KVM: Disallow fork() and similar games when using a VM
[deliverable/linux.git] / drivers / kvm / x86.c
CommitLineData
043405e1
CO
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
313a3dc7 17#include "kvm.h"
043405e1 18#include "x86.h"
d825ed0a 19#include "x86_emulate.h"
5fb76f9b 20#include "segment_descriptor.h"
313a3dc7
CO
21#include "irq.h"
22
23#include <linux/kvm.h>
24#include <linux/fs.h>
25#include <linux/vmalloc.h>
5fb76f9b 26#include <linux/module.h>
0de10343 27#include <linux/mman.h>
043405e1
CO
28
29#include <asm/uaccess.h>
d825ed0a 30#include <asm/msr.h>
043405e1 31
313a3dc7 32#define MAX_IO_MSRS 256
a03490ed
CO
33#define CR0_RESERVED_BITS \
34 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
35 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
36 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
37#define CR4_RESERVED_BITS \
38 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
39 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
40 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
41 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
42
43#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
15c4a640 44#define EFER_RESERVED_BITS 0xfffffffffffff2fe
313a3dc7 45
ba1389b7
AK
46#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
47#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
417bc304 48
97896d04
ZX
49struct kvm_x86_ops *kvm_x86_ops;
50
417bc304 51struct kvm_stats_debugfs_item debugfs_entries[] = {
ba1389b7
AK
52 { "pf_fixed", VCPU_STAT(pf_fixed) },
53 { "pf_guest", VCPU_STAT(pf_guest) },
54 { "tlb_flush", VCPU_STAT(tlb_flush) },
55 { "invlpg", VCPU_STAT(invlpg) },
56 { "exits", VCPU_STAT(exits) },
57 { "io_exits", VCPU_STAT(io_exits) },
58 { "mmio_exits", VCPU_STAT(mmio_exits) },
59 { "signal_exits", VCPU_STAT(signal_exits) },
60 { "irq_window", VCPU_STAT(irq_window_exits) },
61 { "halt_exits", VCPU_STAT(halt_exits) },
62 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
63 { "request_irq", VCPU_STAT(request_irq_exits) },
64 { "irq_exits", VCPU_STAT(irq_exits) },
65 { "host_state_reload", VCPU_STAT(host_state_reload) },
66 { "efer_reload", VCPU_STAT(efer_reload) },
67 { "fpu_reload", VCPU_STAT(fpu_reload) },
68 { "insn_emulation", VCPU_STAT(insn_emulation) },
69 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
4cee5764
AK
70 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
71 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
72 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
73 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
74 { "mmu_flooded", VM_STAT(mmu_flooded) },
75 { "mmu_recycled", VM_STAT(mmu_recycled) },
0f74a24c 76 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
417bc304
HB
77 { NULL }
78};
79
80
5fb76f9b
CO
81unsigned long segment_base(u16 selector)
82{
83 struct descriptor_table gdt;
84 struct segment_descriptor *d;
85 unsigned long table_base;
86 unsigned long v;
87
88 if (selector == 0)
89 return 0;
90
91 asm("sgdt %0" : "=m"(gdt));
92 table_base = gdt.base;
93
94 if (selector & 4) { /* from ldt */
95 u16 ldt_selector;
96
97 asm("sldt %0" : "=g"(ldt_selector));
98 table_base = segment_base(ldt_selector);
99 }
100 d = (struct segment_descriptor *)(table_base + (selector & ~7));
101 v = d->base_low | ((unsigned long)d->base_mid << 16) |
102 ((unsigned long)d->base_high << 24);
103#ifdef CONFIG_X86_64
104 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
105 v |= ((unsigned long) \
106 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
107#endif
108 return v;
109}
110EXPORT_SYMBOL_GPL(segment_base);
111
6866b83e
CO
112u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
113{
114 if (irqchip_in_kernel(vcpu->kvm))
115 return vcpu->apic_base;
116 else
117 return vcpu->apic_base;
118}
119EXPORT_SYMBOL_GPL(kvm_get_apic_base);
120
121void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
122{
123 /* TODO: reserve bits check */
124 if (irqchip_in_kernel(vcpu->kvm))
125 kvm_lapic_set_base(vcpu, data);
126 else
127 vcpu->apic_base = data;
128}
129EXPORT_SYMBOL_GPL(kvm_set_apic_base);
130
a03490ed
CO
131static void inject_gp(struct kvm_vcpu *vcpu)
132{
133 kvm_x86_ops->inject_gp(vcpu, 0);
134}
135
136/*
137 * Load the pae pdptrs. Return true is they are all valid.
138 */
139int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
140{
141 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
142 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
143 int i;
144 int ret;
145 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
146
147 mutex_lock(&vcpu->kvm->lock);
148 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
149 offset * sizeof(u64), sizeof(pdpte));
150 if (ret < 0) {
151 ret = 0;
152 goto out;
153 }
154 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
155 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
156 ret = 0;
157 goto out;
158 }
159 }
160 ret = 1;
161
162 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
163out:
164 mutex_unlock(&vcpu->kvm->lock);
165
166 return ret;
167}
168
d835dfec
AK
169static bool pdptrs_changed(struct kvm_vcpu *vcpu)
170{
171 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
172 bool changed = true;
173 int r;
174
175 if (is_long_mode(vcpu) || !is_pae(vcpu))
176 return false;
177
178 mutex_lock(&vcpu->kvm->lock);
179 r = kvm_read_guest(vcpu->kvm, vcpu->cr3 & ~31u, pdpte, sizeof(pdpte));
180 if (r < 0)
181 goto out;
182 changed = memcmp(pdpte, vcpu->pdptrs, sizeof(pdpte)) != 0;
183out:
184 mutex_unlock(&vcpu->kvm->lock);
185
186 return changed;
187}
188
a03490ed
CO
189void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
190{
191 if (cr0 & CR0_RESERVED_BITS) {
192 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
193 cr0, vcpu->cr0);
194 inject_gp(vcpu);
195 return;
196 }
197
198 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
199 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
200 inject_gp(vcpu);
201 return;
202 }
203
204 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
205 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
206 "and a clear PE flag\n");
207 inject_gp(vcpu);
208 return;
209 }
210
211 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
212#ifdef CONFIG_X86_64
213 if ((vcpu->shadow_efer & EFER_LME)) {
214 int cs_db, cs_l;
215
216 if (!is_pae(vcpu)) {
217 printk(KERN_DEBUG "set_cr0: #GP, start paging "
218 "in long mode while PAE is disabled\n");
219 inject_gp(vcpu);
220 return;
221 }
222 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
223 if (cs_l) {
224 printk(KERN_DEBUG "set_cr0: #GP, start paging "
225 "in long mode while CS.L == 1\n");
226 inject_gp(vcpu);
227 return;
228
229 }
230 } else
231#endif
232 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
233 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
234 "reserved bits\n");
235 inject_gp(vcpu);
236 return;
237 }
238
239 }
240
241 kvm_x86_ops->set_cr0(vcpu, cr0);
242 vcpu->cr0 = cr0;
243
244 mutex_lock(&vcpu->kvm->lock);
245 kvm_mmu_reset_context(vcpu);
246 mutex_unlock(&vcpu->kvm->lock);
247 return;
248}
249EXPORT_SYMBOL_GPL(set_cr0);
250
251void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
252{
253 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
254}
255EXPORT_SYMBOL_GPL(lmsw);
256
257void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
258{
259 if (cr4 & CR4_RESERVED_BITS) {
260 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
261 inject_gp(vcpu);
262 return;
263 }
264
265 if (is_long_mode(vcpu)) {
266 if (!(cr4 & X86_CR4_PAE)) {
267 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
268 "in long mode\n");
269 inject_gp(vcpu);
270 return;
271 }
272 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
273 && !load_pdptrs(vcpu, vcpu->cr3)) {
274 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
275 inject_gp(vcpu);
276 return;
277 }
278
279 if (cr4 & X86_CR4_VMXE) {
280 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
281 inject_gp(vcpu);
282 return;
283 }
284 kvm_x86_ops->set_cr4(vcpu, cr4);
285 vcpu->cr4 = cr4;
286 mutex_lock(&vcpu->kvm->lock);
287 kvm_mmu_reset_context(vcpu);
288 mutex_unlock(&vcpu->kvm->lock);
289}
290EXPORT_SYMBOL_GPL(set_cr4);
291
292void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
293{
d835dfec
AK
294 if (cr3 == vcpu->cr3 && !pdptrs_changed(vcpu)) {
295 kvm_mmu_flush_tlb(vcpu);
296 return;
297 }
298
a03490ed
CO
299 if (is_long_mode(vcpu)) {
300 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
301 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
302 inject_gp(vcpu);
303 return;
304 }
305 } else {
306 if (is_pae(vcpu)) {
307 if (cr3 & CR3_PAE_RESERVED_BITS) {
308 printk(KERN_DEBUG
309 "set_cr3: #GP, reserved bits\n");
310 inject_gp(vcpu);
311 return;
312 }
313 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
314 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
315 "reserved bits\n");
316 inject_gp(vcpu);
317 return;
318 }
319 }
320 /*
321 * We don't check reserved bits in nonpae mode, because
322 * this isn't enforced, and VMware depends on this.
323 */
324 }
325
326 mutex_lock(&vcpu->kvm->lock);
327 /*
328 * Does the new cr3 value map to physical memory? (Note, we
329 * catch an invalid cr3 even in real-mode, because it would
330 * cause trouble later on when we turn on paging anyway.)
331 *
332 * A real CPU would silently accept an invalid cr3 and would
333 * attempt to use it - with largely undefined (and often hard
334 * to debug) behavior on the guest side.
