iommu: Fix bus notifier breakage
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <asm/irq_remapping.h>
37#include <asm/io_apic.h>
38#include <asm/apic.h>
39#include <asm/hw_irq.h>
17f5b569 40#include <asm/msidef.h>
b6c02715 41#include <asm/proto.h>
46a7fa27 42#include <asm/iommu.h>
1d9b16d1 43#include <asm/gart.h>
27c2127a 44#include <asm/dma.h>
403f81d8
JR
45
46#include "amd_iommu_proto.h"
47#include "amd_iommu_types.h"
6b474b82 48#include "irq_remapping.h"
b6c02715
JR
49
50#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51
815b33fd 52#define LOOP_TIMEOUT 100000
136f78a1 53
aa3de9c0
OBC
54/*
55 * This bitmap is used to advertise the page sizes our hardware support
56 * to the IOMMU core, which will then use this information to split
57 * physically contiguous memory regions it is mapping into page sizes
58 * that we support.
59 *
954e3dd8 60 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 61 */
954e3dd8 62#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 63
b6c02715
JR
64static DEFINE_RWLOCK(amd_iommu_devtable_lock);
65
bd60b735
JR
66/* A list of preallocated protection domains */
67static LIST_HEAD(iommu_pd_list);
68static DEFINE_SPINLOCK(iommu_pd_list_lock);
69
8fa5f802
JR
70/* List of all available dev_data structures */
71static LIST_HEAD(dev_data_list);
72static DEFINE_SPINLOCK(dev_data_list_lock);
73
6efed63b
JR
74LIST_HEAD(ioapic_map);
75LIST_HEAD(hpet_map);
76
0feae533
JR
77/*
78 * Domain for untranslated devices - only allocated
79 * if iommu=pt passed on kernel cmd line.
80 */
81static struct protection_domain *pt_domain;
82
b22f6434 83static const struct iommu_ops amd_iommu_ops;
26961efe 84
72e1dcc4 85static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 86int amd_iommu_max_glx_val = -1;
72e1dcc4 87
ac1534a5
JR
88static struct dma_map_ops amd_iommu_dma_ops;
89
431b2a20
JR
90/*
91 * general struct to manage commands send to an IOMMU
92 */
d6449536 93struct iommu_cmd {
b6c02715
JR
94 u32 data[4];
95};
96
05152a04
JR
97struct kmem_cache *amd_iommu_irq_cache;
98
04bfdd84 99static void update_domain(struct protection_domain *domain);
5abcdba4 100static int __init alloc_passthrough_domain(void);
c1eee67b 101
15898bbc
JR
102/****************************************************************************
103 *
104 * Helper functions
105 *
106 ****************************************************************************/
107
f62dda66 108static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
109{
110 struct iommu_dev_data *dev_data;
111 unsigned long flags;
112
113 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
114 if (!dev_data)
115 return NULL;
116
f62dda66 117 dev_data->devid = devid;
8fa5f802
JR
118 atomic_set(&dev_data->bind, 0);
119
120 spin_lock_irqsave(&dev_data_list_lock, flags);
121 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
122 spin_unlock_irqrestore(&dev_data_list_lock, flags);
123
124 return dev_data;
125}
126
127static void free_dev_data(struct iommu_dev_data *dev_data)
128{
129 unsigned long flags;
130
131 spin_lock_irqsave(&dev_data_list_lock, flags);
132 list_del(&dev_data->dev_data_list);
133 spin_unlock_irqrestore(&dev_data_list_lock, flags);
134
135 kfree(dev_data);
136}
137
3b03bb74
JR
138static struct iommu_dev_data *search_dev_data(u16 devid)
139{
140 struct iommu_dev_data *dev_data;
141 unsigned long flags;
142
143 spin_lock_irqsave(&dev_data_list_lock, flags);
144 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
145 if (dev_data->devid == devid)
146 goto out_unlock;
147 }
148
149 dev_data = NULL;
150
151out_unlock:
152 spin_unlock_irqrestore(&dev_data_list_lock, flags);
153
154 return dev_data;
155}
156
157static struct iommu_dev_data *find_dev_data(u16 devid)
158{
159 struct iommu_dev_data *dev_data;
160
161 dev_data = search_dev_data(devid);
162
163 if (dev_data == NULL)
164 dev_data = alloc_dev_data(devid);
165
166 return dev_data;
167}
168
15898bbc
JR
169static inline u16 get_device_id(struct device *dev)
170{
171 struct pci_dev *pdev = to_pci_dev(dev);
172
6f2729ba 173 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
174}
175
657cbb6b
JR
176static struct iommu_dev_data *get_dev_data(struct device *dev)
177{
178 return dev->archdata.iommu;
179}
180
5abcdba4
JR
181static bool pci_iommuv2_capable(struct pci_dev *pdev)
182{
183 static const int caps[] = {
184 PCI_EXT_CAP_ID_ATS,
46277b75
JR
185 PCI_EXT_CAP_ID_PRI,
186 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
187 };
188 int i, pos;
189
190 for (i = 0; i < 3; ++i) {
191 pos = pci_find_ext_capability(pdev, caps[i]);
192 if (pos == 0)
193 return false;
194 }
195
196 return true;
197}
198
6a113ddc
JR
199static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
200{
201 struct iommu_dev_data *dev_data;
202
203 dev_data = get_dev_data(&pdev->dev);
204
205 return dev_data->errata & (1 << erratum) ? true : false;
206}
207
71c70984
JR
208/*
209 * In this function the list of preallocated protection domains is traversed to
210 * find the domain for a specific device
211 */
212static struct dma_ops_domain *find_protection_domain(u16 devid)
213{
214 struct dma_ops_domain *entry, *ret = NULL;
215 unsigned long flags;
216 u16 alias = amd_iommu_alias_table[devid];
217
218 if (list_empty(&iommu_pd_list))
219 return NULL;
220
221 spin_lock_irqsave(&iommu_pd_list_lock, flags);
222
223 list_for_each_entry(entry, &iommu_pd_list, list) {
224 if (entry->target_dev == devid ||
225 entry->target_dev == alias) {
226 ret = entry;
227 break;
228 }
229 }
230
231 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
232
233 return ret;
234}
235
98fc5a69
JR
236/*
237 * This function checks if the driver got a valid device from the caller to
238 * avoid dereferencing invalid pointers.
239 */
240static bool check_device(struct device *dev)
241{
242 u16 devid;
243
244 if (!dev || !dev->dma_mask)
245 return false;
246
b82a2272
YW
247 /* No PCI device */
248 if (!dev_is_pci(dev))
98fc5a69
JR
249 return false;
250
251 devid = get_device_id(dev);
252
253 /* Out of our scope? */
254 if (devid > amd_iommu_last_bdf)
255 return false;
256
257 if (amd_iommu_rlookup_table[devid] == NULL)
258 return false;
259
260 return true;
261}
262
25b11ce2 263static void init_iommu_group(struct device *dev)
2851db21 264{
2851db21 265 struct iommu_group *group;
2851db21 266
65d5352f 267 group = iommu_group_get_for_dev(dev);
25b11ce2
AW
268 if (!IS_ERR(group))
269 iommu_group_put(group);
eb9c9527
AW
270}
271
c1931090
AW
272static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
273{
274 *(u16 *)data = alias;
275 return 0;
276}
277
278static u16 get_alias(struct device *dev)
279{
280 struct pci_dev *pdev = to_pci_dev(dev);
281 u16 devid, ivrs_alias, pci_alias;
282
283 devid = get_device_id(dev);
284 ivrs_alias = amd_iommu_alias_table[devid];
285 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
286
287 if (ivrs_alias == pci_alias)
288 return ivrs_alias;
289
290 /*
291 * DMA alias showdown
292 *
293 * The IVRS is fairly reliable in telling us about aliases, but it
294 * can't know about every screwy device. If we don't have an IVRS
295 * reported alias, use the PCI reported alias. In that case we may
296 * still need to initialize the rlookup and dev_table entries if the
297 * alias is to a non-existent device.
298 */
299 if (ivrs_alias == devid) {
300 if (!amd_iommu_rlookup_table[pci_alias]) {
301 amd_iommu_rlookup_table[pci_alias] =
302 amd_iommu_rlookup_table[devid];
303 memcpy(amd_iommu_dev_table[pci_alias].data,
304 amd_iommu_dev_table[devid].data,
305 sizeof(amd_iommu_dev_table[pci_alias].data));
306 }
307
308 return pci_alias;
309 }
310
311 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
312 "for device %s[%04x:%04x], kernel reported alias "
313 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
314 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
315 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
316 PCI_FUNC(pci_alias));
317
318 /*
319 * If we don't have a PCI DMA alias and the IVRS alias is on the same
320 * bus, then the IVRS table may know about a quirk that we don't.
321 */
322 if (pci_alias == devid &&
323 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
324 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
325 pdev->dma_alias_devfn = ivrs_alias & 0xff;
326 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
327 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
328 dev_name(dev));
329 }
330
331 return ivrs_alias;
332}
333
eb9c9527
AW
334static int iommu_init_device(struct device *dev)
335{
336 struct pci_dev *pdev = to_pci_dev(dev);
337 struct iommu_dev_data *dev_data;
338 u16 alias;
eb9c9527
AW
339
340 if (dev->archdata.iommu)
341 return 0;
342
343 dev_data = find_dev_data(get_device_id(dev));
344 if (!dev_data)
345 return -ENOMEM;
346
c1931090
AW
347 alias = get_alias(dev);
348
eb9c9527
AW
349 if (alias != dev_data->devid) {
350 struct iommu_dev_data *alias_data;
351
352 alias_data = find_dev_data(alias);
353 if (alias_data == NULL) {
354 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
355 dev_name(dev));
356 free_dev_data(dev_data);
357 return -ENOTSUPP;
358 }
359 dev_data->alias_data = alias_data;
360 }
361
5abcdba4
JR
362 if (pci_iommuv2_capable(pdev)) {
363 struct amd_iommu *iommu;
364
365 iommu = amd_iommu_rlookup_table[dev_data->devid];
366 dev_data->iommu_v2 = iommu->is_iommu_v2;
367 }
368
657cbb6b
JR
369 dev->archdata.iommu = dev_data;
370
066f2e98
AW
371 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
372 dev);
373
657cbb6b
JR
374 return 0;
375}
376
26018874
JR
377static void iommu_ignore_device(struct device *dev)
378{
379 u16 devid, alias;
380
381 devid = get_device_id(dev);
382 alias = amd_iommu_alias_table[devid];
383
384 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
385 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
386
387 amd_iommu_rlookup_table[devid] = NULL;
388 amd_iommu_rlookup_table[alias] = NULL;
389}
390
657cbb6b
JR
391static void iommu_uninit_device(struct device *dev)
392{
c1931090
AW
393 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
394
395 if (!dev_data)
396 return;
397
066f2e98
AW
398 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
399 dev);
400
9dcd6130
AW
401 iommu_group_remove_device(dev);
402
c1931090
AW
403 /* Unlink from alias, it may change if another device is re-plugged */
404 dev_data->alias_data = NULL;
405
8fa5f802 406 /*
c1931090
AW
407 * We keep dev_data around for unplugged devices and reuse it when the
408 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 409 */
657cbb6b 410}
b7cc9554
JR
411
412void __init amd_iommu_uninit_devices(void)
413{
8fa5f802 414 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
415 struct pci_dev *pdev = NULL;
416
417 for_each_pci_dev(pdev) {
418
419 if (!check_device(&pdev->dev))
420 continue;
421
422 iommu_uninit_device(&pdev->dev);
423 }
8fa5f802
JR
424
425 /* Free all of our dev_data structures */
426 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
427 free_dev_data(dev_data);
b7cc9554
JR
428}
429
430int __init amd_iommu_init_devices(void)
431{
432 struct pci_dev *pdev = NULL;
433 int ret = 0;
434
435 for_each_pci_dev(pdev) {
436
437 if (!check_device(&pdev->dev))
438 continue;
439
440 ret = iommu_init_device(&pdev->dev);
26018874
JR
441 if (ret == -ENOTSUPP)
442 iommu_ignore_device(&pdev->dev);
443 else if (ret)
b7cc9554
JR
444 goto out_free;
445 }
446
25b11ce2
AW
447 /*
448 * Initialize IOMMU groups only after iommu_init_device() has
449 * had a chance to populate any IVRS defined aliases.
450 */
451 for_each_pci_dev(pdev) {
452 if (check_device(&pdev->dev))
453 init_iommu_group(&pdev->dev);
454 }
455
b7cc9554
JR
456 return 0;
457
458out_free:
459
460 amd_iommu_uninit_devices();
461
462 return ret;
463}
7f26508b
JR
464#ifdef CONFIG_AMD_IOMMU_STATS
465
466/*
467 * Initialization code for statistics collection
468 */
469
da49f6df 470DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 471DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 472DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 473DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 474DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 475DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 476DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 477DECLARE_STATS_COUNTER(cross_page);
f57d98ae 478DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 479DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 480DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 481DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
482DECLARE_STATS_COUNTER(complete_ppr);
483DECLARE_STATS_COUNTER(invalidate_iotlb);
484DECLARE_STATS_COUNTER(invalidate_iotlb_all);
485DECLARE_STATS_COUNTER(pri_requests);
486
7f26508b 487static struct dentry *stats_dir;
7f26508b
JR
488static struct dentry *de_fflush;
489
490static void amd_iommu_stats_add(struct __iommu_counter *cnt)
491{
492 if (stats_dir == NULL)
493 return;
494
495 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
496 &cnt->value);
497}
498
499static void amd_iommu_stats_init(void)
500{
501 stats_dir = debugfs_create_dir("amd-iommu", NULL);
502 if (stats_dir == NULL)
503 return;
504
7f26508b 505 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 506 &amd_iommu_unmap_flush);
da49f6df
JR
507
508 amd_iommu_stats_add(&compl_wait);
0f2a86f2 509 amd_iommu_stats_add(&cnt_map_single);
146a6917 510 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 511 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 512 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 513 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 514 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 515 amd_iommu_stats_add(&cross_page);
f57d98ae 516 amd_iommu_stats_add(&domain_flush_single);
18811f55 517 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 518 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 519 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
520 amd_iommu_stats_add(&complete_ppr);
521 amd_iommu_stats_add(&invalidate_iotlb);
522 amd_iommu_stats_add(&invalidate_iotlb_all);
523 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
524}
525
526#endif
527
a80dc3e0
JR
528/****************************************************************************
529 *
530 * Interrupt handling functions
531 *
532 ****************************************************************************/
533
e3e59876
JR
534static void dump_dte_entry(u16 devid)
535{
536 int i;
537
ee6c2868
JR
538 for (i = 0; i < 4; ++i)
539 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
540 amd_iommu_dev_table[devid].data[i]);
541}
542
945b4ac4
JR
543static void dump_command(unsigned long phys_addr)
544{
545 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
546 int i;
547
548 for (i = 0; i < 4; ++i)
549 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
550}
551
a345b23b 552static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 553{
3d06fca8
JR
554 int type, devid, domid, flags;
555 volatile u32 *event = __evt;
556 int count = 0;
557 u64 address;
558
559retry:
560 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
561 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
562 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
563 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
564 address = (u64)(((u64)event[3]) << 32) | event[2];
565
566 if (type == 0) {
567 /* Did we hit the erratum? */
568 if (++count == LOOP_TIMEOUT) {
569 pr_err("AMD-Vi: No event written to event log\n");
570 return;
571 }
572 udelay(1);
573 goto retry;
574 }
90008ee4 575
4c6f40d4 576 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
577
578 switch (type) {
579 case EVENT_TYPE_ILL_DEV:
580 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
581 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 582 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 583 address, flags);
e3e59876 584 dump_dte_entry(devid);
90008ee4
JR
585 break;
586 case EVENT_TYPE_IO_FAULT:
587 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
588 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 589 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
590 domid, address, flags);
591 break;
592 case EVENT_TYPE_DEV_TAB_ERR:
593 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
594 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 595 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
596 address, flags);
597 break;
598 case EVENT_TYPE_PAGE_TAB_ERR:
599 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
600 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 601 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
602 domid, address, flags);
603 break;
604 case EVENT_TYPE_ILL_CMD:
605 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 606 dump_command(address);
90008ee4
JR
607 break;
608 case EVENT_TYPE_CMD_HARD_ERR:
609 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
610 "flags=0x%04x]\n", address, flags);
611 break;
612 case EVENT_TYPE_IOTLB_INV_TO:
613 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
614 "address=0x%016llx]\n",
c5081cd7 615 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
616 address);
617 break;
618 case EVENT_TYPE_INV_DEV_REQ:
619 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
620 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
622 address, flags);
623 break;
624 default:
625 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
626 }
3d06fca8
JR
627
628 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
629}
630
631static void iommu_poll_events(struct amd_iommu *iommu)
632{
633 u32 head, tail;
90008ee4
JR
634
635 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
636 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
637
638 while (head != tail) {
a345b23b 639 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
640 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
641 }
642
643 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
644}
645
eee53537 646static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
647{
648 struct amd_iommu_fault fault;
72e1dcc4 649
399be2f5
JR
650 INC_STATS_COUNTER(pri_requests);
651
72e1dcc4
JR
652 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
653 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
654 return;
655 }
656
657 fault.address = raw[1];
658 fault.pasid = PPR_PASID(raw[0]);
659 fault.device_id = PPR_DEVID(raw[0]);
660 fault.tag = PPR_TAG(raw[0]);
661 fault.flags = PPR_FLAGS(raw[0]);
662
72e1dcc4
JR
663 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
664}
665
666static void iommu_poll_ppr_log(struct amd_iommu *iommu)
667{
72e1dcc4
JR
668 u32 head, tail;
669
670 if (iommu->ppr_log == NULL)
671 return;
672
72e1dcc4
JR
673 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
674 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
675
676 while (head != tail) {
eee53537
JR
677 volatile u64 *raw;
678 u64 entry[2];
679 int i;
680
681 raw = (u64 *)(iommu->ppr_log + head);
682
683 /*
684 * Hardware bug: Interrupt may arrive before the entry is
685 * written to memory. If this happens we need to wait for the
686 * entry to arrive.
