Merge branch 'arm/smmu' into arm/renesas
[deliverable/linux.git] / drivers / iommu / ipmmu-vmsa.c
CommitLineData
d25a2a16
LP
1/*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/module.h>
275f5053 19#include <linux/of.h>
d25a2a16
LP
20#include <linux/platform_device.h>
21#include <linux/sizes.h>
22#include <linux/slab.h>
23
24#include <asm/dma-iommu.h>
25#include <asm/pgalloc.h>
26
27struct ipmmu_vmsa_device {
28 struct device *dev;
29 void __iomem *base;
30 struct list_head list;
31
d25a2a16
LP
32 unsigned int num_utlbs;
33
34 struct dma_iommu_mapping *mapping;
35};
36
37struct ipmmu_vmsa_domain {
38 struct ipmmu_vmsa_device *mmu;
39 struct iommu_domain *io_domain;
40
41 unsigned int context_id;
42 spinlock_t lock; /* Protects mappings */
43 pgd_t *pgd;
44};
45
192d2045
LP
46struct ipmmu_vmsa_archdata {
47 struct ipmmu_vmsa_device *mmu;
a166d31e
LP
48 unsigned int *utlbs;
49 unsigned int num_utlbs;
192d2045
LP
50};
51
d25a2a16
LP
52static DEFINE_SPINLOCK(ipmmu_devices_lock);
53static LIST_HEAD(ipmmu_devices);
54
55#define TLB_LOOP_TIMEOUT 100 /* 100us */
56
57/* -----------------------------------------------------------------------------
58 * Registers Definition
59 */
60
275f5053
LP
61#define IM_NS_ALIAS_OFFSET 0x800
62
d25a2a16
LP
63#define IM_CTX_SIZE 0x40
64
65#define IMCTR 0x0000
66#define IMCTR_TRE (1 << 17)
67#define IMCTR_AFE (1 << 16)
68#define IMCTR_RTSEL_MASK (3 << 4)
69#define IMCTR_RTSEL_SHIFT 4
70#define IMCTR_TREN (1 << 3)
71#define IMCTR_INTEN (1 << 2)
72#define IMCTR_FLUSH (1 << 1)
73#define IMCTR_MMUEN (1 << 0)
74
75#define IMCAAR 0x0004
76
77#define IMTTBCR 0x0008
78#define IMTTBCR_EAE (1 << 31)
79#define IMTTBCR_PMB (1 << 30)
80#define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
81#define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
82#define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
83#define IMTTBCR_SH1_MASK (3 << 28)
84#define IMTTBCR_ORGN1_NC (0 << 26)
85#define IMTTBCR_ORGN1_WB_WA (1 << 26)
86#define IMTTBCR_ORGN1_WT (2 << 26)
87#define IMTTBCR_ORGN1_WB (3 << 26)
88#define IMTTBCR_ORGN1_MASK (3 << 26)
89#define IMTTBCR_IRGN1_NC (0 << 24)
90#define IMTTBCR_IRGN1_WB_WA (1 << 24)
91#define IMTTBCR_IRGN1_WT (2 << 24)
92#define IMTTBCR_IRGN1_WB (3 << 24)
93#define IMTTBCR_IRGN1_MASK (3 << 24)
94#define IMTTBCR_TSZ1_MASK (7 << 16)
95#define IMTTBCR_TSZ1_SHIFT 16
96#define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
97#define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
98#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
99#define IMTTBCR_SH0_MASK (3 << 12)
100#define IMTTBCR_ORGN0_NC (0 << 10)
101#define IMTTBCR_ORGN0_WB_WA (1 << 10)
102#define IMTTBCR_ORGN0_WT (2 << 10)
103#define IMTTBCR_ORGN0_WB (3 << 10)
104#define IMTTBCR_ORGN0_MASK (3 << 10)
105#define IMTTBCR_IRGN0_NC (0 << 8)
106#define IMTTBCR_IRGN0_WB_WA (1 << 8)
107#define IMTTBCR_IRGN0_WT (2 << 8)
108#define IMTTBCR_IRGN0_WB (3 << 8)
109#define IMTTBCR_IRGN0_MASK (3 << 8)
110#define IMTTBCR_SL0_LVL_2 (0 << 4)
111#define IMTTBCR_SL0_LVL_1 (1 << 4)
112#define IMTTBCR_TSZ0_MASK (7 << 0)
113#define IMTTBCR_TSZ0_SHIFT O
114
115#define IMBUSCR 0x000c
116#define IMBUSCR_DVM (1 << 2)
117#define IMBUSCR_BUSSEL_SYS (0 << 0)
118#define IMBUSCR_BUSSEL_CCI (1 << 0)
119#define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
120#define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
121#define IMBUSCR_BUSSEL_MASK (3 << 0)
122
123#define IMTTLBR0 0x0010
124#define IMTTUBR0 0x0014
125#define IMTTLBR1 0x0018
126#define IMTTUBR1 0x001c
127
128#define IMSTR 0x0020
129#define IMSTR_ERRLVL_MASK (3 << 12)
130#define IMSTR_ERRLVL_SHIFT 12
131#define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
132#define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
133#define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
134#define IMSTR_ERRCODE_MASK (7 << 8)
135#define IMSTR_MHIT (1 << 4)
136#define IMSTR_ABORT (1 << 2)
137#define IMSTR_PF (1 << 1)
138#define IMSTR_TF (1 << 0)
139
140#define IMMAIR0 0x0028
141#define IMMAIR1 0x002c
142#define IMMAIR_ATTR_MASK 0xff
143#define IMMAIR_ATTR_DEVICE 0x04
144#define IMMAIR_ATTR_NC 0x44
145#define IMMAIR_ATTR_WBRWA 0xff
146#define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
147#define IMMAIR_ATTR_IDX_NC 0
148#define IMMAIR_ATTR_IDX_WBRWA 1
149#define IMMAIR_ATTR_IDX_DEV 2
150
151#define IMEAR 0x0030
152
153#define IMPCTR 0x0200
154#define IMPSTR 0x0208
155#define IMPEAR 0x020c
156#define IMPMBA(n) (0x0280 + ((n) * 4))
