if (dev_data->passthrough &&
d3ad9373 2355 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2356 __attach_device(dev_data, pt_domain);
355bf553
JR
2357}
2358
2359/*
2360 * Removes a device from a protection domain (with devtable_lock held)
2361 */
15898bbc 2362static void detach_device(struct device *dev)
355bf553 2363{
52815b75 2364 struct protection_domain *domain;
ea61cddb 2365 struct iommu_dev_data *dev_data;
355bf553
JR
2366 unsigned long flags;
2367
ec9e79ef 2368 dev_data = get_dev_data(dev);
52815b75 2369 domain = dev_data->domain;
ec9e79ef 2370
355bf553
JR
2371 /* lock device table */
2372 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2373 __detach_device(dev_data);
355bf553 2374 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2375
52815b75
JR
2376 if (domain->flags & PD_IOMMUV2_MASK)
2377 pdev_iommuv2_disable(to_pci_dev(dev));
2378 else if (dev_data->ats.enabled)
ea61cddb 2379 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2380
2381 dev_data->ats.enabled = false;
355bf553 2382}
e275a2a0 2383
15898bbc
JR
2384/*
2385 * Find out the protection domain structure for a given PCI device. This
2386 * will give us the pointer to the page table root for example.
2387 */
2388static struct protection_domain *domain_for_device(struct device *dev)
2389{
71f77580 2390 struct iommu_dev_data *dev_data;
2b02b091 2391 struct protection_domain *dom = NULL;
15898bbc 2392 unsigned long flags;
15898bbc 2393
657cbb6b 2394 dev_data = get_dev_data(dev);
15898bbc 2395
2b02b091
JR
2396 if (dev_data->domain)
2397 return dev_data->domain;
15898bbc 2398
71f77580
JR
2399 if (dev_data->alias_data != NULL) {
2400 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2401
2402 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2403 if (alias_data->domain != NULL) {
2404 __attach_device(dev_data, alias_data->domain);
2405 dom = alias_data->domain;
2406 }
2407 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2408 }
15898bbc
JR
2409
2410 return dom;
2411}
2412
e275a2a0
JR
2413static int device_change_notifier(struct notifier_block *nb,
2414 unsigned long action, void *data)
2415{
e275a2a0 2416 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2417 struct protection_domain *domain;
2418 struct iommu_dev_data *dev_data;
2419 struct device *dev = data;
e275a2a0 2420 struct amd_iommu *iommu;
1ac4cbbc 2421 unsigned long flags;
5abcdba4 2422 u16 devid;
e275a2a0 2423
98fc5a69
JR
2424 if (!check_device(dev))
2425 return 0;
e275a2a0 2426
5abcdba4
JR
2427 devid = get_device_id(dev);
2428 iommu = amd_iommu_rlookup_table[devid];
2429 dev_data = get_dev_data(dev);
e275a2a0
JR
2430
2431 switch (action) {
c1eee67b 2432 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2433
2434 domain = domain_for_device(dev);
2435
e275a2a0
JR
2436 if (!domain)
2437 goto out;
5abcdba4 2438 if (dev_data->passthrough)
a1ca331c 2439 break;
15898bbc 2440 detach_device(dev);
1ac4cbbc
JR
2441 break;
2442 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2443
2444 iommu_init_device(dev);
2445
2c9195e9
JR
2446 /*
2447 * dev_data is still NULL and
2448 * got initialized in iommu_init_device
2449 */
2450 dev_data = get_dev_data(dev);
2451
2452 if (iommu_pass_through || dev_data->iommu_v2) {
2453 dev_data->passthrough = true;
2454 attach_device(dev, pt_domain);
2455 break;
2456 }
2457
657cbb6b
JR
2458 domain = domain_for_device(dev);
2459
1ac4cbbc
JR
2460 /* allocate a protection domain if a device is added */
2461 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2462 if (!dma_domain) {
2463 dma_domain = dma_ops_domain_alloc();
2464 if (!dma_domain)
2465 goto out;
2466 dma_domain->target_dev = devid;
2467
2468 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2469 list_add_tail(&dma_domain->list, &iommu_pd_list);
2470 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2471 }
ac1534a5 2472
2c9195e9 2473 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2474
e275a2a0 2475 break;
657cbb6b
JR
2476 case BUS_NOTIFY_DEL_DEVICE:
2477
2478 iommu_uninit_device(dev);
2479
e275a2a0
JR
2480 default:
2481 goto out;
2482 }
2483
e275a2a0
JR
2484 iommu_completion_wait(iommu);
2485
2486out:
2487 return 0;
2488}
2489
b25ae679 2490static struct notifier_block device_nb = {
e275a2a0
JR
2491 .notifier_call = device_change_notifier,
2492};
355bf553 2493
8638c491
JR
2494void amd_iommu_init_notifier(void)
2495{
2496 bus_register_notifier(&pci_bus_type, &device_nb);
2497}
2498
431b2a20
JR
2499/*****************************************************************************
2500 *
2501 * The next functions belong to the dma_ops mapping/unmapping code.
2502 *
2503 *****************************************************************************/
2504
2505/*
2506 * In the dma_ops path we only have the struct device. This function
2507 * finds the corresponding IOMMU, the protection domain and the
2508 * requestor id for a given device.
2509 * If the device is not yet associated with a domain this is also done
2510 * in this function.
2511 */
94f6d190 2512static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2513{
94f6d190 2514 struct protection_domain *domain;
b20ac0d4 2515 struct dma_ops_domain *dma_dom;
94f6d190 2516 u16 devid = get_device_id(dev);
b20ac0d4 2517
f99c0f1c 2518 if (!check_device(dev))
94f6d190 2519 return ERR_PTR(-EINVAL);
b20ac0d4 2520
94f6d190
JR
2521 domain = domain_for_device(dev);
2522 if (domain != NULL && !dma_ops_domain(domain))
2523 return ERR_PTR(-EBUSY);
f99c0f1c 2524
94f6d190
JR
2525 if (domain != NULL)
2526 return domain;
b20ac0d4 2527
df805abb 2528 /* Device not bound yet - bind it */
94f6d190 2529 dma_dom = find_protection_domain(devid);
15898bbc 2530 if (!dma_dom)
94f6d190
JR
2531 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2532 attach_device(dev, &dma_dom->domain);
15898bbc 2533 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2534 dma_dom->domain.id, dev_name(dev));
f91ba190 2535
94f6d190 2536 return &dma_dom->domain;
b20ac0d4
JR
2537}
2538
04bfdd84
JR
2539static void update_device_table(struct protection_domain *domain)
2540{
492667da 2541 struct iommu_dev_data *dev_data;
04bfdd84 2542
ea61cddb
JR
2543 list_for_each_entry(dev_data, &domain->dev_list, list)
2544 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2545}
2546
2547static void update_domain(struct protection_domain *domain)
2548{
2549 if (!domain->updated)
2550 return;
2551
2552 update_device_table(domain);
17b124bf
JR
2553
2554 domain_flush_devices(domain);
2555 domain_flush_tlb_pde(domain);
04bfdd84
JR
2556
2557 domain->updated = false;
2558}
2559
8bda3092
JR
2560/*
2561 * This function fetches the PTE for a given address in the aperture
2562 */
2563static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2564 unsigned long address)
2565{
384de729 2566 struct aperture_range *aperture;
8bda3092
JR
2567 u64 *pte, *pte_page;
2568
384de729
JR
2569 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2570 if (!aperture)
2571 return NULL;
2572
2573 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2574 if (!pte) {
cbb9d729 2575 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2576 GFP_ATOMIC);
384de729
JR
2577 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2578 } else
8c8c143c 2579 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2580
04bfdd84 2581 update_domain(&dom->domain);
8bda3092
JR
2582
2583 return pte;
2584}
2585
431b2a20
JR
2586/*
2587 * This is the generic map function. It maps one 4kb page at paddr to
2588 * the given address in the DMA address space for the domain.