687 */
688 for (i = 0; i < LOOP_TIMEOUT; ++i) {
689 if (PPR_REQ_TYPE(raw[0]) != 0)
690 break;
691 udelay(1);
692 }
72e1dcc4 693
eee53537
JR
694 /* Avoid memcpy function-call overhead */
695 entry[0] = raw[0];
696 entry[1] = raw[1];
72e1dcc4 697
eee53537
JR
698 /*
699 * To detect the hardware bug we need to clear the entry
700 * back to zero.
701 */
702 raw[0] = raw[1] = 0UL;
703
704 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
705 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
706 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 707
eee53537
JR
708 /* Handle PPR entry */
709 iommu_handle_ppr_entry(iommu, entry);
710
eee53537
JR
711 /* Refresh ring-buffer information */
712 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
713 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
714 }
72e1dcc4
JR
715}
716
72fe00f0 717irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 718{
3f398bc7
SS
719 struct amd_iommu *iommu = (struct amd_iommu *) data;
720 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 721
3f398bc7
SS
722 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
723 /* Enable EVT and PPR interrupts again */
724 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
725 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 726
3f398bc7
SS
727 if (status & MMIO_STATUS_EVT_INT_MASK) {
728 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
729 iommu_poll_events(iommu);
730 }
90008ee4 731
3f398bc7
SS
732 if (status & MMIO_STATUS_PPR_INT_MASK) {
733 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
734 iommu_poll_ppr_log(iommu);
735 }
90008ee4 736
3f398bc7
SS
737 /*
738 * Hardware bug: ERBT1312
739 * When re-enabling interrupt (by writing 1
740 * to clear the bit), the hardware might also try to set
741 * the interrupt bit in the event status register.
742 * In this scenario, the bit will be set, and disable
743 * subsequent interrupts.
744 *
745 * Workaround: The IOMMU driver should read back the
746 * status register and check if the interrupt bits are cleared.
747 * If not, driver will need to go through the interrupt handler
748 * again and re-clear the bits
749 */
750 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
751 }
90008ee4 752 return IRQ_HANDLED;
a80dc3e0
JR
753}
754
72fe00f0
JR
755irqreturn_t amd_iommu_int_handler(int irq, void *data)
756{
757 return IRQ_WAKE_THREAD;
758}
759
431b2a20
JR
760/****************************************************************************
761 *
762 * IOMMU command queuing functions
763 *
764 ****************************************************************************/
765
ac0ea6e9
JR
766static int wait_on_sem(volatile u64 *sem)
767{
768 int i = 0;
769
770 while (*sem == 0 && i < LOOP_TIMEOUT) {
771 udelay(1);
772 i += 1;
773 }
774
775 if (i == LOOP_TIMEOUT) {
776 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
777 return -EIO;
778 }
779
780 return 0;
781}
782
783static void copy_cmd_to_buffer(struct amd_iommu *iommu,
784 struct iommu_cmd *cmd,
785 u32 tail)
a19ae1ec 786{
a19ae1ec
JR
787 u8 *target;
788
8a7c5ef3 789 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
790 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
791
792 /* Copy command to buffer */
793 memcpy(target, cmd, sizeof(*cmd));
794
795 /* Tell the IOMMU about it */
a19ae1ec 796 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 797}
a19ae1ec 798
815b33fd 799static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 800{
815b33fd
JR
801 WARN_ON(address & 0x7ULL);
802
ded46737 803 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
804 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
805 cmd->data[1] = upper_32_bits(__pa(address));
806 cmd->data[2] = 1;
ded46737
JR
807 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
808}
809
94fe79e2
JR
810static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
811{
812 memset(cmd, 0, sizeof(*cmd));
813 cmd->data[0] = devid;
814 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
815}
816
11b6402c
JR
817static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
818 size_t size, u16 domid, int pde)
819{
820 u64 pages;
821 int s;
822
823 pages = iommu_num_pages(address, size, PAGE_SIZE);
824 s = 0;
825
826 if (pages > 1) {
827 /*
828 * If we have to flush more than one page, flush all
829 * TLB entries for this domain
830 */
831 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
832 s = 1;
833 }
834
835 address &= PAGE_MASK;
836
837 memset(cmd, 0, sizeof(*cmd));
838 cmd->data[1] |= domid;
839 cmd->data[2] = lower_32_bits(address);
840 cmd->data[3] = upper_32_bits(address);
841 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
842 if (s) /* size bit - we flush more than one 4kb page */
843 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 844 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
845 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
846}
847
cb41ed85
JR
848static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
849 u64 address, size_t size)
850{
851 u64 pages;
852 int s;
853
854 pages = iommu_num_pages(address, size, PAGE_SIZE);
855 s = 0;
856
857 if (pages > 1) {
858 /*
859 * If we have to flush more than one page, flush all
860 * TLB entries for this domain
861 */
862 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
863 s = 1;
864 }
865
866 address &= PAGE_MASK;
867
868 memset(cmd, 0, sizeof(*cmd));
869 cmd->data[0] = devid;
870 cmd->data[0] |= (qdep & 0xff) << 24;
871 cmd->data[1] = devid;
872 cmd->data[2] = lower_32_bits(address);
873 cmd->data[3] = upper_32_bits(address);
874 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
875 if (s)
876 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
877}
878
22e266c7
JR
879static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
880 u64 address, bool size)
881{
882 memset(cmd, 0, sizeof(*cmd));
883
884 address &= ~(0xfffULL);
885
a919a018 886 cmd->data[0] = pasid;
22e266c7
JR
887 cmd->data[1] = domid;
888 cmd->data[2] = lower_32_bits(address);
889 cmd->data[3] = upper_32_bits(address);
890 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
891 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
892 if (size)
893 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
894 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
895}
896
897static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
898 int qdep, u64 address, bool size)
899{
900 memset(cmd, 0, sizeof(*cmd));
901
902 address &= ~(0xfffULL);
903
904 cmd->data[0] = devid;
e8d2d82d 905 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
906 cmd->data[0] |= (qdep & 0xff) << 24;
907 cmd->data[1] = devid;
e8d2d82d 908 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
909 cmd->data[2] = lower_32_bits(address);
910 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
911 cmd->data[3] = upper_32_bits(address);
912 if (size)
913 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
914 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
915}
916
c99afa25
JR
917static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
918 int status, int tag, bool gn)
919{
920 memset(cmd, 0, sizeof(*cmd));
921
922 cmd->data[0] = devid;
923 if (gn) {
a919a018 924 cmd->data[1] = pasid;
c99afa25
JR
925 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
926 }
927 cmd->data[3] = tag & 0x1ff;
928 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
929
930 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
931}
932
58fc7f14
JR
933static void build_inv_all(struct iommu_cmd *cmd)
934{
935 memset(cmd, 0, sizeof(*cmd));
936 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
937}
938
7ef2798d
JR
939static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
940{
941 memset(cmd, 0, sizeof(*cmd));
942 cmd->data[0] = devid;
943 CMD_SET_TYPE(cmd, CMD_INV_IRT);
944}
945
431b2a20 946/*
431b2a20 947 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 948 * hardware about the new command.
431b2a20 949 */
f1ca1512
JR
950static int iommu_queue_command_sync(struct amd_iommu *iommu,
951 struct iommu_cmd *cmd,
952 bool sync)
a19ae1ec 953{
ac0ea6e9 954 u32 left, tail, head, next_tail;
a19ae1ec 955 unsigned long flags;
a19ae1ec 956
549c90dc 957 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
958
959again:
a19ae1ec 960 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 961
ac0ea6e9
JR
962 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
963 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
964 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
965 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 966
ac0ea6e9
JR
967 if (left <= 2) {
968 struct iommu_cmd sync_cmd;
969 volatile u64 sem = 0;
970 int ret;
8d201968 971
ac0ea6e9
JR
972 build_completion_wait(&sync_cmd, (u64)&sem);
973 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 974
ac0ea6e9
JR
975 spin_unlock_irqrestore(&iommu->lock, flags);
976
977 if ((ret = wait_on_sem(&sem)) != 0)
978 return ret;
979
980 goto again;
8d201968
JR
981 }
982
ac0ea6e9
JR
983 copy_cmd_to_buffer(iommu, cmd, tail);
984
985 /* We need to sync now to make sure all commands are processed */
f1ca1512 986 iommu->need_sync = sync;
ac0ea6e9 987
a19ae1ec 988 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 989
815b33fd 990 return 0;
8d201968
JR
991}
992
f1ca1512
JR
993static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
994{
995 return iommu_queue_command_sync(iommu, cmd, true);
996}
997
8d201968
JR
998/*
999 * This function queues a completion wait command into the command
1000 * buffer of an IOMMU
1001 */
a19ae1ec 1002static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1003{
1004 struct iommu_cmd cmd;
815b33fd 1005 volatile u64 sem = 0;
ac0ea6e9 1006 int ret;
8d201968 1007
09ee17eb 1008 if (!iommu->need_sync)
815b33fd 1009 return 0;
09ee17eb 1010
815b33fd 1011 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1012
f1ca1512 1013 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1014 if (ret)
815b33fd 1015 return ret;
8d201968 1016
ac0ea6e9 1017 return wait_on_sem(&sem);
8d201968
JR
1018}
1019
d8c13085 1020static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1021{
d8c13085 1022 struct iommu_cmd cmd;
a19ae1ec 1023
d8c13085 1024 build_inv_dte(&cmd, devid);
7e4f88da 1025
d8c13085
JR
1026 return iommu_queue_command(iommu, &cmd);
1027}
09ee17eb 1028
7d0c5cc5
JR
1029static void iommu_flush_dte_all(struct amd_iommu *iommu)
1030{
1031 u32 devid;
09ee17eb 1032
7d0c5cc5
JR
1033 for (devid = 0; devid <= 0xffff; ++devid)
1034 iommu_flush_dte(iommu, devid);
a19ae1ec 1035
7d0c5cc5
JR
1036 iommu_completion_wait(iommu);
1037}
84df8175 1038
7d0c5cc5
JR
1039/*
1040 * This function uses heavy locking and may disable irqs for some time. But
1041 * this is no issue because it is only called during resume.
1042 */
1043static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1044{
1045 u32 dom_id;
a19ae1ec 1046
7d0c5cc5
JR
1047 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1048 struct iommu_cmd cmd;
1049 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1050 dom_id, 1);
1051 iommu_queue_command(iommu, &cmd);
1052 }
8eed9833 1053
7d0c5cc5 1054 iommu_completion_wait(iommu);
a19ae1ec
JR
1055}
1056
58fc7f14 1057static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1058{
58fc7f14 1059 struct iommu_cmd cmd;
0518a3a4 1060
58fc7f14 1061 build_inv_all(&cmd);
0518a3a4 1062
58fc7f14
JR
1063 iommu_queue_command(iommu, &cmd);
1064 iommu_completion_wait(iommu);
1065}
1066
7ef2798d
JR
1067static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1068{
1069 struct iommu_cmd cmd;
1070
1071 build_inv_irt(&cmd, devid);
1072
1073 iommu_queue_command(iommu, &cmd);
1074}
1075
1076static void iommu_flush_irt_all(struct amd_iommu *iommu)
1077{
1078 u32 devid;
1079
1080 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1081 iommu_flush_irt(iommu, devid);
1082
1083 iommu_completion_wait(iommu);
1084}
1085
7d0c5cc5
JR
1086void iommu_flush_all_caches(struct amd_iommu *iommu)
1087{
58fc7f14
JR
1088 if (iommu_feature(iommu, FEATURE_IA)) {
1089 iommu_flush_all(iommu);
1090 } else {
1091 iommu_flush_dte_all(iommu);
7ef2798d 1092 iommu_flush_irt_all(iommu);
58fc7f14 1093 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1094 }
1095}
1096
431b2a20 1097/*
cb41ed85 1098 * Command send function for flushing on-device TLB
431b2a20 1099 */
6c542047
JR
1100static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1101 u64 address, size_t size)
3fa43655
JR
1102{
1103 struct amd_iommu *iommu;
b00d3bcf 1104 struct iommu_cmd cmd;
cb41ed85 1105 int qdep;
3fa43655 1106
ea61cddb
JR
1107 qdep = dev_data->ats.qdep;
1108 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1109
ea61cddb 1110 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1111
1112 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1113}
1114
431b2a20 1115/*
431b2a20 1116 * Command send function for invalidating a device table entry
431b2a20 1117 */
6c542047 1118static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1119{
3fa43655 1120 struct amd_iommu *iommu;
ee2fa743 1121 int ret;
a19ae1ec 1122
6c542047 1123 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1124
f62dda66 1125 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1126 if (ret)
1127 return ret;
1128
ea61cddb 1129 if (dev_data->ats.enabled)
6c542047 1130 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1131
ee2fa743 1132 return ret;
a19ae1ec
JR
1133}
1134
431b2a20
JR
1135/*
1136 * TLB invalidation function which is called from the mapping functions.
1137 * It invalidates a single PTE if the range to flush is within a single
1138 * page. Otherwise it flushes the whole TLB of the IOMMU.