157#define IMPMBD(n) (0x02c0 + ((n) * 4))
158
159#define IMUCTR(n) (0x0300 + ((n) * 16))
160#define IMUCTR_FIXADDEN (1 << 31)
161#define IMUCTR_FIXADD_MASK (0xff << 16)
162#define IMUCTR_FIXADD_SHIFT 16
163#define IMUCTR_TTSEL_MMU(n) ((n) << 4)
164#define IMUCTR_TTSEL_PMB (8 << 4)
165#define IMUCTR_TTSEL_MASK (15 << 4)
166#define IMUCTR_FLUSH (1 << 1)
167#define IMUCTR_MMUEN (1 << 0)
168
169#define IMUASID(n) (0x0308 + ((n) * 16))
170#define IMUASID_ASID8_MASK (0xff << 8)
171#define IMUASID_ASID8_SHIFT 8
172#define IMUASID_ASID0_MASK (0xff << 0)
173#define IMUASID_ASID0_SHIFT 0
174
175/* -----------------------------------------------------------------------------
176 * Page Table Bits
177 */
178
179/*
180 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
181 * Long-descriptor format" that the NStable bit being set in a table descriptor
182 * will result in the NStable and NS bits of all child entries being ignored and
183 * considered as being set. The IPMMU seems not to comply with this, as it
184 * generates a secure access page fault if any of the NStable and NS bits isn't
185 * set when running in non-secure mode.
186 */
187#ifndef PMD_NSTABLE
188#define PMD_NSTABLE (_AT(pmdval_t, 1) << 63)
189#endif
190
191#define ARM_VMSA_PTE_XN (((pteval_t)3) << 53)
192#define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52)
193#define ARM_VMSA_PTE_AF (((pteval_t)1) << 10)
194#define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8)
195#define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8)
196#define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8)
004c5b32 197#define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8)
d25a2a16
LP
198#define ARM_VMSA_PTE_NS (((pteval_t)1) << 5)
199#define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0)
200
201/* Stage-1 PTE */
004c5b32 202#define ARM_VMSA_PTE_nG (((pteval_t)1) << 11)
d25a2a16
LP
203#define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6)
204#define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6)
004c5b32
LP
205#define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6)
206#define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2)
d25a2a16 207#define ARM_VMSA_PTE_ATTRINDX_SHIFT 2
004c5b32
LP
208
209#define ARM_VMSA_PTE_ATTRS_MASK \
210 (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \
211 ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \
212 ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK)
d25a2a16 213
4ee3cc9c
LP
214#define ARM_VMSA_PTE_CONT_ENTRIES 16
215#define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
216
bc28191b
LP
217#define IPMMU_PTRS_PER_PTE 512
218#define IPMMU_PTRS_PER_PMD 512
219#define IPMMU_PTRS_PER_PGD 4
bc28191b 220
d25a2a16
LP
221/* -----------------------------------------------------------------------------
222 * Read/Write Access
223 */
224
225static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
226{
227 return ioread32(mmu->base + offset);
228}
229
230static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
231 u32 data)
232{
233 iowrite32(data, mmu->base + offset);
234}
235
236static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
237{
238 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
239}
240
241static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
242 u32 data)
243{
244 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
245}
246
247/* -----------------------------------------------------------------------------
248 * TLB and microTLB Management
249 */
250
251/* Wait for any pending TLB invalidations to complete */
252static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
253{
254 unsigned int count = 0;
255
256 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
257 cpu_relax();
258 if (++count == TLB_LOOP_TIMEOUT) {
259 dev_err_ratelimited(domain->mmu->dev,
260 "TLB sync timed out -- MMU may be deadlocked\n");
261 return;
262 }
263 udelay(1);
264 }
265}
266
267static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
268{
269 u32 reg;
270
271 reg = ipmmu_ctx_read(domain, IMCTR);
272 reg |= IMCTR_FLUSH;
273 ipmmu_ctx_write(domain, IMCTR, reg);
274
275 ipmmu_tlb_sync(domain);
276}
277
278/*
279 * Enable MMU translation for the microTLB.
280 */
281static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
192d2045 282 unsigned int utlb)
d25a2a16
LP
283{
284 struct ipmmu_vmsa_device *mmu = domain->mmu;
285
192d2045
LP
286 /*
287 * TODO: Reference-count the microTLB as several bus masters can be
288 * connected to the same microTLB.