2589 */
680525e0 2590static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2591 unsigned long address,
2592 phys_addr_t paddr,
2593 int direction)
2594{
2595 u64 *pte, __pte;
2596
2597 WARN_ON(address > dom->aperture_size);
2598
2599 paddr &= PAGE_MASK;
2600
8bda3092 2601 pte = dma_ops_get_pte(dom, address);
53812c11 2602 if (!pte)
8fd524b3 2603 return DMA_ERROR_CODE;
cb76c322
JR
2604
2605 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2606
2607 if (direction == DMA_TO_DEVICE)
2608 __pte |= IOMMU_PTE_IR;
2609 else if (direction == DMA_FROM_DEVICE)
2610 __pte |= IOMMU_PTE_IW;
2611 else if (direction == DMA_BIDIRECTIONAL)
2612 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2613
2614 WARN_ON(*pte);
2615
2616 *pte = __pte;
2617
2618 return (dma_addr_t)address;
2619}
2620
431b2a20
JR
2621/*
2622 * The generic unmapping function for on page in the DMA address space.
2623 */
680525e0 2624static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2625 unsigned long address)
2626{
384de729 2627 struct aperture_range *aperture;
cb76c322
JR
2628 u64 *pte;
2629
2630 if (address >= dom->aperture_size)
2631 return;
2632
384de729
JR
2633 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2634 if (!aperture)
2635 return;
2636
2637 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2638 if (!pte)
2639 return;
cb76c322 2640
8c8c143c 2641 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2642
2643 WARN_ON(!*pte);
2644
2645 *pte = 0ULL;
2646}
2647
431b2a20
JR
2648/*
2649 * This function contains common code for mapping of a physically
24f81160
JR
2650 * contiguous memory region into DMA address space. It is used by all
2651 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2652 * Must be called with the domain lock held.
2653 */
cb76c322 2654static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2655 struct dma_ops_domain *dma_dom,
2656 phys_addr_t paddr,
2657 size_t size,
6d4f343f 2658 int dir,
832a90c3
JR
2659 bool align,
2660 u64 dma_mask)
cb76c322
JR
2661{
2662 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2663 dma_addr_t address, start, ret;
cb76c322 2664 unsigned int pages;
6d4f343f 2665 unsigned long align_mask = 0;
cb76c322
JR
2666 int i;
2667
e3c449f5 2668 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2669 paddr &= PAGE_MASK;
2670
8ecaf8f1
JR
2671 INC_STATS_COUNTER(total_map_requests);
2672
c1858976
JR
2673 if (pages > 1)
2674 INC_STATS_COUNTER(cross_page);
2675
6d4f343f
JR
2676 if (align)
2677 align_mask = (1UL << get_order(size)) - 1;
2678
11b83888 2679retry:
832a90c3
JR
2680 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2681 dma_mask);
8fd524b3 2682 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2683 /*
2684 * setting next_address here will let the address
2685 * allocator only scan the new allocated range in the
2686 * first run. This is a small optimization.
2687 */
2688 dma_dom->next_address = dma_dom->aperture_size;
2689
576175c2 2690 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2691 goto out;
2692
2693 /*
af901ca1 2694 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2695 * allocation again
2696 */
2697 goto retry;
2698 }
cb76c322
JR
2699
2700 start = address;
2701 for (i = 0; i < pages; ++i) {
680525e0 2702 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2703 if (ret == DMA_ERROR_CODE)
53812c11
JR
2704 goto out_unmap;
2705
cb76c322
JR
2706 paddr += PAGE_SIZE;
2707 start += PAGE_SIZE;
2708 }
2709 address += offset;
2710
5774f7c5
JR
2711 ADD_STATS_COUNTER(alloced_io_mem, size);
2712
afa9fdc2 2713 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2714 domain_flush_tlb(&dma_dom->domain);
1c655773 2715 dma_dom->need_flush = false;
318afd41 2716 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2717 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2718
cb76c322
JR
2719out:
2720 return address;
53812c11
JR
2721
2722out_unmap:
2723
2724 for (--i; i >= 0; --i) {
2725 start -= PAGE_SIZE;
680525e0 2726 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2727 }
2728
2729 dma_ops_free_addresses(dma_dom, address, pages);
2730
8fd524b3 2731 return DMA_ERROR_CODE;
cb76c322
JR
2732}
2733
431b2a20
JR
2734/*
2735 * Does the reverse of the __map_single function. Must be called with
2736 * the domain lock held too
2737 */
cd8c82e8 2738static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2739 dma_addr_t dma_addr,
2740 size_t size,
2741 int dir)
2742{
04e0463e 2743 dma_addr_t flush_addr;
cb76c322
JR
2744 dma_addr_t i, start;
2745 unsigned int pages;
2746
8fd524b3 2747 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2748 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2749 return;
2750
04e0463e 2751 flush_addr = dma_addr;
e3c449f5 2752 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2753 dma_addr &= PAGE_MASK;
2754 start = dma_addr;
2755
2756 for (i = 0; i < pages; ++i) {
680525e0 2757 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2758 start += PAGE_SIZE;
2759 }
2760
5774f7c5
JR
2761 SUB_STATS_COUNTER(alloced_io_mem, size);
2762
cb76c322 2763 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2764
80be308d 2765 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2766 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2767 dma_dom->need_flush = false;
2768 }
cb76c322
JR
2769}
2770
431b2a20
JR
2771/*
2772 * The exported map_single function for dma_ops.
2773 */
51491367
FT
2774static dma_addr_t map_page(struct device *dev, struct page *page,
2775 unsigned long offset, size_t size,
2776 enum dma_data_direction dir,
2777 struct dma_attrs *attrs)
4da70b9e
JR
2778{
2779 unsigned long flags;
4da70b9e 2780 struct protection_domain *domain;
4da70b9e 2781 dma_addr_t addr;
832a90c3 2782 u64 dma_mask;
51491367 2783 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2784
0f2a86f2
JR
2785 INC_STATS_COUNTER(cnt_map_single);
2786
94f6d190
JR
2787 domain = get_domain(dev);
2788 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2789 return (dma_addr_t)paddr;
94f6d190
JR
2790 else if (IS_ERR(domain))
2791 return DMA_ERROR_CODE;
4da70b9e 2792
f99c0f1c
JR
2793 dma_mask = *dev->dma_mask;
2794
4da70b9e 2795 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2796
cd8c82e8 2797 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2798 dma_mask);
8fd524b3 2799 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2800 goto out;
2801
17b124bf 2802 domain_flush_complete(domain);
4da70b9e
JR
2803
2804out:
2805 spin_unlock_irqrestore(&domain->lock, flags);
2806
2807 return addr;
2808}
2809
431b2a20
JR
2810/*
2811 * The exported unmap_single function for dma_ops.
2812 */
51491367
FT
2813static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2814 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2815{
2816 unsigned long flags;
4da70b9e 2817 struct protection_domain *domain;
4da70b9e 2818
146a6917
JR
2819 INC_STATS_COUNTER(cnt_unmap_single);
2820
94f6d190
JR
2821 domain = get_domain(dev);
2822 if (IS_ERR(domain))
5b28df6f
JR
2823 return;
2824
4da70b9e
JR
2825 spin_lock_irqsave(&domain->lock, flags);
2826
cd8c82e8 2827 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2828
17b124bf 2829 domain_flush_complete(domain);
4da70b9e
JR
2830
2831 spin_unlock_irqrestore(&domain->lock, flags);
2832}
2833
431b2a20
JR
2834/*
2835 * The exported map_sg function for dma_ops (handles scatter-gather
2836 * lists).