335 */
336 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
337 inject_gp(vcpu);
338 else {
339 vcpu->cr3 = cr3;
340 vcpu->mmu.new_cr3(vcpu);
341 }
342 mutex_unlock(&vcpu->kvm->lock);
343}
344EXPORT_SYMBOL_GPL(set_cr3);
345
346void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
347{
348 if (cr8 & CR8_RESERVED_BITS) {
349 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
350 inject_gp(vcpu);
351 return;
352 }
353 if (irqchip_in_kernel(vcpu->kvm))
354 kvm_lapic_set_tpr(vcpu, cr8);
355 else
356 vcpu->cr8 = cr8;
357}
358EXPORT_SYMBOL_GPL(set_cr8);
359
360unsigned long get_cr8(struct kvm_vcpu *vcpu)
361{
362 if (irqchip_in_kernel(vcpu->kvm))
363 return kvm_lapic_get_cr8(vcpu);
364 else
365 return vcpu->cr8;
366}
367EXPORT_SYMBOL_GPL(get_cr8);
368
043405e1
CO
369/*
370 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
371 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
372 *
373 * This list is modified at module load time to reflect the
374 * capabilities of the host cpu.
375 */
376static u32 msrs_to_save[] = {
377 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
378 MSR_K6_STAR,
379#ifdef CONFIG_X86_64
380 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
381#endif
382 MSR_IA32_TIME_STAMP_COUNTER,
383};
384
385static unsigned num_msrs_to_save;
386
387static u32 emulated_msrs[] = {
388 MSR_IA32_MISC_ENABLE,
389};
390
15c4a640
CO
391#ifdef CONFIG_X86_64
392
393static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
394{
395 if (efer & EFER_RESERVED_BITS) {
396 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
397 efer);
398 inject_gp(vcpu);
399 return;
400 }
401
402 if (is_paging(vcpu)
403 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
404 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
405 inject_gp(vcpu);
406 return;
407 }
408
409 kvm_x86_ops->set_efer(vcpu, efer);
410
411 efer &= ~EFER_LMA;
412 efer |= vcpu->shadow_efer & EFER_LMA;
413
414 vcpu->shadow_efer = efer;
415}
416
417#endif
418
419/*
420 * Writes msr value into into the appropriate "register".
421 * Returns 0 on success, non-0 otherwise.
422 * Assumes vcpu_load() was already called.
423 */
424int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
425{
426 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
427}
428
313a3dc7
CO
429/*
430 * Adapt set_msr() to msr_io()'s calling convention
431 */
432static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
433{
434 return kvm_set_msr(vcpu, index, *data);
435}
436
15c4a640
CO
437
438int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
439{
440 switch (msr) {
441#ifdef CONFIG_X86_64
442 case MSR_EFER:
443 set_efer(vcpu, data);
444 break;
445#endif
446 case MSR_IA32_MC0_STATUS:
447 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
448 __FUNCTION__, data);
449 break;
450 case MSR_IA32_MCG_STATUS:
451 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
452 __FUNCTION__, data);
453 break;
454 case MSR_IA32_UCODE_REV:
455 case MSR_IA32_UCODE_WRITE:
456 case 0x200 ... 0x2ff: /* MTRRs */
457 break;
458 case MSR_IA32_APICBASE:
459 kvm_set_apic_base(vcpu, data);
460 break;
461 case MSR_IA32_MISC_ENABLE:
462 vcpu->ia32_misc_enable_msr = data;
463 break;
464 default:
465 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
466 return 1;
467 }
468 return 0;
469}
470EXPORT_SYMBOL_GPL(kvm_set_msr_common);
471
472
473/*
474 * Reads an msr value (of 'msr_index') into 'pdata'.
475 * Returns 0 on success, non-0 otherwise.
476 * Assumes vcpu_load() was already called.
477 */
478int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
479{
480 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
481}
482
483int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
484{
485 u64 data;
486
487 switch (msr) {
488 case 0xc0010010: /* SYSCFG */
489 case 0xc0010015: /* HWCR */
490 case MSR_IA32_PLATFORM_ID:
491 case MSR_IA32_P5_MC_ADDR:
492 case MSR_IA32_P5_MC_TYPE:
493 case MSR_IA32_MC0_CTL:
494 case MSR_IA32_MCG_STATUS:
495 case MSR_IA32_MCG_CAP:
496 case MSR_IA32_MC0_MISC:
497 case MSR_IA32_MC0_MISC+4:
498 case MSR_IA32_MC0_MISC+8:
499 case MSR_IA32_MC0_MISC+12:
500 case MSR_IA32_MC0_MISC+16:
501 case MSR_IA32_UCODE_REV:
502 case MSR_IA32_PERF_STATUS:
503 case MSR_IA32_EBL_CR_POWERON:
504 /* MTRR registers */
505 case 0xfe:
506 case 0x200 ... 0x2ff:
507 data = 0;
508 break;
509 case 0xcd: /* fsb frequency */
510 data = 3;
511 break;
512 case MSR_IA32_APICBASE:
513 data = kvm_get_apic_base(vcpu);
514 break;
515 case MSR_IA32_MISC_ENABLE:
516 data = vcpu->ia32_misc_enable_msr;
517 break;
518#ifdef CONFIG_X86_64
519 case MSR_EFER:
520 data = vcpu->shadow_efer;
521 break;
522#endif
523 default:
524 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
525 return 1;
526 }
527 *pdata = data;
528 return 0;
529}
530EXPORT_SYMBOL_GPL(kvm_get_msr_common);
531
313a3dc7
CO
532/*
533 * Read or write a bunch of msrs. All parameters are kernel addresses.
534 *
535 * @return number of msrs set successfully.
536 */
537static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
538 struct kvm_msr_entry *entries,
539 int (*do_msr)(struct kvm_vcpu *vcpu,
540 unsigned index, u64 *data))
541{
542 int i;
543
544 vcpu_load(vcpu);
545
546 for (i = 0; i < msrs->nmsrs; ++i)
547 if (do_msr(vcpu, entries[i].index, &entries[i].data))
548 break;
549
550 vcpu_put(vcpu);
551
552 return i;
553}
554
555/*
556 * Read or write a bunch of msrs. Parameters are user addresses.
557 *
558 * @return number of msrs set successfully.
559 */
560static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
561 int (*do_msr)(struct kvm_vcpu *vcpu,
562 unsigned index, u64 *data),
563 int writeback)
564{
565 struct kvm_msrs msrs;
566 struct kvm_msr_entry *entries;
567 int r, n;
568 unsigned size;
569
570 r = -EFAULT;
571 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
572 goto out;
573
574 r = -E2BIG;
575 if (msrs.nmsrs >= MAX_IO_MSRS)
576 goto out;
577
578 r = -ENOMEM;
579 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
580 entries = vmalloc(size);
581 if (!entries)
582 goto out;
583
584 r = -EFAULT;
585 if (copy_from_user(entries, user_msrs->entries, size))
586 goto out_free;
587
588 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
589 if (r < 0)
590 goto out_free;
591
592 r = -EFAULT;
593 if (writeback && copy_to_user(user_msrs->entries, entries, size))
594 goto out_free;
595
596 r = n;
597
598out_free:
599 vfree(entries);
600out:
601 return r;
602}
603
e9b11c17
ZX
604/*
605 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
606 * cached on it.
607 */
608void decache_vcpus_on_cpu(int cpu)
609{
610 struct kvm *vm;
611 struct kvm_vcpu *vcpu;
612 int i;
613
614 spin_lock(&kvm_lock);
615 list_for_each_entry(vm, &vm_list, vm_list)
616 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
617 vcpu = vm->vcpus[i];
618 if (!vcpu)
619 continue;
620 /*
621 * If the vcpu is locked, then it is running on some
622 * other cpu and therefore it is not cached on the
623 * cpu in question.
624 *
625 * If it's not locked, check the last cpu it executed
626 * on.