289 */
290
d25a2a16 291 /* TODO: What should we set the ASID to ? */
192d2045 292 ipmmu_write(mmu, IMUASID(utlb), 0);
d25a2a16 293 /* TODO: Do we need to flush the microTLB ? */
192d2045 294 ipmmu_write(mmu, IMUCTR(utlb),
d25a2a16
LP
295 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
296 IMUCTR_MMUEN);
297}
298
299/*
300 * Disable MMU translation for the microTLB.
301 */
302static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
192d2045 303 unsigned int utlb)
d25a2a16
LP
304{
305 struct ipmmu_vmsa_device *mmu = domain->mmu;
306
192d2045 307 ipmmu_write(mmu, IMUCTR(utlb), 0);
d25a2a16
LP
308}
309
310static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
311 size_t size)
312{
313 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
314
315 /*
316 * TODO: Add support for coherent walk through CCI with DVM and remove
317 * cache handling.
318 */
319 dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE);
320}
321
322/* -----------------------------------------------------------------------------
323 * Domain/Context Management
324 */
325
326static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
327{
328 phys_addr_t ttbr;
329 u32 reg;
330
331 /*
332 * TODO: When adding support for multiple contexts, find an unused
333 * context.
334 */
335 domain->context_id = 0;
336
337 /* TTBR0 */
338 ipmmu_flush_pgtable(domain->mmu, domain->pgd,
bc28191b 339 IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
d25a2a16
LP
340 ttbr = __pa(domain->pgd);
341 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
342 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
343
344 /*
345 * TTBCR
346 * We use long descriptors with inner-shareable WBWA tables and allocate
347 * the whole 32-bit VA space to TTBR0.
348 */
349 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
350 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
351 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
352
353 /*
354 * MAIR0
355 * We need three attributes only, non-cacheable, write-back read/write
356 * allocate and device memory.
357 */
358 reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
359 | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
360 | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
361 ipmmu_ctx_write(domain, IMMAIR0, reg);
362
363 /* IMBUSCR */
364 ipmmu_ctx_write(domain, IMBUSCR,
365 ipmmu_ctx_read(domain, IMBUSCR) &
366 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
367
368 /*
369 * IMSTR
370 * Clear all interrupt flags.
371 */
372 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
373
374 /*
375 * IMCTR
376 * Enable the MMU and interrupt generation. The long-descriptor
377 * translation table format doesn't use TEX remapping. Don't enable AF
378 * software management as we have no use for it. Flush the TLB as
379 * required when modifying the context registers.
380 */
381 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
382
383 return 0;
384}
385
386static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
387{
388 /*
389 * Disable the context. Flush the TLB as required when modifying the
390 * context registers.
391 *
392 * TODO: Is TLB flush really needed ?
393 */
394 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
395 ipmmu_tlb_sync(domain);
396}
397
398/* -----------------------------------------------------------------------------
399 * Fault Handling
400 */
401
402static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
403{
404 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
405 struct ipmmu_vmsa_device *mmu = domain->mmu;
406 u32 status;
407 u32 iova;
408
409 status = ipmmu_ctx_read(domain, IMSTR);
410 if (!(status & err_mask))
411 return IRQ_NONE;
412
413 iova = ipmmu_ctx_read(domain, IMEAR);
414
415 /*
416 * Clear the error status flags. Unlike traditional interrupt flag
417 * registers that must be cleared by writing 1, this status register
418 * seems to require 0. The error address register must be read before,
419 * otherwise its value will be 0.
420 */
421 ipmmu_ctx_write(domain, IMSTR, 0);
422
423 /* Log fatal errors. */
424 if (status & IMSTR_MHIT)
425 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
426 iova);
427 if (status & IMSTR_ABORT)
428 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
429 iova);
430
431 if (!(status & (IMSTR_PF | IMSTR_TF)))
432 return IRQ_NONE;
433
434 /*
435 * Try to handle page faults and translation faults.
436 *
437 * TODO: We need to look up the faulty device based on the I/O VA. Use
438 * the IOMMU device for now.
439 */
440 if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
441 return IRQ_HANDLED;
442
443 dev_err_ratelimited(mmu->dev,
444 "Unhandled fault: status 0x%08x iova 0x%08x\n",
445 status, iova);
446
447 return IRQ_HANDLED;
448}
449
450static irqreturn_t ipmmu_irq(int irq, void *dev)
451{
452 struct ipmmu_vmsa_device *mmu = dev;
453 struct iommu_domain *io_domain;
454 struct ipmmu_vmsa_domain *domain;
455
456 if (!mmu->mapping)
457 return IRQ_NONE;
458
459 io_domain = mmu->mapping->domain;
460 domain = io_domain->priv;
461
462 return ipmmu_domain_irq(domain);
463}
464
465/* -----------------------------------------------------------------------------
466 * Page Table Management
467 */
468
14e5123e
LP
469#define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
470
d25a2a16
LP
471static void ipmmu_free_ptes(pmd_t *pmd)
472{
473 pgtable_t table = pmd_pgtable(*pmd);
474 __free_page(table);
475}
476
477static void ipmmu_free_pmds(pud_t *pud)
478{
14e5123e
LP
479 pmd_t *pmd = pmd_offset(pud, 0);
480 pgtable_t table;
d25a2a16
LP
481 unsigned int i;
482
bc28191b 483 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
dda7c2e4 484 if (!pmd_table(*pmd))
d25a2a16
LP
485 continue;
486
487 ipmmu_free_ptes(pmd);
488 pmd++;
489 }
490
14e5123e
LP
491 table = pud_pgtable(*pud);
492 __free_page(table);
d25a2a16
LP
493}
494
495static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
496{
497 pgd_t *pgd, *pgd_base = domain->pgd;
498 unsigned int i;
499
500 /*
501 * Recursively free the page tables for this domain. We don't care about
502 * speculative TLB filling, because the TLB will be nuked next time this
503 * context bank is re-allocated and no devices currently map to these
504 * tables.