2837 */
65b050ad 2838static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2839 int nelems, enum dma_data_direction dir,
2840 struct dma_attrs *attrs)
65b050ad
JR
2841{
2842 unsigned long flags;
65b050ad 2843 struct protection_domain *domain;
65b050ad
JR
2844 int i;
2845 struct scatterlist *s;
2846 phys_addr_t paddr;
2847 int mapped_elems = 0;
832a90c3 2848 u64 dma_mask;
65b050ad 2849
d03f067a
JR
2850 INC_STATS_COUNTER(cnt_map_sg);
2851
94f6d190 2852 domain = get_domain(dev);
a0e191b2 2853 if (IS_ERR(domain))
94f6d190 2854 return 0;
dbcc112e 2855
832a90c3 2856 dma_mask = *dev->dma_mask;
65b050ad 2857
65b050ad
JR
2858 spin_lock_irqsave(&domain->lock, flags);
2859
2860 for_each_sg(sglist, s, nelems, i) {
2861 paddr = sg_phys(s);
2862
cd8c82e8 2863 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2864 paddr, s->length, dir, false,
2865 dma_mask);
65b050ad
JR
2866
2867 if (s->dma_address) {
2868 s->dma_length = s->length;
2869 mapped_elems++;
2870 } else
2871 goto unmap;
65b050ad
JR
2872 }
2873
17b124bf 2874 domain_flush_complete(domain);
65b050ad
JR
2875
2876out:
2877 spin_unlock_irqrestore(&domain->lock, flags);
2878
2879 return mapped_elems;
2880unmap:
2881 for_each_sg(sglist, s, mapped_elems, i) {
2882 if (s->dma_address)
cd8c82e8 2883 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2884 s->dma_length, dir);
2885 s->dma_address = s->dma_length = 0;
2886 }
2887
2888 mapped_elems = 0;
2889
2890 goto out;
2891}
2892
431b2a20
JR
2893/*
2894 * The exported map_sg function for dma_ops (handles scatter-gather
2895 * lists).
2896 */
65b050ad 2897static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2898 int nelems, enum dma_data_direction dir,
2899 struct dma_attrs *attrs)
65b050ad
JR
2900{
2901 unsigned long flags;
65b050ad
JR
2902 struct protection_domain *domain;
2903 struct scatterlist *s;
65b050ad
JR
2904 int i;
2905
55877a6b
JR
2906 INC_STATS_COUNTER(cnt_unmap_sg);
2907
94f6d190
JR
2908 domain = get_domain(dev);
2909 if (IS_ERR(domain))
5b28df6f
JR
2910 return;
2911
65b050ad
JR
2912 spin_lock_irqsave(&domain->lock, flags);
2913
2914 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2915 __unmap_single(domain->priv, s->dma_address,
65b050ad 2916 s->dma_length, dir);
65b050ad
JR
2917 s->dma_address = s->dma_length = 0;
2918 }
2919
17b124bf 2920 domain_flush_complete(domain);
65b050ad
JR
2921
2922 spin_unlock_irqrestore(&domain->lock, flags);
2923}
2924
431b2a20
JR
2925/*
2926 * The exported alloc_coherent function for dma_ops.
2927 */
5d8b53cf 2928static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2929 dma_addr_t *dma_addr, gfp_t flag,
2930 struct dma_attrs *attrs)
5d8b53cf
JR
2931{
2932 unsigned long flags;
2933 void *virt_addr;
5d8b53cf 2934 struct protection_domain *domain;
5d8b53cf 2935 phys_addr_t paddr;
832a90c3 2936 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2937
c8f0fb36
JR
2938 INC_STATS_COUNTER(cnt_alloc_coherent);
2939
94f6d190
JR
2940 domain = get_domain(dev);
2941 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2942 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2943 *dma_addr = __pa(virt_addr);
2944 return virt_addr;
94f6d190
JR
2945 } else if (IS_ERR(domain))
2946 return NULL;
5d8b53cf 2947
f99c0f1c
JR
2948 dma_mask = dev->coherent_dma_mask;
2949 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2950 flag |= __GFP_ZERO;
5d8b53cf
JR
2951
2952 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2953 if (!virt_addr)
b25ae679 2954 return NULL;
5d8b53cf 2955
5d8b53cf
JR
2956 paddr = virt_to_phys(virt_addr);
2957
832a90c3
JR
2958 if (!dma_mask)
2959 dma_mask = *dev->dma_mask;
2960
5d8b53cf
JR
2961 spin_lock_irqsave(&domain->lock, flags);
2962
cd8c82e8 2963 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2964 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2965
8fd524b3 2966 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2967 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2968 goto out_free;
367d04c4 2969 }
5d8b53cf 2970
17b124bf 2971 domain_flush_complete(domain);
5d8b53cf 2972
5d8b53cf
JR
2973 spin_unlock_irqrestore(&domain->lock, flags);
2974
2975 return virt_addr;
5b28df6f
JR
2976
2977out_free:
2978
2979 free_pages((unsigned long)virt_addr, get_order(size));
2980
2981 return NULL;
5d8b53cf
JR
2982}
2983
431b2a20
JR
2984/*
2985 * The exported free_coherent function for dma_ops.
431b2a20 2986 */
5d8b53cf 2987static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2988 void *virt_addr, dma_addr_t dma_addr,
2989 struct dma_attrs *attrs)
5d8b53cf
JR
2990{
2991 unsigned long flags;
5d8b53cf 2992 struct protection_domain *domain;
5d8b53cf 2993
5d31ee7e
JR
2994 INC_STATS_COUNTER(cnt_free_coherent);
2995
94f6d190
JR
2996 domain = get_domain(dev);
2997 if (IS_ERR(domain))
5b28df6f
JR
2998 goto free_mem;
2999
5d8b53cf
JR
3000 spin_lock_irqsave(&domain->lock, flags);
3001
cd8c82e8 3002 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 3003
17b124bf 3004 domain_flush_complete(domain);
5d8b53cf
JR
3005
3006 spin_unlock_irqrestore(&domain->lock, flags);
3007
3008free_mem:
3009 free_pages((unsigned long)virt_addr, get_order(size));
3010}
3011
b39ba6ad
JR
3012/*
3013 * This function is called by the DMA layer to find out if we can handle a
3014 * particular device. It is part of the dma_ops.
3015 */
3016static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3017{
420aef8a 3018 return check_device(dev);
b39ba6ad
JR
3019}
3020
c432f3df 3021/*
431b2a20
JR
3022 * The function for pre-allocating protection domains.
3023 *
c432f3df
JR
3024 * If the driver core informs the DMA layer if a driver grabs a device
3025 * we don't need to preallocate the protection domains anymore.
3026 * For now we have to.