1139 */
17b124bf
JR
1140static void __domain_flush_pages(struct protection_domain *domain,
1141 u64 address, size_t size, int pde)
a19ae1ec 1142{
cb41ed85 1143 struct iommu_dev_data *dev_data;
11b6402c
JR
1144 struct iommu_cmd cmd;
1145 int ret = 0, i;
a19ae1ec 1146
11b6402c 1147 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1148
6de8ad9b
JR
1149 for (i = 0; i < amd_iommus_present; ++i) {
1150 if (!domain->dev_iommu[i])
1151 continue;
1152
1153 /*
1154 * Devices of this domain are behind this IOMMU
1155 * We need a TLB flush
1156 */
11b6402c 1157 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1158 }
1159
cb41ed85 1160 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1161
ea61cddb 1162 if (!dev_data->ats.enabled)
cb41ed85
JR
1163 continue;
1164
6c542047 1165 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1166 }
1167
11b6402c 1168 WARN_ON(ret);
6de8ad9b
JR
1169}
1170
17b124bf
JR
1171static void domain_flush_pages(struct protection_domain *domain,
1172 u64 address, size_t size)
6de8ad9b 1173{
17b124bf 1174 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1175}
b6c02715 1176
1c655773 1177/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1178static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1179{
17b124bf 1180 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1181}
1182
42a49f96 1183/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1184static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1185{
17b124bf 1186 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1187}
1188
17b124bf 1189static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1190{
17b124bf 1191 int i;
18811f55 1192
17b124bf
JR
1193 for (i = 0; i < amd_iommus_present; ++i) {
1194 if (!domain->dev_iommu[i])
1195 continue;
bfd1be18 1196
17b124bf
JR
1197 /*
1198 * Devices of this domain are behind this IOMMU
1199 * We need to wait for completion of all commands.
1200 */
1201 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1202 }
e394d72a
JR
1203}
1204
b00d3bcf 1205
09b42804 1206/*
b00d3bcf 1207 * This function flushes the DTEs for all devices in domain
09b42804 1208 */
17b124bf 1209static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1210{
b00d3bcf 1211 struct iommu_dev_data *dev_data;
b26e81b8 1212
b00d3bcf 1213 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1214 device_flush_dte(dev_data);
a345b23b
JR
1215}
1216
431b2a20
JR
1217/****************************************************************************
1218 *
1219 * The functions below are used the create the page table mappings for
1220 * unity mapped regions.
1221 *
1222 ****************************************************************************/
1223
308973d3
JR
1224/*
1225 * This function is used to add another level to an IO page table. Adding
1226 * another level increases the size of the address space by 9 bits to a size up
1227 * to 64 bits.
1228 */
1229static bool increase_address_space(struct protection_domain *domain,
1230 gfp_t gfp)
1231{
1232 u64 *pte;
1233
1234 if (domain->mode == PAGE_MODE_6_LEVEL)
1235 /* address space already 64 bit large */
1236 return false;
1237
1238 pte = (void *)get_zeroed_page(gfp);
1239 if (!pte)
1240 return false;
1241
1242 *pte = PM_LEVEL_PDE(domain->mode,
1243 virt_to_phys(domain->pt_root));
1244 domain->pt_root = pte;
1245 domain->mode += 1;
1246 domain->updated = true;
1247
1248 return true;
1249}
1250
1251static u64 *alloc_pte(struct protection_domain *domain,
1252 unsigned long address,
cbb9d729 1253 unsigned long page_size,
308973d3
JR
1254 u64 **pte_page,
1255 gfp_t gfp)
1256{
cbb9d729 1257 int level, end_lvl;
308973d3 1258 u64 *pte, *page;
cbb9d729
JR
1259
1260 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1261
1262 while (address > PM_LEVEL_SIZE(domain->mode))
1263 increase_address_space(domain, gfp);
1264
cbb9d729
JR
1265 level = domain->mode - 1;
1266 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1267 address = PAGE_SIZE_ALIGN(address, page_size);
1268 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1269
1270 while (level > end_lvl) {
1271 if (!IOMMU_PTE_PRESENT(*pte)) {
1272 page = (u64 *)get_zeroed_page(gfp);
1273 if (!page)
1274 return NULL;
1275 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1276 }
1277
cbb9d729
JR
1278 /* No level skipping support yet */
1279 if (PM_PTE_LEVEL(*pte) != level)
1280 return NULL;
1281
308973d3
JR
1282 level -= 1;
1283
1284 pte = IOMMU_PTE_PAGE(*pte);
1285
1286 if (pte_page && level == end_lvl)
1287 *pte_page = pte;
1288
1289 pte = &pte[PM_LEVEL_INDEX(level, address)];
1290 }
1291
1292 return pte;
1293}
1294
1295/*
1296 * This function checks if there is a PTE for a given dma address. If
1297 * there is one, it returns the pointer to it.
1298 */
24cd7723 1299static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1300{
1301 int level;
1302 u64 *pte;
1303
24cd7723
JR
1304 if (address > PM_LEVEL_SIZE(domain->mode))
1305 return NULL;
1306
1307 level = domain->mode - 1;
1308 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1309
24cd7723
JR
1310 while (level > 0) {
1311
1312 /* Not Present */
308973d3
JR
1313 if (!IOMMU_PTE_PRESENT(*pte))
1314 return NULL;
1315
24cd7723
JR
1316 /* Large PTE */
1317 if (PM_PTE_LEVEL(*pte) == 0x07) {
1318 unsigned long pte_mask, __pte;
1319
1320 /*
1321 * If we have a series of large PTEs, make
1322 * sure to return a pointer to the first one.
1323 */
1324 pte_mask = PTE_PAGE_SIZE(*pte);
1325 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1326 __pte = ((unsigned long)pte) & pte_mask;
1327
1328 return (u64 *)__pte;
1329 }
1330
1331 /* No level skipping support yet */
1332 if (PM_PTE_LEVEL(*pte) != level)
1333 return NULL;
1334
308973d3
JR
1335 level -= 1;
1336
24cd7723 1337 /* Walk to the next level */
308973d3
JR
1338 pte = IOMMU_PTE_PAGE(*pte);
1339 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1340 }
1341
1342 return pte;
1343}
1344
431b2a20
JR
1345/*
1346 * Generic mapping functions. It maps a physical address into a DMA
1347 * address space. It allocates the page table pages if necessary.
1348 * In the future it can be extended to a generic mapping function
1349 * supporting all features of AMD IOMMU page tables like level skipping
1350 * and full 64 bit address spaces.
1351 */
38e817fe
JR
1352static int iommu_map_page(struct protection_domain *dom,
1353 unsigned long bus_addr,
1354 unsigned long phys_addr,
abdc5eb3 1355 int prot,
cbb9d729 1356 unsigned long page_size)
bd0e5211 1357{
8bda3092 1358 u64 __pte, *pte;
cbb9d729 1359 int i, count;
abdc5eb3 1360
bad1cac2 1361 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1362 return -EINVAL;
1363
cbb9d729
JR
1364 bus_addr = PAGE_ALIGN(bus_addr);
1365 phys_addr = PAGE_ALIGN(phys_addr);
1366 count = PAGE_SIZE_PTE_COUNT(page_size);
1367 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1368
1369 for (i = 0; i < count; ++i)
1370 if (IOMMU_PTE_PRESENT(pte[i]))
1371 return -EBUSY;
bd0e5211 1372
cbb9d729
JR
1373 if (page_size > PAGE_SIZE) {
1374 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1375 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1376 } else
1377 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1378
bd0e5211
JR
1379 if (prot & IOMMU_PROT_IR)
1380 __pte |= IOMMU_PTE_IR;
1381 if (prot & IOMMU_PROT_IW)
1382 __pte |= IOMMU_PTE_IW;
1383
cbb9d729
JR
1384 for (i = 0; i < count; ++i)
1385 pte[i] = __pte;
bd0e5211 1386
04bfdd84
JR
1387 update_domain(dom);
1388
bd0e5211
JR
1389 return 0;
1390}
1391
24cd7723
JR
1392static unsigned long iommu_unmap_page(struct protection_domain *dom,
1393 unsigned long bus_addr,
1394 unsigned long page_size)
eb74ff6c 1395{
24cd7723
JR
1396 unsigned long long unmap_size, unmapped;
1397 u64 *pte;
1398
1399 BUG_ON(!is_power_of_2(page_size));
1400
1401 unmapped = 0;
eb74ff6c 1402
24cd7723
JR
1403 while (unmapped < page_size) {
1404
1405 pte = fetch_pte(dom, bus_addr);
1406
1407 if (!pte) {
1408 /*
1409 * No PTE for this address
1410 * move forward in 4kb steps
1411 */
1412 unmap_size = PAGE_SIZE;
1413 } else if (PM_PTE_LEVEL(*pte) == 0) {
1414 /* 4kb PTE found for this address */
1415 unmap_size = PAGE_SIZE;
1416 *pte = 0ULL;
1417 } else {
1418 int count, i;
1419
1420 /* Large PTE found which maps this address */
1421 unmap_size = PTE_PAGE_SIZE(*pte);
60d0ca3c
AW
1422
1423 /* Only unmap from the first pte in the page */
1424 if ((unmap_size - 1) & bus_addr)
1425 break;
24cd7723
JR
1426 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1427 for (i = 0; i < count; i++)
1428 pte[i] = 0ULL;
1429 }
1430
1431 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1432 unmapped += unmap_size;
1433 }
1434
60d0ca3c 1435 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1436
24cd7723 1437 return unmapped;
eb74ff6c 1438}
eb74ff6c 1439
431b2a20
JR
1440/*
1441 * This function checks if a specific unity mapping entry is needed for
1442 * this specific IOMMU.
1443 */
bd0e5211
JR
1444static int iommu_for_unity_map(struct amd_iommu *iommu,
1445 struct unity_map_entry *entry)
1446{
1447 u16 bdf, i;
1448
1449 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1450 bdf = amd_iommu_alias_table[i];
1451 if (amd_iommu_rlookup_table[bdf] == iommu)
1452 return 1;
1453 }
1454
1455 return 0;
1456}
1457
431b2a20
JR
1458/*
1459 * This function actually applies the mapping to the page table of the
1460 * dma_ops domain.
1461 */
bd0e5211
JR
1462static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1463 struct unity_map_entry *e)
1464{
1465 u64 addr;
1466 int ret;
1467
1468 for (addr = e->address_start; addr < e->address_end;
1469 addr += PAGE_SIZE) {
abdc5eb3 1470 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1471 PAGE_SIZE);
bd0e5211
JR
1472 if (ret)
1473 return ret;
1474 /*
1475 * if unity mapping is in aperture range mark the page
1476 * as allocated in the aperture
1477 */
1478 if (addr < dma_dom->aperture_size)
c3239567 1479 __set_bit(addr >> PAGE_SHIFT,
384de729 1480 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1481 }
1482
1483 return 0;
1484}
1485
171e7b37
JR
1486/*
1487 * Init the unity mappings for a specific IOMMU in the system
1488 *
1489 * Basically iterates over all unity mapping entries and applies them to
1490 * the default domain DMA of that IOMMU if necessary.
1491 */
1492static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1493{
1494 struct unity_map_entry *entry;
1495 int ret;
1496
1497 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1498 if (!iommu_for_unity_map(iommu, entry))
1499 continue;
1500 ret = dma_ops_unity_map(iommu->default_dom, entry);
1501 if (ret)
1502 return ret;
1503 }
1504
1505 return 0;
1506}
1507
431b2a20
JR
1508/*
1509 * Inits the unity mappings required for a specific device
1510 */
bd0e5211
JR
1511static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1512 u16 devid)
1513{
1514 struct unity_map_entry *e;
1515 int ret;
1516
1517 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1518 if (!(devid >= e->devid_start && devid <= e->devid_end))
1519 continue;
1520 ret = dma_ops_unity_map(dma_dom, e);
1521 if (ret)
1522 return ret;
1523 }
1524
1525 return 0;
1526}
1527
431b2a20
JR
1528/****************************************************************************
1529 *
1530 * The next functions belong to the address allocator for the dma_ops
1531 * interface functions. They work like the allocators in the other IOMMU
1532 * drivers. Its basically a bitmap which marks the allocated pages in
1533 * the aperture. Maybe it could be enhanced in the future to a more
1534 * efficient allocator.
1535 *
1536 ****************************************************************************/
d3086444 1537
431b2a20 1538/*
384de729 1539 * The address allocator core functions.
431b2a20
JR
1540 *
1541 * called with domain->lock held
1542 */
384de729 1543
171e7b37
JR
1544/*
1545 * Used to reserve address ranges in the aperture (e.g. for exclusion
1546 * ranges.
1547 */
1548static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1549 unsigned long start_page,
1550 unsigned int pages)
1551{
1552 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1553
1554 if (start_page + pages > last_page)
1555 pages = last_page - start_page;
1556
1557 for (i = start_page; i < start_page + pages; ++i) {
1558 int index = i / APERTURE_RANGE_PAGES;
1559 int page = i % APERTURE_RANGE_PAGES;
1560 __set_bit(page, dom->aperture[index]->bitmap);
1561 }
1562}
1563
9cabe89b
JR
1564/*
1565 * This function is used to add a new aperture range to an existing
1566 * aperture in case of dma_ops domain allocation or address allocation
1567 * failure.
1568 */
576175c2 1569static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1570 bool populate, gfp_t gfp)
1571{
1572 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1573 struct amd_iommu *iommu;
17f5b569 1574 unsigned long i, old_size;
9cabe89b 1575
f5e9705c
JR
1576#ifdef CONFIG_IOMMU_STRESS
1577 populate = false;
1578#endif
1579
9cabe89b
JR
1580 if (index >= APERTURE_MAX_RANGES)
1581 return -ENOMEM;
1582
1583 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1584 if (!dma_dom->aperture[index])
1585 return -ENOMEM;
1586
1587 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1588 if (!dma_dom->aperture[index]->bitmap)
1589 goto out_free;
1590
1591 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1592
1593 if (populate) {
1594 unsigned long address = dma_dom->aperture_size;
1595 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1596 u64 *pte, *pte_page;
1597
1598 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1599 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1600 &pte_page, gfp);
1601 if (!pte)
1602 goto out_free;
1603
1604 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1605
1606 address += APERTURE_RANGE_SIZE / 64;
1607 }
1608 }
1609
17f5b569 1610 old_size = dma_dom->aperture_size;
9cabe89b
JR
1611 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1612
17f5b569
JR
1613 /* Reserve address range used for MSI messages */
1614 if (old_size < MSI_ADDR_BASE_LO &&
1615 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1616 unsigned long spage;
1617 int pages;
1618
1619 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1620 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1621
1622 dma_ops_reserve_addresses(dma_dom, spage, pages);
1623 }
1624
b595076a 1625 /* Initialize the exclusion range if necessary */
576175c2
JR
1626 for_each_iommu(iommu) {
1627 if (iommu->exclusion_start &&
1628 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1629 && iommu->exclusion_start < dma_dom->aperture_size) {
1630 unsigned long startpage;
1631 int pages = iommu_num_pages(iommu->exclusion_start,
1632 iommu->exclusion_length,
1633 PAGE_SIZE);
1634 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1635 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1636 }
00cd122a
JR
1637 }
1638
1639 /*
1640 * Check for areas already mapped as present in the new aperture
1641 * range and mark those pages as reserved in the allocator. Such
1642 * mappings may already exist as a result of requested unity
1643 * mappings for devices.
