KVM: MMU: Make flooding detection work when guest page faults are bypassed
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20/*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25#if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
c7addb90 34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
cea0f0e7
AK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
6aa8b732
AK
40#elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
c7addb90 49 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 50 #define PT_MAX_FULL_LEVELS 2
6aa8b732
AK
51#else
52 #error Invalid PTTYPE value
53#endif
54
55/*
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
58 */
59struct guest_walker {
60 int level;
cea0f0e7 61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
6aa8b732 62 pt_element_t *table;
fe551881 63 pt_element_t pte;
ac79c978 64 pt_element_t *ptep;
fe551881
SL
65 struct page *page;
66 int index;
6aa8b732 67 pt_element_t inherited_ar;
815af8d4 68 gfn_t gfn;
7993ba43 69 u32 error_code;
6aa8b732
AK
70};
71
ac79c978
AK
72/*
73 * Fetch a guest pte for a guest virtual address
74 */
7993ba43
AK
75static int FNAME(walk_addr)(struct guest_walker *walker,
76 struct kvm_vcpu *vcpu, gva_t addr,
73b1087e 77 int write_fault, int user_fault, int fetch_fault)
6aa8b732
AK
78{
79 hpa_t hpa;
80 struct kvm_memory_slot *slot;
ac79c978 81 pt_element_t *ptep;
1b0973bd 82 pt_element_t root;
cea0f0e7 83 gfn_t table_gfn;
6aa8b732 84
cea0f0e7 85 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
6aa8b732 86 walker->level = vcpu->mmu.root_level;
1b0973bd 87 walker->table = NULL;
fe551881
SL
88 walker->page = NULL;
89 walker->ptep = NULL;
1b0973bd
AK
90 root = vcpu->cr3;
91#if PTTYPE == 64
92 if (!is_long_mode(vcpu)) {
93 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
94 root = *walker->ptep;
fe551881 95 walker->pte = root;
1b0973bd 96 if (!(root & PT_PRESENT_MASK))
7993ba43 97 goto not_present;
1b0973bd
AK
98 --walker->level;
99 }
100#endif
cea0f0e7
AK
101 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
102 walker->table_gfn[walker->level - 1] = table_gfn;
103 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
104 walker->level - 1, table_gfn);
105 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
1b0973bd 106 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
fe551881
SL
107 walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
108 walker->table = kmap_atomic(walker->page, KM_USER0);
6aa8b732 109
a9058ecd 110 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
f802a307 111 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
6aa8b732 112
6aa8b732 113 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
ac79c978
AK
114
115 for (;;) {
116 int index = PT_INDEX(addr, walker->level);
117 hpa_t paddr;
118
119 ptep = &walker->table[index];
fe551881 120 walker->index = index;
ac79c978
AK
121 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
122 ((unsigned long)ptep & PAGE_MASK));
123
815af8d4 124 if (!is_present_pte(*ptep))
7993ba43
AK
125 goto not_present;
126
127 if (write_fault && !is_writeble_pte(*ptep))
128 if (user_fault || is_write_protection(vcpu))
129 goto access_error;
130
131 if (user_fault && !(*ptep & PT_USER_MASK))
132 goto access_error;
133
73b1087e
AK
134#if PTTYPE == 64
135 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
136 goto access_error;
137#endif
138
bf3f8e86
AK
139 if (!(*ptep & PT_ACCESSED_MASK)) {
140 mark_page_dirty(vcpu->kvm, table_gfn);
141 *ptep |= PT_ACCESSED_MASK;
142 }
815af8d4
AK
143
144 if (walker->level == PT_PAGE_TABLE_LEVEL) {
145 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
146 >> PAGE_SHIFT;
147 break;
148 }
149
150 if (walker->level == PT_DIRECTORY_LEVEL
151 && (*ptep & PT_PAGE_SIZE_MASK)
152 && (PTTYPE == 64 || is_pse(vcpu))) {
153 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
154 >> PAGE_SHIFT;
155 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
ac79c978 156 break;
815af8d4 157 }
ac79c978 158
ca5aac1f 159 walker->inherited_ar &= walker->table[index];
cea0f0e7 160 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
ac79c978 161 kunmap_atomic(walker->table, KM_USER0);
fe551881
SL
162 paddr = safe_gpa_to_hpa(vcpu, table_gfn << PAGE_SHIFT);
163 walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
164 walker->table = kmap_atomic(walker->page, KM_USER0);
ac79c978 165 --walker->level;
cea0f0e7
AK
166 walker->table_gfn[walker->level - 1 ] = table_gfn;
167 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
168 walker->level - 1, table_gfn);
ac79c978 169 }
fe551881
SL
170 walker->pte = *ptep;
171 if (walker->page)
172 walker->ptep = NULL;
173 if (walker->table)