3027 */
943bc7e1 3028static void __init prealloc_protection_domains(void)
c432f3df 3029{
5abcdba4 3030 struct iommu_dev_data *dev_data;
c432f3df 3031 struct dma_ops_domain *dma_dom;
5abcdba4 3032 struct pci_dev *dev = NULL;
98fc5a69 3033 u16 devid;
c432f3df 3034
d18c69d3 3035 for_each_pci_dev(dev) {
98fc5a69
JR
3036
3037 /* Do we handle this device? */
3038 if (!check_device(&dev->dev))
c432f3df 3039 continue;
98fc5a69 3040
5abcdba4
JR
3041 dev_data = get_dev_data(&dev->dev);
3042 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3043 /* Make sure passthrough domain is allocated */
3044 alloc_passthrough_domain();
3045 dev_data->passthrough = true;
3046 attach_device(&dev->dev, pt_domain);
df805abb 3047 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3048 dev_name(&dev->dev));
3049 }
3050
98fc5a69 3051 /* Is there already any domain for it? */
15898bbc 3052 if (domain_for_device(&dev->dev))
c432f3df 3053 continue;
98fc5a69
JR
3054
3055 devid = get_device_id(&dev->dev);
3056
87a64d52 3057 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3058 if (!dma_dom)
3059 continue;
3060 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3061 dma_dom->target_dev = devid;
3062
15898bbc 3063 attach_device(&dev->dev, &dma_dom->domain);
be831297 3064
bd60b735 3065 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3066 }
3067}
3068
160c1d8e 3069static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3070 .alloc = alloc_coherent,
3071 .free = free_coherent,
51491367
FT
3072 .map_page = map_page,
3073 .unmap_page = unmap_page,
6631ee9d
JR
3074 .map_sg = map_sg,
3075 .unmap_sg = unmap_sg,
b39ba6ad 3076 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3077};
3078
27c2127a
JR
3079static unsigned device_dma_ops_init(void)
3080{
5abcdba4 3081 struct iommu_dev_data *dev_data;
27c2127a
JR
3082 struct pci_dev *pdev = NULL;
3083 unsigned unhandled = 0;
3084
3085 for_each_pci_dev(pdev) {
3086 if (!check_device(&pdev->dev)) {
af1be049
JR
3087
3088 iommu_ignore_device(&pdev->dev);
3089
27c2127a
JR
3090 unhandled += 1;
3091 continue;
3092 }
3093
5abcdba4
JR
3094 dev_data = get_dev_data(&pdev->dev);
3095
3096 if (!dev_data->passthrough)
3097 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3098 else
3099 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3100 }
3101
3102 return unhandled;
3103}
3104
431b2a20
JR
3105/*
3106 * The function which clues the AMD IOMMU driver into dma_ops.
3107 */
f5325094
JR
3108
3109void __init amd_iommu_init_api(void)
3110{
2cc21c42 3111 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3112}
3113
6631ee9d
JR
3114int __init amd_iommu_init_dma_ops(void)
3115{
3116 struct amd_iommu *iommu;
27c2127a 3117 int ret, unhandled;
6631ee9d 3118
431b2a20
JR
3119 /*
3120 * first allocate a default protection domain for every IOMMU we
3121 * found in the system. Devices not assigned to any other
3122 * protection domain will be assigned to the default one.
3123 */
3bd22172 3124 for_each_iommu(iommu) {
87a64d52 3125 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3126 if (iommu->default_dom == NULL)
3127 return -ENOMEM;
e2dc14a2 3128 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3129 ret = iommu_init_unity_mappings(iommu);
3130 if (ret)
3131 goto free_domains;
3132 }
3133
431b2a20 3134 /*
8793abeb 3135 * Pre-allocate the protection domains for each device.
431b2a20 3136 */
8793abeb 3137 prealloc_protection_domains();
6631ee9d
JR
3138
3139 iommu_detected = 1;
75f1cdf1 3140 swiotlb = 0;
6631ee9d 3141
431b2a20 3142 /* Make the driver finally visible to the drivers */
27c2127a
JR
3143 unhandled = device_dma_ops_init();
3144 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3145 /* There are unhandled devices - initialize swiotlb for them */
3146 swiotlb = 1;
3147 }
6631ee9d 3148
7f26508b
JR
3149 amd_iommu_stats_init();
3150
62410eeb
JR
3151 if (amd_iommu_unmap_flush)
3152 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3153 else
3154 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3155
6631ee9d
JR
3156 return 0;
3157
3158free_domains:
3159
3bd22172 3160 for_each_iommu(iommu) {
91457df7 3161 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3162 }
3163
3164 return ret;
3165}
6d98cd80
JR
3166
3167/*****************************************************************************
3168 *
3169 * The following functions belong to the exported interface of AMD IOMMU
3170 *
3171 * This interface allows access to lower level functions of the IOMMU
3172 * like protection domain handling and assignement of devices to domains
3173 * which is not possible with the dma_ops interface.
3174 *
3175 *****************************************************************************/
3176
6d98cd80
JR
3177static void cleanup_domain(struct protection_domain *domain)
3178{
9b29d3c6 3179 struct iommu_dev_data *entry;
6d98cd80 3180 unsigned long flags;
6d98cd80
JR
3181
3182 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3183
9b29d3c6
JR
3184 while (!list_empty(&domain->dev_list)) {
3185 entry = list_first_entry(&domain->dev_list,
3186 struct iommu_dev_data, list);
3187 __detach_device(entry);
3188 atomic_set(&entry->bind, 0);
492667da 3189 }
6d98cd80
JR
3190
3191 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3192}
3193
2650815f
JR
3194static void protection_domain_free(struct protection_domain *domain)
3195{
3196 if (!domain)
3197 return;
3198
aeb26f55
JR
3199 del_domain_from_list(domain);
3200
2650815f
JR
3201 if (domain->id)
3202 domain_id_free(domain->id);
3203
3204 kfree(domain);
3205}
3206
3207static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3208{
3209 struct protection_domain *domain;
3210
3211 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3212 if (!domain)
2650815f 3213 return NULL;
c156e347
JR
3214
3215 spin_lock_init(&domain->lock);
5d214fe6 3216 mutex_init(&domain->api_lock);
c156e347
JR
3217 domain->id = domain_id_alloc();
3218 if (!domain->id)
2650815f 3219 goto out_err;
7c392cbe 3220 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3221
aeb26f55
JR
3222 add_domain_to_list(domain);
3223
2650815f
JR
3224 return domain;
3225
3226out_err:
3227 kfree(domain);
3228
3229 return NULL;
3230}
3231
5abcdba4
JR
3232static int __init alloc_passthrough_domain(void)
3233{
3234 if (pt_domain != NULL)
3235 return 0;
3236
3237 /* allocate passthrough domain */
3238 pt_domain = protection_domain_alloc();
3239 if (!pt_domain)
3240 return -ENOMEM;
3241
3242 pt_domain->mode = PAGE_MODE_NONE;
3243
3244 return 0;
3245}
2650815f
JR
3246static int amd_iommu_domain_init(struct iommu_domain *dom)
3247{
3248 struct protection_domain *domain;
3249
3250 domain = protection_domain_alloc();
3251 if (!domain)
c156e347 3252 goto out_free;
2650815f
JR
3253
3254 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3255 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3256 if (!domain->pt_root)
3257 goto out_free;
3258
f3572db8
JR
3259 domain->iommu_domain = dom;
3260
c156e347
JR
3261 dom->priv = domain;
3262
0ff64f80
JR
3263 dom->geometry.aperture_start = 0;
3264 dom->geometry.aperture_end = ~0ULL;
3265 dom->geometry.force_aperture = true;
3266
c156e347
JR
3267 return 0;
3268
3269out_free:
2650815f 3270 protection_domain_free(domain);
c156e347
JR
3271
3272 return -ENOMEM;
3273}
3274
98383fc3
JR
3275static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3276{
3277 struct protection_domain *domain = dom->priv;
3278
3279 if (!domain)
3280 return;
3281
3282 if (domain->dev_cnt > 0)