1644 */
1645 for (i = dma_dom->aperture[index]->offset;
1646 i < dma_dom->aperture_size;
1647 i += PAGE_SIZE) {
24cd7723 1648 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1649 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1650 continue;
1651
fcd0861d 1652 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1653 }
1654
04bfdd84
JR
1655 update_domain(&dma_dom->domain);
1656
9cabe89b
JR
1657 return 0;
1658
1659out_free:
04bfdd84
JR
1660 update_domain(&dma_dom->domain);
1661
9cabe89b
JR
1662 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1663
1664 kfree(dma_dom->aperture[index]);
1665 dma_dom->aperture[index] = NULL;
1666
1667 return -ENOMEM;
1668}
1669
384de729
JR
1670static unsigned long dma_ops_area_alloc(struct device *dev,
1671 struct dma_ops_domain *dom,
1672 unsigned int pages,
1673 unsigned long align_mask,
1674 u64 dma_mask,
1675 unsigned long start)
1676{
803b8cb4 1677 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1678 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1679 int i = start >> APERTURE_RANGE_SHIFT;
1680 unsigned long boundary_size;
1681 unsigned long address = -1;
1682 unsigned long limit;
1683
803b8cb4
JR
1684 next_bit >>= PAGE_SHIFT;
1685
384de729
JR
1686 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1687 PAGE_SIZE) >> PAGE_SHIFT;
1688
1689 for (;i < max_index; ++i) {
1690 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1691
1692 if (dom->aperture[i]->offset >= dma_mask)
1693 break;
1694
1695 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1696 dma_mask >> PAGE_SHIFT);
1697
1698 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1699 limit, next_bit, pages, 0,
1700 boundary_size, align_mask);
1701 if (address != -1) {
1702 address = dom->aperture[i]->offset +
1703 (address << PAGE_SHIFT);
803b8cb4 1704 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1705 break;
1706 }
1707
1708 next_bit = 0;
1709 }
1710
1711 return address;
1712}
1713
d3086444
JR
1714static unsigned long dma_ops_alloc_addresses(struct device *dev,
1715 struct dma_ops_domain *dom,
6d4f343f 1716 unsigned int pages,
832a90c3
JR
1717 unsigned long align_mask,
1718 u64 dma_mask)
d3086444 1719{
d3086444 1720 unsigned long address;
d3086444 1721
fe16f088
JR
1722#ifdef CONFIG_IOMMU_STRESS
1723 dom->next_address = 0;
1724 dom->need_flush = true;
1725#endif
d3086444 1726
384de729 1727 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1728 dma_mask, dom->next_address);
d3086444 1729
1c655773 1730 if (address == -1) {
803b8cb4 1731 dom->next_address = 0;
384de729
JR
1732 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1733 dma_mask, 0);
1c655773
JR
1734 dom->need_flush = true;
1735 }
d3086444 1736
384de729 1737 if (unlikely(address == -1))
8fd524b3 1738 address = DMA_ERROR_CODE;
d3086444
JR
1739
1740 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1741
1742 return address;
1743}
1744
431b2a20
JR
1745/*
1746 * The address free function.
1747 *
1748 * called with domain->lock held
1749 */
d3086444
JR
1750static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1751 unsigned long address,
1752 unsigned int pages)
1753{
384de729
JR
1754 unsigned i = address >> APERTURE_RANGE_SHIFT;
1755 struct aperture_range *range = dom->aperture[i];
80be308d 1756
384de729
JR
1757 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1758
47bccd6b
JR
1759#ifdef CONFIG_IOMMU_STRESS
1760 if (i < 4)
1761 return;
1762#endif
80be308d 1763
803b8cb4 1764 if (address >= dom->next_address)
80be308d 1765 dom->need_flush = true;
384de729
JR
1766
1767 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1768
a66022c4 1769 bitmap_clear(range->bitmap, address, pages);
384de729 1770
d3086444
JR
1771}
1772
431b2a20
JR
1773/****************************************************************************
1774 *
1775 * The next functions belong to the domain allocation. A domain is
1776 * allocated for every IOMMU as the default domain. If device isolation
1777 * is enabled, every device get its own domain. The most important thing
1778 * about domains is the page table mapping the DMA address space they
1779 * contain.
1780 *
1781 ****************************************************************************/
1782
aeb26f55
JR
1783/*
1784 * This function adds a protection domain to the global protection domain list
1785 */
1786static void add_domain_to_list(struct protection_domain *domain)
1787{
1788 unsigned long flags;
1789
1790 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1791 list_add(&domain->list, &amd_iommu_pd_list);
1792 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1793}
1794
1795/*
1796 * This function removes a protection domain to the global
1797 * protection domain list
1798 */
1799static void del_domain_from_list(struct protection_domain *domain)
1800{
1801 unsigned long flags;
1802
1803 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1804 list_del(&domain->list);
1805 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1806}
1807
ec487d1a
JR
1808static u16 domain_id_alloc(void)
1809{
1810 unsigned long flags;
1811 int id;
1812
1813 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1814 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1815 BUG_ON(id == 0);
1816 if (id > 0 && id < MAX_DOMAIN_ID)
1817 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1818 else
1819 id = 0;
1820 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1821
1822 return id;
1823}
1824
a2acfb75
JR
1825static void domain_id_free(int id)
1826{
1827 unsigned long flags;
1828
1829 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1830 if (id > 0 && id < MAX_DOMAIN_ID)
1831 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1832 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1833}
a2acfb75 1834
5c34c403
JR
1835#define DEFINE_FREE_PT_FN(LVL, FN) \
1836static void free_pt_##LVL (unsigned long __pt) \
1837{ \
1838 unsigned long p; \
1839 u64 *pt; \
1840 int i; \
1841 \
1842 pt = (u64 *)__pt; \
1843 \
1844 for (i = 0; i < 512; ++i) { \
1845 if (!IOMMU_PTE_PRESENT(pt[i])) \
1846 continue; \
1847 \
1848 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1849 FN(p); \
1850 } \
1851 free_page((unsigned long)pt); \
1852}
1853
1854DEFINE_FREE_PT_FN(l2, free_page)
1855DEFINE_FREE_PT_FN(l3, free_pt_l2)
1856DEFINE_FREE_PT_FN(l4, free_pt_l3)
1857DEFINE_FREE_PT_FN(l5, free_pt_l4)
1858DEFINE_FREE_PT_FN(l6, free_pt_l5)
1859
86db2e5d 1860static void free_pagetable(struct protection_domain *domain)
ec487d1a 1861{
5c34c403 1862 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1863
5c34c403
JR
1864 switch (domain->mode) {
1865 case PAGE_MODE_NONE:
1866 break;
1867 case PAGE_MODE_1_LEVEL:
1868 free_page(root);
1869 break;
1870 case PAGE_MODE_2_LEVEL:
1871 free_pt_l2(root);
1872 break;
1873 case PAGE_MODE_3_LEVEL:
1874 free_pt_l3(root);
1875 break;
1876 case PAGE_MODE_4_LEVEL:
1877 free_pt_l4(root);
1878 break;
1879 case PAGE_MODE_5_LEVEL:
1880 free_pt_l5(root);
1881 break;
1882 case PAGE_MODE_6_LEVEL:
1883 free_pt_l6(root);
1884 break;
1885 default:
1886 BUG();
ec487d1a 1887 }
ec487d1a
JR
1888}
1889
b16137b1
JR
1890static void free_gcr3_tbl_level1(u64 *tbl)
1891{
1892 u64 *ptr;
1893 int i;
1894
1895 for (i = 0; i < 512; ++i) {
1896 if (!(tbl[i] & GCR3_VALID))
1897 continue;
1898
1899 ptr = __va(tbl[i] & PAGE_MASK);
1900
1901 free_page((unsigned long)ptr);
1902 }
1903}
1904
1905static void free_gcr3_tbl_level2(u64 *tbl)
1906{
1907 u64 *ptr;
1908 int i;
1909
1910 for (i = 0; i < 512; ++i) {
1911 if (!(tbl[i] & GCR3_VALID))
1912 continue;
1913
1914 ptr = __va(tbl[i] & PAGE_MASK);
1915
1916 free_gcr3_tbl_level1(ptr);
1917 }
1918}
1919
52815b75
JR
1920static void free_gcr3_table(struct protection_domain *domain)
1921{
b16137b1
JR
1922 if (domain->glx == 2)
1923 free_gcr3_tbl_level2(domain->gcr3_tbl);
1924 else if (domain->glx == 1)
1925 free_gcr3_tbl_level1(domain->gcr3_tbl);
1926 else if (domain->glx != 0)
1927 BUG();
1928
52815b75
JR
1929 free_page((unsigned long)domain->gcr3_tbl);
1930}
1931
431b2a20
JR
1932/*
1933 * Free a domain, only used if something went wrong in the
1934 * allocation path and we need to free an already allocated page table
1935 */
ec487d1a
JR
1936static void dma_ops_domain_free(struct dma_ops_domain *dom)
1937{
384de729
JR
1938 int i;
1939
ec487d1a
JR
1940 if (!dom)
1941 return;
1942
aeb26f55
JR
1943 del_domain_from_list(&dom->domain);
1944
86db2e5d 1945 free_pagetable(&dom->domain);
ec487d1a 1946
384de729
JR
1947 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1948 if (!dom->aperture[i])
1949 continue;
1950 free_page((unsigned long)dom->aperture[i]->bitmap);
1951 kfree(dom->aperture[i]);
1952 }
ec487d1a
JR
1953
1954 kfree(dom);
1955}
1956
431b2a20
JR
1957/*
1958 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1959 * It also initializes the page table and the address allocator data
431b2a20
JR
1960 * structures required for the dma_ops interface
1961 */
87a64d52 1962static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1963{
1964 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1965
1966 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1967 if (!dma_dom)
1968 return NULL;
1969
1970 spin_lock_init(&dma_dom->domain.lock);
1971
1972 dma_dom->domain.id = domain_id_alloc();
1973 if (dma_dom->domain.id == 0)
1974 goto free_dma_dom;
7c392cbe 1975 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1976 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1977 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1978 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1979 dma_dom->domain.priv = dma_dom;
1980 if (!dma_dom->domain.pt_root)
1981 goto free_dma_dom;
ec487d1a 1982
1c655773 1983 dma_dom->need_flush = false;
bd60b735 1984 dma_dom->target_dev = 0xffff;
1c655773 1985
aeb26f55
JR
1986 add_domain_to_list(&dma_dom->domain);
1987
576175c2 1988 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1989 goto free_dma_dom;
ec487d1a 1990
431b2a20 1991 /*
ec487d1a
JR
1992 * mark the first page as allocated so we never return 0 as
1993 * a valid dma-address. So we can use 0 as error value
431b2a20 1994 */
384de729 1995 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1996 dma_dom->next_address = 0;
ec487d1a 1997
ec487d1a
JR
1998
1999 return dma_dom;
2000
2001free_dma_dom:
2002 dma_ops_domain_free(dma_dom);
2003
2004 return NULL;
2005}
2006
5b28df6f
JR
2007/*
2008 * little helper function to check whether a given protection domain is a
2009 * dma_ops domain
2010 */
2011static bool dma_ops_domain(struct protection_domain *domain)
2012{
2013 return domain->flags & PD_DMA_OPS_MASK;
2014}
2015
fd7b5535 2016static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2017{
132bd68f 2018 u64 pte_root = 0;
ee6c2868 2019 u64 flags = 0;
863c74eb 2020
132bd68f
JR
2021 if (domain->mode != PAGE_MODE_NONE)
2022 pte_root = virt_to_phys(domain->pt_root);
2023
38ddf41b
JR
2024 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2025 << DEV_ENTRY_MODE_SHIFT;
2026 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2027
ee6c2868
JR
2028 flags = amd_iommu_dev_table[devid].data[1];
2029
fd7b5535
JR
2030 if (ats)
2031 flags |= DTE_FLAG_IOTLB;
2032
52815b75
JR
2033 if (domain->flags & PD_IOMMUV2_MASK) {
2034 u64 gcr3 = __pa(domain->gcr3_tbl);
2035 u64 glx = domain->glx;
2036 u64 tmp;
2037
2038 pte_root |= DTE_FLAG_GV;
2039 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2040
2041 /* First mask out possible old values for GCR3 table */
2042 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2043 flags &= ~tmp;
2044
2045 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2046 flags &= ~tmp;
2047
2048 /* Encode GCR3 table into DTE */
2049 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2050 pte_root |= tmp;
2051
2052 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2053 flags |= tmp;
2054
2055 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2056 flags |= tmp;
2057 }
2058
ee6c2868
JR
2059 flags &= ~(0xffffUL);
2060 flags |= domain->id;
2061
2062 amd_iommu_dev_table[devid].data[1] = flags;
2063 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2064}
2065
2066static void clear_dte_entry(u16 devid)
2067{
15898bbc
JR
2068 /* remove entry from the device table seen by the hardware */
2069 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2070 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2071
2072 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2073}
2074
ec9e79ef
JR
2075static void do_attach(struct iommu_dev_data *dev_data,
2076 struct protection_domain *domain)
7f760ddd 2077{
7f760ddd 2078 struct amd_iommu *iommu;
ec9e79ef 2079 bool ats;
fd7b5535 2080
ec9e79ef
JR
2081 iommu = amd_iommu_rlookup_table[dev_data->devid];
2082 ats = dev_data->ats.enabled;
7f760ddd
JR
2083
2084 /* Update data structures */
2085 dev_data->domain = domain;
2086 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2087 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2088
2089 /* Do reference counting */
2090 domain->dev_iommu[iommu->index] += 1;
2091 domain->dev_cnt += 1;
2092
2093 /* Flush the DTE entry */
6c542047 2094 device_flush_dte(dev_data);
7f760ddd
JR
2095}
2096
ec9e79ef 2097static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2098{
7f760ddd 2099 struct amd_iommu *iommu;
7f760ddd 2100
ec9e79ef 2101 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2102
2103 /* decrease reference counters */
7f760ddd
JR
2104 dev_data->domain->dev_iommu[iommu->index] -= 1;
2105 dev_data->domain->dev_cnt -= 1;
2106
2107 /* Update data structures */
2108 dev_data->domain = NULL;
2109 list_del(&dev_data->list);
f62dda66 2110 clear_dte_entry(dev_data->devid);
15898bbc 2111
7f760ddd 2112 /* Flush the DTE entry */
6c542047 2113 device_flush_dte(dev_data);
2b681faf
JR
2114}
2115
2116/*
2117 * If a device is not yet associated with a domain, this function does
2118 * assigns it visible for the hardware
2119 */
ec9e79ef 2120static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2121 struct protection_domain *domain)
2b681faf 2122{
84fe6c19 2123 int ret;
657cbb6b 2124
2b681faf
JR
2125 /* lock domain */
2126 spin_lock(&domain->lock);
2127
71f77580
JR
2128 if (dev_data->alias_data != NULL) {
2129 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 2130
2b02b091
JR
2131 /* Some sanity checks */
2132 ret = -EBUSY;
2133 if (alias_data->domain != NULL &&
2134 alias_data->domain != domain)
2135 goto out_unlock;
eba6ac60 2136
2b02b091
JR
2137 if (dev_data->domain != NULL &&
2138 dev_data->domain != domain)
2139 goto out_unlock;
15898bbc 2140
2b02b091 2141 /* Do real assignment */
7f760ddd 2142 if (alias_data->domain == NULL)
ec9e79ef 2143 do_attach(alias_data, domain);
24100055
JR
2144
2145 atomic_inc(&alias_data->bind);
657cbb6b 2146 }
15898bbc 2147
7f760ddd 2148 if (dev_data->domain == NULL)
ec9e79ef 2149 do_attach(dev_data, domain);
eba6ac60 2150
24100055
JR
2151 atomic_inc(&dev_data->bind);
2152
84fe6c19
JL
2153 ret = 0;
2154
2155out_unlock:
2156
eba6ac60
JR
2157 /* ready */
2158 spin_unlock(&domain->lock);
15898bbc 2159
84fe6c19 2160 return ret;
0feae533 2161}
b20ac0d4 2162
52815b75
JR
2163
2164static void pdev_iommuv2_disable(struct pci_dev *pdev)
2165{
2166 pci_disable_ats(pdev);
2167 pci_disable_pri(pdev);
2168 pci_disable_pasid(pdev);
2169}
2170
6a113ddc
JR
2171/* FIXME: Change generic reset-function to do the same */
2172static int pri_reset_while_enabled(struct pci_dev *pdev)
2173{
2174 u16 control;
2175 int pos;
2176
46277b75 2177 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2178 if (!pos)
2179 return -EINVAL;
2180
46277b75
JR
2181 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2182 control |= PCI_PRI_CTRL_RESET;
2183 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2184
2185 return 0;
2186}
2187
52815b75
JR
2188static int pdev_iommuv2_enable(struct pci_dev *pdev)
2189{
6a113ddc
JR
2190 bool reset_enable;
2191 int reqs, ret;
2192
2193 /* FIXME: Hardcode number of outstanding requests for now */
2194 reqs = 32;
2195 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2196 reqs = 1;
2197 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2198
2199 /* Only allow access to user-accessible pages */
2200 ret = pci_enable_pasid(pdev, 0);
2201 if (ret)
2202 goto out_err;
2203
2204 /* First reset the PRI state of the device */
2205 ret = pci_reset_pri(pdev);
2206 if (ret)
2207 goto out_err;
2208
6a113ddc
JR
2209 /* Enable PRI */
2210 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2211 if (ret)
2212 goto out_err;
2213
6a113ddc
JR
2214 if (reset_enable) {
2215 ret = pri_reset_while_enabled(pdev);
2216 if (ret)
2217 goto out_err;
2218 }
2219
52815b75
JR
2220 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2221 if (ret)
2222 goto out_err;
2223
2224 return 0;
2225
2226out_err:
2227 pci_disable_pri(pdev);
2228 pci_disable_pasid(pdev);
2229
2230 return ret;
2231}
2232
c99afa25 2233/* FIXME: Move this to PCI code */
a3b93121 2234#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2235
98f1ad25 2236static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2237{
a3b93121 2238 u16 status;
c99afa25
JR
2239 int pos;
2240
46277b75 2241 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2242 if (!pos)
2243 return false;
2244
a3b93121 2245 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2246
a3b93121 2247 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2248}
2249
407d733e 2250/*
df805abb 2251 * If a device is not yet associated with a domain, this function
407d733e
JR
2252 * assigns it visible for the hardware
2253 */
15898bbc
JR
2254static int attach_device(struct device *dev,
2255 struct protection_domain *domain)
0feae533 2256{
fd7b5535 2257 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2258 struct iommu_dev_data *dev_data;
eba6ac60 2259 unsigned long flags;
15898bbc 2260 int ret;
eba6ac60 2261
ea61cddb
JR
2262 dev_data = get_dev_data(dev);
2263
52815b75
JR
2264 if (domain->flags & PD_IOMMUV2_MASK) {
2265 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2266 return -EINVAL;
2267
2268 if (pdev_iommuv2_enable(pdev) != 0)
2269 return -EINVAL;
2270
2271 dev_data->ats.enabled = true;
2272 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2273 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2274 } else if (amd_iommu_iotlb_sup &&
2275 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2276 dev_data->ats.enabled = true;
2277 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2278 }
fd7b5535 2279
eba6ac60 2280 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2281 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2282 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2283
0feae533
JR
2284 /*
2285 * We might boot into a crash-kernel here. The crashed kernel
2286 * left the caches in the IOMMU dirty. So we have to flush
2287 * here to evict all dirty stuff.