627 */
628 if (mutex_trylock(&vcpu->mutex)) {
629 if (vcpu->cpu == cpu) {
630 kvm_x86_ops->vcpu_decache(vcpu);
631 vcpu->cpu = -1;
632 }
633 mutex_unlock(&vcpu->mutex);
634 }
635 }
636 spin_unlock(&kvm_lock);
637}
638
018d00d2
ZX
639int kvm_dev_ioctl_check_extension(long ext)
640{
641 int r;
642
643 switch (ext) {
644 case KVM_CAP_IRQCHIP:
645 case KVM_CAP_HLT:
646 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
647 case KVM_CAP_USER_MEMORY:
648 case KVM_CAP_SET_TSS_ADDR:
649 r = 1;
650 break;
651 default:
652 r = 0;
653 break;
654 }
655 return r;
656
657}
658
043405e1
CO
659long kvm_arch_dev_ioctl(struct file *filp,
660 unsigned int ioctl, unsigned long arg)
661{
662 void __user *argp = (void __user *)arg;
663 long r;
664
665 switch (ioctl) {
666 case KVM_GET_MSR_INDEX_LIST: {
667 struct kvm_msr_list __user *user_msr_list = argp;
668 struct kvm_msr_list msr_list;
669 unsigned n;
670
671 r = -EFAULT;
672 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
673 goto out;
674 n = msr_list.nmsrs;
675 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
676 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
677 goto out;
678 r = -E2BIG;
679 if (n < num_msrs_to_save)
680 goto out;
681 r = -EFAULT;
682 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
683 num_msrs_to_save * sizeof(u32)))
684 goto out;
685 if (copy_to_user(user_msr_list->indices
686 + num_msrs_to_save * sizeof(u32),
687 &emulated_msrs,
688 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
689 goto out;
690 r = 0;
691 break;
692 }
693 default:
694 r = -EINVAL;
695 }
696out:
697 return r;
698}
699
313a3dc7
CO
700void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
701{
702 kvm_x86_ops->vcpu_load(vcpu, cpu);
703}
704
705void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
706{
707 kvm_x86_ops->vcpu_put(vcpu);
9327fd11 708 kvm_put_guest_fpu(vcpu);
313a3dc7
CO
709}
710
711static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
712{
713 u64 efer;
714 int i;
715 struct kvm_cpuid_entry *e, *entry;
716
717 rdmsrl(MSR_EFER, efer);
718 entry = NULL;
719 for (i = 0; i < vcpu->cpuid_nent; ++i) {
720 e = &vcpu->cpuid_entries[i];
721 if (e->function == 0x80000001) {
722 entry = e;
723 break;
724 }
725 }
726 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
727 entry->edx &= ~(1 << 20);
728 printk(KERN_INFO "kvm: guest NX capability removed\n");
729 }
730}
731
732static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
733 struct kvm_cpuid *cpuid,
734 struct kvm_cpuid_entry __user *entries)
735{
736 int r;
737
738 r = -E2BIG;
739 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
740 goto out;
741 r = -EFAULT;
742 if (copy_from_user(&vcpu->cpuid_entries, entries,
743 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
744 goto out;
745 vcpu->cpuid_nent = cpuid->nent;
746 cpuid_fix_nx_cap(vcpu);
747 return 0;
748
749out:
750 return r;
751}
752
753static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
754 struct kvm_lapic_state *s)
755{
756 vcpu_load(vcpu);
757 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
758 vcpu_put(vcpu);
759
760 return 0;
761}
762
763static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
764 struct kvm_lapic_state *s)
765{
766 vcpu_load(vcpu);
767 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
768 kvm_apic_post_state_restore(vcpu);
769 vcpu_put(vcpu);
770
771 return 0;
772}
773
774long kvm_arch_vcpu_ioctl(struct file *filp,
775 unsigned int ioctl, unsigned long arg)
776{
777 struct kvm_vcpu *vcpu = filp->private_data;
778 void __user *argp = (void __user *)arg;
779 int r;
780
781 switch (ioctl) {
782 case KVM_GET_LAPIC: {
783 struct kvm_lapic_state lapic;
784
785 memset(&lapic, 0, sizeof lapic);
786 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
787 if (r)
788 goto out;
789 r = -EFAULT;
790 if (copy_to_user(argp, &lapic, sizeof lapic))
791 goto out;
792 r = 0;
793 break;
794 }
795 case KVM_SET_LAPIC: {
796 struct kvm_lapic_state lapic;
797
798 r = -EFAULT;
799 if (copy_from_user(&lapic, argp, sizeof lapic))
800 goto out;
801 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
802 if (r)
803 goto out;
804 r = 0;
805 break;
806 }
807 case KVM_SET_CPUID: {
808 struct kvm_cpuid __user *cpuid_arg = argp;
809 struct kvm_cpuid cpuid;
810
811 r = -EFAULT;
812 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
813 goto out;
814 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
815 if (r)
816 goto out;
817 break;
818 }
819 case KVM_GET_MSRS:
820 r = msr_io(vcpu, argp, kvm_get_msr, 1);
821 break;
822 case KVM_SET_MSRS:
823 r = msr_io(vcpu, argp, do_set_msr, 0);
824 break;
825 default:
826 r = -EINVAL;
827 }
828out:
829 return r;
830}
831
1fe779f8
CO
832static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
833{
834 int ret;
835
836 if (addr > (unsigned int)(-3 * PAGE_SIZE))
837 return -1;
838 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
839 return ret;
840}
841
842static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
843 u32 kvm_nr_mmu_pages)
844{
845 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
846 return -EINVAL;
847
848 mutex_lock(&kvm->lock);
849
850 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
851 kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
852
853 mutex_unlock(&kvm->lock);
854 return 0;
855}
856
857static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
858{
859 return kvm->n_alloc_mmu_pages;
860}
861
862/*
863 * Set a new alias region. Aliases map a portion of physical memory into
864 * another portion. This is useful for memory windows, for example the PC
865 * VGA region.
866 */
867static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
868 struct kvm_memory_alias *alias)
869{
870 int r, n;
871 struct kvm_mem_alias *p;
872
873 r = -EINVAL;
874 /* General sanity checks */
875 if (alias->memory_size & (PAGE_SIZE - 1))
876 goto out;
877 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
878 goto out;
879 if (alias->slot >= KVM_ALIAS_SLOTS)
880 goto out;
881 if (alias->guest_phys_addr + alias->memory_size
882 < alias->guest_phys_addr)
883 goto out;
884 if (alias->target_phys_addr + alias->memory_size
885 < alias->target_phys_addr)
886 goto out;
887
888 mutex_lock(&kvm->lock);
889
890 p = &kvm->aliases[alias->slot];
891 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
892 p->npages = alias->memory_size >> PAGE_SHIFT;
893 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
894
895 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
896 if (kvm->aliases[n - 1].npages)
897 break;
898 kvm->naliases = n;
899
900 kvm_mmu_zap_all(kvm);
901
902 mutex_unlock(&kvm->lock);
903
904 return 0;
905
906out:
907 return r;
908}
909
910static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
911{
912 int r;
913
914 r = 0;
915 switch (chip->chip_id) {
916 case KVM_IRQCHIP_PIC_MASTER:
917 memcpy(&chip->chip.pic,
918 &pic_irqchip(kvm)->pics[0],
919 sizeof(struct kvm_pic_state));
920 break;
921 case KVM_IRQCHIP_PIC_SLAVE:
922 memcpy(&chip->chip.pic,
923 &pic_irqchip(kvm)->pics[1],
924 sizeof(struct kvm_pic_state));
925 break;
926 case KVM_IRQCHIP_IOAPIC:
927 memcpy(&chip->chip.ioapic,
928 ioapic_irqchip(kvm),
929 sizeof(struct kvm_ioapic_state));
930 break;
931 default:
932 r = -EINVAL;
933 break;
934 }
935 return r;
936}
937
938static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
939{
940 int r;
941
942 r = 0;
943 switch (chip->chip_id) {
944 case KVM_IRQCHIP_PIC_MASTER:
945 memcpy(&pic_irqchip(kvm)->pics[0],
946 &chip->chip.pic,
947 sizeof(struct kvm_pic_state));
948 break;
949 case KVM_IRQCHIP_PIC_SLAVE:
950 memcpy(&pic_irqchip(kvm)->pics[1],
951 &chip->chip.pic,
952 sizeof(struct kvm_pic_state));
953 break;
954 case KVM_IRQCHIP_IOAPIC:
955 memcpy(ioapic_irqchip(kvm),
956 &chip->chip.ioapic,
957 sizeof(struct kvm_ioapic_state));
958 break;
959 default:
960 r = -EINVAL;
961 break;
962 }
963 kvm_pic_update_irq(pic_irqchip(kvm));
964 return r;
965}
966
5bb064dc
ZX
967/*
968 * Get (and clear) the dirty memory log for a memory slot.