505 */
506 pgd = pgd_base;
bc28191b 507 for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
d25a2a16
LP
508 if (pgd_none(*pgd))
509 continue;
14e5123e 510 ipmmu_free_pmds((pud_t *)pgd);
d25a2a16
LP
511 pgd++;
512 }
513
514 kfree(pgd_base);
515}
516
517/*
518 * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
519 * functions as they would flush the CPU TLB.
520 */
521
9009f256
LP
522static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
523 unsigned long iova)
d25a2a16 524{
9009f256 525 pte_t *pte;
d25a2a16 526
9009f256
LP
527 if (!pmd_none(*pmd))
528 return pte_offset_kernel(pmd, iova);
d25a2a16 529
9009f256
LP
530 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
531 if (!pte)
532 return NULL;
d25a2a16 533
9009f256
LP
534 ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
535 *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
536 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
d25a2a16 537
9009f256
LP
538 return pte + pte_index(iova);
539}
d25a2a16 540
9009f256
LP
541static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd,
542 unsigned long iova)
543{
544 pud_t *pud = (pud_t *)pgd;
545 pmd_t *pmd;
d25a2a16 546
9009f256
LP
547 if (!pud_none(*pud))
548 return pmd_offset(pud, iova);
d25a2a16 549
9009f256
LP
550 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
551 if (!pmd)
552 return NULL;
d25a2a16 553
9009f256
LP
554 ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
555 *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
556 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
4ee3cc9c 557
9009f256
LP
558 return pmd + pmd_index(iova);
559}
4ee3cc9c 560
9009f256
LP
561static u64 ipmmu_page_prot(unsigned int prot, u64 type)
562{
04561ca5 563 u64 pgprot = ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF
9009f256
LP
564 | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV
565 | ARM_VMSA_PTE_NS | type;
d25a2a16 566
9009f256
LP
567 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
568 pgprot |= ARM_VMSA_PTE_AP_RDONLY;
569
570 if (prot & IOMMU_CACHE)
571 pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT;
572
04561ca5
LP
573 if (prot & IOMMU_NOEXEC)
574 pgprot |= ARM_VMSA_PTE_XN;
9009f256
LP
575 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
576 /* If no access create a faulting entry to avoid TLB fills. */
577 pgprot &= ~ARM_VMSA_PTE_PAGE;
578
579 return pgprot;
d25a2a16
LP
580}
581
9009f256
LP
582static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
583 unsigned long iova, unsigned long pfn,
584 size_t size, int prot)
d25a2a16 585{
9009f256
LP
586 pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE);
587 unsigned int num_ptes = 1;
588 pte_t *pte, *start;
589 unsigned int i;
d25a2a16 590
9009f256
LP
591 pte = ipmmu_alloc_pte(mmu, pmd, iova);
592 if (!pte)
593 return -ENOMEM;
594
595 start = pte;
d25a2a16 596
9009f256
LP
597 /*
598 * Install the page table entries. We can be called both for a single
599 * page or for a block of 16 physically contiguous pages. In the latter
600 * case set the PTE contiguous hint.
601 */
602 if (size == SZ_64K) {
603 pteval |= ARM_VMSA_PTE_CONT;
604 num_ptes = ARM_VMSA_PTE_CONT_ENTRIES;
605 }
d25a2a16 606
9009f256
LP
607 for (i = num_ptes; i; --i)
608 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
d25a2a16 609
9009f256 610 ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes);
d25a2a16 611
9009f256 612 return 0;
d25a2a16
LP
613}
614
dda7c2e4
LP
615static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
616 unsigned long iova, unsigned long pfn,
617 int prot)
618{
619 pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT);
620
621 *pmd = pfn_pmd(pfn, __pgprot(pmdval));
622 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
623
624 return 0;
625}
626
004c5b32 627static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain,
d25a2a16
LP
628 unsigned long iova, phys_addr_t paddr,
629 size_t size, int prot)
630{
631 struct ipmmu_vmsa_device *mmu = domain->mmu;
632 pgd_t *pgd = domain->pgd;
633 unsigned long flags;
9009f256
LP
634 unsigned long pfn;
635 pmd_t *pmd;
d25a2a16
LP
636 int ret;
637
638 if (!pgd)
639 return -EINVAL;
640
641 if (size & ~PAGE_MASK)
642 return -EINVAL;
643
644 if (paddr & ~((1ULL << 40) - 1))
645 return -ERANGE;
646
9009f256 647 pfn = __phys_to_pfn(paddr);
d25a2a16 648 pgd += pgd_index(iova);
d25a2a16 649
9009f256
LP
650 /* Update the page tables. */
651 spin_lock_irqsave(&domain->lock, flags);
d25a2a16 652
9009f256
LP
653 pmd = ipmmu_alloc_pmd(mmu, pgd, iova);
654 if (!pmd) {
655 ret = -ENOMEM;
656 goto done;
657 }
d25a2a16 658
dda7c2e4
LP
659 switch (size) {
660 case SZ_2M:
661 ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot);
662 break;
663 case SZ_64K:
664 case SZ_4K:
665 ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot);
666 break;
667 default:
668 ret = -EINVAL;
669 break;
670 }
d25a2a16 671
9009f256 672done:
d25a2a16
LP
673 spin_unlock_irqrestore(&domain->lock, flags);
674
9009f256
LP
675 if (!ret)
676 ipmmu_tlb_invalidate(domain);
d25a2a16
LP
677
678 return ret;
679}
680
004c5b32
LP
681static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud)
682{
004c5b32 683 pgtable_t table = pud_pgtable(*pud);
004c5b32
LP
684
685 /* Clear the PUD. */
686 *pud = __pud(0);
687 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
22463cab
LP
688
689 /* Free the page table. */
690 __free_page(table);
004c5b32
LP
691}
692
693static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
694 pmd_t *pmd)
695{
22463cab 696 pmd_t pmdval = *pmd;
004c5b32
LP
697 unsigned int i;
698
004c5b32
LP
699 /* Clear the PMD. */
700 *pmd = __pmd(0);
701 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
702
22463cab
LP
703 /* Free the page table. */
704 if (pmd_table(pmdval)) {
705 pgtable_t table = pmd_pgtable(pmdval);
706
707 __free_page(table);
708 }
709
004c5b32
LP
710 /* Check whether the PUD is still needed. */
711 pmd = pmd_offset(pud, 0);
712 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
713 if (!pmd_none(pmd[i]))
714 return;
715 }
716
717 /* Clear the parent PUD. */
718 ipmmu_clear_pud(mmu, pud);
719}
720
721static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud,
722 pmd_t *pmd, pte_t *pte, unsigned int num_ptes)
723{
724 unsigned int i;
725
726 /* Clear the PTE. */
727 for (i = num_ptes; i; --i)
728 pte[i-1] = __pte(0);
729
730 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes);
731
732 /* Check whether the PMD is still needed. */
733 pte = pte_offset_kernel(pmd, 0);
734 for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) {
735 if (!pte_none(pte[i]))
736 return;
737 }
738
739 /* Clear the parent PMD. */
740 ipmmu_clear_pmd(mmu, pud, pmd);
741}
742
743static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd)
744{
745 pte_t *pte, *start;
746 pteval_t pteval;
747 unsigned long pfn;
748 unsigned int i;
749
750 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
751 if (!pte)
752 return -ENOMEM;
753
754 /* Copy the PMD attributes. */
755 pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK)
756 | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE;
757
758 pfn = pmd_pfn(*pmd);
759 start = pte;
760
761 for (i = IPMMU_PTRS_PER_PTE; i; --i)
762 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
763
764 ipmmu_flush_pgtable(mmu, start, PAGE_SIZE);
765 *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE);
766 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
767
768 return 0;
769}
770
771static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte)
772{
773 unsigned int i;
774
775 for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i)
776 pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT);
777
778 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES);
779}
780
781static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain,
782 unsigned long iova, size_t size)
783{
784 struct ipmmu_vmsa_device *mmu = domain->mmu;
785 unsigned long flags;
786 pgd_t *pgd = domain->pgd;
787 pud_t *pud;
788 pmd_t *pmd;
789 pte_t *pte;
004c5b32
LP
790
791 if (!pgd)
792 return -EINVAL;
793
794 if (size & ~PAGE_MASK)
795 return -EINVAL;
796
797 pgd += pgd_index(iova);
798 pud = (pud_t *)pgd;
799
800 spin_lock_irqsave(&domain->lock, flags);
801
802 /* If there's no PUD or PMD we're done. */
803 if (pud_none(*pud))
804 goto done;
805
806 pmd = pmd_offset(pud, iova);
807 if (pmd_none(*pmd))
808 goto done;
809
810 /*
811 * When freeing a 2MB block just clear the PMD. In the unlikely case the
812 * block is mapped as individual pages this will free the corresponding
813 * PTE page table.
814 */
815 if (size == SZ_2M) {
816 ipmmu_clear_pmd(mmu, pud, pmd);
817 goto done;
818 }
819
820 /*
821 * If the PMD has been mapped as a section remap it as pages to allow
822 * freeing individual pages.
823 */
824 if (pmd_sect(*pmd))
825 ipmmu_split_pmd(mmu, pmd);
826
827 pte = pte_offset_kernel(pmd, iova);
828
829 /*
830 * When freeing a 64kB block just clear the PTE entries. We don't have
831 * to care about the contiguous hint of the surrounding entries.
832 */
833 if (size == SZ_64K) {
834 ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES);
835 goto done;
836 }
837
838 /*
839 * If the PTE has been mapped with the contiguous hint set remap it and
840 * its surrounding PTEs to allow unmapping a single page.