174 kunmap_atomic(walker->table, KM_USER0);
374cbac0 175 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
7993ba43
AK
176 return 1;
177
178not_present:
179 walker->error_code = 0;
180 goto err;
181
182access_error:
183 walker->error_code = PFERR_PRESENT_MASK;
184
185err:
186 if (write_fault)
187 walker->error_code |= PFERR_WRITE_MASK;
188 if (user_fault)
189 walker->error_code |= PFERR_USER_MASK;
73b1087e
AK
190 if (fetch_fault)
191 walker->error_code |= PFERR_FETCH_MASK;
1b0973bd
AK
192 if (walker->table)
193 kunmap_atomic(walker->table, KM_USER0);
fe551881 194 return 0;
6aa8b732
AK
195}
196
bf3f8e86
AK
197static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
198 struct guest_walker *walker)
199{
200 mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
201}
202
e60d75ea
AK
203static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
204 u64 *shadow_pte,
205 gpa_t gaddr,
fe551881 206 pt_element_t gpte,
e60d75ea 207 u64 access_bits,
97a0a01e 208 int user_fault,
63b1ad24 209 int write_fault,
97a0a01e
AK
210 int *ptwrite,
211 struct guest_walker *walker,
e60d75ea
AK
212 gfn_t gfn)
213{
214 hpa_t paddr;
fe551881 215 int dirty = gpte & PT_DIRTY_MASK;
c7addb90
AK
216 u64 spte;
217 int was_rmapped = is_rmap_pte(*shadow_pte);
97a0a01e
AK
218
219 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
220 " user_fault %d gfn %lx\n",
c7addb90 221 __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
97a0a01e
AK
222 write_fault, user_fault, gfn);
223
224 if (write_fault && !dirty) {
fe551881
SL
225 pt_element_t *guest_ent, *tmp = NULL;
226
227 if (walker->ptep)
228 guest_ent = walker->ptep;
229 else {
230 tmp = kmap_atomic(walker->page, KM_USER0);
231 guest_ent = &tmp[walker->index];
232 }
233
234 *guest_ent |= PT_DIRTY_MASK;
235 if (!walker->ptep)
236 kunmap_atomic(tmp, KM_USER0);
97a0a01e
AK
237 dirty = 1;
238 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
239 }
e60d75ea 240
12b7d28f
AK
241 /*
242 * We don't set the accessed bit, since we sometimes want to see
243 * whether the guest actually used the pte (in order to detect
244 * demand paging).
245 */
246 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
fe551881 247 spte |= gpte & PT64_NX_MASK;
e60d75ea
AK
248 if (!dirty)
249 access_bits &= ~PT_WRITABLE_MASK;
250
251 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
252
0d551bb6 253 spte |= PT_PRESENT_MASK;
97a0a01e 254 if (access_bits & PT_USER_MASK)
0d551bb6 255 spte |= PT_USER_MASK;
e60d75ea
AK
256
257 if (is_error_hpa(paddr)) {
c7addb90
AK
258 set_shadow_pte(shadow_pte,
259 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
e60d75ea
AK
260 return;
261 }
262
0d551bb6 263 spte |= paddr;
e60d75ea 264
97a0a01e
AK
265 if ((access_bits & PT_WRITABLE_MASK)
266 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
e60d75ea
AK
267 struct kvm_mmu_page *shadow;
268
0d551bb6 269 spte |= PT_WRITABLE_MASK;
97a0a01e
AK
270 if (user_fault) {
271 mmu_unshadow(vcpu, gfn);
272 goto unshadowed;
273 }
274
e60d75ea
AK
275 shadow = kvm_mmu_lookup_page(vcpu, gfn);
276 if (shadow) {
277 pgprintk("%s: found shadow page for %lx, marking ro\n",
278 __FUNCTION__, gfn);
279 access_bits &= ~PT_WRITABLE_MASK;
0d551bb6
AK
280 if (is_writeble_pte(spte)) {
281 spte &= ~PT_WRITABLE_MASK;
cbdd1bea 282 kvm_x86_ops->tlb_flush(vcpu);
e60d75ea 283 }
97a0a01e
AK
284 if (write_fault)
285 *ptwrite = 1;
e60d75ea
AK
286 }
287 }
288
97a0a01e
AK
289unshadowed:
290
e60d75ea
AK
291 if (access_bits & PT_WRITABLE_MASK)
292 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
293
c7addb90 294 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
e663ee64 295 set_shadow_pte(shadow_pte, spte);
e60d75ea 296 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
97a0a01e
AK
297 if (!was_rmapped)
298 rmap_add(vcpu, shadow_pte);
12b7d28f
AK
299 if (!ptwrite || !*ptwrite)
300 vcpu->last_pte_updated = shadow_pte;
e60d75ea
AK
301}
302
fe551881 303static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
63b1ad24 304 u64 *shadow_pte, u64 access_bits,
97a0a01e
AK
305 int user_fault, int write_fault, int *ptwrite,
306 struct guest_walker *walker, gfn_t gfn)
6aa8b732 307{
fe551881
SL
308 access_bits &= gpte;
309 FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
97a0a01e
AK
310 gpte, access_bits, user_fault, write_fault,
311 ptwrite, walker, gfn);
6aa8b732
AK
312}
313
0028425f 314static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
c7addb90
AK
315 u64 *spte, const void *pte, int bytes,
316 int offset_in_pte)
0028425f
AK
317{
318 pt_element_t gpte;
319
0028425f 320 gpte = *(const pt_element_t *)pte;
c7addb90
AK
321 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