969 */
970int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
971 struct kvm_dirty_log *log)
972{
973 int r;
974 int n;
975 struct kvm_memory_slot *memslot;
976 int is_dirty = 0;
977
978 mutex_lock(&kvm->lock);
979
980 r = kvm_get_dirty_log(kvm, log, &is_dirty);
981 if (r)
982 goto out;
983
984 /* If nothing is dirty, don't bother messing with page tables. */
985 if (is_dirty) {
986 kvm_mmu_slot_remove_write_access(kvm, log->slot);
987 kvm_flush_remote_tlbs(kvm);
988 memslot = &kvm->memslots[log->slot];
989 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
990 memset(memslot->dirty_bitmap, 0, n);
991 }
992 r = 0;
993out:
994 mutex_unlock(&kvm->lock);
995 return r;
996}
997
1fe779f8
CO
998long kvm_arch_vm_ioctl(struct file *filp,
999 unsigned int ioctl, unsigned long arg)
1000{
1001 struct kvm *kvm = filp->private_data;
1002 void __user *argp = (void __user *)arg;
1003 int r = -EINVAL;
1004
1005 switch (ioctl) {
1006 case KVM_SET_TSS_ADDR:
1007 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1008 if (r < 0)
1009 goto out;
1010 break;
1011 case KVM_SET_MEMORY_REGION: {
1012 struct kvm_memory_region kvm_mem;
1013 struct kvm_userspace_memory_region kvm_userspace_mem;
1014
1015 r = -EFAULT;
1016 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1017 goto out;
1018 kvm_userspace_mem.slot = kvm_mem.slot;
1019 kvm_userspace_mem.flags = kvm_mem.flags;
1020 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1021 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1022 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1023 if (r)
1024 goto out;
1025 break;
1026 }
1027 case KVM_SET_NR_MMU_PAGES:
1028 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1029 if (r)
1030 goto out;
1031 break;
1032 case KVM_GET_NR_MMU_PAGES:
1033 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1034 break;
1035 case KVM_SET_MEMORY_ALIAS: {
1036 struct kvm_memory_alias alias;
1037
1038 r = -EFAULT;
1039 if (copy_from_user(&alias, argp, sizeof alias))
1040 goto out;
1041 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1042 if (r)
1043 goto out;
1044 break;
1045 }
1046 case KVM_CREATE_IRQCHIP:
1047 r = -ENOMEM;
1048 kvm->vpic = kvm_create_pic(kvm);
1049 if (kvm->vpic) {
1050 r = kvm_ioapic_init(kvm);
1051 if (r) {
1052 kfree(kvm->vpic);
1053 kvm->vpic = NULL;
1054 goto out;
1055 }
1056 } else
1057 goto out;
1058 break;
1059 case KVM_IRQ_LINE: {
1060 struct kvm_irq_level irq_event;
1061
1062 r = -EFAULT;
1063 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1064 goto out;
1065 if (irqchip_in_kernel(kvm)) {
1066 mutex_lock(&kvm->lock);
1067 if (irq_event.irq < 16)
1068 kvm_pic_set_irq(pic_irqchip(kvm),
1069 irq_event.irq,
1070 irq_event.level);
1071 kvm_ioapic_set_irq(kvm->vioapic,
1072 irq_event.irq,
1073 irq_event.level);
1074 mutex_unlock(&kvm->lock);
1075 r = 0;
1076 }
1077 break;
1078 }
1079 case KVM_GET_IRQCHIP: {
1080 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1081 struct kvm_irqchip chip;
1082
1083 r = -EFAULT;
1084 if (copy_from_user(&chip, argp, sizeof chip))
1085 goto out;
1086 r = -ENXIO;
1087 if (!irqchip_in_kernel(kvm))
1088 goto out;
1089 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1090 if (r)
1091 goto out;
1092 r = -EFAULT;
1093 if (copy_to_user(argp, &chip, sizeof chip))
1094 goto out;
1095 r = 0;
1096 break;
1097 }
1098 case KVM_SET_IRQCHIP: {
1099 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1100 struct kvm_irqchip chip;
1101
1102 r = -EFAULT;
1103 if (copy_from_user(&chip, argp, sizeof chip))
1104 goto out;
1105 r = -ENXIO;
1106 if (!irqchip_in_kernel(kvm))
1107 goto out;
1108 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1109 if (r)
1110 goto out;
1111 r = 0;
1112 break;
1113 }
1114 default:
1115 ;
1116 }
1117out:
1118 return r;
1119}
1120
a16b043c 1121static void kvm_init_msr_list(void)
043405e1
CO
1122{
1123 u32 dummy[2];
1124 unsigned i, j;
1125
1126 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1127 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1128 continue;
1129 if (j < i)
1130 msrs_to_save[j] = msrs_to_save[i];
1131 j++;
1132 }
1133 num_msrs_to_save = j;
1134}
1135
bbd9b64e
CO
1136/*
1137 * Only apic need an MMIO device hook, so shortcut now..
1138 */
1139static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1140 gpa_t addr)
1141{
1142 struct kvm_io_device *dev;
1143
1144 if (vcpu->apic) {
1145 dev = &vcpu->apic->dev;
1146 if (dev->in_range(dev, addr))
1147 return dev;
1148 }
1149 return NULL;
1150}
1151
1152
1153static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1154 gpa_t addr)
1155{
1156 struct kvm_io_device *dev;
1157
1158 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1159 if (dev == NULL)
1160 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1161 return dev;
1162}
1163
1164int emulator_read_std(unsigned long addr,
1165 void *val,
1166 unsigned int bytes,
1167 struct kvm_vcpu *vcpu)
1168{
1169 void *data = val;
1170
1171 while (bytes) {
1172 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1173 unsigned offset = addr & (PAGE_SIZE-1);
1174 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1175 int ret;
1176
1177 if (gpa == UNMAPPED_GVA)
1178 return X86EMUL_PROPAGATE_FAULT;
1179 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1180 if (ret < 0)
1181 return X86EMUL_UNHANDLEABLE;
1182
1183 bytes -= tocopy;
1184 data += tocopy;
1185 addr += tocopy;
1186 }
1187
1188 return X86EMUL_CONTINUE;
1189}
1190EXPORT_SYMBOL_GPL(emulator_read_std);
1191
bbd9b64e
CO
1192static int emulator_read_emulated(unsigned long addr,
1193 void *val,
1194 unsigned int bytes,
1195 struct kvm_vcpu *vcpu)
1196{
1197 struct kvm_io_device *mmio_dev;
1198 gpa_t gpa;
1199
1200 if (vcpu->mmio_read_completed) {
1201 memcpy(val, vcpu->mmio_data, bytes);
1202 vcpu->mmio_read_completed = 0;
1203 return X86EMUL_CONTINUE;
1204 }
1205
1206 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1207
1208 /* For APIC access vmexit */
1209 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1210 goto mmio;
1211
1212 if (emulator_read_std(addr, val, bytes, vcpu)
1213 == X86EMUL_CONTINUE)
1214 return X86EMUL_CONTINUE;
1215 if (gpa == UNMAPPED_GVA)
1216 return X86EMUL_PROPAGATE_FAULT;
1217
1218mmio:
1219 /*
1220 * Is this MMIO handled locally?
1221 */
1222 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1223 if (mmio_dev) {
1224 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1225 return X86EMUL_CONTINUE;
1226 }
1227
1228 vcpu->mmio_needed = 1;
1229 vcpu->mmio_phys_addr = gpa;
1230 vcpu->mmio_size = bytes;
1231 vcpu->mmio_is_write = 0;
1232
1233 return X86EMUL_UNHANDLEABLE;
1234}
1235
1236static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1237 const void *val, int bytes)
1238{
1239 int ret;
1240
1241 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1242 if (ret < 0)
1243 return 0;
1244 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1245 return 1;
1246}
1247
1248static int emulator_write_emulated_onepage(unsigned long addr,
1249 const void *val,
1250 unsigned int bytes,
1251 struct kvm_vcpu *vcpu)
1252{
1253 struct kvm_io_device *mmio_dev;
1254 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1255
1256 if (gpa == UNMAPPED_GVA) {
1257 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1258 return X86EMUL_PROPAGATE_FAULT;
1259 }
1260
1261 /* For APIC access vmexit */
1262 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1263 goto mmio;
1264
1265 if (emulator_write_phys(vcpu, gpa, val, bytes))
1266 return X86EMUL_CONTINUE;
1267
1268mmio:
1269 /*
1270 * Is this MMIO handled locally?
1271 */
1272 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1273 if (mmio_dev) {
1274 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1275 return X86EMUL_CONTINUE;
1276 }
1277
1278 vcpu->mmio_needed = 1;
1279 vcpu->mmio_phys_addr = gpa;
1280 vcpu->mmio_size = bytes;
1281 vcpu->mmio_is_write = 1;
1282 memcpy(vcpu->mmio_data, val, bytes);
1283
1284 return X86EMUL_CONTINUE;
1285}
1286
1287int emulator_write_emulated(unsigned long addr,
1288 const void *val,
1289 unsigned int bytes,
1290 struct kvm_vcpu *vcpu)
1291{
1292 /* Crossing a page boundary? */
1293 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1294 int rc, now;
1295
1296 now = -addr & ~PAGE_MASK;
1297 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1298 if (rc != X86EMUL_CONTINUE)
1299 return rc;
1300 addr += now;
1301 val += now;
1302 bytes -= now;
1303 }
1304 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1305}
1306EXPORT_SYMBOL_GPL(emulator_write_emulated);
1307
1308static int emulator_cmpxchg_emulated(unsigned long addr,
1309 const void *old,
1310 const void *new,
1311 unsigned int bytes,
1312 struct kvm_vcpu *vcpu)
1313{
1314 static int reported;
1315
1316 if (!reported) {
1317 reported = 1;
1318 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1319 }
1320 return emulator_write_emulated(addr, new, bytes, vcpu);
1321}
1322
1323static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1324{
1325 return kvm_x86_ops->get_segment_base(vcpu, seg);
1326}
1327
1328int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1329{
1330 return X86EMUL_CONTINUE;
1331}
1332
1333int emulate_clts(struct kvm_vcpu *vcpu)
1334{
1335 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1336 return X86EMUL_CONTINUE;
1337}
1338
1339int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1340{
1341 struct kvm_vcpu *vcpu = ctxt->vcpu;
1342
1343 switch (dr) {
1344 case 0 ... 3:
1345 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1346 return X86EMUL_CONTINUE;
1347 default:
1348 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1349 return X86EMUL_UNHANDLEABLE;
1350 }
1351}
1352
1353int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1354{
1355 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1356 int exception;
1357
1358 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1359 if (exception) {
1360 /* FIXME: better handling */
1361 return X86EMUL_UNHANDLEABLE;
1362 }
1363 return X86EMUL_CONTINUE;
1364}
1365
1366void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1367{
1368 static int reported;
1369 u8 opcodes[4];
1370 unsigned long rip = vcpu->rip;
1371 unsigned long rip_linear;
1372
1373 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1374
1375 if (reported)
1376 return;
1377
1378 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1379
1380 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1381 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1382 reported = 1;
1383}
1384EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1385
1386struct x86_emulate_ops emulate_ops = {
1387 .read_std = emulator_read_std,
bbd9b64e
CO
1388 .read_emulated = emulator_read_emulated,
1389 .write_emulated = emulator_write_emulated,
1390 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1391};
1392
1393int emulate_instruction(struct kvm_vcpu *vcpu,
1394 struct kvm_run *run,
1395 unsigned long cr2,
1396 u16 error_code,
1397 int no_decode)
1398{
1399 int r;
1400
1401 vcpu->mmio_fault_cr2 = cr2;
1402 kvm_x86_ops->cache_regs(vcpu);
1403
1404 vcpu->mmio_is_write = 0;
1405 vcpu->pio.string = 0;
1406
1407 if (!no_decode) {
1408 int cs_db, cs_l;
1409 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1410
1411 vcpu->emulate_ctxt.vcpu = vcpu;
1412 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1413 vcpu->emulate_ctxt.cr2 = cr2;
1414 vcpu->emulate_ctxt.mode =
1415 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1416 ? X86EMUL_MODE_REAL : cs_l
1417 ? X86EMUL_MODE_PROT64 : cs_db
1418 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1419
1420 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1421 vcpu->emulate_ctxt.cs_base = 0;
1422 vcpu->emulate_ctxt.ds_base = 0;
1423 vcpu->emulate_ctxt.es_base = 0;
1424 vcpu->emulate_ctxt.ss_base = 0;
1425 } else {
1426 vcpu->emulate_ctxt.cs_base =
1427 get_segment_base(vcpu, VCPU_SREG_CS);
1428 vcpu->emulate_ctxt.ds_base =
1429 get_segment_base(vcpu, VCPU_SREG_DS);
1430 vcpu->emulate_ctxt.es_base =
1431 get_segment_base(vcpu, VCPU_SREG_ES);
1432 vcpu->emulate_ctxt.ss_base =
1433 get_segment_base(vcpu, VCPU_SREG_SS);
1434 }
1435
1436 vcpu->emulate_ctxt.gs_base =
1437 get_segment_base(vcpu, VCPU_SREG_GS);
1438 vcpu->emulate_ctxt.fs_base =
1439 get_segment_base(vcpu, VCPU_SREG_FS);
1440
1441 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
f2b5756b 1442 ++vcpu->stat.insn_emulation;
bbd9b64e 1443 if (r) {
f2b5756b 1444 ++vcpu->stat.insn_emulation_fail;
bbd9b64e
CO
1445 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1446 return EMULATE_DONE;
1447 return EMULATE_FAIL;
1448 }
1449 }
1450
1451 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1452
1453 if (vcpu->pio.string)
1454 return EMULATE_DO_MMIO;
1455
1456 if ((r || vcpu->mmio_is_write) && run) {
1457 run->exit_reason = KVM_EXIT_MMIO;
1458 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1459 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1460 run->mmio.len = vcpu->mmio_size;
1461 run->mmio.is_write = vcpu->mmio_is_write;
1462 }
1463
1464 if (r) {
1465 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1466 return EMULATE_DONE;
1467 if (!vcpu->mmio_needed) {
1468 kvm_report_emulation_failure(vcpu, "mmio");
1469 return EMULATE_FAIL;
1470 }
1471 return EMULATE_DO_MMIO;
1472 }
1473
1474 kvm_x86_ops->decache_regs(vcpu);
1475 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1476
1477 if (vcpu->mmio_is_write) {
1478 vcpu->mmio_needed = 0;
1479 return EMULATE_DO_MMIO;
1480 }
1481
1482 return EMULATE_DONE;
1483}
1484EXPORT_SYMBOL_GPL(emulate_instruction);
1485
de7d789a
CO
1486static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
1487{
1488 int i;
1489
1490 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
1491 if (vcpu->pio.guest_pages[i]) {
b4231d61 1492 kvm_release_page_dirty(vcpu->pio.guest_pages[i]);
de7d789a
CO
1493 vcpu->pio.guest_pages[i] = NULL;
1494 }
1495}
1496
1497static int pio_copy_data(struct kvm_vcpu *vcpu)
1498{
1499 void *p = vcpu->pio_data;
1500 void *q;
1501 unsigned bytes;
1502 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1503
1504 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1505 PAGE_KERNEL);
1506 if (!q) {
1507 free_pio_guest_pages(vcpu);
1508 return -ENOMEM;
1509 }
1510 q += vcpu->pio.guest_page_offset;
1511 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1512 if (vcpu->pio.in)
1513 memcpy(q, p, bytes);
1514 else
1515 memcpy(p, q, bytes);
1516 q -= vcpu->pio.guest_page_offset;
1517 vunmap(q);
1518 free_pio_guest_pages(vcpu);
1519 return 0;
1520}
1521
1522int complete_pio(struct kvm_vcpu *vcpu)
1523{
1524 struct kvm_pio_request *io = &vcpu->pio;
1525 long delta;
1526 int r;
1527
1528 kvm_x86_ops->cache_regs(vcpu);
1529
1530 if (!io->string) {
1531 if (io->in)
1532 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1533 io->size);
1534 } else {
1535 if (io->in) {
1536 r = pio_copy_data(vcpu);
1537 if (r) {
1538 kvm_x86_ops->cache_regs(vcpu);
1539 return r;
1540 }
1541 }
1542
1543 delta = 1;
1544 if (io->rep) {
1545 delta *= io->cur_count;
1546 /*
1547 * The size of the register should really depend on
1548 * current address size.
1549 */
1550 vcpu->regs[VCPU_REGS_RCX] -= delta;
1551 }
1552 if (io->down)
1553 delta = -delta;
1554 delta *= io->size;
1555 if (io->in)
1556 vcpu->regs[VCPU_REGS_RDI] += delta;
1557 else
1558 vcpu->regs[VCPU_REGS_RSI] += delta;
1559 }
1560
1561 kvm_x86_ops->decache_regs(vcpu);
1562
1563 io->count -= io->cur_count;
1564 io->cur_count = 0;
1565
1566 return 0;
1567}
1568
1569static void kernel_pio(struct kvm_io_device *pio_dev,
1570 struct kvm_vcpu *vcpu,
1571 void *pd)
1572{
1573 /* TODO: String I/O for in kernel device */
1574
1575 mutex_lock(&vcpu->kvm->lock);
1576 if (vcpu->pio.in)
1577 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1578 vcpu->pio.size,
1579 pd);
1580 else
1581 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1582 vcpu->pio.size,
1583 pd);
1584 mutex_unlock(&vcpu->kvm->lock);
1585}
1586
1587static void pio_string_write(struct kvm_io_device *pio_dev,
1588 struct kvm_vcpu *vcpu)
1589{
1590 struct kvm_pio_request *io = &vcpu->pio;
1591 void *pd = vcpu->pio_data;
1592 int i;
1593
1594 mutex_lock(&vcpu->kvm->lock);
1595 for (i = 0; i < io->cur_count; i++) {
1596 kvm_iodevice_write(pio_dev, io->port,
1597 io->size,
1598 pd);
1599 pd += io->size;
1600 }
1601 mutex_unlock(&vcpu->kvm->lock);
1602}
1603
1604static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1605 gpa_t addr)
1606{
1607 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1608}
1609
1610int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1611 int size, unsigned port)
1612{
1613 struct kvm_io_device *pio_dev;
1614
1615 vcpu->run->exit_reason = KVM_EXIT_IO;
1616 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1617 vcpu->run->io.size = vcpu->pio.size = size;
1618 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1619 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1620 vcpu->run->io.port = vcpu->pio.port = port;
1621 vcpu->pio.in = in;
1622 vcpu->pio.string = 0;
1623 vcpu->pio.down = 0;
1624 vcpu->pio.guest_page_offset = 0;
1625 vcpu->pio.rep = 0;
1626
1627 kvm_x86_ops->cache_regs(vcpu);
1628 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1629 kvm_x86_ops->decache_regs(vcpu);
1630
1631 kvm_x86_ops->skip_emulated_instruction(vcpu);
1632
1633 pio_dev = vcpu_find_pio_dev(vcpu, port);
1634 if (pio_dev) {
1635 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1636 complete_pio(vcpu);
1637 return 1;
1638 }
1639 return 0;
1640}
1641EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1642
1643int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1644 int size, unsigned long count, int down,
1645 gva_t address, int rep, unsigned port)
1646{
1647 unsigned now, in_page;
1648 int i, ret = 0;
1649 int nr_pages = 1;
1650 struct page *page;
1651 struct kvm_io_device *pio_dev;
1652
1653 vcpu->run->exit_reason = KVM_EXIT_IO;
1654 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1655 vcpu->run->io.size = vcpu->pio.size = size;
1656 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1657 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1658 vcpu->run->io.port = vcpu->pio.port = port;
1659 vcpu->pio.in = in;
1660 vcpu->pio.string = 1;
1661 vcpu->pio.down = down;
1662 vcpu->pio.guest_page_offset = offset_in_page(address);
1663 vcpu->pio.rep = rep;
1664
1665 if (!count) {
1666 kvm_x86_ops->skip_emulated_instruction(vcpu);
1667 return 1;
1668 }
1669
1670 if (!down)
1671 in_page = PAGE_SIZE - offset_in_page(address);
1672 else
1673 in_page = offset_in_page(address) + size;
1674 now = min(count, (unsigned long)in_page / size);
1675 if (!now) {
1676 /*
1677 * String I/O straddles page boundary. Pin two guest pages
1678 * so that we satisfy atomicity constraints. Do just one
1679 * transaction to avoid complexity.
1680 */
1681 nr_pages = 2;
1682 now = 1;
1683 }
1684 if (down) {
1685 /*
1686 * String I/O in reverse. Yuck. Kill the guest, fix later.