2288 */
17b124bf 2289 domain_flush_tlb_pde(domain);
15898bbc
JR
2290
2291 return ret;
b20ac0d4
JR
2292}
2293
355bf553
JR
2294/*
2295 * Removes a device from a protection domain (unlocked)
2296 */
ec9e79ef 2297static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2298{
2ca76279 2299 struct protection_domain *domain;
7c392cbe 2300 unsigned long flags;
c4596114 2301
7f760ddd 2302 BUG_ON(!dev_data->domain);
355bf553 2303
2ca76279
JR
2304 domain = dev_data->domain;
2305
2306 spin_lock_irqsave(&domain->lock, flags);
24100055 2307
71f77580
JR
2308 if (dev_data->alias_data != NULL) {
2309 struct iommu_dev_data *alias_data = dev_data->alias_data;
2310
7f760ddd 2311 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2312 do_detach(alias_data);
24100055
JR
2313 }
2314
7f760ddd 2315 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2316 do_detach(dev_data);
7f760ddd 2317
2ca76279 2318 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2319
2320 /*
2321 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2322 * passthrough domain if it is detached from any other domain.
2323 * Make sure we can deassign from the pt_domain itself.
21129f78 2324 */
5abcdba4 2325 if (dev_data->passthrough &&
d3ad9373 2326 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2327 __attach_device(dev_data, pt_domain);
355bf553
JR
2328}
2329
2330/*
2331 * Removes a device from a protection domain (with devtable_lock held)
2332 */
15898bbc 2333static void detach_device(struct device *dev)
355bf553 2334{
52815b75 2335 struct protection_domain *domain;
ea61cddb 2336 struct iommu_dev_data *dev_data;
355bf553
JR
2337 unsigned long flags;
2338
ec9e79ef 2339 dev_data = get_dev_data(dev);
52815b75 2340 domain = dev_data->domain;
ec9e79ef 2341
355bf553
JR
2342 /* lock device table */
2343 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2344 __detach_device(dev_data);
355bf553 2345 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2346
52815b75
JR
2347 if (domain->flags & PD_IOMMUV2_MASK)
2348 pdev_iommuv2_disable(to_pci_dev(dev));
2349 else if (dev_data->ats.enabled)
ea61cddb 2350 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2351
2352 dev_data->ats.enabled = false;
355bf553 2353}
e275a2a0 2354
15898bbc
JR
2355/*
2356 * Find out the protection domain structure for a given PCI device. This
2357 * will give us the pointer to the page table root for example.
2358 */
2359static struct protection_domain *domain_for_device(struct device *dev)
2360{
71f77580 2361 struct iommu_dev_data *dev_data;
2b02b091 2362 struct protection_domain *dom = NULL;
15898bbc 2363 unsigned long flags;
15898bbc 2364
657cbb6b 2365 dev_data = get_dev_data(dev);
15898bbc 2366
2b02b091
JR
2367 if (dev_data->domain)
2368 return dev_data->domain;
15898bbc 2369
71f77580
JR
2370 if (dev_data->alias_data != NULL) {
2371 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2372
2373 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2374 if (alias_data->domain != NULL) {
2375 __attach_device(dev_data, alias_data->domain);
2376 dom = alias_data->domain;
2377 }
2378 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2379 }
15898bbc
JR
2380
2381 return dom;
2382}
2383
e275a2a0
JR
2384static int device_change_notifier(struct notifier_block *nb,
2385 unsigned long action, void *data)
2386{
e275a2a0 2387 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2388 struct protection_domain *domain;
2389 struct iommu_dev_data *dev_data;
2390 struct device *dev = data;
e275a2a0 2391 struct amd_iommu *iommu;
1ac4cbbc 2392 unsigned long flags;
5abcdba4 2393 u16 devid;
e275a2a0 2394
98fc5a69
JR
2395 if (!check_device(dev))
2396 return 0;
e275a2a0 2397
5abcdba4
JR
2398 devid = get_device_id(dev);
2399 iommu = amd_iommu_rlookup_table[devid];
2400 dev_data = get_dev_data(dev);
e275a2a0
JR
2401
2402 switch (action) {
c1eee67b 2403 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2404
2405 domain = domain_for_device(dev);
2406
e275a2a0
JR
2407 if (!domain)
2408 goto out;
5abcdba4 2409 if (dev_data->passthrough)
a1ca331c 2410 break;
15898bbc 2411 detach_device(dev);
1ac4cbbc
JR
2412 break;
2413 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2414
2415 iommu_init_device(dev);
25b11ce2 2416 init_iommu_group(dev);
657cbb6b 2417
2c9195e9
JR
2418 /*
2419 * dev_data is still NULL and
2420 * got initialized in iommu_init_device
2421 */
2422 dev_data = get_dev_data(dev);
2423
2424 if (iommu_pass_through || dev_data->iommu_v2) {
2425 dev_data->passthrough = true;
2426 attach_device(dev, pt_domain);
2427 break;
2428 }
2429
657cbb6b
JR
2430 domain = domain_for_device(dev);
2431
1ac4cbbc
JR
2432 /* allocate a protection domain if a device is added */
2433 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2434 if (!dma_domain) {
2435 dma_domain = dma_ops_domain_alloc();
2436 if (!dma_domain)
2437 goto out;
2438 dma_domain->target_dev = devid;
2439
2440 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2441 list_add_tail(&dma_domain->list, &iommu_pd_list);
2442 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2443 }
ac1534a5 2444
2c9195e9 2445 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2446
e275a2a0 2447 break;
657cbb6b
JR
2448 case BUS_NOTIFY_DEL_DEVICE:
2449
2450 iommu_uninit_device(dev);
2451
e275a2a0
JR
2452 default:
2453 goto out;
2454 }
2455
e275a2a0
JR
2456 iommu_completion_wait(iommu);
2457
2458out:
2459 return 0;
2460}
2461
b25ae679 2462static struct notifier_block device_nb = {
e275a2a0
JR
2463 .notifier_call = device_change_notifier,
2464};
355bf553 2465
8638c491
JR
2466void amd_iommu_init_notifier(void)
2467{
2468 bus_register_notifier(&pci_bus_type, &device_nb);
2469}
2470
431b2a20
JR
2471/*****************************************************************************
2472 *
2473 * The next functions belong to the dma_ops mapping/unmapping code.
2474 *
2475 *****************************************************************************/
2476
2477/*
2478 * In the dma_ops path we only have the struct device. This function
2479 * finds the corresponding IOMMU, the protection domain and the
2480 * requestor id for a given device.
2481 * If the device is not yet associated with a domain this is also done
2482 * in this function.
2483 */
94f6d190 2484static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2485{
94f6d190 2486 struct protection_domain *domain;
b20ac0d4 2487 struct dma_ops_domain *dma_dom;
94f6d190 2488 u16 devid = get_device_id(dev);
b20ac0d4 2489
f99c0f1c 2490 if (!check_device(dev))
94f6d190 2491 return ERR_PTR(-EINVAL);
b20ac0d4 2492
94f6d190
JR
2493 domain = domain_for_device(dev);
2494 if (domain != NULL && !dma_ops_domain(domain))
2495 return ERR_PTR(-EBUSY);
f99c0f1c 2496
94f6d190
JR
2497 if (domain != NULL)
2498 return domain;
b20ac0d4 2499
df805abb 2500 /* Device not bound yet - bind it */
94f6d190 2501 dma_dom = find_protection_domain(devid);
15898bbc 2502 if (!dma_dom)
94f6d190
JR
2503 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2504 attach_device(dev, &dma_dom->domain);
15898bbc 2505 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2506 dma_dom->domain.id, dev_name(dev));
f91ba190 2507
94f6d190 2508 return &dma_dom->domain;
b20ac0d4
JR
2509}
2510
04bfdd84
JR
2511static void update_device_table(struct protection_domain *domain)
2512{
492667da 2513 struct iommu_dev_data *dev_data;
04bfdd84 2514
ea61cddb
JR
2515 list_for_each_entry(dev_data, &domain->dev_list, list)
2516 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2517}
2518
2519static void update_domain(struct protection_domain *domain)
2520{
2521 if (!domain->updated)
2522 return;
2523
2524 update_device_table(domain);
17b124bf
JR
2525
2526 domain_flush_devices(domain);
2527 domain_flush_tlb_pde(domain);
04bfdd84
JR
2528
2529 domain->updated = false;
2530}
2531
8bda3092
JR
2532/*
2533 * This function fetches the PTE for a given address in the aperture
2534 */
2535static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2536 unsigned long address)
2537{
384de729 2538 struct aperture_range *aperture;
8bda3092
JR
2539 u64 *pte, *pte_page;
2540
384de729
JR
2541 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2542 if (!aperture)
2543 return NULL;
2544
2545 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2546 if (!pte) {
cbb9d729 2547 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2548 GFP_ATOMIC);
384de729
JR
2549 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2550 } else
8c8c143c 2551 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2552
04bfdd84 2553 update_domain(&dom->domain);
8bda3092
JR
2554
2555 return pte;
2556}
2557
431b2a20
JR
2558/*
2559 * This is the generic map function. It maps one 4kb page at paddr to
2560 * the given address in the DMA address space for the domain.
2561 */
680525e0 2562static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2563 unsigned long address,
2564 phys_addr_t paddr,
2565 int direction)
2566{
2567 u64 *pte, __pte;
2568
2569 WARN_ON(address > dom->aperture_size);
2570
2571 paddr &= PAGE_MASK;
2572
8bda3092 2573 pte = dma_ops_get_pte(dom, address);
53812c11 2574 if (!pte)
8fd524b3 2575 return DMA_ERROR_CODE;
cb76c322
JR
2576
2577 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2578
2579 if (direction == DMA_TO_DEVICE)
2580 __pte |= IOMMU_PTE_IR;
2581 else if (direction == DMA_FROM_DEVICE)
2582 __pte |= IOMMU_PTE_IW;
2583 else if (direction == DMA_BIDIRECTIONAL)
2584 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2585
2586 WARN_ON(*pte);
2587
2588 *pte = __pte;
2589
2590 return (dma_addr_t)address;
2591}
2592
431b2a20
JR
2593/*
2594 * The generic unmapping function for on page in the DMA address space.
2595 */
680525e0 2596static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2597 unsigned long address)
2598{
384de729 2599 struct aperture_range *aperture;
cb76c322
JR
2600 u64 *pte;
2601
2602 if (address >= dom->aperture_size)
2603 return;
2604
384de729
JR
2605 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2606 if (!aperture)
2607 return;
2608
2609 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2610 if (!pte)
2611 return;
cb76c322 2612
8c8c143c 2613 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2614
2615 WARN_ON(!*pte);
2616
2617 *pte = 0ULL;
2618}
2619
431b2a20
JR
2620/*
2621 * This function contains common code for mapping of a physically
24f81160
JR
2622 * contiguous memory region into DMA address space. It is used by all
2623 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2624 * Must be called with the domain lock held.
2625 */
cb76c322 2626static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2627 struct dma_ops_domain *dma_dom,
2628 phys_addr_t paddr,
2629 size_t size,
6d4f343f 2630 int dir,
832a90c3
JR
2631 bool align,
2632 u64 dma_mask)
cb76c322
JR
2633{
2634 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2635 dma_addr_t address, start, ret;
cb76c322 2636 unsigned int pages;
6d4f343f 2637 unsigned long align_mask = 0;
cb76c322
JR
2638 int i;
2639
e3c449f5 2640 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2641 paddr &= PAGE_MASK;
2642
8ecaf8f1
JR
2643 INC_STATS_COUNTER(total_map_requests);
2644
c1858976
JR
2645 if (pages > 1)
2646 INC_STATS_COUNTER(cross_page);
2647
6d4f343f
JR
2648 if (align)
2649 align_mask = (1UL << get_order(size)) - 1;
2650
11b83888 2651retry:
832a90c3
JR
2652 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2653 dma_mask);
8fd524b3 2654 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2655 /*
2656 * setting next_address here will let the address
2657 * allocator only scan the new allocated range in the
2658 * first run. This is a small optimization.
2659 */
2660 dma_dom->next_address = dma_dom->aperture_size;
2661
576175c2 2662 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2663 goto out;
2664
2665 /*
af901ca1 2666 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2667 * allocation again
2668 */
2669 goto retry;
2670 }
cb76c322
JR
2671
2672 start = address;
2673 for (i = 0; i < pages; ++i) {
680525e0 2674 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2675 if (ret == DMA_ERROR_CODE)
53812c11
JR
2676 goto out_unmap;
2677
cb76c322
JR
2678 paddr += PAGE_SIZE;
2679 start += PAGE_SIZE;
2680 }
2681 address += offset;
2682
5774f7c5
JR
2683 ADD_STATS_COUNTER(alloced_io_mem, size);
2684
afa9fdc2 2685 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2686 domain_flush_tlb(&dma_dom->domain);
1c655773 2687 dma_dom->need_flush = false;
318afd41 2688 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2689 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2690
cb76c322
JR
2691out:
2692 return address;
53812c11
JR
2693
2694out_unmap:
2695
2696 for (--i; i >= 0; --i) {
2697 start -= PAGE_SIZE;
680525e0 2698 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2699 }
2700
2701 dma_ops_free_addresses(dma_dom, address, pages);
2702
8fd524b3 2703 return DMA_ERROR_CODE;
cb76c322
JR
2704}
2705
431b2a20
JR
2706/*
2707 * Does the reverse of the __map_single function. Must be called with
2708 * the domain lock held too
2709 */
cd8c82e8 2710static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2711 dma_addr_t dma_addr,
2712 size_t size,
2713 int dir)
2714{
04e0463e 2715 dma_addr_t flush_addr;
cb76c322
JR
2716 dma_addr_t i, start;
2717 unsigned int pages;
2718
8fd524b3 2719 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2720 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2721 return;
2722
04e0463e 2723 flush_addr = dma_addr;
e3c449f5 2724 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2725 dma_addr &= PAGE_MASK;
2726 start = dma_addr;
2727
2728 for (i = 0; i < pages; ++i) {
680525e0 2729 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2730 start += PAGE_SIZE;
2731 }
2732
5774f7c5
JR
2733 SUB_STATS_COUNTER(alloced_io_mem, size);
2734
cb76c322 2735 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2736
80be308d 2737 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2738 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2739 dma_dom->need_flush = false;
2740 }
cb76c322
JR
2741}
2742
431b2a20
JR
2743/*
2744 * The exported map_single function for dma_ops.