3283 cleanup_domain(domain);
3284
3285 BUG_ON(domain->dev_cnt != 0);
3286
132bd68f
JR
3287 if (domain->mode != PAGE_MODE_NONE)
3288 free_pagetable(domain);
98383fc3 3289
52815b75
JR
3290 if (domain->flags & PD_IOMMUV2_MASK)
3291 free_gcr3_table(domain);
3292
8b408fe4 3293 protection_domain_free(domain);
98383fc3
JR
3294
3295 dom->priv = NULL;
3296}
3297
684f2888
JR
3298static void amd_iommu_detach_device(struct iommu_domain *dom,
3299 struct device *dev)
3300{
657cbb6b 3301 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3302 struct amd_iommu *iommu;
684f2888
JR
3303 u16 devid;
3304
98fc5a69 3305 if (!check_device(dev))
684f2888
JR
3306 return;
3307
98fc5a69 3308 devid = get_device_id(dev);
684f2888 3309
657cbb6b 3310 if (dev_data->domain != NULL)
15898bbc 3311 detach_device(dev);
684f2888
JR
3312
3313 iommu = amd_iommu_rlookup_table[devid];
3314 if (!iommu)
3315 return;
3316
684f2888
JR
3317 iommu_completion_wait(iommu);
3318}
3319
01106066
JR
3320static int amd_iommu_attach_device(struct iommu_domain *dom,
3321 struct device *dev)
3322{
3323 struct protection_domain *domain = dom->priv;
657cbb6b 3324 struct iommu_dev_data *dev_data;
01106066 3325 struct amd_iommu *iommu;
15898bbc 3326 int ret;
01106066 3327
98fc5a69 3328 if (!check_device(dev))
01106066
JR
3329 return -EINVAL;
3330
657cbb6b
JR
3331 dev_data = dev->archdata.iommu;
3332
f62dda66 3333 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3334 if (!iommu)
3335 return -EINVAL;
3336
657cbb6b 3337 if (dev_data->domain)
15898bbc 3338 detach_device(dev);
01106066 3339
15898bbc 3340 ret = attach_device(dev, domain);
01106066
JR
3341
3342 iommu_completion_wait(iommu);
3343
15898bbc 3344 return ret;
01106066
JR
3345}
3346
468e2366 3347static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3348 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3349{
3350 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3351 int prot = 0;
3352 int ret;
3353
132bd68f
JR
3354 if (domain->mode == PAGE_MODE_NONE)
3355 return -EINVAL;
3356
c6229ca6
JR
3357 if (iommu_prot & IOMMU_READ)
3358 prot |= IOMMU_PROT_IR;
3359 if (iommu_prot & IOMMU_WRITE)
3360 prot |= IOMMU_PROT_IW;
3361
5d214fe6 3362 mutex_lock(&domain->api_lock);
795e74f7 3363 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3364 mutex_unlock(&domain->api_lock);
3365
795e74f7 3366 return ret;
c6229ca6
JR
3367}
3368
5009065d
OBC
3369static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3370 size_t page_size)
eb74ff6c 3371{
eb74ff6c 3372 struct protection_domain *domain = dom->priv;
5009065d 3373 size_t unmap_size;
eb74ff6c 3374
132bd68f
JR
3375 if (domain->mode == PAGE_MODE_NONE)
3376 return -EINVAL;
3377
5d214fe6 3378 mutex_lock(&domain->api_lock);
468e2366 3379 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3380 mutex_unlock(&domain->api_lock);
eb74ff6c 3381
17b124bf 3382 domain_flush_tlb_pde(domain);
5d214fe6 3383
5009065d 3384 return unmap_size;
eb74ff6c
JR
3385}
3386
645c4c8d 3387static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3388 dma_addr_t iova)
645c4c8d
JR
3389{
3390 struct protection_domain *domain = dom->priv;
f03152bb 3391 unsigned long offset_mask;
645c4c8d 3392 phys_addr_t paddr;
f03152bb 3393 u64 *pte, __pte;
645c4c8d 3394
132bd68f
JR
3395 if (domain->mode == PAGE_MODE_NONE)
3396 return iova;
3397
24cd7723 3398 pte = fetch_pte(domain, iova);
645c4c8d 3399
a6d41a40 3400 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3401 return 0;
3402
f03152bb
JR
3403 if (PM_PTE_LEVEL(*pte) == 0)
3404 offset_mask = PAGE_SIZE - 1;
3405 else
3406 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3407
3408 __pte = *pte & PM_ADDR_MASK;
3409 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3410
3411 return paddr;
3412}
3413
dbb9fd86
SY
3414static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3415 unsigned long cap)
3416{
80a506b8
JR
3417 switch (cap) {
3418 case IOMMU_CAP_CACHE_COHERENCY:
3419 return 1;
bdddadcb
JR
3420 case IOMMU_CAP_INTR_REMAP:
3421 return irq_remapping_enabled;
80a506b8
JR
3422 }
3423
dbb9fd86
SY
3424 return 0;
3425}
3426
b22f6434 3427static const struct iommu_ops amd_iommu_ops = {
26961efe
JR
3428 .domain_init = amd_iommu_domain_init,
3429 .domain_destroy = amd_iommu_domain_destroy,
3430 .attach_dev = amd_iommu_attach_device,
3431 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3432 .map = amd_iommu_map,
3433 .unmap = amd_iommu_unmap,
26961efe 3434 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3435 .domain_has_cap = amd_iommu_domain_has_cap,
aa3de9c0 3436 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3437};
3438
0feae533
JR
3439/*****************************************************************************
3440 *
3441 * The next functions do a basic initialization of IOMMU for pass through
3442 * mode
3443 *
3444 * In passthrough mode the IOMMU is initialized and enabled but not used for
3445 * DMA-API translation.
3446 *
3447 *****************************************************************************/
3448
3449int __init amd_iommu_init_passthrough(void)
3450{
5abcdba4 3451 struct iommu_dev_data *dev_data;
0feae533 3452 struct pci_dev *dev = NULL;
5abcdba4 3453 int ret;
0feae533 3454
5abcdba4
JR
3455 ret = alloc_passthrough_domain();
3456 if (ret)
3457 return ret;
0feae533 3458
6c54aabd 3459 for_each_pci_dev(dev) {
98fc5a69 3460 if (!check_device(&dev->dev))
0feae533
JR
3461 continue;
3462
5abcdba4
JR
3463 dev_data = get_dev_data(&dev->dev);
3464 dev_data->passthrough = true;
3465
15898bbc 3466 attach_device(&dev->dev, pt_domain);
0feae533
JR
3467 }
3468
2655d7a2
JR
3469 amd_iommu_stats_init();
3470
0feae533
JR
3471 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3472
3473 return 0;
3474}
72e1dcc4
JR
3475
3476/* IOMMUv2 specific functions */
3477int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3478{
3479 return atomic_notifier_chain_register(&ppr_notifier, nb);
3480}
3481EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3482
3483int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3484{
3485 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3486}
3487EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3488
3489void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3490{
3491 struct protection_domain *domain = dom->priv;
3492 unsigned long flags;
3493
3494 spin_lock_irqsave(&domain->lock, flags);
3495
3496 /* Update data structure */
3497 domain->mode = PAGE_MODE_NONE;
3498 domain->updated = true;
3499
3500 /* Make changes visible to IOMMUs */
3501 update_domain(domain);
3502
3503 /* Page-table is not visible to IOMMU anymore, so free it */
3504 free_pagetable(domain);
3505
3506 spin_unlock_irqrestore(&domain->lock, flags);
3507}
3508EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3509
3510int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3511{
3512 struct protection_domain *domain = dom->priv;
3513 unsigned long flags;
3514 int levels, ret;
3515
3516 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3517 return -EINVAL;
3518
3519 /* Number of GCR3 table levels required */
3520 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3521 levels += 1;
3522
3523 if (levels > amd_iommu_max_glx_val)
3524 return -EINVAL;
3525
3526 spin_lock_irqsave(&domain->lock, flags);
3527
3528 /*
3529 * Save us all sanity checks whether devices already in the
3530 * domain support IOMMUv2. Just force that the domain has no
3531 * devices attached when it is switched into IOMMUv2 mode.