1687 */
1688 pr_unimpl(vcpu, "guest string pio down\n");
1689 inject_gp(vcpu);
1690 return 1;
1691 }
1692 vcpu->run->io.count = now;
1693 vcpu->pio.cur_count = now;
1694
1695 if (vcpu->pio.cur_count == vcpu->pio.count)
1696 kvm_x86_ops->skip_emulated_instruction(vcpu);
1697
1698 for (i = 0; i < nr_pages; ++i) {
1699 mutex_lock(&vcpu->kvm->lock);
1700 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1701 vcpu->pio.guest_pages[i] = page;
1702 mutex_unlock(&vcpu->kvm->lock);
1703 if (!page) {
1704 inject_gp(vcpu);
1705 free_pio_guest_pages(vcpu);
1706 return 1;
1707 }
1708 }
1709
1710 pio_dev = vcpu_find_pio_dev(vcpu, port);
1711 if (!vcpu->pio.in) {
1712 /* string PIO write */
1713 ret = pio_copy_data(vcpu);
1714 if (ret >= 0 && pio_dev) {
1715 pio_string_write(pio_dev, vcpu);
1716 complete_pio(vcpu);
1717 if (vcpu->pio.count == 0)
1718 ret = 1;
1719 }
1720 } else if (pio_dev)
1721 pr_unimpl(vcpu, "no string pio read support yet, "
1722 "port %x size %d count %ld\n",
1723 port, size, count);
1724
1725 return ret;
1726}
1727EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1728
f8c16bba 1729int kvm_arch_init(void *opaque)
043405e1 1730{
56c6d28a 1731 int r;
f8c16bba
ZX
1732 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
1733
56c6d28a
ZX
1734 r = kvm_mmu_module_init();
1735 if (r)
1736 goto out_fail;
1737
043405e1 1738 kvm_init_msr_list();
f8c16bba
ZX
1739
1740 if (kvm_x86_ops) {
1741 printk(KERN_ERR "kvm: already loaded the other module\n");
56c6d28a
ZX
1742 r = -EEXIST;
1743 goto out;
f8c16bba
ZX
1744 }
1745
1746 if (!ops->cpu_has_kvm_support()) {
1747 printk(KERN_ERR "kvm: no hardware support\n");
56c6d28a
ZX
1748 r = -EOPNOTSUPP;
1749 goto out;
f8c16bba
ZX
1750 }
1751 if (ops->disabled_by_bios()) {
1752 printk(KERN_ERR "kvm: disabled by bios\n");
56c6d28a
ZX
1753 r = -EOPNOTSUPP;
1754 goto out;
f8c16bba
ZX
1755 }
1756
1757 kvm_x86_ops = ops;
56c6d28a 1758 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
f8c16bba 1759 return 0;
56c6d28a
ZX
1760
1761out:
1762 kvm_mmu_module_exit();
1763out_fail:
1764 return r;
043405e1 1765}
8776e519 1766
f8c16bba
ZX
1767void kvm_arch_exit(void)
1768{
1769 kvm_x86_ops = NULL;
56c6d28a
ZX
1770 kvm_mmu_module_exit();
1771}
f8c16bba 1772
8776e519
HB
1773int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1774{
1775 ++vcpu->stat.halt_exits;
1776 if (irqchip_in_kernel(vcpu->kvm)) {
1777 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1778 kvm_vcpu_block(vcpu);
1779 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1780 return -EINTR;
1781 return 1;
1782 } else {
1783 vcpu->run->exit_reason = KVM_EXIT_HLT;
1784 return 0;
1785 }
1786}
1787EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1788
1789int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1790{
1791 unsigned long nr, a0, a1, a2, a3, ret;
1792
1793 kvm_x86_ops->cache_regs(vcpu);
1794
1795 nr = vcpu->regs[VCPU_REGS_RAX];
1796 a0 = vcpu->regs[VCPU_REGS_RBX];
1797 a1 = vcpu->regs[VCPU_REGS_RCX];
1798 a2 = vcpu->regs[VCPU_REGS_RDX];
1799 a3 = vcpu->regs[VCPU_REGS_RSI];
1800
1801 if (!is_long_mode(vcpu)) {
1802 nr &= 0xFFFFFFFF;
1803 a0 &= 0xFFFFFFFF;
1804 a1 &= 0xFFFFFFFF;
1805 a2 &= 0xFFFFFFFF;
1806 a3 &= 0xFFFFFFFF;
1807 }
1808
1809 switch (nr) {
1810 default:
1811 ret = -KVM_ENOSYS;
1812 break;
1813 }
1814 vcpu->regs[VCPU_REGS_RAX] = ret;
1815 kvm_x86_ops->decache_regs(vcpu);
1816 return 0;
1817}
1818EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1819
1820int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1821{
1822 char instruction[3];
1823 int ret = 0;
1824
1825 mutex_lock(&vcpu->kvm->lock);
1826
1827 /*
1828 * Blow out the MMU to ensure that no other VCPU has an active mapping
1829 * to ensure that the updated hypercall appears atomically across all
1830 * VCPUs.
1831 */
1832 kvm_mmu_zap_all(vcpu->kvm);
1833
1834 kvm_x86_ops->cache_regs(vcpu);
1835 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1836 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1837 != X86EMUL_CONTINUE)
1838 ret = -EFAULT;
1839
1840 mutex_unlock(&vcpu->kvm->lock);
1841
1842 return ret;
1843}
1844
1845static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1846{
1847 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1848}
1849
1850void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1851{
1852 struct descriptor_table dt = { limit, base };
1853
1854 kvm_x86_ops->set_gdt(vcpu, &dt);
1855}
1856
1857void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1858{
1859 struct descriptor_table dt = { limit, base };
1860
1861 kvm_x86_ops->set_idt(vcpu, &dt);
1862}
1863
1864void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1865 unsigned long *rflags)
1866{
1867 lmsw(vcpu, msw);
1868 *rflags = kvm_x86_ops->get_rflags(vcpu);
1869}
1870
1871unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1872{
1873 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1874 switch (cr) {
1875 case 0:
1876 return vcpu->cr0;
1877 case 2:
1878 return vcpu->cr2;
1879 case 3:
1880 return vcpu->cr3;
1881 case 4:
1882 return vcpu->cr4;
1883 default:
1884 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1885 return 0;
1886 }
1887}
1888
1889void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1890 unsigned long *rflags)
1891{
1892 switch (cr) {
1893 case 0:
1894 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1895 *rflags = kvm_x86_ops->get_rflags(vcpu);
1896 break;
1897 case 2:
1898 vcpu->cr2 = val;
1899 break;
1900 case 3:
1901 set_cr3(vcpu, val);
1902 break;
1903 case 4:
1904 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1905 break;
1906 default:
1907 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1908 }
1909}
1910
1911void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1912{
1913 int i;
1914 u32 function;
1915 struct kvm_cpuid_entry *e, *best;
1916
1917 kvm_x86_ops->cache_regs(vcpu);
1918 function = vcpu->regs[VCPU_REGS_RAX];
1919 vcpu->regs[VCPU_REGS_RAX] = 0;
1920 vcpu->regs[VCPU_REGS_RBX] = 0;
1921 vcpu->regs[VCPU_REGS_RCX] = 0;
1922 vcpu->regs[VCPU_REGS_RDX] = 0;
1923 best = NULL;
1924 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1925 e = &vcpu->cpuid_entries[i];
1926 if (e->function == function) {
1927 best = e;
1928 break;
1929 }
1930 /*
1931 * Both basic or both extended?
1932 */
1933 if (((e->function ^ function) & 0x80000000) == 0)
1934 if (!best || e->function > best->function)
1935 best = e;
1936 }
1937 if (best) {
1938 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1939 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1940 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1941 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1942 }
1943 kvm_x86_ops->decache_regs(vcpu);
1944 kvm_x86_ops->skip_emulated_instruction(vcpu);
1945}
1946EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
d0752060 1947
b6c7a5dc
HB
1948/*
1949 * Check if userspace requested an interrupt window, and that the
1950 * interrupt window is open.
1951 *
1952 * No need to exit to userspace if we already have an interrupt queued.
1953 */
1954static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1955 struct kvm_run *kvm_run)
1956{
1957 return (!vcpu->irq_summary &&
1958 kvm_run->request_interrupt_window &&
1959 vcpu->interrupt_window_open &&
1960 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
1961}
1962
1963static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1964 struct kvm_run *kvm_run)
1965{
1966 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
1967 kvm_run->cr8 = get_cr8(vcpu);
1968 kvm_run->apic_base = kvm_get_apic_base(vcpu);
1969 if (irqchip_in_kernel(vcpu->kvm))
1970 kvm_run->ready_for_interrupt_injection = 1;
1971 else
1972 kvm_run->ready_for_interrupt_injection =
1973 (vcpu->interrupt_window_open &&
1974 vcpu->irq_summary == 0);
1975}
1976
1977static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1978{
1979 int r;
1980
1981 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
1982 pr_debug("vcpu %d received sipi with vector # %x\n",
1983 vcpu->vcpu_id, vcpu->sipi_vector);
1984 kvm_lapic_reset(vcpu);
1985 r = kvm_x86_ops->vcpu_reset(vcpu);
1986 if (r)
1987 return r;
1988 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
1989 }
1990
1991preempted:
1992 if (vcpu->guest_debug.enabled)
1993 kvm_x86_ops->guest_debug_pre(vcpu);
1994
1995again:
1996 r = kvm_mmu_reload(vcpu);
1997 if (unlikely(r))
1998 goto out;
1999
2000 kvm_inject_pending_timer_irqs(vcpu);
2001
2002 preempt_disable();
2003
2004 kvm_x86_ops->prepare_guest_switch(vcpu);
2005 kvm_load_guest_fpu(vcpu);
2006
2007 local_irq_disable();
2008
2009 if (signal_pending(current)) {
2010 local_irq_enable();
2011 preempt_enable();
2012 r = -EINTR;
2013 kvm_run->exit_reason = KVM_EXIT_INTR;
2014 ++vcpu->stat.signal_exits;
2015 goto out;
2016 }
2017
2018 if (irqchip_in_kernel(vcpu->kvm))
2019 kvm_x86_ops->inject_pending_irq(vcpu);
2020 else if (!vcpu->mmio_read_completed)
2021 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2022
2023 vcpu->guest_mode = 1;
2024 kvm_guest_enter();
2025
2026 if (vcpu->requests)
2027 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2028 kvm_x86_ops->tlb_flush(vcpu);
2029
2030 kvm_x86_ops->run(vcpu, kvm_run);
2031
2032 vcpu->guest_mode = 0;
2033 local_irq_enable();
2034
2035 ++vcpu->stat.exits;
2036
2037 /*
2038 * We must have an instruction between local_irq_enable() and
2039 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2040 * the interrupt shadow. The stat.exits increment will do nicely.