2745 */
51491367
FT
2746static dma_addr_t map_page(struct device *dev, struct page *page,
2747 unsigned long offset, size_t size,
2748 enum dma_data_direction dir,
2749 struct dma_attrs *attrs)
4da70b9e
JR
2750{
2751 unsigned long flags;
4da70b9e 2752 struct protection_domain *domain;
4da70b9e 2753 dma_addr_t addr;
832a90c3 2754 u64 dma_mask;
51491367 2755 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2756
0f2a86f2
JR
2757 INC_STATS_COUNTER(cnt_map_single);
2758
94f6d190
JR
2759 domain = get_domain(dev);
2760 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2761 return (dma_addr_t)paddr;
94f6d190
JR
2762 else if (IS_ERR(domain))
2763 return DMA_ERROR_CODE;
4da70b9e 2764
f99c0f1c
JR
2765 dma_mask = *dev->dma_mask;
2766
4da70b9e 2767 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2768
cd8c82e8 2769 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2770 dma_mask);
8fd524b3 2771 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2772 goto out;
2773
17b124bf 2774 domain_flush_complete(domain);
4da70b9e
JR
2775
2776out:
2777 spin_unlock_irqrestore(&domain->lock, flags);
2778
2779 return addr;
2780}
2781
431b2a20
JR
2782/*
2783 * The exported unmap_single function for dma_ops.
2784 */
51491367
FT
2785static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2786 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2787{
2788 unsigned long flags;
4da70b9e 2789 struct protection_domain *domain;
4da70b9e 2790
146a6917
JR
2791 INC_STATS_COUNTER(cnt_unmap_single);
2792
94f6d190
JR
2793 domain = get_domain(dev);
2794 if (IS_ERR(domain))
5b28df6f
JR
2795 return;
2796
4da70b9e
JR
2797 spin_lock_irqsave(&domain->lock, flags);
2798
cd8c82e8 2799 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2800
17b124bf 2801 domain_flush_complete(domain);
4da70b9e
JR
2802
2803 spin_unlock_irqrestore(&domain->lock, flags);
2804}
2805
431b2a20
JR
2806/*
2807 * The exported map_sg function for dma_ops (handles scatter-gather
2808 * lists).
2809 */
65b050ad 2810static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2811 int nelems, enum dma_data_direction dir,
2812 struct dma_attrs *attrs)
65b050ad
JR
2813{
2814 unsigned long flags;
65b050ad 2815 struct protection_domain *domain;
65b050ad
JR
2816 int i;
2817 struct scatterlist *s;
2818 phys_addr_t paddr;
2819 int mapped_elems = 0;
832a90c3 2820 u64 dma_mask;
65b050ad 2821
d03f067a
JR
2822 INC_STATS_COUNTER(cnt_map_sg);
2823
94f6d190 2824 domain = get_domain(dev);
a0e191b2 2825 if (IS_ERR(domain))
94f6d190 2826 return 0;
dbcc112e 2827
832a90c3 2828 dma_mask = *dev->dma_mask;
65b050ad 2829
65b050ad
JR
2830 spin_lock_irqsave(&domain->lock, flags);
2831
2832 for_each_sg(sglist, s, nelems, i) {
2833 paddr = sg_phys(s);
2834
cd8c82e8 2835 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2836 paddr, s->length, dir, false,
2837 dma_mask);
65b050ad
JR
2838
2839 if (s->dma_address) {
2840 s->dma_length = s->length;
2841 mapped_elems++;
2842 } else
2843 goto unmap;
65b050ad
JR
2844 }
2845
17b124bf 2846 domain_flush_complete(domain);
65b050ad
JR
2847
2848out:
2849 spin_unlock_irqrestore(&domain->lock, flags);
2850
2851 return mapped_elems;
2852unmap:
2853 for_each_sg(sglist, s, mapped_elems, i) {
2854 if (s->dma_address)
cd8c82e8 2855 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2856 s->dma_length, dir);
2857 s->dma_address = s->dma_length = 0;
2858 }
2859
2860 mapped_elems = 0;
2861
2862 goto out;
2863}
2864
431b2a20
JR
2865/*
2866 * The exported map_sg function for dma_ops (handles scatter-gather
2867 * lists).
2868 */
65b050ad 2869static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2870 int nelems, enum dma_data_direction dir,
2871 struct dma_attrs *attrs)
65b050ad
JR
2872{
2873 unsigned long flags;
65b050ad
JR
2874 struct protection_domain *domain;
2875 struct scatterlist *s;
65b050ad
JR
2876 int i;
2877
55877a6b
JR
2878 INC_STATS_COUNTER(cnt_unmap_sg);
2879
94f6d190
JR
2880 domain = get_domain(dev);
2881 if (IS_ERR(domain))
5b28df6f
JR
2882 return;
2883
65b050ad
JR
2884 spin_lock_irqsave(&domain->lock, flags);
2885
2886 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2887 __unmap_single(domain->priv, s->dma_address,
65b050ad 2888 s->dma_length, dir);
65b050ad
JR
2889 s->dma_address = s->dma_length = 0;
2890 }
2891
17b124bf 2892 domain_flush_complete(domain);
65b050ad
JR
2893
2894 spin_unlock_irqrestore(&domain->lock, flags);
2895}
2896
431b2a20
JR
2897/*
2898 * The exported alloc_coherent function for dma_ops.
2899 */
5d8b53cf 2900static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2901 dma_addr_t *dma_addr, gfp_t flag,
2902 struct dma_attrs *attrs)
5d8b53cf
JR
2903{
2904 unsigned long flags;
2905 void *virt_addr;
5d8b53cf 2906 struct protection_domain *domain;
5d8b53cf 2907 phys_addr_t paddr;
832a90c3 2908 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2909
c8f0fb36
JR
2910 INC_STATS_COUNTER(cnt_alloc_coherent);
2911
94f6d190
JR
2912 domain = get_domain(dev);
2913 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2914 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2915 *dma_addr = __pa(virt_addr);
2916 return virt_addr;
94f6d190
JR
2917 } else if (IS_ERR(domain))
2918 return NULL;
5d8b53cf 2919
f99c0f1c
JR
2920 dma_mask = dev->coherent_dma_mask;
2921 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2922 flag |= __GFP_ZERO;
5d8b53cf
JR
2923
2924 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2925 if (!virt_addr)
b25ae679 2926 return NULL;
5d8b53cf 2927
5d8b53cf
JR
2928 paddr = virt_to_phys(virt_addr);
2929
832a90c3
JR
2930 if (!dma_mask)
2931 dma_mask = *dev->dma_mask;
2932
5d8b53cf
JR
2933 spin_lock_irqsave(&domain->lock, flags);
2934
cd8c82e8 2935 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2936 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2937
8fd524b3 2938 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2939 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2940 goto out_free;
367d04c4 2941 }
5d8b53cf 2942
17b124bf 2943 domain_flush_complete(domain);
5d8b53cf 2944
5d8b53cf
JR
2945 spin_unlock_irqrestore(&domain->lock, flags);
2946
2947 return virt_addr;
5b28df6f
JR
2948
2949out_free:
2950
2951 free_pages((unsigned long)virt_addr, get_order(size));
2952
2953 return NULL;
5d8b53cf
JR
2954}
2955
431b2a20
JR
2956/*
2957 * The exported free_coherent function for dma_ops.
431b2a20 2958 */
5d8b53cf 2959static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2960 void *virt_addr, dma_addr_t dma_addr,
2961 struct dma_attrs *attrs)
5d8b53cf
JR
2962{
2963 unsigned long flags;
5d8b53cf 2964 struct protection_domain *domain;
5d8b53cf 2965
5d31ee7e
JR
2966 INC_STATS_COUNTER(cnt_free_coherent);
2967
94f6d190
JR
2968 domain = get_domain(dev);
2969 if (IS_ERR(domain))
5b28df6f
JR
2970 goto free_mem;
2971
5d8b53cf
JR
2972 spin_lock_irqsave(&domain->lock, flags);
2973
cd8c82e8 2974 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2975
17b124bf 2976 domain_flush_complete(domain);
5d8b53cf
JR
2977
2978 spin_unlock_irqrestore(&domain->lock, flags);
2979
2980free_mem:
2981 free_pages((unsigned long)virt_addr, get_order(size));
2982}
2983
b39ba6ad
JR
2984/*
2985 * This function is called by the DMA layer to find out if we can handle a
2986 * particular device. It is part of the dma_ops.
2987 */
2988static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2989{
420aef8a 2990 return check_device(dev);
b39ba6ad
JR
2991}
2992
c432f3df 2993/*
431b2a20
JR
2994 * The function for pre-allocating protection domains.
2995 *
c432f3df
JR
2996 * If the driver core informs the DMA layer if a driver grabs a device
2997 * we don't need to preallocate the protection domains anymore.
2998 * For now we have to.
2999 */
943bc7e1 3000static void __init prealloc_protection_domains(void)
c432f3df 3001{
5abcdba4 3002 struct iommu_dev_data *dev_data;
c432f3df 3003 struct dma_ops_domain *dma_dom;
5abcdba4 3004 struct pci_dev *dev = NULL;
98fc5a69 3005 u16 devid;
c432f3df 3006
d18c69d3 3007 for_each_pci_dev(dev) {
98fc5a69
JR
3008
3009 /* Do we handle this device? */
3010 if (!check_device(&dev->dev))
c432f3df 3011 continue;
98fc5a69 3012
5abcdba4
JR
3013 dev_data = get_dev_data(&dev->dev);
3014 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3015 /* Make sure passthrough domain is allocated */
3016 alloc_passthrough_domain();
3017 dev_data->passthrough = true;
3018 attach_device(&dev->dev, pt_domain);
df805abb 3019 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3020 dev_name(&dev->dev));
3021 }
3022
98fc5a69 3023 /* Is there already any domain for it? */
15898bbc 3024 if (domain_for_device(&dev->dev))
c432f3df 3025 continue;
98fc5a69
JR
3026
3027 devid = get_device_id(&dev->dev);
3028
87a64d52 3029 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3030 if (!dma_dom)
3031 continue;
3032 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3033 dma_dom->target_dev = devid;
3034
15898bbc 3035 attach_device(&dev->dev, &dma_dom->domain);
be831297 3036
bd60b735 3037 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3038 }
3039}
3040
160c1d8e 3041static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3042 .alloc = alloc_coherent,
3043 .free = free_coherent,
51491367
FT
3044 .map_page = map_page,
3045 .unmap_page = unmap_page,
6631ee9d
JR
3046 .map_sg = map_sg,
3047 .unmap_sg = unmap_sg,
b39ba6ad 3048 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3049};
3050
27c2127a
JR
3051static unsigned device_dma_ops_init(void)
3052{
5abcdba4 3053 struct iommu_dev_data *dev_data;
27c2127a
JR
3054 struct pci_dev *pdev = NULL;
3055 unsigned unhandled = 0;
3056
3057 for_each_pci_dev(pdev) {
3058 if (!check_device(&pdev->dev)) {
af1be049
JR
3059
3060 iommu_ignore_device(&pdev->dev);
3061
27c2127a
JR
3062 unhandled += 1;
3063 continue;
3064 }
3065
5abcdba4
JR
3066 dev_data = get_dev_data(&pdev->dev);
3067
3068 if (!dev_data->passthrough)
3069 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3070 else
3071 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3072 }
3073
3074 return unhandled;
3075}
3076
431b2a20
JR
3077/*
3078 * The function which clues the AMD IOMMU driver into dma_ops.
3079 */
f5325094
JR
3080
3081void __init amd_iommu_init_api(void)
3082{
2cc21c42 3083 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3084}
3085
6631ee9d
JR
3086int __init amd_iommu_init_dma_ops(void)
3087{
3088 struct amd_iommu *iommu;
27c2127a 3089 int ret, unhandled;
6631ee9d 3090
431b2a20
JR
3091 /*
3092 * first allocate a default protection domain for every IOMMU we
3093 * found in the system. Devices not assigned to any other
3094 * protection domain will be assigned to the default one.
3095 */
3bd22172 3096 for_each_iommu(iommu) {
87a64d52 3097 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3098 if (iommu->default_dom == NULL)
3099 return -ENOMEM;
e2dc14a2 3100 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3101 ret = iommu_init_unity_mappings(iommu);
3102 if (ret)
3103 goto free_domains;
3104 }
3105
431b2a20 3106 /*
8793abeb 3107 * Pre-allocate the protection domains for each device.
431b2a20 3108 */
8793abeb 3109 prealloc_protection_domains();
6631ee9d
JR
3110
3111 iommu_detected = 1;
75f1cdf1 3112 swiotlb = 0;
6631ee9d 3113
431b2a20 3114 /* Make the driver finally visible to the drivers */
27c2127a
JR
3115 unhandled = device_dma_ops_init();
3116 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3117 /* There are unhandled devices - initialize swiotlb for them */
3118 swiotlb = 1;
3119 }
6631ee9d 3120
7f26508b
JR
3121 amd_iommu_stats_init();
3122
62410eeb
JR
3123 if (amd_iommu_unmap_flush)
3124 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3125 else
3126 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3127
6631ee9d
JR
3128 return 0;
3129
3130free_domains:
3131
3bd22172 3132 for_each_iommu(iommu) {
91457df7 3133 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3134 }
3135
3136 return ret;
3137}
6d98cd80
JR
3138
3139/*****************************************************************************
3140 *
3141 * The following functions belong to the exported interface of AMD IOMMU
3142 *
3143 * This interface allows access to lower level functions of the IOMMU
3144 * like protection domain handling and assignement of devices to domains
3145 * which is not possible with the dma_ops interface.