3532 */
3533 ret = -EBUSY;
3534 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3535 goto out;
3536
3537 ret = -ENOMEM;
3538 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3539 if (domain->gcr3_tbl == NULL)
3540 goto out;
3541
3542 domain->glx = levels;
3543 domain->flags |= PD_IOMMUV2_MASK;
3544 domain->updated = true;
3545
3546 update_domain(domain);
3547
3548 ret = 0;
3549
3550out:
3551 spin_unlock_irqrestore(&domain->lock, flags);
3552
3553 return ret;
3554}
3555EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3556
3557static int __flush_pasid(struct protection_domain *domain, int pasid,
3558 u64 address, bool size)
3559{
3560 struct iommu_dev_data *dev_data;
3561 struct iommu_cmd cmd;
3562 int i, ret;
3563
3564 if (!(domain->flags & PD_IOMMUV2_MASK))
3565 return -EINVAL;
3566
3567 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3568
3569 /*
3570 * IOMMU TLB needs to be flushed before Device TLB to
3571 * prevent device TLB refill from IOMMU TLB
3572 */
3573 for (i = 0; i < amd_iommus_present; ++i) {
3574 if (domain->dev_iommu[i] == 0)
3575 continue;
3576
3577 ret = iommu_queue_command(amd_iommus[i], &cmd);
3578 if (ret != 0)
3579 goto out;
3580 }
3581
3582 /* Wait until IOMMU TLB flushes are complete */
3583 domain_flush_complete(domain);
3584
3585 /* Now flush device TLBs */
3586 list_for_each_entry(dev_data, &domain->dev_list, list) {
3587 struct amd_iommu *iommu;
3588 int qdep;
3589
3590 BUG_ON(!dev_data->ats.enabled);
3591
3592 qdep = dev_data->ats.qdep;
3593 iommu = amd_iommu_rlookup_table[dev_data->devid];
3594
3595 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3596 qdep, address, size);
3597
3598 ret = iommu_queue_command(iommu, &cmd);
3599 if (ret != 0)
3600 goto out;
3601 }
3602
3603 /* Wait until all device TLBs are flushed */
3604 domain_flush_complete(domain);
3605
3606 ret = 0;
3607
3608out:
3609
3610 return ret;
3611}
3612
3613static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3614 u64 address)
3615{
399be2f5
JR
3616 INC_STATS_COUNTER(invalidate_iotlb);
3617
22e266c7
JR
3618 return __flush_pasid(domain, pasid, address, false);
3619}
3620
3621int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3622 u64 address)
3623{
3624 struct protection_domain *domain = dom->priv;
3625 unsigned long flags;
3626 int ret;
3627
3628 spin_lock_irqsave(&domain->lock, flags);
3629 ret = __amd_iommu_flush_page(domain, pasid, address);
3630 spin_unlock_irqrestore(&domain->lock, flags);
3631
3632 return ret;
3633}
3634EXPORT_SYMBOL(amd_iommu_flush_page);
3635
3636static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3637{
399be2f5
JR
3638 INC_STATS_COUNTER(invalidate_iotlb_all);
3639
22e266c7
JR
3640 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3641 true);
3642}
3643
3644int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3645{
3646 struct protection_domain *domain = dom->priv;
3647 unsigned long flags;
3648 int ret;
3649
3650 spin_lock_irqsave(&domain->lock, flags);
3651 ret = __amd_iommu_flush_tlb(domain, pasid);
3652 spin_unlock_irqrestore(&domain->lock, flags);
3653
3654 return ret;
3655}
3656EXPORT_SYMBOL(amd_iommu_flush_tlb);
3657
b16137b1
JR
3658static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3659{
3660 int index;
3661 u64 *pte;
3662
3663 while (true) {
3664
3665 index = (pasid >> (9 * level)) & 0x1ff;
3666 pte = &root[index];
3667
3668 if (level == 0)
3669 break;
3670
3671 if (!(*pte & GCR3_VALID)) {
3672 if (!alloc)
3673 return NULL;
3674
3675 root = (void *)get_zeroed_page(GFP_ATOMIC);
3676 if (root == NULL)
3677 return NULL;
3678
3679 *pte = __pa(root) | GCR3_VALID;
3680 }
3681
3682 root = __va(*pte & PAGE_MASK);
3683
3684 level -= 1;
3685 }
3686
3687 return pte;
3688}
3689
3690static int __set_gcr3(struct protection_domain *domain, int pasid,
3691 unsigned long cr3)
3692{
3693 u64 *pte;
3694
3695 if (domain->mode != PAGE_MODE_NONE)
3696 return -EINVAL;
3697
3698 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3699 if (pte == NULL)
3700 return -ENOMEM;
3701
3702 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3703
3704 return __amd_iommu_flush_tlb(domain, pasid);
3705}
3706
3707static int __clear_gcr3(struct protection_domain *domain, int pasid)
3708{
3709 u64 *pte;
3710
3711 if (domain->mode != PAGE_MODE_NONE)
3712 return -EINVAL;
3713
3714 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3715 if (pte == NULL)
3716 return 0;
3717
3718 *pte = 0;
3719
3720 return __amd_iommu_flush_tlb(domain, pasid);
3721}
3722
3723int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3724 unsigned long cr3)
3725{
3726 struct protection_domain *domain = dom->priv;
3727 unsigned long flags;
3728 int ret;
3729
3730 spin_lock_irqsave(&domain->lock, flags);
3731 ret = __set_gcr3(domain, pasid, cr3);
3732 spin_unlock_irqrestore(&domain->lock, flags);
3733
3734 return ret;
3735}
3736EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3737
3738int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3739{
3740 struct protection_domain *domain = dom->priv;
3741 unsigned long flags;
3742 int ret;
3743
3744 spin_lock_irqsave(&domain->lock, flags);
3745 ret = __clear_gcr3(domain, pasid);
3746 spin_unlock_irqrestore(&domain->lock, flags);
3747
3748 return ret;
3749}
3750EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3751
3752int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3753 int status, int tag)
3754{
3755 struct iommu_dev_data *dev_data;
3756 struct amd_iommu *iommu;
3757 struct iommu_cmd cmd;
3758
399be2f5
JR
3759 INC_STATS_COUNTER(complete_ppr);
3760
c99afa25
JR
3761 dev_data = get_dev_data(&pdev->dev);
3762 iommu = amd_iommu_rlookup_table[dev_data->devid];
3763
3764 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3765 tag, dev_data->pri_tlp);
3766
3767 return iommu_queue_command(iommu, &cmd);
3768}
3769EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3770
3771struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3772{
3773 struct protection_domain *domain;
3774
3775 domain = get_domain(&pdev->dev);
3776 if (IS_ERR(domain))
3777 return NULL;
3778
3779 /* Only return IOMMUv2 domains */
3780 if (!(domain->flags & PD_IOMMUV2_MASK))
3781 return NULL;
3782
3783 return domain->iommu_domain;
3784}
3785EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3786
3787void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3788{
3789 struct iommu_dev_data *dev_data;
3790
3791 if (!amd_iommu_v2_supported())
3792 return;
3793
3794 dev_data = get_dev_data(&pdev->dev);
3795 dev_data->errata |= (1 << erratum);
3796}
3797EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3798
3799int amd_iommu_device_info(struct pci_dev *pdev,
3800 struct amd_iommu_device_info *info)
3801{
3802 int max_pasids;
3803 int pos;
3804
3805 if (pdev == NULL || info == NULL)
3806 return -EINVAL;
3807
3808 if (!amd_iommu_v2_supported())
3809 return -EINVAL;
3810
3811 memset(info, 0, sizeof(*info));
3812
3813 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3814 if (pos)
3815 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3816
3817 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3818 if (pos)
3819 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3820
3821 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3822 if (pos) {
3823 int features;
3824
3825 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3826 max_pasids = min(max_pasids, (1 << 20));
3827