2041 * But we need to prevent reordering, hence this barrier():
2042 */
2043 barrier();
2044
2045 kvm_guest_exit();
2046
2047 preempt_enable();
2048
2049 /*
2050 * Profile KVM exit RIPs:
2051 */
2052 if (unlikely(prof_on == KVM_PROFILING)) {
2053 kvm_x86_ops->cache_regs(vcpu);
2054 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2055 }
2056
2057 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2058
2059 if (r > 0) {
2060 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2061 r = -EINTR;
2062 kvm_run->exit_reason = KVM_EXIT_INTR;
2063 ++vcpu->stat.request_irq_exits;
2064 goto out;
2065 }
e1beb1d3 2066 if (!need_resched())
b6c7a5dc 2067 goto again;
b6c7a5dc
HB
2068 }
2069
2070out:
2071 if (r > 0) {
2072 kvm_resched(vcpu);
2073 goto preempted;
2074 }
2075
2076 post_kvm_run_save(vcpu, kvm_run);
2077
2078 return r;
2079}
2080
2081int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2082{
2083 int r;
2084 sigset_t sigsaved;
2085
2086 vcpu_load(vcpu);
2087
2088 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2089 kvm_vcpu_block(vcpu);
2090 vcpu_put(vcpu);
2091 return -EAGAIN;
2092 }
2093
2094 if (vcpu->sigset_active)
2095 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2096
2097 /* re-sync apic's tpr */
2098 if (!irqchip_in_kernel(vcpu->kvm))
2099 set_cr8(vcpu, kvm_run->cr8);
2100
2101 if (vcpu->pio.cur_count) {
2102 r = complete_pio(vcpu);
2103 if (r)
2104 goto out;
2105 }
2106#if CONFIG_HAS_IOMEM
2107 if (vcpu->mmio_needed) {
2108 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2109 vcpu->mmio_read_completed = 1;
2110 vcpu->mmio_needed = 0;
2111 r = emulate_instruction(vcpu, kvm_run,
2112 vcpu->mmio_fault_cr2, 0, 1);
2113 if (r == EMULATE_DO_MMIO) {
2114 /*
2115 * Read-modify-write. Back to userspace.
2116 */
2117 r = 0;
2118 goto out;
2119 }
2120 }
2121#endif
2122 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2123 kvm_x86_ops->cache_regs(vcpu);
2124 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2125 kvm_x86_ops->decache_regs(vcpu);
2126 }
2127
2128 r = __vcpu_run(vcpu, kvm_run);
2129
2130out:
2131 if (vcpu->sigset_active)
2132 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2133
2134 vcpu_put(vcpu);
2135 return r;
2136}
2137
2138int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2139{
2140 vcpu_load(vcpu);
2141
2142 kvm_x86_ops->cache_regs(vcpu);
2143
2144 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2145 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2146 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2147 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2148 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2149 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2150 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2151 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2152#ifdef CONFIG_X86_64
2153 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2154 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2155 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2156 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2157 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2158 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2159 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2160 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2161#endif
2162
2163 regs->rip = vcpu->rip;
2164 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2165
2166 /*
2167 * Don't leak debug flags in case they were set for guest debugging
2168 */
2169 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2170 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2171
2172 vcpu_put(vcpu);
2173
2174 return 0;
2175}
2176
2177int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2178{
2179 vcpu_load(vcpu);
2180
2181 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2182 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2183 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2184 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2185 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2186 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2187 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2188 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2189#ifdef CONFIG_X86_64
2190 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2191 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2192 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2193 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2194 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2195 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2196 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2197 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2198#endif
2199
2200 vcpu->rip = regs->rip;
2201 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2202
2203 kvm_x86_ops->decache_regs(vcpu);
2204
2205 vcpu_put(vcpu);
2206
2207 return 0;
2208}
2209
2210static void get_segment(struct kvm_vcpu *vcpu,
2211 struct kvm_segment *var, int seg)
2212{
2213 return kvm_x86_ops->get_segment(vcpu, var, seg);
2214}
2215
2216void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2217{
2218 struct kvm_segment cs;
2219
2220 get_segment(vcpu, &cs, VCPU_SREG_CS);
2221 *db = cs.db;
2222 *l = cs.l;
2223}
2224EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2225
2226int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2227 struct kvm_sregs *sregs)
2228{
2229 struct descriptor_table dt;
2230 int pending_vec;
2231
2232 vcpu_load(vcpu);
2233
2234 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2235 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2236 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2237 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2238 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2239 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2240
2241 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2242 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2243
2244 kvm_x86_ops->get_idt(vcpu, &dt);
2245 sregs->idt.limit = dt.limit;
2246 sregs->idt.base = dt.base;
2247 kvm_x86_ops->get_gdt(vcpu, &dt);
2248 sregs->gdt.limit = dt.limit;
2249 sregs->gdt.base = dt.base;
2250
2251 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2252 sregs->cr0 = vcpu->cr0;
2253 sregs->cr2 = vcpu->cr2;
2254 sregs->cr3 = vcpu->cr3;
2255 sregs->cr4 = vcpu->cr4;
2256 sregs->cr8 = get_cr8(vcpu);
2257 sregs->efer = vcpu->shadow_efer;
2258 sregs->apic_base = kvm_get_apic_base(vcpu);
2259
2260 if (irqchip_in_kernel(vcpu->kvm)) {
2261 memset(sregs->interrupt_bitmap, 0,
2262 sizeof sregs->interrupt_bitmap);
2263 pending_vec = kvm_x86_ops->get_irq(vcpu);
2264 if (pending_vec >= 0)
2265 set_bit(pending_vec,
2266 (unsigned long *)sregs->interrupt_bitmap);
2267 } else
2268 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2269 sizeof sregs->interrupt_bitmap);
2270
2271 vcpu_put(vcpu);
2272
2273 return 0;
2274}
2275
2276static void set_segment(struct kvm_vcpu *vcpu,
2277 struct kvm_segment *var, int seg)
2278{
2279 return kvm_x86_ops->set_segment(vcpu, var, seg);
2280}
2281
2282int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2283 struct kvm_sregs *sregs)
2284{
2285 int mmu_reset_needed = 0;
2286 int i, pending_vec, max_bits;
2287 struct descriptor_table dt;
2288
2289 vcpu_load(vcpu);
2290
2291 dt.limit = sregs->idt.limit;
2292 dt.base = sregs->idt.base;
2293 kvm_x86_ops->set_idt(vcpu, &dt);
2294 dt.limit = sregs->gdt.limit;
2295 dt.base = sregs->gdt.base;
2296 kvm_x86_ops->set_gdt(vcpu, &dt);
2297
2298 vcpu->cr2 = sregs->cr2;
2299 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2300 vcpu->cr3 = sregs->cr3;
2301
2302 set_cr8(vcpu, sregs->cr8);
2303
2304 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2305#ifdef CONFIG_X86_64
2306 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2307#endif
2308 kvm_set_apic_base(vcpu, sregs->apic_base);
2309
2310 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2311
2312 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2313 vcpu->cr0 = sregs->cr0;
2314 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2315
2316 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2317 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2318 if (!is_long_mode(vcpu) && is_pae(vcpu))
2319 load_pdptrs(vcpu, vcpu->cr3);
2320
2321 if (mmu_reset_needed)
2322 kvm_mmu_reset_context(vcpu);
2323
2324 if (!irqchip_in_kernel(vcpu->kvm)) {
2325 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2326 sizeof vcpu->irq_pending);
2327 vcpu->irq_summary = 0;
2328 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2329 if (vcpu->irq_pending[i])
2330 __set_bit(i, &vcpu->irq_summary);
2331 } else {
2332 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2333 pending_vec = find_first_bit(
2334 (const unsigned long *)sregs->interrupt_bitmap,
2335 max_bits);
2336 /* Only pending external irq is handled here */
2337 if (pending_vec < max_bits) {
2338 kvm_x86_ops->set_irq(vcpu, pending_vec);
2339 pr_debug("Set back pending irq %d\n",
2340 pending_vec);
2341 }
2342 }
2343
2344 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2345 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2346 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2347 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2348 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2349 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2350
2351 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2352 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2353
2354 vcpu_put(vcpu);
2355
2356 return 0;
2357}
2358
2359int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2360 struct kvm_debug_guest *dbg)
2361{
2362 int r;
2363
2364 vcpu_load(vcpu);
2365
2366 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2367
2368 vcpu_put(vcpu);
2369
2370 return r;
2371}
2372
d0752060
HB
2373/*
2374 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2375 * we have asm/x86/processor.h
2376 */
2377struct fxsave {
2378 u16 cwd;
2379 u16 swd;
2380 u16 twd;
2381 u16 fop;
2382 u64 rip;
2383 u64 rdp;
2384 u32 mxcsr;
2385 u32 mxcsr_mask;
2386 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2387#ifdef CONFIG_X86_64
2388 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2389#else
2390 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2391#endif
2392};
2393
8b006791
ZX
2394/*
2395 * Translate a guest virtual address to a guest physical address.