3146 *
3147 *****************************************************************************/
3148
6d98cd80
JR
3149static void cleanup_domain(struct protection_domain *domain)
3150{
9b29d3c6 3151 struct iommu_dev_data *entry;
6d98cd80 3152 unsigned long flags;
6d98cd80
JR
3153
3154 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3155
9b29d3c6
JR
3156 while (!list_empty(&domain->dev_list)) {
3157 entry = list_first_entry(&domain->dev_list,
3158 struct iommu_dev_data, list);
3159 __detach_device(entry);
3160 atomic_set(&entry->bind, 0);
492667da 3161 }
6d98cd80
JR
3162
3163 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3164}
3165
2650815f
JR
3166static void protection_domain_free(struct protection_domain *domain)
3167{
3168 if (!domain)
3169 return;
3170
aeb26f55
JR
3171 del_domain_from_list(domain);
3172
2650815f
JR
3173 if (domain->id)
3174 domain_id_free(domain->id);
3175
3176 kfree(domain);
3177}
3178
3179static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3180{
3181 struct protection_domain *domain;
3182
3183 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3184 if (!domain)
2650815f 3185 return NULL;
c156e347
JR
3186
3187 spin_lock_init(&domain->lock);
5d214fe6 3188 mutex_init(&domain->api_lock);
c156e347
JR
3189 domain->id = domain_id_alloc();
3190 if (!domain->id)
2650815f 3191 goto out_err;
7c392cbe 3192 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3193
aeb26f55
JR
3194 add_domain_to_list(domain);
3195
2650815f
JR
3196 return domain;
3197
3198out_err:
3199 kfree(domain);
3200
3201 return NULL;
3202}
3203
5abcdba4
JR
3204static int __init alloc_passthrough_domain(void)
3205{
3206 if (pt_domain != NULL)
3207 return 0;
3208
3209 /* allocate passthrough domain */
3210 pt_domain = protection_domain_alloc();
3211 if (!pt_domain)
3212 return -ENOMEM;
3213
3214 pt_domain->mode = PAGE_MODE_NONE;
3215
3216 return 0;
3217}
2650815f
JR
3218static int amd_iommu_domain_init(struct iommu_domain *dom)
3219{
3220 struct protection_domain *domain;
3221
3222 domain = protection_domain_alloc();
3223 if (!domain)
c156e347 3224 goto out_free;
2650815f
JR
3225
3226 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3227 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3228 if (!domain->pt_root)
3229 goto out_free;
3230
f3572db8
JR
3231 domain->iommu_domain = dom;
3232
c156e347
JR
3233 dom->priv = domain;
3234
0ff64f80
JR
3235 dom->geometry.aperture_start = 0;
3236 dom->geometry.aperture_end = ~0ULL;
3237 dom->geometry.force_aperture = true;
3238
c156e347
JR
3239 return 0;
3240
3241out_free:
2650815f 3242 protection_domain_free(domain);
c156e347
JR
3243
3244 return -ENOMEM;
3245}
3246
98383fc3
JR
3247static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3248{
3249 struct protection_domain *domain = dom->priv;
3250
3251 if (!domain)
3252 return;
3253
3254 if (domain->dev_cnt > 0)
3255 cleanup_domain(domain);
3256
3257 BUG_ON(domain->dev_cnt != 0);
3258
132bd68f
JR
3259 if (domain->mode != PAGE_MODE_NONE)
3260 free_pagetable(domain);
98383fc3 3261
52815b75
JR
3262 if (domain->flags & PD_IOMMUV2_MASK)
3263 free_gcr3_table(domain);
3264
8b408fe4 3265 protection_domain_free(domain);
98383fc3
JR
3266
3267 dom->priv = NULL;
3268}
3269
684f2888
JR
3270static void amd_iommu_detach_device(struct iommu_domain *dom,
3271 struct device *dev)
3272{
657cbb6b 3273 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3274 struct amd_iommu *iommu;
684f2888
JR
3275 u16 devid;
3276
98fc5a69 3277 if (!check_device(dev))
684f2888
JR
3278 return;
3279
98fc5a69 3280 devid = get_device_id(dev);
684f2888 3281
657cbb6b 3282 if (dev_data->domain != NULL)
15898bbc 3283 detach_device(dev);
684f2888
JR
3284
3285 iommu = amd_iommu_rlookup_table[devid];
3286 if (!iommu)
3287 return;
3288
684f2888
JR
3289 iommu_completion_wait(iommu);
3290}
3291
01106066
JR
3292static int amd_iommu_attach_device(struct iommu_domain *dom,
3293 struct device *dev)
3294{
3295 struct protection_domain *domain = dom->priv;
657cbb6b 3296 struct iommu_dev_data *dev_data;
01106066 3297 struct amd_iommu *iommu;
15898bbc 3298 int ret;
01106066 3299
98fc5a69 3300 if (!check_device(dev))
01106066
JR
3301 return -EINVAL;
3302
657cbb6b
JR
3303 dev_data = dev->archdata.iommu;
3304
f62dda66 3305 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3306 if (!iommu)
3307 return -EINVAL;
3308
657cbb6b 3309 if (dev_data->domain)
15898bbc 3310 detach_device(dev);
01106066 3311
15898bbc 3312 ret = attach_device(dev, domain);
01106066
JR
3313
3314 iommu_completion_wait(iommu);
3315
15898bbc 3316 return ret;
01106066
JR
3317}
3318
468e2366 3319static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3320 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3321{
3322 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3323 int prot = 0;
3324 int ret;
3325
132bd68f
JR
3326 if (domain->mode == PAGE_MODE_NONE)
3327 return -EINVAL;
3328
c6229ca6
JR
3329 if (iommu_prot & IOMMU_READ)
3330 prot |= IOMMU_PROT_IR;
3331 if (iommu_prot & IOMMU_WRITE)
3332 prot |= IOMMU_PROT_IW;
3333
5d214fe6 3334 mutex_lock(&domain->api_lock);
795e74f7 3335 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3336 mutex_unlock(&domain->api_lock);
3337
795e74f7 3338 return ret;
c6229ca6
JR
3339}
3340
5009065d
OBC
3341static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3342 size_t page_size)
eb74ff6c 3343{
eb74ff6c 3344 struct protection_domain *domain = dom->priv;
5009065d 3345 size_t unmap_size;
eb74ff6c 3346
132bd68f
JR
3347 if (domain->mode == PAGE_MODE_NONE)
3348 return -EINVAL;
3349
5d214fe6 3350 mutex_lock(&domain->api_lock);
468e2366 3351 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3352 mutex_unlock(&domain->api_lock);
eb74ff6c 3353
17b124bf 3354 domain_flush_tlb_pde(domain);
5d214fe6 3355
5009065d 3356 return unmap_size;
eb74ff6c
JR
3357}
3358
645c4c8d 3359static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3360 dma_addr_t iova)
645c4c8d
JR
3361{
3362 struct protection_domain *domain = dom->priv;
f03152bb 3363 unsigned long offset_mask;
645c4c8d 3364 phys_addr_t paddr;
f03152bb 3365 u64 *pte, __pte;
645c4c8d 3366
132bd68f
JR
3367 if (domain->mode == PAGE_MODE_NONE)
3368 return iova;
3369
24cd7723 3370 pte = fetch_pte(domain, iova);
645c4c8d 3371
a6d41a40 3372 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3373 return 0;
3374
f03152bb
JR
3375 if (PM_PTE_LEVEL(*pte) == 0)
3376 offset_mask = PAGE_SIZE - 1;
3377 else
3378 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3379
3380 __pte = *pte & PM_ADDR_MASK;
3381 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3382
3383 return paddr;
3384}
3385
ab636481 3386static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3387{
80a506b8
JR
3388 switch (cap) {
3389 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3390 return true;
bdddadcb 3391 case IOMMU_CAP_INTR_REMAP:
ab636481 3392 return (irq_remapping_enabled == 1);
80a506b8
JR
3393 }
3394
ab636481 3395 return false;
dbb9fd86
SY
3396}
3397
b22f6434 3398static const struct iommu_ops amd_iommu_ops = {
ab636481 3399 .capable = amd_iommu_capable,
26961efe
JR
3400 .domain_init = amd_iommu_domain_init,
3401 .domain_destroy = amd_iommu_domain_destroy,
3402 .attach_dev = amd_iommu_attach_device,
3403 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3404 .map = amd_iommu_map,
3405 .unmap = amd_iommu_unmap,
26961efe 3406 .iova_to_phys = amd_iommu_iova_to_phys,
aa3de9c0 3407 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3408};
3409
0feae533
JR
3410/*****************************************************************************
3411 *
3412 * The next functions do a basic initialization of IOMMU for pass through
3413 * mode
3414 *
3415 * In passthrough mode the IOMMU is initialized and enabled but not used for
3416 * DMA-API translation.
3417 *
3418 *****************************************************************************/
3419
3420int __init amd_iommu_init_passthrough(void)
3421{
5abcdba4 3422 struct iommu_dev_data *dev_data;
0feae533 3423 struct pci_dev *dev = NULL;
5abcdba4 3424 int ret;
0feae533 3425
5abcdba4
JR
3426 ret = alloc_passthrough_domain();
3427 if (ret)
3428 return ret;
0feae533 3429
6c54aabd 3430 for_each_pci_dev(dev) {
98fc5a69 3431 if (!check_device(&dev->dev))
0feae533
JR
3432 continue;
3433
5abcdba4
JR
3434 dev_data = get_dev_data(&dev->dev);
3435 dev_data->passthrough = true;
3436
15898bbc 3437 attach_device(&dev->dev, pt_domain);
0feae533
JR
3438 }
3439
2655d7a2
JR
3440 amd_iommu_stats_init();
3441
0feae533
JR
3442 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3443
3444 return 0;
3445}
72e1dcc4
JR
3446
3447/* IOMMUv2 specific functions */
3448int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3449{
3450 return atomic_notifier_chain_register(&ppr_notifier, nb);
3451}
3452EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3453
3454int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3455{
3456 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3457}
3458EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3459
3460void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3461{
3462 struct protection_domain *domain = dom->priv;
3463 unsigned long flags;
3464
3465 spin_lock_irqsave(&domain->lock, flags);
3466
3467 /* Update data structure */
3468 domain->mode = PAGE_MODE_NONE;
3469 domain->updated = true;
3470
3471 /* Make changes visible to IOMMUs */
3472 update_domain(domain);
3473
3474 /* Page-table is not visible to IOMMU anymore, so free it */
3475 free_pagetable(domain);
3476
3477 spin_unlock_irqrestore(&domain->lock, flags);
3478}
3479EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3480
3481int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3482{
3483 struct protection_domain *domain = dom->priv;
3484 unsigned long flags;
3485 int levels, ret;
3486
3487 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3488 return -EINVAL;
3489
3490 /* Number of GCR3 table levels required */
3491 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3492 levels += 1;
3493
3494 if (levels > amd_iommu_max_glx_val)
3495 return -EINVAL;
3496
3497 spin_lock_irqsave(&domain->lock, flags);
3498
3499 /*
3500 * Save us all sanity checks whether devices already in the
3501 * domain support IOMMUv2. Just force that the domain has no
3502 * devices attached when it is switched into IOMMUv2 mode.
3503 */
3504 ret = -EBUSY;
3505 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3506 goto out;
3507
3508 ret = -ENOMEM;
3509 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3510 if (domain->gcr3_tbl == NULL)
3511 goto out;
3512
3513 domain->glx = levels;
3514 domain->flags |= PD_IOMMUV2_MASK;
3515 domain->updated = true;
3516
3517 update_domain(domain);
3518
3519 ret = 0;
3520
3521out:
3522 spin_unlock_irqrestore(&domain->lock, flags);
3523
3524 return ret;
3525}
3526EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3527
3528static int __flush_pasid(struct protection_domain *domain, int pasid,
3529 u64 address, bool size)
3530{
3531 struct iommu_dev_data *dev_data;
3532 struct iommu_cmd cmd;
3533 int i, ret;
3534
3535 if (!(domain->flags & PD_IOMMUV2_MASK))
3536 return -EINVAL;
3537
3538 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3539
3540 /*
3541 * IOMMU TLB needs to be flushed before Device TLB to
3542 * prevent device TLB refill from IOMMU TLB
3543 */
3544 for (i = 0; i < amd_iommus_present; ++i) {
3545 if (domain->dev_iommu[i] == 0)
3546 continue;
3547
3548 ret = iommu_queue_command(amd_iommus[i], &cmd);
3549 if (ret != 0)
3550 goto out;
3551 }
3552
3553 /* Wait until IOMMU TLB flushes are complete */
3554 domain_flush_complete(domain);
3555
3556 /* Now flush device TLBs */
3557 list_for_each_entry(dev_data, &domain->dev_list, list) {
3558 struct amd_iommu *iommu;
3559 int qdep;
3560
3561 BUG_ON(!dev_data->ats.enabled);
3562
3563 qdep = dev_data->ats.qdep;
3564 iommu = amd_iommu_rlookup_table[dev_data->devid];
3565
3566 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3567 qdep, address, size);
3568
3569 ret = iommu_queue_command(iommu, &cmd);
3570 if (ret != 0)
3571 goto out;
3572 }
3573
3574 /* Wait until all device TLBs are flushed */
3575 domain_flush_complete(domain);
3576
3577 ret = 0;
3578
3579out:
3580
3581 return ret;
3582}
3583
3584static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3585 u64 address)
3586{
399be2f5
JR
3587 INC_STATS_COUNTER(invalidate_iotlb);
3588
22e266c7
JR
3589 return __flush_pasid(domain, pasid, address, false);
3590}
3591
3592int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3593 u64 address)
3594{
3595 struct protection_domain *domain = dom->priv;
3596 unsigned long flags;
3597 int ret;
3598
3599 spin_lock_irqsave(&domain->lock, flags);
3600 ret = __amd_iommu_flush_page(domain, pasid, address);
3601 spin_unlock_irqrestore(&domain->lock, flags);
3602
3603 return ret;
3604}
3605EXPORT_SYMBOL(amd_iommu_flush_page);
3606
3607static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3608{
399be2f5
JR
3609 INC_STATS_COUNTER(invalidate_iotlb_all);
3610
22e266c7
JR
3611 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3612 true);
3613}
3614
3615int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3616{
3617 struct protection_domain *domain = dom->priv;
3618 unsigned long flags;
3619 int ret;
3620
3621 spin_lock_irqsave(&domain->lock, flags);
3622 ret = __amd_iommu_flush_tlb(domain, pasid);
3623 spin_unlock_irqrestore(&domain->lock, flags);
3624
3625 return ret;
3626}
3627EXPORT_SYMBOL(amd_iommu_flush_tlb);
3628
b16137b1
JR
3629static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3630{
3631 int index;
3632 u64 *pte;
3633
3634 while (true) {
3635
3636 index = (pasid >> (9 * level)) & 0x1ff;
3637 pte = &root[index];
3638
3639 if (level == 0)
3640 break;
3641
3642 if (!(*pte & GCR3_VALID)) {
3643 if (!alloc)
3644 return NULL;
3645
3646 root = (void *)get_zeroed_page(GFP_ATOMIC);
3647 if (root == NULL)
3648 return NULL;
3649
3650 *pte = __pa(root) | GCR3_VALID;
3651 }
3652
3653 root = __va(*pte & PAGE_MASK);
3654
3655 level -= 1;
3656 }
3657
3658 return pte;
3659}
3660
3661static int __set_gcr3(struct protection_domain *domain, int pasid,
3662 unsigned long cr3)
3663{
3664 u64 *pte;
3665
3666 if (domain->mode != PAGE_MODE_NONE)
3667 return -EINVAL;
3668
3669 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3670 if (pte == NULL)
3671 return -ENOMEM;
3672
3673 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3674
3675 return __amd_iommu_flush_tlb(domain, pasid);
3676}
3677
3678static int __clear_gcr3(struct protection_domain *domain, int pasid)
3679{
3680 u64 *pte;
3681
3682 if (domain->mode != PAGE_MODE_NONE)
3683 return -EINVAL;
3684
3685 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3686 if (pte == NULL)
3687 return 0;
3688
3689 *pte = 0;
3690
3691 return __amd_iommu_flush_tlb(domain, pasid);
3692}
3693
3694int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3695 unsigned long cr3)
3696{
3697 struct protection_domain *domain = dom->priv;
3698 unsigned long flags;