841 */
842 if (pte_val(*pte) & ARM_VMSA_PTE_CONT)
843 ipmmu_split_pte(mmu, pte);
844
845 /* Clear the PTE. */
846 ipmmu_clear_pte(mmu, pud, pmd, pte, 1);
847
848done:
849 spin_unlock_irqrestore(&domain->lock, flags);
850
9eca0a58 851 ipmmu_tlb_invalidate(domain);
004c5b32
LP
852
853 return 0;
854}
855
d25a2a16
LP
856/* -----------------------------------------------------------------------------
857 * IOMMU Operations
858 */
859
d25a2a16
LP
860static int ipmmu_domain_init(struct iommu_domain *io_domain)
861{
862 struct ipmmu_vmsa_domain *domain;
863
864 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
865 if (!domain)
866 return -ENOMEM;
867
868 spin_lock_init(&domain->lock);
869
bc28191b 870 domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
d25a2a16
LP
871 if (!domain->pgd) {
872 kfree(domain);
873 return -ENOMEM;
874 }
875
876 io_domain->priv = domain;
877 domain->io_domain = io_domain;
878
879 return 0;
880}
881
882static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
883{
884 struct ipmmu_vmsa_domain *domain = io_domain->priv;
885
886 /*
887 * Free the domain resources. We assume that all devices have already
888 * been detached.
889 */
890 ipmmu_domain_destroy_context(domain);
891 ipmmu_free_pgtables(domain);
892 kfree(domain);
893}
894
895static int ipmmu_attach_device(struct iommu_domain *io_domain,
896 struct device *dev)
897{
192d2045
LP
898 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
899 struct ipmmu_vmsa_device *mmu = archdata->mmu;
d25a2a16 900 struct ipmmu_vmsa_domain *domain = io_domain->priv;
d25a2a16 901 unsigned long flags;
a166d31e 902 unsigned int i;
d25a2a16
LP
903 int ret = 0;
904
905 if (!mmu) {
906 dev_err(dev, "Cannot attach to IPMMU\n");
907 return -ENXIO;
908 }
909
910 spin_lock_irqsave(&domain->lock, flags);
911
912 if (!domain->mmu) {
913 /* The domain hasn't been used yet, initialize it. */
914 domain->mmu = mmu;
915 ret = ipmmu_domain_init_context(domain);
916 } else if (domain->mmu != mmu) {
917 /*
918 * Something is wrong, we can't attach two devices using
919 * different IOMMUs to the same domain.
920 */
921 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
922 dev_name(mmu->dev), dev_name(domain->mmu->dev));
923 ret = -EINVAL;
924 }
925
926 spin_unlock_irqrestore(&domain->lock, flags);
927
928 if (ret < 0)
929 return ret;
930
a166d31e
LP
931 for (i = 0; i < archdata->num_utlbs; ++i)
932 ipmmu_utlb_enable(domain, archdata->utlbs[i]);
d25a2a16
LP
933
934 return 0;
935}
936
937static void ipmmu_detach_device(struct iommu_domain *io_domain,
938 struct device *dev)
939{
192d2045 940 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
d25a2a16 941 struct ipmmu_vmsa_domain *domain = io_domain->priv;
a166d31e 942 unsigned int i;
d25a2a16 943
a166d31e
LP
944 for (i = 0; i < archdata->num_utlbs; ++i)
945 ipmmu_utlb_disable(domain, archdata->utlbs[i]);
d25a2a16
LP
946
947 /*
948 * TODO: Optimize by disabling the context when no device is attached.
949 */
950}
951
952static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
953 phys_addr_t paddr, size_t size, int prot)
954{
955 struct ipmmu_vmsa_domain *domain = io_domain->priv;
956
957 if (!domain)
958 return -ENODEV;
959
004c5b32 960 return ipmmu_create_mapping(domain, iova, paddr, size, prot);
d25a2a16
LP
961}
962
963static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
964 size_t size)
965{
966 struct ipmmu_vmsa_domain *domain = io_domain->priv;
967 int ret;
968
004c5b32 969 ret = ipmmu_clear_mapping(domain, iova, size);
d25a2a16
LP
970 return ret ? 0 : size;
971}
972
973static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
974 dma_addr_t iova)
975{
976 struct ipmmu_vmsa_domain *domain = io_domain->priv;
977 pgd_t pgd;
978 pud_t pud;
979 pmd_t pmd;
980 pte_t pte;
981
982 /* TODO: Is locking needed ? */
983
984 if (!domain->pgd)
985 return 0;
986
987 pgd = *(domain->pgd + pgd_index(iova));
988 if (pgd_none(pgd))
989 return 0;
990
991 pud = *pud_offset(&pgd, iova);
992 if (pud_none(pud))
993 return 0;
994
995 pmd = *pmd_offset(&pud, iova);
996 if (pmd_none(pmd))
997 return 0;
998
dda7c2e4
LP
999 if (pmd_sect(pmd))
1000 return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK);
1001
d25a2a16
LP
1002 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1003 if (pte_none(pte))
1004 return 0;
1005
1006 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1007}
1008
a166d31e
LP
1009static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
1010 unsigned int **_utlbs)
192d2045 1011{
a166d31e
LP
1012 unsigned int *utlbs;