3828 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3829 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3830
3831 features = pci_pasid_features(pdev);
3832 if (features & PCI_PASID_CAP_EXEC)
3833 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3834 if (features & PCI_PASID_CAP_PRIV)
3835 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3836 }
3837
3838 return 0;
3839}
3840EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3841
3842#ifdef CONFIG_IRQ_REMAP
3843
3844/*****************************************************************************
3845 *
3846 * Interrupt Remapping Implementation
3847 *
3848 *****************************************************************************/
3849
3850union irte {
3851 u32 val;
3852 struct {
3853 u32 valid : 1,
3854 no_fault : 1,
3855 int_type : 3,
3856 rq_eoi : 1,
3857 dm : 1,
3858 rsvd_1 : 1,
3859 destination : 8,
3860 vector : 8,
3861 rsvd_2 : 8;
3862 } fields;
3863};
3864
3865#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3866#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3867#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3868#define DTE_IRQ_REMAP_ENABLE 1ULL
3869
3870static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3871{
3872 u64 dte;
3873
3874 dte = amd_iommu_dev_table[devid].data[2];
3875 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3876 dte |= virt_to_phys(table->table);
3877 dte |= DTE_IRQ_REMAP_INTCTL;
3878 dte |= DTE_IRQ_TABLE_LEN;
3879 dte |= DTE_IRQ_REMAP_ENABLE;
3880
3881 amd_iommu_dev_table[devid].data[2] = dte;
3882}
3883
3884#define IRTE_ALLOCATED (~1U)
3885
3886static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3887{
3888 struct irq_remap_table *table = NULL;
3889 struct amd_iommu *iommu;
3890 unsigned long flags;
3891 u16 alias;
3892
3893 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3894
3895 iommu = amd_iommu_rlookup_table[devid];
3896 if (!iommu)
3897 goto out_unlock;
3898
3899 table = irq_lookup_table[devid];
3900 if (table)
3901 goto out;
3902
3903 alias = amd_iommu_alias_table[devid];
3904 table = irq_lookup_table[alias];
3905 if (table) {
3906 irq_lookup_table[devid] = table;
3907 set_dte_irq_entry(devid, table);
3908 iommu_flush_dte(iommu, devid);
3909 goto out;
3910 }
3911
3912 /* Nothing there yet, allocate new irq remapping table */
3913 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3914 if (!table)
3915 goto out;
3916
197887f0
JR
3917 /* Initialize table spin-lock */
3918 spin_lock_init(&table->lock);
3919
2b324506
JR
3920 if (ioapic)
3921 /* Keep the first 32 indexes free for IOAPIC interrupts */
3922 table->min_index = 32;
3923
3924 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3925 if (!table->table) {
3926 kfree(table);
821f0f68 3927 table = NULL;
2b324506
JR
3928 goto out;
3929 }
3930
3931 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3932
3933 if (ioapic) {
3934 int i;
3935
3936 for (i = 0; i < 32; ++i)
3937 table->table[i] = IRTE_ALLOCATED;
3938 }
3939
3940 irq_lookup_table[devid] = table;
3941 set_dte_irq_entry(devid, table);
3942 iommu_flush_dte(iommu, devid);
3943 if (devid != alias) {
3944 irq_lookup_table[alias] = table;
e028a9e6 3945 set_dte_irq_entry(alias, table);
2b324506
JR
3946 iommu_flush_dte(iommu, alias);
3947 }
3948
3949out:
3950 iommu_completion_wait(iommu);
3951
3952out_unlock:
3953 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3954
3955 return table;
3956}
3957
3958static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3959{
3960 struct irq_remap_table *table;
3961 unsigned long flags;
3962 int index, c;
3963
3964 table = get_irq_table(devid, false);
3965 if (!table)
3966 return -ENODEV;
3967
3968 spin_lock_irqsave(&table->lock, flags);
3969
3970 /* Scan table for free entries */
3971 for (c = 0, index = table->min_index;
3972 index < MAX_IRQS_PER_TABLE;
3973 ++index) {
3974 if (table->table[index] == 0)
3975 c += 1;
3976 else
3977 c = 0;
3978
3979 if (c == count) {
0dfedd61 3980 struct irq_2_irte *irte_info;
2b324506
JR
3981
3982 for (; c != 0; --c)
3983 table->table[index - c + 1] = IRTE_ALLOCATED;
3984
3985 index -= count - 1;
3986
9b1b0e42 3987 cfg->remapped = 1;
0dfedd61
JR
3988 irte_info = &cfg->irq_2_irte;
3989 irte_info->devid = devid;
3990 irte_info->index = index;
2b324506
JR
3991
3992 goto out;
3993 }
3994 }
3995
3996 index = -ENOSPC;
3997
3998out:
3999 spin_unlock_irqrestore(&table->lock, flags);
4000
4001 return index;
4002}
4003
4004static int get_irte(u16 devid, int index, union irte *irte)
4005{
4006 struct irq_remap_table *table;
4007 unsigned long flags;
4008
4009 table = get_irq_table(devid, false);
4010 if (!table)
4011 return -ENOMEM;
4012
4013 spin_lock_irqsave(&table->lock, flags);
4014 irte->val = table->table[index];
4015 spin_unlock_irqrestore(&table->lock, flags);
4016
4017 return 0;
4018}
4019
4020static int modify_irte(u16 devid, int index, union irte irte)
4021{
4022 struct irq_remap_table *table;
4023 struct amd_iommu *iommu;
4024 unsigned long flags;
4025
4026 iommu = amd_iommu_rlookup_table[devid];
4027 if (iommu == NULL)
4028 return -EINVAL;
4029
4030 table = get_irq_table(devid, false);
4031 if (!table)
4032 return -ENOMEM;
4033
4034 spin_lock_irqsave(&table->lock, flags);
4035 table->table[index] = irte.val;
4036 spin_unlock_irqrestore(&table->lock, flags);
4037
4038 iommu_flush_irt(iommu, devid);
4039 iommu_completion_wait(iommu);
4040
4041 return 0;
4042}
4043
4044static void free_irte(u16 devid, int index)
4045{
4046 struct irq_remap_table *table;
4047 struct amd_iommu *iommu;
4048 unsigned long flags;
4049
4050 iommu = amd_iommu_rlookup_table[devid];
4051 if (iommu == NULL)
4052 return;
4053
4054 table = get_irq_table(devid, false);
4055 if (!table)
4056 return;
4057
4058 spin_lock_irqsave(&table->lock, flags);
4059 table->table[index] = 0;
4060 spin_unlock_irqrestore(&table->lock, flags);
4061
4062 iommu_flush_irt(iommu, devid);
4063 iommu_completion_wait(iommu);
4064}
4065
5527de74
JR
4066static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4067 unsigned int destination, int vector,
4068 struct io_apic_irq_attr *attr)
4069{
4070 struct irq_remap_table *table;
0dfedd61 4071 struct irq_2_irte *irte_info;
5527de74
JR
4072 struct irq_cfg *cfg;
4073 union irte irte;
4074 int ioapic_id;
4075 int index;
4076 int devid;
4077 int ret;
4078
4079 cfg = irq_get_chip_data(irq);
4080 if (!cfg)
4081 return -EINVAL;
4082
0dfedd61 4083 irte_info = &cfg->irq_2_irte;
5527de74
JR
4084 ioapic_id = mpc_ioapic_id(attr->ioapic);
4085 devid = get_ioapic_devid(ioapic_id);
4086
4087 if (devid < 0)
4088 return devid;
4089
4090 table = get_irq_table(devid, true);
4091 if (table == NULL)
4092 return -ENOMEM;
4093
4094 index = attr->ioapic_pin;
4095
4096 /* Setup IRQ remapping info */
9b1b0e42 4097 cfg->remapped = 1;
0dfedd61
JR
4098 irte_info->devid = devid;
4099 irte_info->index = index;
5527de74
JR
4100
4101 /* Setup IRTE for IOMMU */
4102 irte.val = 0;
4103 irte.fields.vector = vector;
4104 irte.fields.int_type = apic->irq_delivery_mode;
4105 irte.fields.destination = destination;
4106 irte.fields.dm = apic->irq_dest_mode;
4107 irte.fields.valid = 1;
4108
4109 ret = modify_irte(devid, index, irte);
4110 if (ret)
4111 return ret;
4112
4113 /* Setup IOAPIC entry */
4114 memset(entry, 0, sizeof(*entry));
4115
4116 entry->vector = index;
4117 entry->mask = 0;
4118 entry->trigger = attr->trigger;
4119 entry->polarity = attr->polarity;
4120
4121 /*
4122 * Mask level triggered irqs.