3699 int ret;
3700
3701 spin_lock_irqsave(&domain->lock, flags);
3702 ret = __set_gcr3(domain, pasid, cr3);
3703 spin_unlock_irqrestore(&domain->lock, flags);
3704
3705 return ret;
3706}
3707EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3708
3709int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3710{
3711 struct protection_domain *domain = dom->priv;
3712 unsigned long flags;
3713 int ret;
3714
3715 spin_lock_irqsave(&domain->lock, flags);
3716 ret = __clear_gcr3(domain, pasid);
3717 spin_unlock_irqrestore(&domain->lock, flags);
3718
3719 return ret;
3720}
3721EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3722
3723int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3724 int status, int tag)
3725{
3726 struct iommu_dev_data *dev_data;
3727 struct amd_iommu *iommu;
3728 struct iommu_cmd cmd;
3729
399be2f5
JR
3730 INC_STATS_COUNTER(complete_ppr);
3731
c99afa25
JR
3732 dev_data = get_dev_data(&pdev->dev);
3733 iommu = amd_iommu_rlookup_table[dev_data->devid];
3734
3735 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3736 tag, dev_data->pri_tlp);
3737
3738 return iommu_queue_command(iommu, &cmd);
3739}
3740EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3741
3742struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3743{
3744 struct protection_domain *domain;
3745
3746 domain = get_domain(&pdev->dev);
3747 if (IS_ERR(domain))
3748 return NULL;
3749
3750 /* Only return IOMMUv2 domains */
3751 if (!(domain->flags & PD_IOMMUV2_MASK))
3752 return NULL;
3753
3754 return domain->iommu_domain;
3755}
3756EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3757
3758void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3759{
3760 struct iommu_dev_data *dev_data;
3761
3762 if (!amd_iommu_v2_supported())
3763 return;
3764
3765 dev_data = get_dev_data(&pdev->dev);
3766 dev_data->errata |= (1 << erratum);
3767}
3768EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3769
3770int amd_iommu_device_info(struct pci_dev *pdev,
3771 struct amd_iommu_device_info *info)
3772{
3773 int max_pasids;
3774 int pos;
3775
3776 if (pdev == NULL || info == NULL)
3777 return -EINVAL;
3778
3779 if (!amd_iommu_v2_supported())
3780 return -EINVAL;
3781
3782 memset(info, 0, sizeof(*info));
3783
3784 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3785 if (pos)
3786 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3787
3788 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3789 if (pos)
3790 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3791
3792 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3793 if (pos) {
3794 int features;
3795
3796 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3797 max_pasids = min(max_pasids, (1 << 20));
3798
3799 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3800 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3801
3802 features = pci_pasid_features(pdev);
3803 if (features & PCI_PASID_CAP_EXEC)
3804 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3805 if (features & PCI_PASID_CAP_PRIV)
3806 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3807 }
3808
3809 return 0;
3810}
3811EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3812
3813#ifdef CONFIG_IRQ_REMAP
3814
3815/*****************************************************************************
3816 *
3817 * Interrupt Remapping Implementation
3818 *
3819 *****************************************************************************/
3820
3821union irte {
3822 u32 val;
3823 struct {
3824 u32 valid : 1,
3825 no_fault : 1,
3826 int_type : 3,
3827 rq_eoi : 1,
3828 dm : 1,
3829 rsvd_1 : 1,
3830 destination : 8,
3831 vector : 8,
3832 rsvd_2 : 8;
3833 } fields;
3834};
3835
3836#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3837#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3838#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3839#define DTE_IRQ_REMAP_ENABLE 1ULL
3840
3841static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3842{
3843 u64 dte;
3844
3845 dte = amd_iommu_dev_table[devid].data[2];
3846 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3847 dte |= virt_to_phys(table->table);
3848 dte |= DTE_IRQ_REMAP_INTCTL;
3849 dte |= DTE_IRQ_TABLE_LEN;
3850 dte |= DTE_IRQ_REMAP_ENABLE;
3851
3852 amd_iommu_dev_table[devid].data[2] = dte;
3853}
3854
3855#define IRTE_ALLOCATED (~1U)
3856
3857static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3858{
3859 struct irq_remap_table *table = NULL;
3860 struct amd_iommu *iommu;
3861 unsigned long flags;
3862 u16 alias;
3863
3864 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3865
3866 iommu = amd_iommu_rlookup_table[devid];
3867 if (!iommu)
3868 goto out_unlock;
3869
3870 table = irq_lookup_table[devid];
3871 if (table)
3872 goto out;
3873
3874 alias = amd_iommu_alias_table[devid];
3875 table = irq_lookup_table[alias];
3876 if (table) {
3877 irq_lookup_table[devid] = table;
3878 set_dte_irq_entry(devid, table);
3879 iommu_flush_dte(iommu, devid);
3880 goto out;
3881 }
3882
3883 /* Nothing there yet, allocate new irq remapping table */
3884 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3885 if (!table)
3886 goto out;
3887
197887f0
JR
3888 /* Initialize table spin-lock */
3889 spin_lock_init(&table->lock);
3890
2b324506
JR
3891 if (ioapic)
3892 /* Keep the first 32 indexes free for IOAPIC interrupts */
3893 table->min_index = 32;
3894
3895 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3896 if (!table->table) {
3897 kfree(table);
821f0f68 3898 table = NULL;
2b324506
JR
3899 goto out;
3900 }
3901
3902 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3903
3904 if (ioapic) {
3905 int i;
3906
3907 for (i = 0; i < 32; ++i)
3908 table->table[i] = IRTE_ALLOCATED;
3909 }
3910
3911 irq_lookup_table[devid] = table;
3912 set_dte_irq_entry(devid, table);
3913 iommu_flush_dte(iommu, devid);
3914 if (devid != alias) {
3915 irq_lookup_table[alias] = table;
e028a9e6 3916 set_dte_irq_entry(alias, table);
2b324506
JR
3917 iommu_flush_dte(iommu, alias);
3918 }
3919
3920out:
3921 iommu_completion_wait(iommu);
3922
3923out_unlock:
3924 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3925
3926 return table;
3927}
3928
3929static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3930{
3931 struct irq_remap_table *table;
3932 unsigned long flags;
3933 int index, c;
3934
3935 table = get_irq_table(devid, false);
3936 if (!table)
3937 return -ENODEV;
3938
3939 spin_lock_irqsave(&table->lock, flags);
3940
3941 /* Scan table for free entries */
3942 for (c = 0, index = table->min_index;
3943 index < MAX_IRQS_PER_TABLE;
3944 ++index) {
3945 if (table->table[index] == 0)
3946 c += 1;
3947 else
3948 c = 0;
3949
3950 if (c == count) {
0dfedd61 3951 struct irq_2_irte *irte_info;
2b324506
JR
3952
3953 for (; c != 0; --c)
3954 table->table[index - c + 1] = IRTE_ALLOCATED;
3955
3956 index -= count - 1;
3957
9b1b0e42 3958 cfg->remapped = 1;
0dfedd61
JR
3959 irte_info = &cfg->irq_2_irte;
3960 irte_info->devid = devid;
3961 irte_info->index = index;
2b324506
JR
3962
3963 goto out;
3964 }
3965 }
3966
3967 index = -ENOSPC;
3968
3969out:
3970 spin_unlock_irqrestore(&table->lock, flags);
3971
3972 return index;
3973}
3974
3975static int get_irte(u16 devid, int index, union irte *irte)
3976{
3977 struct irq_remap_table *table;
3978 unsigned long flags;
3979
3980 table = get_irq_table(devid, false);
3981 if (!table)
3982 return -ENOMEM;
3983
3984 spin_lock_irqsave(&table->lock, flags);
3985 irte->val = table->table[index];
3986 spin_unlock_irqrestore(&table->lock, flags);
3987
3988 return 0;
3989}
3990
3991static int modify_irte(u16 devid, int index, union irte irte)
3992{
3993 struct irq_remap_table *table;
3994 struct amd_iommu *iommu;
3995 unsigned long flags;
3996
3997 iommu = amd_iommu_rlookup_table[devid];
3998 if (iommu == NULL)
3999 return -EINVAL;
4000
4001 table = get_irq_table(devid, false);
4002 if (!table)
4003 return -ENOMEM;
4004
4005 spin_lock_irqsave(&table->lock, flags);
4006 table->table[index] = irte.val;
4007 spin_unlock_irqrestore(&table->lock, flags);
4008
4009 iommu_flush_irt(iommu, devid);
4010 iommu_completion_wait(iommu);
4011
4012 return 0;
4013}
4014
4015static void free_irte(u16 devid, int index)
4016{
4017 struct irq_remap_table *table;
4018 struct amd_iommu *iommu;
4019 unsigned long flags;
4020
4021 iommu = amd_iommu_rlookup_table[devid];
4022 if (iommu == NULL)
4023 return;
4024
4025 table = get_irq_table(devid, false);
4026 if (!table)
4027 return;
4028
4029 spin_lock_irqsave(&table->lock, flags);
4030 table->table[index] = 0;
4031 spin_unlock_irqrestore(&table->lock, flags);
4032
4033 iommu_flush_irt(iommu, devid);
4034 iommu_completion_wait(iommu);
4035}
4036
5527de74
JR
4037static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4038 unsigned int destination, int vector,
4039 struct io_apic_irq_attr *attr)
4040{
4041 struct irq_remap_table *table;
0dfedd61 4042 struct irq_2_irte *irte_info;
5527de74
JR
4043 struct irq_cfg *cfg;
4044 union irte irte;
4045 int ioapic_id;
4046 int index;
4047 int devid;
4048 int ret;
4049
4050 cfg = irq_get_chip_data(irq);
4051 if (!cfg)
4052 return -EINVAL;
4053
0dfedd61 4054 irte_info = &cfg->irq_2_irte;
5527de74
JR
4055 ioapic_id = mpc_ioapic_id(attr->ioapic);
4056 devid = get_ioapic_devid(ioapic_id);
4057
4058 if (devid < 0)
4059 return devid;
4060
4061 table = get_irq_table(devid, true);
4062 if (table == NULL)
4063 return -ENOMEM;
4064
4065 index = attr->ioapic_pin;
4066
4067 /* Setup IRQ remapping info */
9b1b0e42 4068 cfg->remapped = 1;
0dfedd61
JR
4069 irte_info->devid = devid;
4070 irte_info->index = index;
5527de74
JR
4071
4072 /* Setup IRTE for IOMMU */
4073 irte.val = 0;
4074 irte.fields.vector = vector;
4075 irte.fields.int_type = apic->irq_delivery_mode;
4076 irte.fields.destination = destination;
4077 irte.fields.dm = apic->irq_dest_mode;
4078 irte.fields.valid = 1;
4079
4080 ret = modify_irte(devid, index, irte);
4081 if (ret)
4082 return ret;
4083
4084 /* Setup IOAPIC entry */
4085 memset(entry, 0, sizeof(*entry));
4086
4087 entry->vector = index;
4088 entry->mask = 0;
4089 entry->trigger = attr->trigger;
4090 entry->polarity = attr->polarity;
4091
4092 /*
4093 * Mask level triggered irqs.
5527de74
JR
4094 */
4095 if (attr->trigger)
4096 entry->mask = 1;
4097
4098 return 0;
4099}
4100
4101static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4102 bool force)
4103{
0dfedd61 4104 struct irq_2_irte *irte_info;
5527de74
JR
4105 unsigned int dest, irq;
4106 struct irq_cfg *cfg;
4107 union irte irte;
4108 int err;
4109
4110 if (!config_enabled(CONFIG_SMP))
4111 return -1;
4112
4113 cfg = data->chip_data;
4114 irq = data->irq;
0dfedd61 4115 irte_info = &cfg->irq_2_irte;
5527de74
JR
4116
4117 if (!cpumask_intersects(mask, cpu_online_mask))
4118 return -EINVAL;
4119
0dfedd61 4120 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4121 return -EBUSY;
4122
4123 if (assign_irq_vector(irq, cfg, mask))
4124 return -EBUSY;
4125
4126 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4127 if (err) {
4128 if (assign_irq_vector(irq, cfg, data->affinity))
4129 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4130 return err;
4131 }
4132
4133 irte.fields.vector = cfg->vector;
4134 irte.fields.destination = dest;
4135
0dfedd61 4136 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4137
4138 if (cfg->move_in_progress)
4139 send_cleanup_vector(cfg);
4140
4141 cpumask_copy(data->affinity, mask);
4142
4143 return 0;
4144}
4145
4146static int free_irq(int irq)
4147{
0dfedd61 4148 struct irq_2_irte *irte_info;
5527de74
JR
4149 struct irq_cfg *cfg;
4150
4151 cfg = irq_get_chip_data(irq);
4152 if (!cfg)
4153 return -EINVAL;
4154
0dfedd61 4155 irte_info = &cfg->irq_2_irte;
5527de74 4156
0dfedd61 4157 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4158
4159 return 0;
4160}
4161
0b4d48cb
JR
4162static void compose_msi_msg(struct pci_dev *pdev,
4163 unsigned int irq, unsigned int dest,
4164 struct msi_msg *msg, u8 hpet_id)
4165{
0dfedd61 4166 struct irq_2_irte *irte_info;
0b4d48cb
JR
4167 struct irq_cfg *cfg;
4168 union irte irte;
4169
4170 cfg = irq_get_chip_data(irq);
4171 if (!cfg)
4172 return;
4173
0dfedd61 4174 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4175
4176 irte.val = 0;
4177 irte.fields.vector = cfg->vector;
4178 irte.fields.int_type = apic->irq_delivery_mode;
4179 irte.fields.destination = dest;
4180 irte.fields.dm = apic->irq_dest_mode;
4181 irte.fields.valid = 1;
4182
0dfedd61 4183 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4184
4185 msg->address_hi = MSI_ADDR_BASE_HI;
4186 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4187 msg->data = irte_info->index;
0b4d48cb
JR
4188}
4189
4190static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4191{
4192 struct irq_cfg *cfg;
4193 int index;
4194 u16 devid;
4195
4196 if (!pdev)
4197 return -EINVAL;
4198
4199 cfg = irq_get_chip_data(irq);
4200 if (!cfg)
4201 return -EINVAL;
4202
4203 devid = get_device_id(&pdev->dev);
4204 index = alloc_irq_index(cfg, devid, nvec);
4205
4206 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4207}
4208
4209static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4210 int index, int offset)
4211{
0dfedd61 4212 struct irq_2_irte *irte_info;
0b4d48cb
JR
4213 struct irq_cfg *cfg;
4214 u16 devid;
4215
4216 if (!pdev)
4217 return -EINVAL;
4218
4219 cfg = irq_get_chip_data(irq);
4220 if (!cfg)
4221 return -EINVAL;
4222
4223 if (index >= MAX_IRQS_PER_TABLE)
4224 return 0;
4225
4226 devid = get_device_id(&pdev->dev);
0dfedd61 4227 irte_info = &cfg->irq_2_irte;
0b4d48cb 4228
9b1b0e42 4229 cfg->remapped = 1;
0dfedd61
JR
4230 irte_info->devid = devid;
4231 irte_info->index = index + offset;
0b4d48cb
JR
4232
4233 return 0;
4234}
4235
d976195c
JR
4236static int setup_hpet_msi(unsigned int irq, unsigned int id)
4237{
0dfedd61 4238 struct irq_2_irte *irte_info;
d976195c
JR
4239 struct irq_cfg *cfg;
4240 int index, devid;
4241
4242 cfg = irq_get_chip_data(irq);
4243 if (!cfg)
4244 return -EINVAL;
4245
0dfedd61 4246 irte_info = &cfg->irq_2_irte;
d976195c
JR
4247 devid = get_hpet_devid(id);
4248 if (devid < 0)
4249 return devid;
4250
4251 index = alloc_irq_index(cfg, devid, 1);
4252 if (index < 0)
4253 return index;
4254
9b1b0e42 4255 cfg->remapped = 1;
0dfedd61
JR
4256 irte_info->devid = devid;
4257 irte_info->index = index;
d976195c
JR
4258
4259 return 0;
4260}
4261
6b474b82
JR
4262struct irq_remap_ops amd_iommu_irq_ops = {
4263 .supported = amd_iommu_supported,
4264 .prepare = amd_iommu_prepare,
4265 .enable = amd_iommu_enable,
4266 .disable = amd_iommu_disable,
4267 .reenable = amd_iommu_reenable,
4268 .enable_faulting = amd_iommu_enable_faulting,
4269 .setup_ioapic_entry = setup_ioapic_entry,
4270 .set_affinity = set_affinity,
4271 .free_irq = free_irq,
4272 .compose_msi_msg = compose_msi_msg,
4273 .msi_alloc_irq = msi_alloc_irq,
4274 .msi_setup_irq = msi_setup_irq,
4275 .setup_hpet_msi = setup_hpet_msi,
4276};
2b324506 4277#endif
This page took 0.752079 seconds and 5 git commands to generate.