1013 unsigned int i;
1014 int count;
275f5053 1015
a166d31e
LP
1016 count = of_count_phandle_with_args(dev->of_node, "iommus",
1017 "#iommu-cells");
1018 if (count < 0)
1019 return -EINVAL;
1020
1021 utlbs = kcalloc(count, sizeof(*utlbs), GFP_KERNEL);
1022 if (!utlbs)
1023 return -ENOMEM;
1024
1025 for (i = 0; i < count; ++i) {
1026 struct of_phandle_args args;
1027 int ret;
1028
1029 ret = of_parse_phandle_with_args(dev->of_node, "iommus",
1030 "#iommu-cells", i, &args);
1031 if (ret < 0)
1032 goto error;
1033
1034 of_node_put(args.np);
1035
1036 if (args.np != mmu->dev->of_node || args.args_count != 1)
1037 goto error;
1038
1039 utlbs[i] = args.args[0];
1040 }
275f5053 1041
a166d31e 1042 *_utlbs = utlbs;
275f5053 1043
a166d31e 1044 return count;
275f5053 1045
a166d31e
LP
1046error:
1047 kfree(utlbs);
1048 return -EINVAL;
192d2045
LP
1049}
1050
d25a2a16
LP
1051static int ipmmu_add_device(struct device *dev)
1052{
192d2045 1053 struct ipmmu_vmsa_archdata *archdata;
d25a2a16 1054 struct ipmmu_vmsa_device *mmu;
a166d31e
LP
1055 struct iommu_group *group = NULL;
1056 unsigned int *utlbs = NULL;
1057 unsigned int i;
1058 int num_utlbs = 0;
d25a2a16
LP
1059 int ret;
1060
1061 if (dev->archdata.iommu) {
1062 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
1063 dev_name(dev));
1064 return -EINVAL;
1065 }
1066
1067 /* Find the master corresponding to the device. */
1068 spin_lock(&ipmmu_devices_lock);
1069
1070 list_for_each_entry(mmu, &ipmmu_devices, list) {
a166d31e
LP
1071 num_utlbs = ipmmu_find_utlbs(mmu, dev, &utlbs);
1072 if (num_utlbs) {
d25a2a16 1073 /*
192d2045 1074 * TODO Take a reference to the MMU to protect
d25a2a16
LP
1075 * against device removal.
1076 */
1077 break;
1078 }
1079 }
1080
1081 spin_unlock(&ipmmu_devices_lock);
1082
a166d31e 1083 if (num_utlbs <= 0)
d25a2a16
LP
1084 return -ENODEV;
1085
a166d31e
LP
1086 for (i = 0; i < num_utlbs; ++i) {
1087 if (utlbs[i] >= mmu->num_utlbs) {
1088 ret = -EINVAL;
1089 goto error;
1090 }
1091 }
d25a2a16
LP
1092
1093 /* Create a device group and add the device to it. */
1094 group = iommu_group_alloc();
1095 if (IS_ERR(group)) {
1096 dev_err(dev, "Failed to allocate IOMMU group\n");
a166d31e
LP
1097 ret = PTR_ERR(group);
1098 goto error;
d25a2a16
LP
1099 }
1100
1101 ret = iommu_group_add_device(group, dev);
1102 iommu_group_put(group);
1103
1104 if (ret < 0) {
1105 dev_err(dev, "Failed to add device to IPMMU group\n");
a166d31e
LP
1106 group = NULL;
1107 goto error;
d25a2a16
LP
1108 }
1109
192d2045
LP
1110 archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
1111 if (!archdata) {
1112 ret = -ENOMEM;
1113 goto error;
1114 }
1115
1116 archdata->mmu = mmu;
a166d31e
LP
1117 archdata->utlbs = utlbs;
1118 archdata->num_utlbs = num_utlbs;
192d2045 1119 dev->archdata.iommu = archdata;
d25a2a16
LP
1120
1121 /*
1122 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1123 * VAs. This will allocate a corresponding IOMMU domain.
1124 *
1125 * TODO:
1126 * - Create one mapping per context (TLB).
1127 * - Make the mapping size configurable ? We currently use a 2GB mapping
1128 * at a 1GB offset to ensure that NULL VAs will fault.
1129 */
1130 if (!mmu->mapping) {
1131 struct dma_iommu_mapping *mapping;
1132
1133 mapping = arm_iommu_create_mapping(&platform_bus_type,
720b0cef 1134 SZ_1G, SZ_2G);
d25a2a16
LP
1135 if (IS_ERR(mapping)) {
1136 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
b8f80bff
LP
1137 ret = PTR_ERR(mapping);
1138 goto error;
d25a2a16
LP
1139 }
1140
1141 mmu->mapping = mapping;
1142 }
1143
1144 /* Attach the ARM VA mapping to the device. */
1145 ret = arm_iommu_attach_device(dev, mmu->mapping);
1146 if (ret < 0) {
1147 dev_err(dev, "Failed to attach device to VA mapping\n");
1148 goto error;
1149 }
1150
1151 return 0;
1152
1153error:
b8f80bff 1154 arm_iommu_release_mapping(mmu->mapping);
a166d31e 1155
192d2045 1156 kfree(dev->archdata.iommu);
a166d31e
LP
1157 kfree(utlbs);
1158
d25a2a16 1159 dev->archdata.iommu = NULL;
a166d31e
LP
1160
1161 if (!IS_ERR_OR_NULL(group))
1162 iommu_group_remove_device(dev);
1163
d25a2a16
LP
1164 return ret;
1165}
1166
1167static void ipmmu_remove_device(struct device *dev)
1168{
a166d31e
LP
1169 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
1170
d25a2a16
LP
1171 arm_iommu_detach_device(dev);
1172 iommu_group_remove_device(dev);
a166d31e
LP
1173
1174 kfree(archdata->utlbs);
1175 kfree(archdata);
1176
d25a2a16
LP
1177 dev->archdata.iommu = NULL;
1178}
1179
b22f6434 1180static const struct iommu_ops ipmmu_ops = {
d25a2a16
LP
1181 .domain_init = ipmmu_domain_init,