322 if (!offset_in_pte && !is_present_pte(gpte))
323 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
324 return;
325 }
326 if (bytes < sizeof(pt_element_t))
0028425f
AK
327 return;
328 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
fe551881 329 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
97a0a01e 330 0, NULL, NULL,
0028425f
AK
331 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
332}
333
fe551881 334static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
97a0a01e
AK
335 u64 *shadow_pte, u64 access_bits,
336 int user_fault, int write_fault, int *ptwrite,
337 struct guest_walker *walker, gfn_t gfn)
6aa8b732
AK
338{
339 gpa_t gaddr;
340
fe551881 341 access_bits &= gpde;
815af8d4 342 gaddr = (gpa_t)gfn << PAGE_SHIFT;
6aa8b732 343 if (PTTYPE == 32 && is_cpuid_PSE36())
fe551881 344 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
6aa8b732 345 (32 - PT32_DIR_PSE36_SHIFT);
e60d75ea 346 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
97a0a01e
AK
347 gpde, access_bits, user_fault, write_fault,
348 ptwrite, walker, gfn);
6aa8b732
AK
349}
350
6aa8b732
AK
351/*
352 * Fetch a shadow pte for a specific level in the paging hierarchy.
353 */
354static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
97a0a01e
AK
355 struct guest_walker *walker,
356 int user_fault, int write_fault, int *ptwrite)
6aa8b732
AK
357{
358 hpa_t shadow_addr;
359 int level;
ef0197e8 360 u64 *shadow_ent;
6aa8b732 361 u64 *prev_shadow_ent = NULL;
ac79c978 362
fe551881 363 if (!is_present_pte(walker->pte))
ac79c978 364 return NULL;
6aa8b732
AK
365
366 shadow_addr = vcpu->mmu.root_hpa;
367 level = vcpu->mmu.shadow_root_level;
aef3d3fe
AK
368 if (level == PT32E_ROOT_LEVEL) {
369 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
370 shadow_addr &= PT64_BASE_ADDR_MASK;
371 --level;
372 }
6aa8b732
AK
373
374 for (; ; level--) {
375 u32 index = SHADOW_PT_INDEX(addr, level);
25c0de2c 376 struct kvm_mmu_page *shadow_page;
8c7bb723 377 u64 shadow_pte;
cea0f0e7
AK
378 int metaphysical;
379 gfn_t table_gfn;
d28c6cfb 380 unsigned hugepage_access = 0;
6aa8b732 381
ef0197e8 382 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
c7addb90 383 if (is_shadow_present_pte(*shadow_ent)) {
6aa8b732 384 if (level == PT_PAGE_TABLE_LEVEL)
97a0a01e 385 break;
6aa8b732
AK
386 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
387 prev_shadow_ent = shadow_ent;
388 continue;
389 }
390
ef0197e8
AK
391 if (level == PT_PAGE_TABLE_LEVEL)
392 break;
6aa8b732 393
cea0f0e7
AK
394 if (level - 1 == PT_PAGE_TABLE_LEVEL
395 && walker->level == PT_DIRECTORY_LEVEL) {
396 metaphysical = 1;
fe551881 397 hugepage_access = walker->pte;
d28c6cfb 398 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
fe551881 399 if (walker->pte & PT64_NX_MASK)
d55e2cb2 400 hugepage_access |= (1 << 2);
d28c6cfb 401 hugepage_access >>= PT_WRITABLE_SHIFT;
fe551881 402 table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
cea0f0e7
AK
403 >> PAGE_SHIFT;
404 } else {
405 metaphysical = 0;
406 table_gfn = walker->table_gfn[level - 2];
407 }
408 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
d28c6cfb
AK
409 metaphysical, hugepage_access,
410 shadow_ent);
47ad8e68 411 shadow_addr = __pa(shadow_page->spt);
aef3d3fe
AK
412 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
413 | PT_WRITABLE_MASK | PT_USER_MASK;
8c7bb723 414 *shadow_ent = shadow_pte;
6aa8b732
AK
415 prev_shadow_ent = shadow_ent;
416 }
ef0197e8
AK
417
418 if (walker->level == PT_DIRECTORY_LEVEL) {
fe551881 419 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
97a0a01e
AK
420 walker->inherited_ar, user_fault, write_fault,
421 ptwrite, walker, walker->gfn);
ef0197e8
AK
422 } else {
423 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
fe551881 424 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
97a0a01e
AK
425 walker->inherited_ar, user_fault, write_fault,
426 ptwrite, walker, walker->gfn);
ef0197e8
AK
427 }
428 return shadow_ent;
6aa8b732
AK
429}
430
6aa8b732
AK
431/*
432 * Page fault handler. There are several causes for a page fault:
433 * - there is no shadow pte for the guest pte
434 * - write access through a shadow pte marked read only so that we can set
435 * the dirty bit
436 * - write access to a shadow pte marked read only so we can update the page
437 * dirty bitmap, when userspace requests it
438 * - mmio access; in this case we will never install a present shadow pte
439 * - normal guest page fault due to the guest pte marked not present, not
440 * writable, or not executable
441 *
e2dec939
AK
442 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
443 * a negative value on error.