5527de74
JR
4123 */
4124 if (attr->trigger)
4125 entry->mask = 1;
4126
4127 return 0;
4128}
4129
4130static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4131 bool force)
4132{
0dfedd61 4133 struct irq_2_irte *irte_info;
5527de74
JR
4134 unsigned int dest, irq;
4135 struct irq_cfg *cfg;
4136 union irte irte;
4137 int err;
4138
4139 if (!config_enabled(CONFIG_SMP))
4140 return -1;
4141
4142 cfg = data->chip_data;
4143 irq = data->irq;
0dfedd61 4144 irte_info = &cfg->irq_2_irte;
5527de74
JR
4145
4146 if (!cpumask_intersects(mask, cpu_online_mask))
4147 return -EINVAL;
4148
0dfedd61 4149 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4150 return -EBUSY;
4151
4152 if (assign_irq_vector(irq, cfg, mask))
4153 return -EBUSY;
4154
4155 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4156 if (err) {
4157 if (assign_irq_vector(irq, cfg, data->affinity))
4158 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4159 return err;
4160 }
4161
4162 irte.fields.vector = cfg->vector;
4163 irte.fields.destination = dest;
4164
0dfedd61 4165 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4166
4167 if (cfg->move_in_progress)
4168 send_cleanup_vector(cfg);
4169
4170 cpumask_copy(data->affinity, mask);
4171
4172 return 0;
4173}
4174
4175static int free_irq(int irq)
4176{
0dfedd61 4177 struct irq_2_irte *irte_info;
5527de74
JR
4178 struct irq_cfg *cfg;
4179
4180 cfg = irq_get_chip_data(irq);
4181 if (!cfg)
4182 return -EINVAL;
4183
0dfedd61 4184 irte_info = &cfg->irq_2_irte;
5527de74 4185
0dfedd61 4186 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4187
4188 return 0;
4189}
4190
0b4d48cb
JR
4191static void compose_msi_msg(struct pci_dev *pdev,
4192 unsigned int irq, unsigned int dest,
4193 struct msi_msg *msg, u8 hpet_id)
4194{
0dfedd61 4195 struct irq_2_irte *irte_info;
0b4d48cb
JR
4196 struct irq_cfg *cfg;
4197 union irte irte;
4198
4199 cfg = irq_get_chip_data(irq);
4200 if (!cfg)
4201 return;
4202
0dfedd61 4203 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4204
4205 irte.val = 0;
4206 irte.fields.vector = cfg->vector;
4207 irte.fields.int_type = apic->irq_delivery_mode;
4208 irte.fields.destination = dest;
4209 irte.fields.dm = apic->irq_dest_mode;
4210 irte.fields.valid = 1;
4211
0dfedd61 4212 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4213
4214 msg->address_hi = MSI_ADDR_BASE_HI;
4215 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4216 msg->data = irte_info->index;
0b4d48cb
JR
4217}
4218
4219static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4220{
4221 struct irq_cfg *cfg;
4222 int index;
4223 u16 devid;
4224
4225 if (!pdev)
4226 return -EINVAL;
4227
4228 cfg = irq_get_chip_data(irq);
4229 if (!cfg)
4230 return -EINVAL;
4231
4232 devid = get_device_id(&pdev->dev);
4233 index = alloc_irq_index(cfg, devid, nvec);
4234
4235 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4236}
4237
4238static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4239 int index, int offset)
4240{
0dfedd61 4241 struct irq_2_irte *irte_info;
0b4d48cb
JR
4242 struct irq_cfg *cfg;
4243 u16 devid;
4244
4245 if (!pdev)
4246 return -EINVAL;
4247
4248 cfg = irq_get_chip_data(irq);
4249 if (!cfg)
4250 return -EINVAL;
4251
4252 if (index >= MAX_IRQS_PER_TABLE)
4253 return 0;
4254
4255 devid = get_device_id(&pdev->dev);
0dfedd61 4256 irte_info = &cfg->irq_2_irte;
0b4d48cb 4257
9b1b0e42 4258 cfg->remapped = 1;
0dfedd61
JR
4259 irte_info->devid = devid;
4260 irte_info->index = index + offset;
0b4d48cb
JR
4261
4262 return 0;
4263}
4264
d976195c
JR
4265static int setup_hpet_msi(unsigned int irq, unsigned int id)
4266{
0dfedd61 4267 struct irq_2_irte *irte_info;
d976195c
JR
4268 struct irq_cfg *cfg;
4269 int index, devid;
4270
4271 cfg = irq_get_chip_data(irq);
4272 if (!cfg)
4273 return -EINVAL;
4274
0dfedd61 4275 irte_info = &cfg->irq_2_irte;
d976195c
JR
4276 devid = get_hpet_devid(id);
4277 if (devid < 0)
4278 return devid;
4279
4280 index = alloc_irq_index(cfg, devid, 1);
4281 if (index < 0)
4282 return index;
4283
9b1b0e42 4284 cfg->remapped = 1;
0dfedd61
JR
4285 irte_info->devid = devid;
4286 irte_info->index = index;
d976195c
JR
4287
4288 return 0;
4289}
4290
6b474b82
JR
4291struct irq_remap_ops amd_iommu_irq_ops = {
4292 .supported = amd_iommu_supported,
4293 .prepare = amd_iommu_prepare,
4294 .enable = amd_iommu_enable,
4295 .disable = amd_iommu_disable,
4296 .reenable = amd_iommu_reenable,
4297 .enable_faulting = amd_iommu_enable_faulting,
4298 .setup_ioapic_entry = setup_ioapic_entry,
4299 .set_affinity = set_affinity,
4300 .free_irq = free_irq,
4301 .compose_msi_msg = compose_msi_msg,
4302 .msi_alloc_irq = msi_alloc_irq,
4303 .msi_setup_irq = msi_setup_irq,
4304 .setup_hpet_msi = setup_hpet_msi,
4305};
2b324506 4306#endif
This page took 0.839442 seconds and 5 git commands to generate.