1182 .domain_destroy = ipmmu_domain_destroy,
1183 .attach_dev = ipmmu_attach_device,
1184 .detach_dev = ipmmu_detach_device,
1185 .map = ipmmu_map,
1186 .unmap = ipmmu_unmap,
315786eb 1187 .map_sg = default_iommu_map_sg,
d25a2a16
LP
1188 .iova_to_phys = ipmmu_iova_to_phys,
1189 .add_device = ipmmu_add_device,
1190 .remove_device = ipmmu_remove_device,
dda7c2e4 1191 .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K,
d25a2a16
LP
1192};
1193
1194/* -----------------------------------------------------------------------------
1195 * Probe/remove and init
1196 */
1197
1198static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
1199{
1200 unsigned int i;
1201
1202 /* Disable all contexts. */
1203 for (i = 0; i < 4; ++i)
1204 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1205}
1206
1207static int ipmmu_probe(struct platform_device *pdev)
1208{
1209 struct ipmmu_vmsa_device *mmu;
1210 struct resource *res;
1211 int irq;
1212 int ret;
1213
275f5053 1214 if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) {
d25a2a16
LP
1215 dev_err(&pdev->dev, "missing platform data\n");
1216 return -EINVAL;
1217 }
1218
1219 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1220 if (!mmu) {
1221 dev_err(&pdev->dev, "cannot allocate device data\n");
1222 return -ENOMEM;
1223 }
1224
1225 mmu->dev = &pdev->dev;
d25a2a16
LP
1226 mmu->num_utlbs = 32;
1227
1228 /* Map I/O memory and request IRQ. */
1229 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1230 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1231 if (IS_ERR(mmu->base))
1232 return PTR_ERR(mmu->base);
1233
275f5053
LP
1234 /*
1235 * The IPMMU has two register banks, for secure and non-secure modes.
1236 * The bank mapped at the beginning of the IPMMU address space
1237 * corresponds to the running mode of the CPU. When running in secure
1238 * mode the non-secure register bank is also available at an offset.
1239 *
1240 * Secure mode operation isn't clearly documented and is thus currently
1241 * not implemented in the driver. Furthermore, preliminary tests of
1242 * non-secure operation with the main register bank were not successful.
1243 * Offset the registers base unconditionally to point to the non-secure
1244 * alias space for now.
1245 */
1246 mmu->base += IM_NS_ALIAS_OFFSET;
1247
d25a2a16
LP
1248 irq = platform_get_irq(pdev, 0);
1249 if (irq < 0) {
1250 dev_err(&pdev->dev, "no IRQ found\n");
1251 return irq;
1252 }
1253
1254 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1255 dev_name(&pdev->dev), mmu);
1256 if (ret < 0) {
1257 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
e222d6a4 1258 return ret;
d25a2a16
LP
1259 }
1260
1261 ipmmu_device_reset(mmu);
1262
1263 /*
1264 * We can't create the ARM mapping here as it requires the bus to have
1265 * an IOMMU, which only happens when bus_set_iommu() is called in
1266 * ipmmu_init() after the probe function returns.
1267 */
1268
1269 spin_lock(&ipmmu_devices_lock);
1270 list_add(&mmu->list, &ipmmu_devices);
1271 spin_unlock(&ipmmu_devices_lock);
1272
1273 platform_set_drvdata(pdev, mmu);
1274
1275 return 0;
1276}
1277
1278static int ipmmu_remove(struct platform_device *pdev)
1279{
1280 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1281
1282 spin_lock(&ipmmu_devices_lock);
1283 list_del(&mmu->list);
1284 spin_unlock(&ipmmu_devices_lock);
1285
1286 arm_iommu_release_mapping(mmu->mapping);
1287
1288 ipmmu_device_reset(mmu);
1289
1290 return 0;
1291}
1292
275f5053
LP
1293static const struct of_device_id ipmmu_of_ids[] = {
1294 { .compatible = "renesas,ipmmu-vmsa", },
1295};
1296
d25a2a16
LP
1297static struct platform_driver ipmmu_driver = {
1298 .driver = {
d25a2a16 1299 .name = "ipmmu-vmsa",
275f5053 1300 .of_match_table = of_match_ptr(ipmmu_of_ids),
d25a2a16
LP
1301 },
1302 .probe = ipmmu_probe,
1303 .remove = ipmmu_remove,
1304};
1305
1306static int __init ipmmu_init(void)
1307{
1308 int ret;
1309
1310 ret = platform_driver_register(&ipmmu_driver);
1311 if (ret < 0)
1312 return ret;
1313
1314 if (!iommu_present(&platform_bus_type))
1315 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1316
1317 return 0;
1318}
1319
1320static void __exit ipmmu_exit(void)
1321{
1322 return platform_driver_unregister(&ipmmu_driver);
1323}
1324
1325subsys_initcall(ipmmu_init);
1326module_exit(ipmmu_exit);
1327
1328MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1329MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1330MODULE_LICENSE("GPL v2");
This page took 0.165154 seconds and 5 git commands to generate.