6aa8b732
AK
444 */
445static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
446 u32 error_code)
447{
448 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732 449 int user_fault = error_code & PFERR_USER_MASK;
73b1087e 450 int fetch_fault = error_code & PFERR_FETCH_MASK;
6aa8b732
AK
451 struct guest_walker walker;
452 u64 *shadow_pte;
cea0f0e7 453 int write_pt = 0;
e2dec939 454 int r;
6aa8b732 455
cea0f0e7 456 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
37a7d8b0 457 kvm_mmu_audit(vcpu, "pre page fault");
714b93da 458
e2dec939
AK
459 r = mmu_topup_memory_caches(vcpu);
460 if (r)
461 return r;
714b93da 462
6aa8b732
AK
463 /*
464 * Look up the shadow pte for the faulting address.
465 */
73b1087e
AK
466 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
467 fetch_fault);
6aa8b732
AK
468
469 /*
470 * The page is not mapped by the guest. Let the guest handle it.
471 */
7993ba43
AK
472 if (!r) {
473 pgprintk("%s: guest page fault\n", __FUNCTION__);
474 inject_page_fault(vcpu, addr, walker.error_code);
a25f7e1f 475 vcpu->last_pt_write_count = 0; /* reset fork detector */
6aa8b732
AK
476 return 0;
477 }
478
97a0a01e
AK
479 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
480 &write_pt);
481 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
482 shadow_pte, *shadow_pte, write_pt);
cea0f0e7 483
a25f7e1f
AK
484 if (!write_pt)
485 vcpu->last_pt_write_count = 0; /* reset fork detector */
486
6aa8b732
AK
487 /*
488 * mmio: emulate if accessible, otherwise its a guest fault.
489 */
d27d4aca 490 if (is_io_pte(*shadow_pte))
7993ba43 491 return 1;
6aa8b732 492
1165f5fe 493 ++vcpu->stat.pf_fixed;
37a7d8b0 494 kvm_mmu_audit(vcpu, "post page fault (fixed)");
6aa8b732 495
cea0f0e7 496 return write_pt;
6aa8b732
AK
497}
498
499static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
500{
501 struct guest_walker walker;
e119d117
AK
502 gpa_t gpa = UNMAPPED_GVA;
503 int r;
6aa8b732 504
e119d117 505 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
6aa8b732 506
e119d117
AK
507 if (r) {
508 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
509 gpa |= vaddr & ~PAGE_MASK;
6aa8b732
AK
510 }
511
512 return gpa;
513}
514
c7addb90
AK
515static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
516 struct kvm_mmu_page *sp)
517{
518 int i;
519 pt_element_t *gpt;
520
521 if (sp->role.metaphysical || PTTYPE == 32) {
522 nonpaging_prefetch_page(vcpu, sp);
523 return;
524 }
525
526 gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
527 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
528 if (is_present_pte(gpt[i]))
529 sp->spt[i] = shadow_trap_nonpresent_pte;
530 else
531 sp->spt[i] = shadow_notrap_nonpresent_pte;
532 kunmap_atomic(gpt, KM_USER0);
533}
534
6aa8b732
AK
535#undef pt_element_t
536#undef guest_walker
537#undef FNAME
538#undef PT_BASE_ADDR_MASK
539#undef PT_INDEX
540#undef SHADOW_PT_INDEX
541#undef PT_LEVEL_MASK
6aa8b732 542#undef PT_DIR_BASE_ADDR_MASK
c7addb90 543#undef PT_LEVEL_BITS
cea0f0e7 544#undef PT_MAX_FULL_LEVELS
This page took 0.168408 seconds and 5 git commands to generate.