2396 */
2397int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2398 struct kvm_translation *tr)
2399{
2400 unsigned long vaddr = tr->linear_address;
2401 gpa_t gpa;
2402
2403 vcpu_load(vcpu);
2404 mutex_lock(&vcpu->kvm->lock);
2405 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2406 tr->physical_address = gpa;
2407 tr->valid = gpa != UNMAPPED_GVA;
2408 tr->writeable = 1;
2409 tr->usermode = 0;
2410 mutex_unlock(&vcpu->kvm->lock);
2411 vcpu_put(vcpu);
2412
2413 return 0;
2414}
2415
d0752060
HB
2416int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2417{
2418 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2419
2420 vcpu_load(vcpu);
2421
2422 memcpy(fpu->fpr, fxsave->st_space, 128);
2423 fpu->fcw = fxsave->cwd;
2424 fpu->fsw = fxsave->swd;
2425 fpu->ftwx = fxsave->twd;
2426 fpu->last_opcode = fxsave->fop;
2427 fpu->last_ip = fxsave->rip;
2428 fpu->last_dp = fxsave->rdp;
2429 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2430
2431 vcpu_put(vcpu);
2432
2433 return 0;
2434}
2435
2436int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2437{
2438 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2439
2440 vcpu_load(vcpu);
2441
2442 memcpy(fxsave->st_space, fpu->fpr, 128);
2443 fxsave->cwd = fpu->fcw;
2444 fxsave->swd = fpu->fsw;
2445 fxsave->twd = fpu->ftwx;
2446 fxsave->fop = fpu->last_opcode;
2447 fxsave->rip = fpu->last_ip;
2448 fxsave->rdp = fpu->last_dp;
2449 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2450
2451 vcpu_put(vcpu);
2452
2453 return 0;
2454}
2455
2456void fx_init(struct kvm_vcpu *vcpu)
2457{
2458 unsigned after_mxcsr_mask;
2459
2460 /* Initialize guest FPU by resetting ours and saving into guest's */
2461 preempt_disable();
2462 fx_save(&vcpu->host_fx_image);
2463 fpu_init();
2464 fx_save(&vcpu->guest_fx_image);
2465 fx_restore(&vcpu->host_fx_image);
2466 preempt_enable();
2467
2468 vcpu->cr0 |= X86_CR0_ET;
2469 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
2470 vcpu->guest_fx_image.mxcsr = 0x1f80;
2471 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
2472 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
2473}
2474EXPORT_SYMBOL_GPL(fx_init);
2475
2476void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
2477{
2478 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
2479 return;
2480
2481 vcpu->guest_fpu_loaded = 1;
2482 fx_save(&vcpu->host_fx_image);
2483 fx_restore(&vcpu->guest_fx_image);
2484}
2485EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
2486
2487void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
2488{
2489 if (!vcpu->guest_fpu_loaded)
2490 return;
2491
2492 vcpu->guest_fpu_loaded = 0;
2493 fx_save(&vcpu->guest_fx_image);
2494 fx_restore(&vcpu->host_fx_image);
f096ed85 2495 ++vcpu->stat.fpu_reload;
d0752060
HB
2496}
2497EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
e9b11c17
ZX
2498
2499void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
2500{
2501 kvm_x86_ops->vcpu_free(vcpu);
2502}
2503
2504struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
2505 unsigned int id)
2506{
26e5215f
AK
2507 return kvm_x86_ops->vcpu_create(kvm, id);
2508}
e9b11c17 2509
26e5215f
AK
2510int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
2511{
2512 int r;
e9b11c17
ZX
2513
2514 /* We do fxsave: this must be aligned. */
2515 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2516
2517 vcpu_load(vcpu);
2518 r = kvm_arch_vcpu_reset(vcpu);
2519 if (r == 0)
2520 r = kvm_mmu_setup(vcpu);
2521 vcpu_put(vcpu);
2522 if (r < 0)
2523 goto free_vcpu;
2524
26e5215f 2525 return 0;
e9b11c17
ZX
2526free_vcpu:
2527 kvm_x86_ops->vcpu_free(vcpu);
26e5215f 2528 return r;
e9b11c17
ZX
2529}
2530
d40ccc62 2531void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
e9b11c17
ZX
2532{
2533 vcpu_load(vcpu);
2534 kvm_mmu_unload(vcpu);
2535 vcpu_put(vcpu);
2536
2537 kvm_x86_ops->vcpu_free(vcpu);
2538}
2539
2540int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
2541{
2542 return kvm_x86_ops->vcpu_reset(vcpu);
2543}
2544
2545void kvm_arch_hardware_enable(void *garbage)
2546{
2547 kvm_x86_ops->hardware_enable(garbage);
2548}
2549
2550void kvm_arch_hardware_disable(void *garbage)
2551{
2552 kvm_x86_ops->hardware_disable(garbage);
2553}
2554
2555int kvm_arch_hardware_setup(void)
2556{
2557 return kvm_x86_ops->hardware_setup();
2558}
2559
2560void kvm_arch_hardware_unsetup(void)
2561{
2562 kvm_x86_ops->hardware_unsetup();
2563}
2564
2565void kvm_arch_check_processor_compat(void *rtn)
2566{
2567 kvm_x86_ops->check_processor_compatibility(rtn);
2568}
2569
2570int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
2571{
2572 struct page *page;
2573 struct kvm *kvm;
2574 int r;
2575
2576 BUG_ON(vcpu->kvm == NULL);
2577 kvm = vcpu->kvm;
2578
2579 vcpu->mmu.root_hpa = INVALID_PAGE;
2580 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
2581 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2582 else
2583 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
2584
2585 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2586 if (!page) {
2587 r = -ENOMEM;
2588 goto fail;
2589 }
2590 vcpu->pio_data = page_address(page);
2591
2592 r = kvm_mmu_create(vcpu);
2593 if (r < 0)
2594 goto fail_free_pio_data;
2595
2596 if (irqchip_in_kernel(kvm)) {
2597 r = kvm_create_lapic(vcpu);
2598 if (r < 0)
2599 goto fail_mmu_destroy;
2600 }
2601
2602 return 0;
2603
2604fail_mmu_destroy:
2605 kvm_mmu_destroy(vcpu);
2606fail_free_pio_data:
2607 free_page((unsigned long)vcpu->pio_data);
2608fail:
2609 return r;
2610}
2611
2612void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
2613{
2614 kvm_free_lapic(vcpu);
2615 kvm_mmu_destroy(vcpu);
2616 free_page((unsigned long)vcpu->pio_data);
2617}
d19a9cd2
ZX
2618
2619struct kvm *kvm_arch_create_vm(void)
2620{
2621 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
2622
2623 if (!kvm)
2624 return ERR_PTR(-ENOMEM);
2625
2626 INIT_LIST_HEAD(&kvm->active_mmu_pages);
2627
2628 return kvm;
2629}
2630
2631static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
2632{
2633 vcpu_load(vcpu);
2634 kvm_mmu_unload(vcpu);
2635 vcpu_put(vcpu);
2636}
2637
2638static void kvm_free_vcpus(struct kvm *kvm)
2639{
2640 unsigned int i;
2641
2642 /*
2643 * Unpin any mmu pages first.
2644 */
2645 for (i = 0; i < KVM_MAX_VCPUS; ++i)
2646 if (kvm->vcpus[i])
2647 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
2648 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2649 if (kvm->vcpus[i]) {
2650 kvm_arch_vcpu_free(kvm->vcpus[i]);
2651 kvm->vcpus[i] = NULL;
2652 }
2653 }
2654
2655}
2656
2657void kvm_arch_destroy_vm(struct kvm *kvm)
2658{
2659 kfree(kvm->vpic);
2660 kfree(kvm->vioapic);
2661 kvm_free_vcpus(kvm);
2662 kvm_free_physmem(kvm);
2663 kfree(kvm);
2664}
0de10343
ZX
2665
2666int kvm_arch_set_memory_region(struct kvm *kvm,
2667 struct kvm_userspace_memory_region *mem,
2668 struct kvm_memory_slot old,
2669 int user_alloc)
2670{
2671 int npages = mem->memory_size >> PAGE_SHIFT;
2672 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
2673
2674 /*To keep backward compatibility with older userspace,
2675 *x86 needs to hanlde !user_alloc case.
2676 */
2677 if (!user_alloc) {
2678 if (npages && !old.rmap) {
2679 down_write(&current->mm->mmap_sem);
2680 memslot->userspace_addr = do_mmap(NULL, 0,
2681 npages * PAGE_SIZE,
2682 PROT_READ | PROT_WRITE,
2683 MAP_SHARED | MAP_ANONYMOUS,
2684 0);
2685 up_write(&current->mm->mmap_sem);
2686
2687 if (IS_ERR((void *)memslot->userspace_addr))
2688 return PTR_ERR((void *)memslot->userspace_addr);
2689 } else {
2690 if (!old.user_alloc && old.rmap) {
2691 int ret;
2692
2693 down_write(&current->mm->mmap_sem);
2694 ret = do_munmap(current->mm, old.userspace_addr,
2695 old.npages * PAGE_SIZE);
2696 up_write(&current->mm->mmap_sem);
2697 if (ret < 0)
2698 printk(KERN_WARNING
2699 "kvm_vm_ioctl_set_memory_region: "
2700 "failed to munmap memory\n");
2701 }
2702 }
2703 }
2704
2705 if (!kvm->n_requested_mmu_pages) {
2706 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
2707 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
2708 }
2709
2710 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
2711 kvm_flush_remote_tlbs(kvm);
2712
2713 return 0;
2714}
This page took 0.150509 seconds and 5 git commands to generate.